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QUANTITATIVE RELAXATION TOWARDS EQUILIBRIUM FOR SOLUTIONS TO

THE BOLTZMANN-FERMI-DIRAC EQUATION WITH CUTOFF HARD POTENTIALS

T. BORSONI AND B. LODS

Abstract. We provide the first quantitative result of convergence to equilibrium in the context of

the spatially homogeneous Boltzmann-Fermi-Dirac equation associated to hard potentials interac-

tions under angular cut-off assumption, providing an explicit – algebraic – rate of convergence to

Fermi-Dirac steady solutions. This result complements the quantitative convergence result of [15]

and is based upon new uniform-in-time-and-ε L∞
bound on the solutions.
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1. Introduction

1.1. The Boltzmann-Fermi-Dirac equation. The scope of the present paper is to derive

the first explicit rate of convergence to equilibrium for solutions to the spatially homogeneous

Boltzmann-Fermi-Dirac equation (1.1) for hard potentials under the Grad cutoff assumption. The

Boltzmann-Fermi-Dirac equation ((BFD Eq.) in the rest of the paper) is a modification of the

classical Boltzmann equation and describes the interactions between quantum particles satisfying

Pauli’s exclusion principle (fermions). In the spatially homogeneous setting we are considering

here, it takes the form

∂tf = Qε
B(f, f), f(0, ·) = f in, (1.1)

where f ≡ f(t, v) ⩾ 0 represents a density of fermions (quantum particles of half-integer spin,

e.g. electrons), depending on time t ⩾ 0 and velocity v ∈ R3
while the initial datum f in

is a given

nonnegative distribution density. The Boltzmann-Fermi-Dirac collision operator Qε
B is modelling

the interactions between particles and is given, for ε > 0 and a suitably integrable f ⩾ 0 such

that 1− εf ⩾ 0, by

Qε
B(f, f)(v) :=

∫∫
R3×S2

[
f ′f ′

∗(1− εf)(1− εf∗)− ff∗(1− εf ′)(1− εf ′
∗)
]
×

×B(v, v∗, σ) dσ dv∗, (1.2)

where we used the standard shorthands f ≡ f(v), f∗ ≡ f(v∗), f
′ ≡ f(v′), f ′

∗ ≡ f(v′∗) and

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ, σ ∈ S2. (1.3)

The collision kernel B(v, v∗, σ) is providing the rate at which a given combination of in-going

velocities results in a given set of outgoing velocities. In the classical case (for which all quantum

effects are neglected), the exact form of the collision kernel can be derived explicitly in the case

of interaction driven by inverse power laws repulsive forces and hard-spheres particles [10].

For Fermi-Dirac particles, the situation is much more involved and several models co-exist.

In particular, for semi-conductor applications, the velocity range is restricted to subset of R3

(periodically repeated Brillouin zones) whereas, in the so-called “parabolic band” approximation

in semi-conductor, the velocity range is indeedR3
. For the sake of simplicity, we choose to present

our results in the present form for collision kernels B which assumes the same form for both

classical and quantum particles. Considering hard-potential interactions, this corresponds to the

choice

B(v, v∗, σ) ≡ b(cos θ) |v − v∗|γ , for (v, v∗) ∈ R3 × R3
and σ ∈ S2, (1.4a)
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with cos θ = σ · v − v∗
|v − v∗|

and the mapping b : (−1, 1) → R+
is assumed to satisfy the cutoff

assumption

∥b∥1 := ∥b∥L1(S2) := 2π

∫ π

0
b(cos θ) sin θ dθ = 2π

∫ 1

−1
b(s) ds < ∞. (1.4b)

With a slight abuse of notation, in the above (1.4b), we identify the function b (defined over

(−1, 1)) to a function defined over the sphere S2 through the identification σ → cos θ here above.

We consider hard potential interactions for which

γ ∈ (0, 1]. (1.4c)

For collision kernel B of the form (1.4a), we will use the shorthand notation

Qε
γ,b(f, f) = Qε

B(f, f).

We are aware that restricting ourselves to the case of collision kernel B defined by (1.4a) (valid

for both classical and quantum particles) is an important restriction of our analysis and we are

confident that most of the results of the present paper can be extend to more physically relevant

collision kernels of the form described in [13, 22] . We refer to Appendix A for more details about

this.

As readily seen, the main difference between the classical Boltzmann equation and its quantum

counterpart (BFD Eq.) lies in the presence of the quantum parameter

ε :=
(2πℏ)3

m3β
> 0

which depends on the reduced Planck constant ℏ ≈ 1.054 × 10−34m2kg s−1
, the mass m and

the statistical weight β of the particles species, see [10, Chapter 17]. For instance, in the case of

electrons ε ≈ 1.93× 10−10 ≪ 1. The parameter ε quantifies the quantum effects of the model

and more precisely ensures Pauli exclusion principle from which solution f = f(t, v) to (BFD

Eq.) satisfies the a priori bound

1− ε f(t, v) ⩾ 0.

Formally choosing ε = 0 in (1.2) yields the classical Boltzmann operator

QB(f, f) = Q0
B(f, f)(v) :=

∫∫
R3×S2

[
f ′f ′

∗ − ff∗

]
B(v, v∗, σ) dσ dv∗, (1.5)

with the same shorthands as in (1.2). In particular, for collision kernel of the form (1.4a), we will

use for classical Boltzmann operator the shorthand notation

Qγ,b(f, f) = Q0
γ,b(f, f) = Q0

B(f, f).

We refer the reader to [16] for results about the Cauchy problem associated to (1.1) for hard

potentials with cutoff, as well as [10, 11] for more results the Cauchy problem associated with

(BFD Eq.). We briefly recall in Appendix B the results about the Cauchy problem we use in this

paper.



4 T. BORSONI AND B. LODS

1.2. Notations. In the following, we define, for p ⩾ 1 and k ∈ R, the Lebesgue space Lp
k =

Lp
k(R

3) through the norm

∥f∥Lp
k
:=

(∫
R3

∣∣f(v)∣∣p ⟨v⟩kp dv) 1
p

, Lp
k(R

3) :=
{
f : R3 → R ; ∥f∥Lp

k
< ∞

}
, (1.6)

where ⟨v⟩ :=
√
1 + |v|2, v ∈ R3. For k = 0, we simply denote ∥ · ∥p the Lp

-norm. For p = ∞,

∥ · ∥∞ will denote the usual essential supremum of a given measurable function. We also define,

for k ∈ R, the Orlicz space L1
k logL(R3) as

L1
k logL(R3) =

{
f : R3 → R ;

∫
R3

⟨v⟩k |f(v)| log+ |f(v)| dv < ∞
}
,

as well as the quantity

∥f∥L1
k logL :=

∫
R3

⟨v⟩k |f(v)| | log |f(v)||dv,

which we highlight is not a norm on the Orlicz space, but is finite as soon as there is an s > 0 such

that f ∈ L1
k+s(R3)∩L1

k logL(R3). As usual, for k = 0, we simply write ∥ · ∥L logL = ∥ · ∥L1
0 logL

and L logL(R3) = L1
0 logL(R3).

1.3. Relaxation to equilibrium. In contrast to what occurs for classical gases, quantum gases

of fermions exhibit two distinct families of steady states. First, Qε
B(Mε) = 0 when Mε is the

following Fermi-Dirac statistics:

Definition 1 (Fermi-Dirac statistics). Given ϱ > 0, u ∈ R3, E > 0 and ε > 0 satisfying

5E >

(
3εϱ

4π

) 2
3

, (1.7)

we denote byMε the unique Fermi-Dirac statistics

Mε(v) =
exp(aε + bε|v − u|2)

1 + ε exp(aε + bε|v − u|2)
=:

Mε(v)

1 + εMε(v)
, (1.8)

with aε ∈ R and bε < 0 defined in such a way that∫
R3

Mε(v)

 1

v

|v − u|2

 dv =

 ϱ

ϱ u

3ϱE

 .

