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Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks

An analytical formulation for the vectors of contact forces and the stiffness matrix of the nonlinear friction contact interface is developed for the analysis of multi-harmonic vibra-tions in the frequency domain. The contact interface elements provided here an exact description of friction and unilateral contact forces at the interacting surfaces, taking into account the influence of the variable normal load on the friction forces, including the extreme cases of separation of the two surfaces. Initial gaps and interferences at the contact nodes, which affect the normal force, as well as the unilateral action of the normal force at the contact surface, are all included in the model. The accurate calcula-tion of the force vector and the tangent stiffness matrix provides a very reliable and fast convergence of the iteration process used in the search for the amplitudes of nonlinear vibrations of bladed disks. Numerical investigations demonstrate excellent performance with respect to speed, accuracy and stability of computation.

Introduction

One of the most important sources of nonlinear behavior in turbomachinery structures is the dynamics of the contact surfaces between different parts of assembled structures. In some cases, these effects are advantageous, are exploited by designers ͑as in underplatform or impact dampers of bladed dises͒, but in other cases the effect of the resulting forces is problematic and has to be reduced.

The problem of effective modeling the friction contact effects, and of developing reliable methods for analysis of systems with friction, have attracted attention of many scientists and engineers. A modern insight in the friction phenomenon from the point of view of contact mechanics can be found in ͑Tworzydlo et al. ͓1͔͒, together with a good list of publications on the topic. A review of research on the analysis and use of friction damping in blade vibration is given in paper ͑Griffin ͓2͔͒.

Analysis of the vibrations of bladed disks with friction dampers is usually performed in the frequency domain owing to the high computational efficiency of this approach. Transformation of the formulation of the problem into the frequency domain can be carried out by representing each steady-state displacement as a sum of harmonic components, or even as one harmonic only. Then, a set of nonlinear equations with respect to the amplitudes of the harmonics is obtained using a refinement of the harmonic balance method, the so-called ''multi-harmonic balance method.'' The latter term is used to highlight the use of many harmonics in the displacement expansion. The general scheme of solution for non-linear problems using the multi-harmonic balance method is described in ͑Cardona et al. ͓3͔͒. The analysis of monoharmonic vibrations with friction damping effects in turbomachines can be found in papers by Griffin ͓4͔; Sanliturk et al. ͓5͔; Sextro ͓6͔ and Csaba ͓7͔, whereas multi-harmonic vibrations are studied in papers by Pierre et al. ͓8͔;Cameron and Griffin ͓9͔;Berthillier et al. ͓10͔. In these papers, friction interface nodes are assumed to be in contact continuously and the normal load at the friction interfaces is assumed to be invariable.

In practical bladed disks, due to vibration, the relative displacements along both directions ͑normal as well as tangential to the contact surface͒ are inevitably nonconstant. The magnitude of the normal displacement variation can be large, which can even result in temporary separation of the contact surfaces and moreover in changes of the time instants of the slip-to stick and back transitions in tangential motion. Interaction forces, as well as stiffness properties due to abrupt changes of the contact conditions during vibrations stiffness values, can change discontinuously. The robustness and accuracy of calculations of the nonlinear vibrations are completely determined by the accuracy of the determination of the friction forces and the stiffness matrix of the interface contact model.

The problems of accurately determining the stiffness matrix of the friction element, as well as the harmonic components of friction forces and the force of unilateral interaction along the normal, for consistent friction models with variable normal load have not been solved in the literature to date. In some papers ͓3,8,10͔, the stiffness matrices are derived for simple, Coulomb-type friction models with constant normal load and a friction contact model for the case of variable normal load has been developed in Yang et al. ͓11͔ and Chen and Mend ͓12͔. However, in the latter papers the stiffness matrix of the interface has not been determined. For the cases of mono-harmonic vibrations considered in ͓5-7͔, a ratio of the amplitude of the interaction force to the amplitude of the relative displacement is usually used instead of the stiffness matrix. Such a rough approximation cannot substitute for the proper stiffness matrix in an iterative solution of the nonlinear equations and is likely to cause difficulty, or even failure, in solution convergence, especially for cases when strongly nonlinear effects are revealed.

In this paper an approach is proposed for the analysis of multiharmonic vibrations for systems with friction and gaps based on analytically derived contact interface elements.

A friction model and an interface friction element are developed that describe friction forces under the variable normal load and unilateral interaction along the normal of a contact surface. To guarantee both high accuracy and a rapid convergence rate of the iterative solution process, the friction interface elements are derived analytically including their stiffness matrices. This analytical derivation has allowed us to overcome difficulties in the nu-merical analysis of structures having abrupt changes of contact conditions ͑such as contact-absence of contact; slip-stick, etc.͒. Such difficulties have been common in the past, often leading to loss of the convergence and failure in the search for steady-state solutions.

The friction model and element proposed here are equally accurate for constant and for variable normal loads and even for cases of interfaces with contact-to-separation transitions. Because of that, they can be applied to the analysis of a wide variety of systems with friction and friction-impact interfaces, such as occur in bladed disks ͑underplatform dampers, root damping in bladed disk assemblies; intershroud contacts in shrouded bladed disks, etc.͒ or in other mechanical structures. The friction interface element proposed describes the interaction of the contacting surfaces at one node and the application of such elements over many nodes of the prospective contact can be used for modeling contact interaction over complex areas.

Multi-Harmonic BalanceÕNewton-Raphson Method for Analysing Vibration of Nonlinear Systems

The equation for vibration of a bladed disk consisting of a linear part ͑which is independent on vibration amplitudes͒ and nonlinear friction interfaces can be written in the following form: Kq͑t ͒ϩCq ˙͑t ͒ϩMq ¨͑t ͒ϩf͑ q͑t ͒,q ˙͑t ͒͒Ϫp͑ t ͒ϭ0

(1)

where q(t) is a vector of displacements for all degrees of freedom ͑DOFs͒ in the considered bladed disc; K, C, and M are accordingly stiffness, viscous damping and mass matrices of its linear part; f(q(t)) is a vector of nonlinear, friction interface forces, which are dependent on displacements and velocities of the interacting nodes and p(t) is a vector of external excitation forces.

In cases where the excitation forces are periodic, it is usually desirable to find steady, periodic regimes of response variation. For a search of the periodic vibration response the variation of all DOFs of the system in time can be represented as a restricted Fourier series, which can contain as many and such harmonic components as are necessary to approximate the sought solution, i.e.

q͑t ͒ϭQ 0 ϩ ͚ jϭ1 n Q 2 jϪ1 cos m j tϩQ 2 j sin m j t (2)
where Q j ( jϭ0...2n) are vectors of harmonic coefficients for system DOFs; m j ( jϭ1...2n) are specific harmonics that are kept in the displacement expansion in addition to the constant component; is a principal vibration frequency which is expressed by the vibration periodicity, T, as follows: ϭ2/T.

In accordance with the multi-harmonic balance method, the expansion from Eq. ͑2͒ is substituted into the motion Eq. ͑1͒, after which a Galerkin-type procedure is applied to the equation obtained using each of the harmonic functions. Equation ͑1͒ is sequentially multiplied by (cos m j ) and (sin m j ) for all harmonics from the expansion and integrals over the vibration period, T, are calculated. As a result, equations for determination of the all unknown harmonic components are obtained in the form:

R͑Q͒ϭZ͑ ͒QϩF͑ Q͒ϪPϭ0 (3) 
where Qϭ͕Q 0 ,Q 1 ,Q 2 ,...,Q 2nϪ1 ,Q 2n ͖ T is a vector of harmonic coefficients for system DOFs; F(Q) is a vector of nonlinear forces; P is a vector of harmonic components of exciting forces, and Z() is the dynamic stiffness matrix of the linear