The existence and uniqueness of Fermi-Dirac statistics satisfying (1.7) has been established in

[16, Proposition 3]. Note thatMε is here a suitable Maxwellian distribution that allows to recover

in the classical limit ε → 0 the Maxwellian equilibrium.

Besides the Fermi-Dirac statistics (1.8), the distribution

Fε(v) =


ε−1

if |v − u| ⩽
(
3ϱ ε

4π

) 1
3

,

0 if |v − u| >
(
3ϱ ε

4π

) 1
3

,

(1.9)
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can also be a stationary state, as Qε
B(Fε) = 0. Such a degenerate state, referred to as a saturated

Fermi-Dirac stationary state, can occur for very cold gases (with an explicit condition on the gas

temperature). More precisely, for any ε > 0, one can define the Fermi temperature associated to

ϱ > 0, ε > 0, as

T (ϱ, ε) :=
1

2

(
3εϱ

4π

) 2
3

.

Then, given 0 ⩽ f ∈ L1
2(R3) \ {0} with∫

R3

f(v)

 1

v

|v|2

 dv =

 ϱ

ϱu

3ϱE + ϱ|u|2

 (1.10)

and ε > 0, the ratio rE between the actual temperature of f and its Fermi temperature defined as

rE :=
E

T (ϱ, ε)

is an a-dimensional number which plays a crucial role in the dynamic of (BFD Eq.). Indeed, it

has been shown in [16] that, given ε > 0, the following holds

1− εf ⩾ 0 =⇒ rE ⩾
2

5

with moreover the following dichotomy:

(1) 1− εf ⩾ 0 and rE = 2
5 if and only if f = Fε as defined in (1.9);

(2) 1−εf ⩾ 0 and rE > 2
5 if and only if there exists a unique Fermi-Dirac statisticsMε = Mf

ε

with same mass, momentum and energy that f .

Observe here that

rE =
2

5
⇐⇒ ε = εsat =

4π (5E)
3
2

3ϱ
(1.11)

whereas the inequality (1.7) exactly means that ε ∈ (0, εsat). In all the sequel, for given ϱ,E > 0,

we will always implicitly assume that ε ∈ (0, εsat).

As we will see in the next section, the fact that an initial distribution close to such degenerate

state makes 1− εf arbitrarily small in non negligible sets affects drastically the speed of conver-

gence and one of the crucial points of our analysis will be to show that, for suitable initial datum

f in
, there exist c ∈ (0, 1) and κ0 (depending on c) such that solutions f ε

to (BFD Eq.) satisfy

1− εf ε(t, v) ⩾ κ0, ∀ε ∈ (0, cεsat).

In all the sequel, we will always consider solutions to (1.1) associated to the operator Qε
B = Qε

γ,b,
i.e. considering kernels B of the form (1.4). We also always consider nonnegative initial datum
f in ∈ L1

2(R3) and (conservative) solutions f ε to (BFD Eq.) associated to f in whose existence and
uniqueness are recalled in Appendix B. In particular,∫
R3

f ε(t, v)

 1

v

|v − uin|2

 dv =

∫
R3

f in(v)

 1

v

|v − uin|2

 dv =

 ϱin

ϱin uin

3ϱinEin

 ∀t ⩾ 0
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with ϱin > 0, uin ∈ R3 and Ein > 0. We will also, unless otherwise stated, consider the associated
Fermi-Dirac statisticsMε = Mf in

ε sharing the same mass, momentum and kinetic energy as f in, i.e.

∫
R3

Mf in

ε (v)

 1

v

|v − uin|2

 dv =

 ϱin

ϱin uin

3ϱinEin

 .

For such solutions, non quantitative results about the long-time behaviour of solutions to (BFD

Eq.) have been already obtained in the literature. In particular, we have the following recent

result from [15]:

Theorem 1 (Liu & Lu (2023)). Assume that the collision kernel B = B(v, v∗, σ) satisfies (1.4)
with moreover

b(cos θ) ⩾
∞∑
n=0

an cos
2n(θ), θ ∈ (0, π), an ⩾ 0 ∀n ∈ N. (1.12)

For any initial datum f in ∈ L1
2(R3) with 0 ⩽ f in ⩽ ε−1, the unique conservative (mild) solution

f ε = f ε(t, v) to (BFD Eq.) with initial datum f in is such that

lim
t→∞

∥f ε(t)−Mε∥L1
2
= 0

whereMε is the unique Fermi-Dirac statistics with same mass, momentum and kinetic energy as
f in.

Remark 1. The additional assumption (1.12) on the angular kernel b = b(cos θ) in the above
theorem means that, as a function of cos2(θ), b(cos θ) is completely positive. It is of course satisfied
for instance if b(cos θ) is bounded by below away from zero (corresponding to a0 = infθ b(cos θ)

and an = 0 for n ⩾ 1) which is the simplified setting in which our main result (see Theorem 4) will
hold true.

Asmentioned earlier, up to our knowledge, no quantitative estimates for the rate of convergence

towardsMε exist in the literature and it is the purpose of our work to fill this blank.

1.4. The role of relative entropy. As very well documented, the main tool to provide quanti-
tative rate of relaxation to equilibrium is related to entropy/entropy production. For ε > 0, we

introduce the Fermi-Dirac entropy:

Hε(f) =

∫
R3

[
f log f + ε−1(1− εf) log(1− εf)

]
dv, (1.13)

well-defined for any 0 ⩽ f ⩽ ε−1. One can then show thatHε(f) is a Lyapunov function for (1.1),

i.e.

d

dt
Hε(f(t)) =: −Dε(f(t)) ⩽ 0
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for any suitable solution to (1.1) where the entropy production is defined, assuming 1− εf > 0

almost everywhere, by

Dε(f) :=
1

4

∫
R3×R3×S2

[
φε(f

′)φε(f
′
∗)− φε(f)φε(f∗)

]
log

(
φε(f

′)φε(f
′
∗)

φε(f ′)φε(f ′
∗)

)
×

× (1− εf)(1− εf∗)(1− εf ′)(1− εf ′
∗)B(v, v∗, σ) dv dv∗ dσ, (1.14)

where

φε(x) =
x

1− εx
, x ∈ [0, ε−1). (1.15)

In particular, introducing the relative entropy

Hε

(
f
∣∣Mε

)
= Hε(f)−Hε(Mε)

which is nonnegative if f and Mε share the same mass, momentum and kinetic energy, one has,

for any suitable solution to (BFD Eq.),

d

dt
Hε

(
f(t)

∣∣Mε

)
= −Dε(f(t)) ⩽ 0. (1.16)

According to Csiszár-Kullback-Pinsker inequality (see Appendix B), the relative entropy controls

the L1
k-norm of the difference f(t)−Mε and this is what makes entropy/entropy production

estimate a powerful tool for proving the convergence towards equilibrium. Indeed, if one is able

to prove a functional inequality of the form

Dε(f) ⩾ Θ
(
Hε

(
f
∣∣Mε

))
, ∀f ∈ C

where C is a suitable class of functions 0 ⩽ f ∈ L1
2(R3) with 0 ⩽ f ⩽ ε−1

and a superlinear
mappingΘ : R+ → R+

, Eq. (1.16) implies

d

dt
Hε

(
f(t)