Zϭ ΄ K0 0¯00 0K Ϫ͑m l ͒ 2 M m l C ¯00 0 Ϫm l CK Ϫ͑m l ͒ 2 M ¯00 ¯¯¯¯¯0 0 0¯KϪ͑m n ͒ 2 M m n C 00 0¯Ϫm n CK Ϫ͑m n ͒ 2 M ΅ (4)
Equation ͑3͒ represents a nonlinear set of equations with respect to Q. One of the most efficient methods for solution of the nonlinear equations is the Newton-Raphson method which possesses quadratic convergence when an approximation is close enough to the solution. An iterative solution process is expressed by the following formula:

Q ͑ kϩ1 ͒ ϭQ ͑ k ͒ Ϫ ͩ ץR ͑ k ͒ ץQ ͪ Ϫ1 R͑Q ͑ k ͒ ͒ (5)
where superscript (k) indicates the number of the current iteration.

Performing differentiation of Eq. ͑3͒ with respect to Q, the recurrence formula can be rewritten in the form

Q ͑ kϩ1 ͒ ϭQ ͑ k ͒ Ϫ ͫ Z͑ ͒ϩ ץF͑Q ͑ k ͒ ͒ ץQ ͬ Ϫ1 R͑Q ͑ k ͒ ͒ (6)
When derivatives ץF(Q (k) )/ץQ are calculated using finitedifference formulas, this results in a very large computational effort, difficulty with the choice of the step for the numerical evaluation of the derivatives and-very often-to a loss of accuracy and robustness of the solution. In further sections we derive analytical expressions for a nonlinear force vector of the friction in-terface, F(Q (k) ), and for its tangent stiffness matrix, ץF(Q (k) )/ץQ, which provide exact and extremely fast calculations.

Derivation of Nonlinear Friction Interface Elements

In order to derive expressions for friction interface matrices, we consider the relative motion of the contacting nodes in terms of tangential, x, and normal, y, motion components ͑Fig. 1͒.

Contact surface mechanical properties are described by a friction coefficient, , and stiffness coefficients k x and k y , which characterize elastic deformation of the asperities of the contacting surfaces in the tangential and normal directions, respectively. Moreover, an initial static preload normal force, N 0 , can also be prescribed. The general case is considered here, when the preload normal force can take a negative value ͑corresponding to an initial gap between contacting surfaces which is determined as follows:

gϭϪN 0 /k y ).
The periodic motion of each degree of freedom can be represented by a sum of all harmonic components analyzed, i.e.,

x͑ ͒ϭH Ϫ T ͑ ͒X; y͑ ͒ϭH Ϫ T ͑ ͒Y (7)
where X, and Y are vectors of harmonic coefficients of relative motion in the tangential and normal directions, respectively, which are selected from vector, Q, of harmonic coefficients for the whole system; H Ϫ ϭ͕1,cos m l ,sin m l ,...,cosm n ,sin m n ͖ T is a vector consisting of harmonic functions, which is used for transition from frequency domain to time domain, and ϭt is nondimensional time.

Modeling of the Nonlinear Interface Forces. During relative motion of the contacting surfaces several different states are possible.

The motion along the normal direction, y(), determines whether the interacting surfaces are in contact or separated.

During contact two other different states are possible: slip or stick. In slip, the tangential force, f x , is a dry friction force and in the stick state, this force is a force due to elastic asperity deformations. Taking into account the influence of the variable normal force occurring during motion along normal direction, expressions for nonlinear interaction forces can be derived for all possible states in the following form:

• Tangential force

f x ϭ ͭ f x 0 ϩk x ͑ xϪx 0 ͒ for stick f y
for slip 0 for separation (8)

• Normal force

f y ϭ ͭ N 0 ϩk y y for contact 0 for separation (9)
where ϭϮ1 is a sign function of the tangential force at the time instant of slip state initiation, slip . For the conventional case of constant normal force, the value of the sign is determined by that of the tangential velocity: ϭsgn(x ˙( slip )). However, for the case of variable normal load, the sign is determined by that of the tangential force at the end of the preceding stick phase, i.e., ϭsgn(f x ( slip )), which guarantees time continuity of the tangential force. The other constants in Eqs. ͑8͒ and ͑9͒, x 0 ϭx( stick ) and f x 0 ϭ f ( stick ), are values of the relative tangential displacement and the interaction force at the beginning of the stick-state, stick , respectively. The force value, f x 0 , has to be equal to the value of the interaction force at the end of preceding slip in order to be continuous over the vibration period, i.e.

f x 0 ϭϪ f y ͑ stick ͒ (10)

Determination of the State Transition Times

Stick to Slip Transition. The stick state lasts during the contact phase, while the tangential interaction force, f x (), is less than the limiting value due to dry friction

͉ f x ͑ ͉͒Ͻ f y ͑ ͒ (11)
So, stick to slip transition occurs when the tangential interaction force of the stick state, f x , reaches this limiting value, i.e., when

f x 0 ϩk x ͑ x͑ ͒Ϫx 0 ͒ϭϮ͑ N 0 ϩk y y͑ ͒͒ (12)
Equation ͑12͒ is solved with respect to time for both values of the sign on the limiting friction force. Lower value of gives the time of the stick-to-slip transition and the sign used in the equation gives the magnitude of the sign function, ϭsgn(f x ( slip )).

Slip to Stick Transition. For the conventional case of constant normal load, the stick state begins when the relative velocity is equal to zero, i.e., when x ˙()ϭ0. For a case of variable normal load, the slip-to-stick transition has to be determined from a general stick state condition given by Eq. ͑11͒. Such transition occurs only when this condition can be satisfied during at least an infinitesimal time interval, ⌬, i.e.

͉ f x ͑ ϩ⌬͉͒ϭ f x ͑ ϩ⌬͒Ͻ f y ͑ ϩ⌬͒ (13)
Linearization of Eq. ͑13͒ in the vicinity of the slip-to-stick transition time gives another, differential, form for the condition of stick-state existence

f ˙x͑ ͒Ͻ f ˙y͑ ͒ (14)
Equality of rates of stick and slip tangential force variation in time then allows us to write out an equation for slip-to-stick transition in the form

k x x ˙͑ ͒ϭk y y ˙͑ ͒ (15) 
To select from all possible solutions of Eq. ͑15͒ only those instants satisfying conditions ͑13͒ and ͑14͒, the following condition is also imposed:

k x x ¨͑ ͒Ͻk y y ¨͑ ͒ (16) 
This condition guarantees larger rate of increase for a limiting value for the friction force determined by the normal load than that of friction force at the found time instant.

Contact-Separation Transitions. Contact to separation ͑and back͒ transitions occur when the normal force, f y , is equal to zero, and because of that, the corresponding time instants are determined from the equation

N 0 ϩk y y͑ ͒ϭ0 (17) 
When at the transition time instant y ˙()Ͼ0, this is a time of transition from separation to contact; otherwise, it is time of transition from contact to separation.

Periodic Set of State Transition Times. Since periodic steadystate vibrations are analyzed here, the periodic set of instants for state transitions has to be calculated which provides periodic variation of nonlinear interface forces. Because the tangential force expressions given by Eq. ͑8͒ are history-dependent, and include a-priori unknown parameters x 0 , f x 0 , , this represents a nontrivial problem and an efficient algorithm can be proposed to determine such set of transition times. Two cases should be distinguished here.

The first case is that when there is no separation during the vibration cycle. For this case, a simple way to find the periodic set of transition times is to start the search of the transition times from time instant, *, when the tangential displacement is zero. This time is calculated from equation x(*)ϭ0 and at this instant the following parameters for the stick case are assumed: x 0 ϭ f x 0 ϭ0. Then, the first stick-to-slip transition after * is determined from Eq. ͑12͒ and the time of the next slip-to-stick transition, **,i s calculated from Eq. ͑15͒. Values x 0 (**), f x 0 (**), ͑**͒ can be now determined and all transition times can easily be calculated over the interval ͓**,**ϩ2͔ using Eqs. ͑12͒ and ͑15͒ and the set of transition times obtained provides the periodic interaction force variation.