∣∣Mε

)
⩽ −Θ

(
Hε

(
f
∣∣Mε

))
provided solutions to (BFD Eq.) belong to the class C. Then, a Grönwall-type argument provides a

rate of convergence to equilibrium of the relative entropy. For instance, if the entropy production

controls the relative entropy in a linear way, corresponding toΘ(u) = λu, for some λ > 0 and

any u ⩾ 0, then one would get the exponential relaxation to equilibrium

Hε

(
f(t)

∣∣Mε

)
⩽ exp (−λt)Hε

(
f(0)

∣∣Mε

)
, ∀t ⩾ 0.

provided one is able to show that solutions to (BFD Eq.) belong to the class C. Such a decay,

combined with Csiszár-Kullback-Pinsker inequality, yield an explicit rate of convergence of f(t)

towards Mε in L1
k (or even Lp

k, p > 1) topology. Other kinds of functional Θ can of course be

considered and such a strategy has been efficiently applied to the study of the long-time behavior

for classical gases, corresponding to ε = 0, for which suitable functional inequalities linking the

Boltzmann relative entropy

H0

(
f
∣∣M0

)
=

∫
R3

f log fdv −
∫
R3

M0 logM0dv

and the entropy production

D0(f) :=
1

4

∫
R3×R3×S2

[
f ′ f ′

∗ − f f∗
]
log

(
f ′f ′

∗
f f∗

)
B(v, v∗, σ)dvdv∗dσ,
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have been obtained, starting with the pioneering works [9, 8, 20] and culminating with a celebrated

result in [21]. An improvement of the result of [21] (reducing the required regularity of f , up to

the mere Lp
or even L logL estimate) has been derived in [6] and can be formulated as

Theorem 2. Assume the existence of b0 > 0 and β± ⩾ 0 such that

B(v, v∗, σ) ⩾ b0min
(
|v − v∗|β+ , |v − v∗|−β−

)
, B(v, v∗, σ) = B(|v − v∗|, cos θ) .

GivenK0 > 0, A0 > 0, q0 ⩾ 2, we consider the class of functions

C0 =

{
g ∈ L1

2(R3) such that g(v) ⩾ K0 exp (−A0|v|q0) , ∀v ∈ R3

}
.

Then, given 1 < p < ∞ and δ > 0, defining s = 2 + 2+β−
δ , for any

g ∈ Lp(R3) ∩ L1
s logL(R3) ∩ C0 ∩ L1

s+q0(R
3)

it holds

D0(g) ⩾ Aδ,p(g)H0

(
g
∣∣Mg

0

)α
(1.17)

where α = (1+ δ)(1+ pβ+

3(p−1)) and Aδ,p(f) depend on the parametersK0, q0, A0, β±, p, upper and
lower bounds to ∥g∥1 and ∥g∥L1

2
, as well as upper bounds for ∥g∥L1

s logL(R3), ∥g∥p, ∥g∥L1
s+q0

.

Remark 2. Notice that the above assumption on B is satisfied for collision kernel of the form (1.4)

with β+ = γ, β− = 0 provided that b(cos θ) ⩾ b0. We wish also to point out that we will apply the
above result to

g = φε(f(t)) =
f(t)

1− εf(t)
, f(t) solution to (1.1),

and we can check easily that, in such a case, if 1−εf(t) ⩾ κ0, thenAδ,p(φε(f(t)) can be be bounded
away from zero uniformly with respect to time (and ε). See the proof of Theorem 4.

Such a result has been recently adapted by the first author in [7] to the case of the Fermi-Dirac

entropy thanks to a suitable link between the Boltzmann relative entropyH0(φε(f)|Mφε(f)) and

the Fermi-Dirac relative entropy Hε(f |Mε). Typically,

Proposition 1. Given κ0 ∈ (0, 1), there is a positive constant C(κ0) > 0, that could be made
explicit, such that, for any ε > 0 and nonnegative f ∈ L1

2(R3) \ {0} such that

1− εf ⩾ κ0,

it holds

Hε(f
∣∣Mf

ε ) ⩽ H0

(
φε(f)

∣∣Mφε(f)
0

)
⩽ C(κ0)Hε(f

∣∣Mf
ε )

and

κ40 D0 (φε(f)) ⩽ Dε(f) ⩽ D0 (φε(f)) ,

where we recall that we defined φε(x) =
x

1−εx for x ∈ [0, ε−1) in (1.15).
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The comparison provided in Proposition 1 is the key point of our analysis as it allows to deduce

suitable entropy/entropy production estimates in the Fermi-Dirac case. To that purpose, for any

ε > 0, and κ0 > 0, K0 > 0, A0 > 0, q0 ⩾ 2, E > 0, ϱ > 0, u ∈ R3
, we introduce the class

Cε =

{
f ∈ L1

2(R3) satisfying (1.10) and such that

f(v) ⩾ K0 exp (−A0|v|q0) and 1− ε f(v) ⩾ κ0, ∀v ∈ R3

}
. (1.18)

One can easily deduce from Theorem 2 that, for any ε, δ > 0 and 1 < p < ∞, an estimate of the

type

Dε(f) ⩾ Ãδ,p(f)Hε

(
f
∣∣Mε

)α ∀f ∈ Cε ∩ Lp(R3) ∩ L1
s logL(R3)

where Ãδ,p(f) depends explicitly on κ0,K0, A0, q0, ϱ, E and upper bounds on ∥f∥L1
s logL

, ∥f∥p
with s defined in Theorem 2. As in the classical case, the key point to apply such a functional

inequality to solutions to (BFD Eq.) is then to determine suitable conditions on the initial

distribution f in
ensuring that the unique solution f ε = f ε(t, v) to (1.1) satisfies

f ε(t, ·) ∈ Cε ∩ Lp(R3) ∩ L1
s logL(R3) ∀t ⩾ 0.

The main technical difficulty, which explains as already mentioned why quantitative rate of

convergence for (BFD Eq.) has not be obtained yet, is of course to create or propagate the lower

bound

1− εf ε(t, v) ⩾ κ0 ∀t > 0, v ∈ R3. (1.19)

In the study of the Landau-Fermi-Dirac equation, such pointwise lower bound have been

obtained by improving the mere L∞
bounds thanks to the regularisation mechanism induced by

the diffusive nature of the collision operator. This allows to prove the appearance of some L∞

bound, independent of ε for the solution to the Landau-Fermi-Dirac equation and, up to reducing

slightly the parameter ε, to obtain the lower bound (1.19).

When trying to adapt such a strategy to (BFD Eq.), the major difficulty lies in the fact that, for

cut-off interactions (see (1.4b)), no smoothing effect of the solution is expected and a new route

has to be followed to deduce the non saturation estimate.
1
We insist on the fact that, as already

observed in [17, 15], such non saturation estimate is the crucial argument to provide quantitative

rate of convergence to equilibrium for quantum Boltzmann equation.

We now describe with more details our main results in the next subsection.

1.5. Main results. Recall that we are dealing with solutions to (BFD Eq.) as constructed in

Theorem 6 in Appendix B. As mentioned earlier, one of the main aspects of our strategy is to

derive L∞
bounds for solutions to (BFD Eq.) which are independent of ε. Besides its fundamental

role for the long-time behaviour of solutions to (BFD Eq.), such a result has its own independent

interest and is one of the main results of our contribution

1
We mention that a result of uniform-in-time L∞

bound was already proposed in [22] (with ε = 1 and different

kinds of collision kernels), however it seems to us that counter-examples to that result can be constructed. In particular,

choosing a = b, β = 0 in [22, Theorem 1.7], one could consider an initial distribution f0 with L∞
norm equal to 1,

and [22, Theorem 1.7] would imply that solutions f(t) to (BFD Eq.) are such that ∥f(t)∥∞ ⩽ 1
6
for all time t ⩾ 0.
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Theorem 3 (Uniform-in-ε L∞ bound). Let γ ∈ (0, 1] and an angular kernel b satisfying the
cutoff assumption (1.4b). Let 0 ⩽ f in ∈ L1

3(R3) ∩ L∞(R3). Then there exists an explicit C∞ > 0,
depending only on γ, b and f in only through ϱin, Ein and upper-bounds on its L∞ and L1

3 norms,
such that for any ε ∈ (0, ∥f in∥−1

∞ ), the unique solution f ε to (1.1) associated to ε, the collision kernel
defined by (1.4) and initial datum f in satisfies

sup
t⩾0

∥f ε(t)∥∞ ⩽ C∞. (1.20)

Remark 3. The assumption of f in belonging to L1
3 in Theorem 3 could be actually recast into f in

belonging to L1
s for some arbitrary s such that s > 2 and s ⩾ 3γ. In this case, C∞ would also

depend on s.