The second case relates to a separation of the contacting surfaces during vibration. For this case, all times of the contactseparation transitions are first calculated from Eq. ͑17͒ and then slip-stick transition times are calculated using Eqs. ͑12͒ and ͑15͒ for each jth contact interval ͓ contact ( j) , separation ( j) ͔, separately. To determine whether the contact interval starts from a stick or a slip condition, Eq. ͑14͒ is used with the sign function value, , determined as ϭsgn(x ˙( contact ( j)

)). If the contact interval starts from the stick state, initial parameters of this state are x 0 ϭx( contact ( j)

) and f x 0 ϭ0, otherwise the expression for tangential force is determined simply by f y of Eq. ͑8͒.

Force Vector and Stiffness Matrix. Vectors of Fourier expansion coefficients for tangential, F x , and normal, F y , forces can be expressed in the form

ͭ F x F y ͮ ϭ 1 ͚ jϭ1 n ͵ j jϩ1 ͭ H ϩ ͑ ͒ f x H ϩ ͑ ͒ f y ͮ dϭ ͚ jϭ1 n ͭ J x ͑ j ͒ J y ͑ j ͒ͮ (18) 
where H ϩ ϭ͕ 1 2 ,cos m 1 ,sin m 1 ,...,cosm n ,sin m n ͖ T and j are instants of contact-separation or slip-stick transitions. Substituting the expressions for the interaction forces given by Eqs. ͑8͒ and ͑9͒ into Eq. ͑18͒ and taking into account Eq. ͑7͒, gives an expression for the force vector. Introduced here are vectors of integrals J x ( j) and J y ( j) over each interval of stick, slip, or separation which are expressed in the form

J x ͑ j ͒ ϭ ͭ k x W j Xϩc j w j stick ͑N 0 w j ϩk y W j Y͒ slip 0 separation (19) J y ͑ j ͒ ϭ ͭ N 0 w j ϩk y W j Y contact 0 separation ( 20 
)
where

W j ͑ nϫn ͒ ϭ 1 ͵ j jϩ1 H ϩ ͑ ͒H Ϫ T ͑ ͒d; w j ͑ nϫ1 ͒ ϭ 1 ͵ j jϩ1 H ϩ ͑ ͒d (21) c j ϭ f x 0 ͑ j ͒Ϫk x x͑ j ͒ϭϪ͑ N 0 ϩk y y͑ j ͒͒Ϫk x x͑ j ͒ (22)
Since the vector used for transformation from time domain into frequency domain, H ϩ , and that for transformation backward, H Ϫ , consist of sine and cosine functions of different orders then components of matrix W and vector w are simple integrals of sine and cosine functions and integrals of products of these functions. These integrals can be calculated analytically, which provides an exact and very fast calculation for the vectors of Fourier expansion coefficients of the interface forces.

The stiffness matrix of the friction interface element is determined as a matrix of derivatives of the Fourier coefficients for the friction interface forces with respect to the Fourier coefficients for relative displacements. An exact expression for the stiffness matrix is also derived analytically. This matrix is obtained by differentiating Eq. ͑18͒ with respect to vectors X and Y. Because of the independence of the normal force to the tangential displacement, the stiffness matrix has the following inherently unsymmetrical structure:

K f ϭ ͫ ץF x ץX ץF x ץY 0 ץF y ץY ͬ ϭ ͚ jϭ1 n ͫ ץJ x ͑ j ͒ ץX ץJ x ͑ j ͒ ץY 0 ץJ y ͑ j ͒ ץY ͬ (23)
where

ץJ x ͑ j ͒ ץX ϭ Ά k x W j ϩw j ͩ ץc j ץX ͪ T stick 0 slip 0 separation (24) ץJ x ͑ j ͒ ץY ϭ Ά w j ͩ ץc j ץY ͪ T stick k y W j slip 0 separation (25) ץJ y ͑ j ͒ ץY ϭ ͭ k y W j contact 0 separation (26)
Contained in Eqs. ͑24͒ and ͑25͒, derivatives of the constant term of the tangential force with respect to X and Y are determined in the following form:

ץc j ץX ϭϪk y y ˙͑ j ͒ ץ j ץX Ϫk x ͩ H Ϫ ͑ j ͒ϩx ˙͑ j ͒ ץ j ץX ͪ (27) ץc j ץY ϭϪk y ͩ H Ϫ ͑ j ͒ϩy ˙͑ j ͒ ץ j ץY ͪ (28)
During the differentiation, dependence of the values of tangential force, f x (0) , tangential displacement, x 0 , at the beginning of stickstate and time of the transition from slip to stick, stick , on the harmonic coefficients of relative displacements is taken into account.

The expressions for derivatives of the slip-to-stick transition time with respect to X and Y, are derived by differentiation of the slip-to-stick condition given in Eq. ͑15͒. Dependence of x ˙and y ȯn X and Y as well as dependence of the stick times, i.e. stick ϭ stick (X,Y), is accounted for here, and results into the following expressions:

ץ stick ץX ϭ Ϫk x k x x ¨͑ stick ͒Ϫk y y ¨͑ stick ͒ H ˙Ϫ͑ stick ͒ (29) ץ stick ץY ϭ k y k x x ¨͑ stick ͒ Ϫk y y ¨͑ stick ͒ H ˙Ϫ͑ stick ͒ (30)
For the special case when stick occurs immediately after full separation, the time of the stick beginning coincides with the time of contact beginning. Because of that it is independent on X, i.e.,

ץ stick ץX ϭ0 (31) 
and derivatives with respect to vector Y are obtained by differentiation of the contact condition given by Eq. ͑17͒

ץ stick ץY ϭϪ 1 y ˙͑ stick ͒ H Ϫ ͑ stick ͒ (32)
Thus-derived analytical expressions for the vector of harmonic components of interface forces ͑Eqs. ͑18͒-͑20͒͒ and for the stiffness matrix ͑Eqs. ͑23͒ and ͑24͒-͑26͒͒ allow exact calculation of all components of the friction contact interface element.

It should be noted that, in the proposed analytical formulation for the interface element, computational efforts for calculation of the stiffness matrix are negligible compared with the expense of calculation of the force vector. This is achieved owing to the fact that obtained expressions for tangent matrix are based on simple matrix operations with matrix, W, and vector w, which are already calculated for the determination of the forces. The expressions derived for the vectors of harmonic components of friction interface forces given by Eq. ͑18͒, and the expression for the tangent stiffness matrix given by Eq. ͑23͒, are nonlinearly dependent on the vectors of harmonic components for tangential, X, and normal, Y, displacements since the times of slip-to-stick and contact-separation transitions, j ϭ j (X,Y), are, in general, dependent on these vectors.

For two special cases the expressions for the vector and the stiffness matrix can be written down immediately. These cases are: ͑i͒ the case of full separation and ͑ii͒ the case when contact is permanent and slip does not occur.

For the full separation case the interface forces and tangent matrix are equal to zero, i.e.

F x ϭF y ϭ0

and

K f ϭ0 (33) 
For the case of permanent contact without slip, contact forces are linear and the expressions for vector of forces and tangent matrix take the form

ͭ F x F y ͮ ϭ ͭ k x X k y Y ͮ ; K f ϭ ͫ k x I0 0 k y I ͬ ( 34 
)
where I is the identity matrix.

Numerical Results

The developed method for calculation of the force vector and tangent matrix for the interface element has been applied to the analysis of forced response of different systems described in the forthcoming.