The peculiarity of the result presented in Theorem 3 lies in the fact that the bound is independent
of ε. This is one of the main points of the strategy we adopt here, reminiscent from a similar one

in [2] (see also [1]). The clear advantage of such a bound is that, for a given fixed f in ∈ L∞(R3),

one can always choose a small enough ε such that the non-saturation condition (1.19) holds for

any time t ⩾ 0:

Corollary 2. Consider the assumptions of Theorem 3 along with the same notations. Then for any
κ0 ∈ (0, 1) and ε ∈

(
0, (1− κ0)C

−1
∞
]
, the mentioned solution f ε to (1.1) is such that

1− εf ε(t, v) ⩾ κ0, ∀ (t, v) ∈ R+ × R3. (1.21)

This non-saturation property allows to greatly simplify various studies on the equation: in

this event, and especially in the cutoff case (that is, when (1.4b) holds), very large parts of the

study of solutions to the Boltzmann-Fermi-Dirac equation can be recast into the study of the

classical Boltzmann equation thanks to a suitable comparison argument (see Proposition 1). To

name two examples particularly important for our analysis, this allows to transfer the entropy

inequalities from the classical to the fermionic case thanks to Proposition 1 and also to deduce

in a straightforward way a Maxwellian lower bound on the solutions to (BFD Eq.) by simply

resuming the proof of [19] valid in the classical case (see Subsection 3.1).

We insist here on the fact that, our approach consists in choosing first an initial datum f in

and subsequently pick εin > 0 small enough for the rest of our analysis to apply uniformly with

respect to ε ∈ (0, εin]. It seems possible to adopt a similar viewpoint by choosing first ε > 0 and

then determine the class of all initial data for which the results of the paper do hold. We did not

pursue this line of investigation.

With this at hands, we can easily deduce the main result for the long-time behaviour of the solu-

tions, where we recall that we consider solutions to (1.1) as constructed in [16] (see Appendix B):

Theorem 4 (Explicit rate of convergence to equilibrium). Let B be a collision kernel of the
form (1.4) with γ ∈ (0, 1] and an angular kernel b satisfying the cutoff assumption (1.4b) and such
that b ⩾ b0 for some b0 > 0. Let 0 ⩽ f in ∈ L1

3(R3) ∩ L∞(R3). Then there exist some explicit
CH > 0 and εin > 0, depending only on γ, b, ϱin, uin, Ein, ∥f in∥L1

3
and ∥f in∥∞, such that for any
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ε ∈ (0, εin], the unique solution f ε to (1.1) associated to ε and the initial datum f in satisfies, for all
t ⩾ 0,

Hε(f
ε(t)

∣∣Mf in

ε ) ⩽ CH (1 + t)
− 1

γ . (1.22)

In particular, for any p ⩾ 1 and k ⩾ 0, there exist CH,p,k > 0, with the same properties as CH,
such that for all t ⩾ 0, ∥∥∥f ε(t)−Mf in

ε

∥∥∥
Lp
k

⩽ CH,p,k (1 + t)
− 1

2pγ . (1.23)

Remark 4. Notice that (1.22) holds true with the choice

εin = (1− κ0)C
−1
∞

and the same choice applies to (1.23) in the case p = 1, k = 0. In the case k > 0 or p > 1, additional
smallness restriction is required on the parameter ε since an additional control of ∥Mf in

ε ∥∞ or
∥Mf in

ε ∥L1
2k

is actually needed. For the same reason, the constants actually depend on uin only in the
case of the Lp

k norm with k > 0. We refer to Section 3 for more details.

Remark 5. We point out right away that the rate of convergence to equilibrium established in
Theorem 4 is clearly not the optimal rate of convergence. As well-known for kinetic equations
associated with hard-potentials (recall here γ ∈ (0, 1]), such a rate of convergence can be upgraded
into an exponential relaxation governed by the spectral gap of the linearized collision operator. To
implement such an upgrade, one would need to adopt the following strategy

a) Show a quantitative exponential rate of convergence to Mε for close-to-equilibrium initial state.
This means that one can construct λ > 0 and an explicit δ > 0 such that

∥f in −Mf in

ε ∥L1
k
⩽ δ =⇒ ∥f ε(t)−Mf in

ε ∥L1
k
⩽ C exp (−λt)

for some k > 0 large enough and some explicit C > 0 (depending on f in).
b) Second, using Theorem 4, one can explicit the time T > 0 needed for general solutions f ε to enter

the neighbourhood of Mf in

ε determined by δ. Then, restarting the evolution from time T > 0, we
get that the rate of convergence to equilibrium is exponential.

A full analysis of the close-to-equilibrium solutions to (BFD Eq.) (i.e. full proof of the above point
(a)) is still missing and is based upon a careful spectral analysis of the linearized operator associated
to Qε

B around Mf in

ε . We are confident that it can be implemented, deriving first a spectral gap
estimate in a Hilbert setting and extending then this spectral analysis to the L1

k by factorization
and enlargement techniques following the line of [12, 18]. Notice that such an approach has been
successfully applied in the study of the Landau-Fermi-Dirac equation in [2].

As mentioned already, such a Theorem is, to our knowledge, the first result providing an

explicit and quantitative rate of convergence to equilibrium for solutions to (BFD Eq.) whereas

several qualitative results were available in the literature. As said before, the crucial ideas of our

strategy are the following:

• First, thanks to the L∞
-bound independent of the quantum parameter ε, one can, for

a given initial datum f in
, determine a whole family of ε for which the non-saturation

estimate (1.19) holds true uniformly in time.
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• Second, taking profit of this non saturation condition, we can exploit several new and

insightful comparison arguments – specially tailored for our analysis and with their own

independent interest – which allow to deduce results regarding (BFD Eq.) from the

analogue ones already obtained in the classical case as exposed in the comprehensive

survey [5] (see also [6]).

Not only such an approach allows, in some sense, to treat in a same formalism the quantum

and classical Boltzmann equations, but it also appears quite straightforward and elegant, fully

exploiting the tools developed in [5] for the study of kinetic equations with hard potentials

and cut-off assumptions. As mentioned in the last remark, we decided to focus on the main

mathematical challenge for the rate of convergence, which is the control of the relative entropy,

discarding in our analysis the optimality of the rate of convergence which should be easy to

deduce from our result thanks to the recent methods developed in [12].

1.6. Organization of the paper. The paper is organized as follows: after this Introduction,

we present in Section 2 the full proof of the main estimates for solutions to (1.1) culminating

with the proof of Theorem 3. It is obtained from the representation of solutions to (BFD Eq.)

as suitable “sub-solutions” (in the sense of (2.7)) to an equation very similar to the classical

Boltzmann equation. We first describe such a representation in Subsection 2.1, then deduce

suitable Young’s type estimates for the collision operator associated to such an equation, in the

spirit of the fundamental results in [3, 4] (following the more recent exposition in [6, 5]). In

particular, L2
γ bounds for solutions to (BFD Eq.) are deduced, uniformly with respect to ε > 0 and

time, in Proposition 16 and, as in [5], this allows us to derive the full proof of Theorem 3. We then

provide, in Section 3, the complete proof of our main convergence result, Theorem 4. It is deduced

from the results of Section 2 combined with suitable pointwise lower bounds, well-known for

the classical Boltzmann equation [19] and easily adapted to (BFD Eq.) in Proposition 17. In

Appendix A, we present examples of physically relevant collision kernels for quantum kinetic

equations and describe how the results of the paper could be adapted to such general collision

models. In Appendix B, we briefly recall results regarding existence and uniqueness of solutions

to (1.1) as well as several important properties (moments estimates and entropy dissipation). The

results of this Appendix are extracted from [15, 16, 17]. In a final Appendix C, we provide explicit

and uniform-in-ε upper-bounds on quantities related to the Fermi-Dirac statistics relevant to our

study.

Acknowledgments. B. L. gratefully acknowledges the financial support from the Italian Ministry

of Education, University and Research (MIUR), “Dipartimenti di Eccellenza” grant 2022-2027, as

well as the support from the de Castro Statistics Initiative, Collegio Carlo Alberto (Torino). T. B.

kindly acknowledges the financial support of the COST Action CA18232 (WG2). We both thank

Laurent Desvillettes and Pierre Gervais for the fruitful discussions we had about the problems

studied in, and related to, this paper.

2. Uniform-in-ε L∞
bound: proof of Theorem 3

This section is devoted to the derivation of L∞
-bounds for solutions to (BFD Eq.) which are

uniform in time and independent of ε, proving Theorem 3. Our study is largely inspired from [5]
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in which very similar bounds are obtained in the context of the classical Boltzmann equation. The

strategy we employ in this paper is to use the fact that a solution to the Boltzmann-Fermi-Dirac

equation (1.1) for some parameter ε is a “sub-solution” (in the sense of (2.7)) to an equation very

much resembling the Boltzmann equation (with a modified gain operator), and in particular,

free of any dependence in ε. This observation allows to completely transpose the estimates and

techniques present in [5] to our problem and obtain without much trouble an L∞
bound on the

solution to (1.1) which is independent of ε.

2.1. A link between the Fermi-Dirac and the classical cases. We present in this section the

crucial simplification that allows us to pass from a study on the Boltzmann-Fermi-Dirac operator

to a study on the classical Boltzmann operator. This is made possible thanks to the Grad cutoff

assumption (1.4b). Recall that, under such an assumption, the classical Boltzmann operator Qγ,b

can be split into two parts

Qγ,b = Q+
γ,b −Q−

γ,b (2.1a)

where 
Q+

γ,b(f, g)(v) =

∫
R3×S2

f ′g′∗B(v − v∗, σ)dv∗dσ,

Q−
γ,b(f, g)(v) = f(v)

∫
R3×S2

g∗B(v − v∗, σ)dv∗.

(2.1b)

A similar splitting can be made for Qε. Indeed, for any ε > 0 and 0 ⩽ f ∈ L1
2(R3) such that

1− εf ⩾ 0, defining
Qε,+

γ,b (f, f) =

∫∫
R3×S2

f ′f ′
∗(1− εf)(1− εf∗)B dv∗ dσ

Qε,−
γ,b (f, f) = f

∫∫
R3×S2

f∗(1− εf ′)(1− εf ′
∗)B dv∗ dσ .

(2.2a)

the cutoff assumption (1.4b) imply that Qε,+
γ,b (f, f) < ∞, Qε,−

γ,b (f, f) < ∞ and

Qε
γ,b(f, f) = Qε,+

γ,b (f, f)−Qε,−
γ,b (f, f) . (2.2b)

Moreover, for any measurable and nonngegative g, h : R3 → R+ and f ∈ L∞(R3), we define

Γγ,b(g, h)(v) :=

∫
R3×S2

g∗(h
′ + h′∗)B(v − v∗, σ) dv∗ dσ , (2.3)

and

Q̃+
γ,b[f ](g, h) := Q+

γ,b(g, h) +
f

∥f∥∞
Γγ,b(g, h) . (2.4)

Under the hypothesis that g, h are such that Q−
γ,b(g, h) < ∞, we can then define

Q̃γ,b[f ](g, h) := Q̃+
γ,b[f ](g, h)−Q−

γ,b(g, h). (2.5)

One then has the fundamental proposition where we recall that, in all the paper, assumption (1.4b)

is in force:
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Proposition 3. Let ε > 0 and 0 ⩽ f ∈ L1
2(R3) such that 1− εf ⩾ 0. Then

Qε
γ,b(f, f) ⩽ Q̃γ,b[f ](f, f). (2.6)

Remark 6. Proposition 3 implies that any suitable solution to (1.1) is such that

∂tf ⩽ Q̃γ,b[f ](f, f). (2.7)

Equation (2.7) is close to the classical Boltzmann equation, with the difference that the gain part of
the collision operator is now Q̃+

γ,b in place of Q+
γ,b, and that it is an inequation. Interestingly, the

arguments and techniques present in [5], where the classical Boltzmann equation is studied, work
even with the differences we mentioned, which will allow us to conclude. The most notable point is of
course that (2.7) is free from any dependence on ε.

Proof. Let ε > 0 and 0 ⩽ f ∈ L1
2(R3) such that 1− εf ⩾ 0. We use the splitting (2.2b) and also

set

Υε := ε2
∫∫

R3×S2
ff∗f

′ f ′
∗B dv∗ dσ

where we notice that Υε appears in both Qε,+
γ,b and Qε,−

γ,b . Namely, expanding the term (1 −
εf)(1− εf∗) in Qε,+

γ,b (f, f) one has, using that f ⩾ 0 so that 1− εf − εf∗ ⩽ 1,

Qε,+
γ,b (f, f) =

∫∫
R3×S2

f ′f ′
∗ (1− εf − εf∗)B dv∗ dσ +Υε ⩽ Q+

γ,b(f, f) + Υε

whereas

Qε,−
γ,b (f, f) =

∫∫
R3×S2

ff∗B dv∗ dσ − ε

∫∫
R3×S2

ff∗(f
′ + f ′

∗)B dv∗ dσ +Υε

= Q−
γ,b(f, f)− εf Γγ,b(f, f) + Υε.

Taking the difference and noticing that εf ⩽ f
∥f∥∞ yields the result. □

The crucial property on which our estimates will rely is the fact that the operator Γγ,b defined

in (2.3) is adjoint to the (symmetrized version) of Q+
γ,b in the following sense:

Lemma 4. For any measurable nonnegative functions f, g, h on R3, we have∫
R3

f Γγ,b(g, h) dv =

∫
R3

h
[
Q+

γ,b(f, g) +Q+
γ,b(g, f)

]
dv.

Proof. Using first the micro-reversibility property of B and then its symmetry property, we get∫
R3

f Γγ,b(g, h) dv =

∫∫∫
R3×R3×S2

fg∗(h
′ + h′∗)B dv dv∗ dσ

=

∫∫∫
R3×R3×S2

f ′g′∗(h+ h∗)B dv dv∗ dσ

=

∫∫∫
R3×R3×S2

f ′g′∗hB dv dv∗ dσ +

∫∫∫
R3×R3×S2

f ′
∗g

′hB dv dv∗ dσ

=

∫
R3

h
[
Q+

γ,b(f, g) +Q+
γ,b(g, f)

]
dv ,

which is the desired result. □
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Lemma 4 allows to transfer well-known estimates onQ+
γ,b directly to Γγ,b and hence to Q̃+

γ,b. The

reader may now see how the combination of Proposition 3 and Lemma 4 allows to easily transfer

techniques on the classical Boltzmann operator to the Boltzmann-Fermi-Dirac operator.