System 1. For initial exploration of the approach, a singledegree-of-freedom oscillator was considered. The equation of motion of the oscillator has the following form:

x ¨ϩ0.4x ˙ϩ40xϩ f ͑ x,x ˙͒ϭ100 sin t (35) 
where f (x,x ˙) is a nonlinear force. To study both major parts ͑for friction force and normal force determination͒ of the developed friction interface element two cases were included: ͑i͒ when the non-linear force, f (x,x ˙), is assumed to be a force of unilateral contact, f y , as determined in Eq. ͑9͒, and ͑ii͒ when the non-linear force is a friction force, f x , as determined in Eq. ͑8͒, with prescribed variation of the normal load, f y . The first ten harmonics are kept in the multiharmonic solution.

Results of the forced response calculations obtained for the first case are presented in Figs. 2 and3, where the maximum displacement over the period of vibration is plotted. The influence of gap value is shown in Fig. 2, where the gap is varied from negative values ͑corresponding to an initial interferences͒ to positive values and the stiffness coefficient value is: k y ϭ120. It is assumed that the parameters of the system that are used in Eq. ͑35͒, and the friction interface parameters are all given in a consistent system of units. Since their particular choice does not affect the results, they are not specified here.

Forced responses for the two linear vibration cases are plotted here by dotted curves: ͑i͒ for the case when the gap is never closed (gϭϱ, and the resonance frequency is equal to ͱ40 rad/s), and ͑ii͒ for the case when full contact exists throughout (gϭ Ϫϱ, and the resonance frequency is 2ͱ40 rad/s). Forced responses corresponding to different gap values specified in Fig. 2 are plotted by solid lines. One can see large variations in the resonance frequencies of the nonlinear vibration under the gap variation. Moreover, for the case of a zero gap value many superharmonic resonances occur in the range of low excitation frequencies.

In Fig. 3, the variation of forced response under stiffness coef- ficient, k y , variation is presented. For a positive gap value, the FRF exhibits a stiffening characteristic, i.e., with an increase of vibration amplitude, the natural frequency is increased. For a negative gap value, the FRF takes a softening characteristic and for zero gap, neither stiffening nor softening effects occur. When the gap is not negative, the possibility of increasing the resonance frequency is rather restricted: as seen, even k y ϭ2.4*10 6 does not induce an increase of the resonance frequency of more than two times.

In Figs. 4 -6, forced vibration response of the oscillator is shown when a friction damper is applied as the nonlinear force, f (x,x ˙). The following parameters of the contacting surfaces were accepted in the calculations: k x ϭ30; ϭ0.3. The effect of normal load variation, f y ϭN 0 ϩa sin , is demonstrated in Fig. 4 when the constant component of the normal load, N 0 , is varied and the amplitude of the load variation is fixed (aϭ200).

In Fig. 5, forced response curves are plotted for different values of the amplitude variation, a, with fixed N 0 ϭ300. For comparison, FRFs of linear systems are plotted in both the figures: namely, the response of the system when there is a full separation of the damper during vibrations ͑resonance frequency ͱ40 rad/s) and of the system with fully stuck state of the damper vibrations ͑resonance frequency ͱ70 rad/s).

The existence of superharmonic resonances, for the cases when partial separation occurs, should be noted. Superharmonic reso-nances are found for all harmonics that are used in the mutltiharmonic analysis. The displacements at these superharmonic resonances are significant, which differs from their much smaller levels noticed also in ͓12͔ for the case of three harmonics used there. For the fixed level of the normal load variation, aϭ200, there is an optimal value of N 0 ͑for the considered case N 0 ϭ600) which provides the minimum response level. When the constant component of the normal load is fixed higher levels of normal load variation lead to higher vibration levels.

The harmonic spectrum of the multiharmonic vibration shown in Fig. 6 ͑for the case where f y ϭ300ϩ400 sin ) demonstrates the importance of keeping many harmonics in the solution. It is interesting to note that even the zero harmonic, which reflects a constant component in the vibration displacement induced by the harmonic excitation, is not negligible and has significant values in some excitation frequency ranges.