2.2. General estimates on Q+
γ,b. In this subsection, we recall the already known estimates on

Q+
γ,b that we later use in our study. First comes the following proposition, extracted from [3,

Theorem 2] (see also [5, Theorem 28]) which deals with collision kernel only depending on

b(cos θ), i.e. associated to γ = 0.

Proposition 5 (Young’s type inequality). Consider an angular kernel b satisfying (1.4b). Let
r ∈ [1,+∞] and p, q ∈ [1, r] such that

1

p
+

1

q
= 1 +

1

r
.

Then ∥∥∥Q+
0,b(g, h)

∥∥∥
r
⩽ Cb(p, q) ∥g∥p ∥h∥q, (2.8)

where, with p′, q′, r′ respectively the conjugates to p, q and r and e1 = (1 0 0)T ,

Cb(p, q) =

(∫
S2

(
1 + e1 · σ

2

)− 3
2r′

b(e1 · σ) dσ

) r′
p′
(∫

S2

(
1− e1 · σ

2

)− 3
2r′

b(e1 · σ) dσ

) r′
q′

.

(2.9)

In the case p = q = r = 1, the constant Cb(1, 1) is understood as

Cb(1, 1) =

∫
S2
b(e1 · σ) dσ = ∥b∥L1(S2),

and in the cases that p = 1 or q = 1, one interprets (·)
r′
p′ = 1 and (·)

r′
q′ = 1 respectively. As a

consequence, for any p ∈ [1,+∞] and f ∈ L1(R3) ∩ Lp(R3), we have∥∥∥Q+
0,b(f, f)

∥∥∥
p
⩽ 2

3
2p′ ∥b∥1 ∥f∥1 ∥f∥p. (2.10)

Remark 7. Inequality (2.10) has been derived in [5, Equation (6.11)] (we point out a misprint in [5,

Eq. (6.11)] where the parameter s should be replaced with s′).

One deduces easily the following estimate from Proposition 5:

Corollary 6. Consider a bounded angular kernel b ∈ L∞((−1, 1)). Then for (f, g) ∈ L1(R3)×
L2(R3), we have ∥∥∥Q+

0,b(f, g)
∥∥∥
2
⩽ 8 ∥b∥∞ ∥f∥1 ∥g∥2. (2.11)

Proof. We use Young’s inequality (2.8) with p = 1, q = 2 to obtain, for any f ∈ L1(R3), g ∈
L2(R3) ∥∥∥Q+

0,b(f, g)
∥∥∥
2
⩽ Cb(1, 2) ∥f∥1∥g∥2.

Since

C2(1, 2) ⩽ ∥b∥∞
∫ 1

−1

(
1− s

2

)− 3
4

ds = 8 ∥b∥∞,

we obtain (2.11). □
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The last crucial estimate onQ+
γ,b is the following “gain of integrability” property, mostly extracted

from [5, Equation (6.19)] and adapted to hard potentials.

Proposition 7. (Gain of integrability). Consider γ ∈ (0, 1], a bounded angular kernel b ∈
L∞((−1, 1)), f ∈ L1(R3) and g ∈ L1(R3) ∩ L2(R3). Then

max
(∥∥∥Q+

γ,b(g, f)
∥∥∥
2
,
∥∥∥Q+

γ,b(f, g)
∥∥∥
2

)
⩽ 16 ∥b∥∞ ∥f∥1 ∥g∥

2γ
3
1 ∥g∥1−

2γ
3

2 . (2.12)

Proof. Let δ > 0, notice that for any u ∈ R3
,

|u|γ = |u|γ 1|u|⩾δ + |u|γ 1|u|⩽δ ⩽
|u|
δ1−γ

1|u|⩾δ + δγ 1|u|⩽δ ⩽
|u|
δ1−γ

+ δγ ,

so that

Q+
γ,b(f, g) ⩽ δγ−1Q+

1,b(f, g) + δγQ+
0,b(f, g).

Applying [5, Equation (6.19)] (in dimension 3), we have

∥Q+
1,b(f, g)∥2 ⩽ C3 ∥b∥∞ ∥f∥1 ∥g∥ 6

5
, (2.13)

where C3 comes from a Hardy-Littlewood-Sobolev inequality (see the last lines of the proof of [5,

Proposition 30]). Using [14, Theorem 3.1, Equation (3.2)] with here C3 = N 6
5
,1,3, we have in fact

C3 = π
1
2
Γ(32 − 1

2)

Γ(2− 1
2)

(
Γ(32)

Γ(3)

)−1+ 1
3

= π
1
2
Γ(1)

Γ(52)

(
Γ(32)

Γ(3)

)− 2
3

=
45/3

3π
1
3

,

where, only in the above equation, Γ stands for the Gamma function. In particular, it holds that

C3 ⩽ 3. Moreover, by interpolation,

∥g∥ 6
5
⩽ ∥g∥

2
3
1 ∥g∥

1
3
2 ,

therefore (2.13) implies

∥Q+
1,b(f, g)∥2 ⩽ 3 ∥b∥∞ ∥f∥1 ∥g∥

2
3
1 ∥g∥

1
3
2 . (2.14)

On the other hand, it comes from Equation (2.11) in Corollary 6 that∥∥∥Q+
0,b(f, g)

∥∥∥
2
⩽ 8 ∥b∥∞ ∥f∥1 ∥g∥2.

All in all, we obtain, for any δ > 0,∥∥∥Q+
γ,b(f, g)

∥∥∥
2
⩽ δγ−1

∥∥∥Q+
1,b(f, g)

∥∥∥
2
+ δγ

∥∥∥Q+
0,b(f, g)

∥∥∥
2

⩽ ∥b∥∞∥f∥1 ∥g∥
1
3
2

(
δγ−1 3 ∥g∥

2
3
1 + δγ 8∥g∥

2
3
2

)
.

Choosing δ =
3∥g∥

2
3
1

8∥g∥
2
3
2

and noting that 3γ × 81−γ ⩽ 8 for any γ ∈ (0, 1] yields (2.12) with

∥Q+
γ,b(f, g)∥2 in place of the left-hand-side. Let us show now the bound for ∥Q+

γ,b(g, f)∥2. The
change of variable σ → −σ directly proves that

Q+
γ,b(g, f) = Q+

γ,b̃
(f, g)
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with b̃(cos θ) = b(− cos θ). Since ∥b̃∥∞ = ∥b∥∞, we deduce the estimate for ∥Q+
γ,b(g, f)∥2 from

the first part of the proof. □

2.3. Key estimates on Q+
γ,b, Γγ,b and Q−

γ,b.

2.3.1. Estimates on Q+
γ,b. Relying on the general estimates on Q+

γ,b stated above, we provide here

two useful bounds that we later use in order to obtain L2
γ bounds on the solutions to (1.1).

Proposition 8. Consider a bounded angular kernel b ∈ L∞((−1, 1)) and γ ∈ (0, 1]. Then for any
f ∈ L1

3γ(R3) ∩ L∞(R3), we have∫
R3

Q+
γ,b(f, f)f(v) ⟨v⟩

2γ dv ⩽ 16 ∥b∥∞ ∥⟨·⟩
γ
2 f∥1+

2γ
3

1 ∥⟨·⟩
3γ
2 f∥2−

2γ
3

2 . (2.15)

Proof. First, by Cauchy-Schwarz inequality, we have∫
R3

Q+
γ,b(f, f) f(v) ⟨v⟩

2γ dv ⩽ ∥⟨·⟩
3γ
2 f∥2

∥∥∥⟨·⟩ γ
2Q+

γ,b(f, f)
∥∥∥
2
.

Now notice that for any (v, v∗, σ) ∈ R3 × R3 × S2 we have ⟨v⟩
γ
2 ⩽ ⟨v′⟩

γ
2 ⟨v′∗⟩

γ
2 , where we recall

the notation (1.3) for v′ and v′∗. From this we deduce that for any v ∈ R3
, we have

⟨v⟩
γ
2 Q+

γ,b(f, f)(v) ⩽ Q+
γ,b(⟨·⟩

γ
2 f, ⟨·⟩

γ
2 f)(v).

Lastly, we use the gain of integrability property (2.12) to obtain that∥∥∥Q+
γ,b(⟨·⟩

γ
2 f, ⟨·⟩

γ
2 f)
∥∥∥
2
⩽ 16 ∥b∥∞ ∥⟨·⟩

γ
2 f∥1+

2γ
3

1 ∥⟨·⟩
γ
2 f∥1−

2γ
3

2 .

Since ∥⟨·⟩
γ
2 f∥2 ⩽ ∥⟨·⟩

3γ
2 f∥2 and 1− 2γ

3 ⩾ 0, we indeed obtain (2.15). □

We consider in the next result an estimate for Q+
γ,b, similar to Young’s convolution inequality,

under the mere cutoff assumption (1.4b):

Proposition 9. Consider an angular kernel b satisfying the cutoff assumption (1.4b) and γ ∈ (0, 1].
Then for any f ∈ L1

3γ(R3) ∩ L∞(R3), we have∫
R3

Q+
γ,b(f, f)f(v) ⟨v⟩

2γ dv ⩽ 2
3
4 ∥b∥1 ∥⟨·⟩

3γ
2 f∥1 ∥⟨·⟩

3γ
2 f∥22. (2.16)

Proof. We follow the same steps as in the proof of the previous Proposition 8 and recall that∫
R3

Q+
γ,b(f, f)f(v) ⟨v⟩

2γ dv ⩽ ∥⟨·⟩
3γ
2 f∥2

∥∥∥⟨·⟩ γ
2Q+

γ,b(f, f)
∥∥∥
2
.

Second, notice that for any (v, v∗, σ) ∈ R3 × R3 × S2 it holds that

|v − v∗|γ = |v′ − v′∗|γ ⩽ ⟨v′⟩γ⟨v′∗⟩γ ,

and ⟨v⟩
γ
2 ⩽ ⟨v′⟩

γ
2 ⟨v′∗⟩

γ
2 , where we recall the notation (1.3) for v′ and v′∗. Then, for any v ∈ R3

,

⟨v⟩
γ
2Q+

γ,b(f, f)(v) ⩽ ⟨v⟩
γ
2Q+

0,b(⟨·⟩
γf, ⟨·⟩γf)(v) ⩽ Q+

0,b(⟨·⟩
3γ
2 f, ⟨·⟩

3γ
2 f)(v).
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Since (2.10) in Proposition 5 gives∥∥∥Q+
0,b(⟨·⟩

3γ
2 f, ⟨·⟩

3γ
2 f)

∥∥∥
2
⩽ 2

3
4 ∥b∥1 ∥⟨·⟩

3γ
2 f∥1 ∥⟨·⟩

3γ
2 f∥2,

we can conclude to (2.16). □

Finally, we provide the following proposition, which is a straightforward consequence of [5,

Corollary 35].

Proposition 10. Consider angular kernels bS and bR satisfying the cutoff assumption (1.4b) and
such that bS vanishes in the vicinity of {−1, 1}. Then for any γ ∈ (0, 1] and f ∈ L1

2γ(R3)∩L∞(R3),
we have ∥∥∥Q+

γ,bS
(f, f)

∥∥∥
∞

⩽ CbS (2, 2) ∥⟨·⟩
γf∥22, (2.17)

where CbS (2, 2) is defined by (2.9), and for any v ∈ R3,

Q+
γ,bR

(f, f)(v) ⩽ 4 ∥bR∥1 ∥f∥1 ∥f∥∞ ⟨v⟩γ . (2.18)

Proof. The only difference with [5, Corollary 35] is that we explicit the constant 4 ∥bR∥1 in (2.18)

and that we have added up the two last equations of [5, Corollary 35, (7.29)]. The 4 is not explicitly

given in [5, Corollary 35] but can be obtained by noting that the constant is there given by

2
γ
2 (Cb+R

(∞, 1) +Cb−R
(1,∞)) (where b+R and b−R are defined there), that one can obtain from (2.9),

with

Cb+R
(∞, 1) ⩽ 2

3
2 ∥b+R∥1, Cb−R

(1,∞) ⩽ 2
3
2 ∥b−R∥1,

hence allowing to bound the constant by 2
γ+3
2 ∥bR∥1. We then conclude as γ ⩽ 1. □

2.3.2. Estimates on Γγ,b. In this subsection, we make use of the estimates on Q+
γ,b obtained in the

previous subsection as well as Lemma 4 to simply obtain crucial estimates on Γγ,b.

Propositions 11–12 and 13–14 are the analogues to Propositions 8–9 and 10 for Γγ,b.

Proposition 11. Consider a bounded angular kernel b ∈ L∞((−1, 1)). Then for any γ ∈ (0, 1]

and 0 ⩽ f ∈ L1
3γ(R3) ∩ L∞(R3), we have∫

R3

f(v)

∥f∥∞
Γγ,b(f, f)f(v) ⟨v⟩2γ dv ⩽ 32 ∥b∥∞ ∥⟨·⟩γf∥1+

2γ
3

1 ∥⟨·⟩
3γ
2 f∥2−

2γ
3

2 . (2.19)

Proof. First, notice that applying the Cauchy-Schwarz inequality yields∫
R3

f(v)

∥f∥∞
Γγ,b(f, f)f(v) ⟨v⟩2γ dv ⩽ ∥f∥−1

∞ ∥⟨·⟩
3γ
2 f∥2

∥∥∥⟨·⟩ γ
2 f Γγ,b(f, f)

∥∥∥
2
. (2.20)

Clearly, by Riesz representation theorem,∥∥∥⟨·⟩ γ
2 f Γγ,b(f, f)

∥∥∥
2
= sup

∥g∥2=1

∫
R3

g(v) Γγ,b(f, f)f(v) ⟨v⟩
γ
2 dv.

Applying Lemma 4, this gives∥∥∥⟨·⟩ γ
2 f Γγ,b(f, f)

∥∥∥
2
= sup

∥g∥2=1

∫
R3

f(v)
{
Q+

γ,b(⟨·⟩
γ
2 fg, f) +Q+

γ,b(f, ⟨·⟩
γ
2 fg)

}
dv

⩽ ∥f∥2 sup
∥g∥2=1

{∥∥∥Q+
γ,b(⟨·⟩

γ
2 fg, f)

∥∥∥
2
+
∥∥∥Q+

γ,b(f, ⟨·⟩
γ
2 fg)

∥∥∥
2

}
.
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where we used Cauchy-Schwarz inequality for the last estimate. Using the gain of integrability

property (2.12) in Proposition 7, we deduce that∥∥∥⟨·⟩ γ
2 f Γγ,b(f, f)

∥∥∥
2
⩽ ∥f∥2 sup

∥g∥2=1

{
32 ∥b∥∞

∥∥∥⟨·⟩ γ
2 fg

∥∥∥
1
∥f∥

2γ
3
1 ∥f∥1−

2γ
3

2

}
.