In all calculations, the condition ʈR(Q)ʈϽ10 Ϫ8 was used to check the convergence of the iteration process ͑see Eq. ͑6͒͒. This high accuracy was successfully achieved in all the cases considered. An example of the number of iterations required, and the distribution of the solution points over the plotted FRFs, are shown in Fig. 7 for both the aforementioned cases: ͑i͒ a unilat- System 2. Interaction of the normal and tangential vibration at contact interface is illustrated on an example of two-degree-offreedom system, where vibrations along both axes are coupled only by the friction damper x ¨ϩ0.4x ˙ϩ40xϩ f x ͑ x,x ˙,y ͒ϭ100 sin t (36) y ¨ϩ0.4y ˙ϩ80yϩ f y ͑ y ͒ϭ100 sin t

The parameters of the friction element in this case are: k x ϭ30; k y ϭ40; ϭ0.3; N 0 ϭ300. Calculated amplitudes of the vibration response are shown in Fig. 8 together with the amplitudes of the system without the friction damper. As can be seen from Eq. ͑36͒, the system without the friction element vibrates independently in two directions, x and y, and it has two natural frequencies ͱ40 and ͱ80 rad/s. The introduction of the friction element causes an in- crease of the resonance frequencies to values 6.98 and 10.31 rad/s, respectively. Moreover, coupling between tangential displacement, x, and normal displacement, y, occurs in the system. One can see that high amplitudes of normal displacement are attained in the vicinity of second resonance ϭ10.31 rad/s and can there cause a decrease in amplitude of the tangential displacement. System 3. The developed friction interface element has been also applied for the analysis of vibration response of a practical high-pressure bladed turbine disc comprising 92 blades with friction dampers. A finite element model of a sector of the bladed disk is shown in Fig. 9.

Nodes where each of the bladed-disk sectors has the friction contact, B left and B right , are located at the blade platform and another node, where displacements were calculated, A, is selected near tip of the blade. The nodes are marked in Fig. 9 by red circles. For each sector node B interacts through the friction element with the corresponding node of the following sector of the bladed disk and, moreover, its counterpart on the other, left side of the considered sector interacts with the preceding sector. As an example, forcing by 4th, 6th, 8th, and 16th engine-order excitations are considered in the frequency range corresponding to a family of first predominantly flapwise blade modes, and in the frequency range of second family of natural frequencies. In order to compare the damping effect produced by the friction elements, the amplitudes of the excitation loads are assumed to be the same for all engine orders studied. Natural frequencies of the highpressure turbine disk normalized with respect to the first bladealone frequency are shown in Fig. 10 for all possible nodal diameter numbers.

Examples of FRFs of maximum displacement at a node A are shown in Fig. 11 where, for comparison, FRFs for the bladed disk without the friction damper are also plotted. Damping produced by the friction damper decreases the response amplitudes significantly and, moreover, the friction damper can increase the resonance frequency significantly. For both the considered families of modes ͑first flapwise modes and first edge-wise modes with different numbers of nodal diameters͒, higher damping effects appear for the higher engine orders when relative displacements of neighboring blades are larger.

Conclusions

A method for the analytical derivation of the force vector and stiffness matrix of a friction interface element has been derived for the case of multi-harmonic vibration analysis.

Normal and tangential forces in the developed analytical formulation of the friction element are coupled, as occurs in most practical cases. The method provides for exact and extremely fast calculation of the interface element characteristics.

The numerical efficiency of the developed friction interface element is proved, and the effect of normal load variation has been studied, using representative test cases. A phenomenon of significant levels of superharmonic resonances due to friction under partial separation of contact surfaces has been found.

High robustness and efficiency of the developed analytical formulation have allowed to perform forced response analysis of practical turbine bladed disks with detailed finite element models.
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 1 Fig. 1 Friction interface element
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 32 Fig. 3 Influence of stiffness coefficient, k y , on forced response for different gap values: "a… gÄ5; "b… gÄ0; "c… gÄÀ5
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 4 Fig. 4 Forced response for different values of static component in the variable normal load
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 9 Fig. 9 Finite element model of a sector of a high-pressure turbine-bladed disk and nodes of friction contact
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