Using again Cauchy-Schwarz inequality, we obtain∥∥∥⟨·⟩ γ
2 f Γγ,b(f, f)

∥∥∥
2
⩽ ∥f∥2 sup

∥g∥2=1

{
32 ∥b∥∞

∥∥∥⟨·⟩ γ
2 f
∥∥∥
2
∥g∥2 ∥f∥

2γ
3
1 ∥f∥1−

2γ
3

2

}
= 32 ∥b∥∞ ∥f∥

2γ
3
1

∥∥∥⟨·⟩ γ
2 f
∥∥∥
2
∥f∥2−

2γ
3

2 .

Recalling (2.20), we then conclude that∫
R3

f(v)

∥f∥∞
Γγ,b(f, f)f(v) ⟨v⟩2γ dv ⩽ 32∥b∥∞∥f∥−1

∞

∥∥∥⟨·⟩ 3γ
2 f
∥∥∥
2
∥f∥

2γ
3
1

∥∥∥⟨·⟩ γ
2 f
∥∥∥
2
∥f∥2−

2γ
3

2 .

The result comes after noticing that

∥f∥2 ⩽ ∥f∥
1
2
1 ∥f∥

1
2∞, ∥⟨·⟩

γ
2 f∥2 ⩽ ∥⟨·⟩γf∥

1
2
1 ∥f∥

1
2∞,

while ∥f∥1 ⩽ ∥⟨·⟩γf∥1 and ∥f∥2 ⩽
∥∥∥⟨·⟩ 3γ

2 f
∥∥∥
2
. □

For b satisfying the cutoff assumption (1.4b), we have the following version of Young’s convolution

inequality

Proposition 12. Consider γ ∈ (0, 1], an angular kernel b satisfying the cutoff assumption (1.4b)

and f ∈ L1
2(R3) ∩ L∞(R3). Then∫

R3

f

∥f∥∞
Γγ,b(f, f)f(v) ⟨v⟩2γ dv ⩽ 2∥b∥1 ∥⟨·⟩γf∥1 ∥⟨·⟩

3γ
2 f∥22. (2.21)

Proof. We first note that, since |v− v∗|γ ⩽ ⟨v⟩γ⟨v∗⟩γ , where we recall that ⟨v⟩ = (1+ |v|2)
1
2 , we

have ∫
R3

f

∥f∥∞
Γγ,b(f, f)f(v) ⟨v⟩2γ dv ⩽ ∥f∥−1

∞

∫
R3

Γ0,b(⟨·⟩γf, f)f2(v) ⟨v⟩3γ dv

⩽ ∥f∥−1
∞ ∥Γ0,b(⟨·⟩γf, f)∥∞ ∥⟨·⟩

3γ
2 f∥22.

(2.22)

As before, thanks to Riesz representation theorem together with Lemma 4, we have

∥Γ0,b(⟨·⟩γf, f)∥∞ = sup
∥g∥1=1

∫
R3

g(v) Γ0,b(⟨·⟩γf, f) dv

= sup
∥g∥1=1

∫
R3

f(v)
(
Q+

0,b(g, ⟨·⟩
γf) +Q+

0,b(⟨·⟩
γf, g)

)
dv.

Clearly, this implies that

∥Γ0,b(⟨·⟩γf, f)∥∞ ⩽ ∥f∥∞ sup
∥g∥1=1

(
∥Q+

0,b(g, ⟨·⟩
γf)∥1 + ∥Q+

0,b(⟨·⟩
γf, g)∥1

)
.
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We apply Young’s inequality (2.8) from Proposition 5 with (p, q, r) = (1, 1, 1) to deduce that

∥Γ0,b(⟨·⟩γf, f)∥∞ ⩽ ∥f∥∞ sup
∥g∥1=1

(2∥b∥1∥g∥1 ∥⟨·⟩γf∥1) = 2∥b∥1∥f∥∞∥⟨·⟩γf∥1.

Combining this estimate with (2.22) yields (2.21). □

Proposition 13. Consider an angular kernel b satisfying the cutoff assumption (1.4b) and such that
b vanishes in the vicinity of {−1, 1}. Then for any γ ∈ (0, 1] and f ∈ L2

γ(R3) ∩ L∞(R3), we have
for any v ∈ R3,

f(v)

∥f∥∞
Γγ,b(f, f)(v) ⩽ (Cb(1, 2) + Cb(2, 1)) ∥⟨·⟩γf∥2 ∥f∥2 ⟨v⟩γ , (2.23)

where Cb(1, 2) and Cb(2, 1) are defined in (2.9).

Proof. For g ∈ L2(R3), writing the L∞
norm in weak form yields

∥Γ0,b(g, f)∥∞ = sup
∥h∥1=1

∫
R3

h(v) Γ0,b(g, f)(v) dv.

Applying Lemma 4, the above right-hand-side becomes

sup
∥h∥1=1

∫
R3

f(v)
{
Q+

0,b(h, g)(v) +Q+
0,b(g, h)(v)

}
dv,

which, by a Cauchy-Schwarz argument, is lower than

∥f∥2 sup
∥h∥1=1

(
∥Q+

0,b(h, g)∥2 + ∥Q+
0,b(g, h)∥2

)
.

We apply Young’s inequality (2.8) from Proposition 5 respectively with (p, q, r) = (1, 2, 2) and

(p, q, r) = (2, 1, 2) to obtain that the above term is lower than

∥f∥2 sup
∥h∥1=1

(Cb(1, 2) + Cb(2, 1)) ∥g∥2 ∥h∥1,

so that

∥Γ0,b(g, f)∥∞ ⩽ (Cb(1, 2) + Cb(2, 1)) ∥g∥2 ∥f∥2.
Finally, we recall that, for any (v, v∗, σ) ∈ R3 ×R3 × S2, we have |v − v∗|γ ⩽ ⟨v⟩γ⟨v∗⟩γ , so that

Γγ,b(g, f)(v) ⩽ Γ0,b(⟨·⟩γ g, f)(v) ⟨v⟩γ ,

ending the proof, after noticing that
f(v)
∥f∥∞ ⩽ 1. □

Proposition 14. Consider an angular kernel b satisfying the cutoff assumption (1.4b). Then for any
γ ∈ (0, 1] and f ∈ L1

γ(R3) ∩ L∞(R3), we have for any v ∈ R3,

f(v)

∥f∥∞
Γγ,b(f, f)(v) ⩽ 2 ∥b∥1 ∥f∥L1

γ
f(v) ⟨v⟩γ . (2.24)

Proof. For g ∈ L1(R3), we showed in the first lines of the proof of the previous proposition that

∥Γ0,b(g, f)∥∞ ⩽ sup
∥h∥1=1

∫
R3

f(v)
{
Q+

0,b(h, g)(v) +Q+
0,b(g, h)(v)

}
dv .
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Therefore,

∥Γ0,b(g, f)∥∞ ⩽ ∥f∥∞ sup
∥h∥1=1

(
∥Q+

0,b(h, g)∥1 + ∥Q+
0,b(g, h)∥1

)
.

We apply Young’s inequality (2.8) from Proposition 5 with (p, q, r) = (1, 1, 1) to obtain that

∥Γ0,b(g, f)∥∞ ⩽ 2 ∥b∥1 ∥g∥1 ∥f∥∞.

Finally, we recall that, for any (v, v∗, σ) ∈ R3 ×R3 × S2, we have |v − v∗|γ ⩽ ⟨v⟩γ⟨v∗⟩γ , so that

Γγ,b(g, f)(v) ⩽ Γ0,b(⟨·⟩γ g, f)(v) ⟨v⟩γ ,

ending the proof. □

2.3.3. Estimate onQ−
γ,b. Lastly, we use a standard lower-bound estimate on the loss operatorQ−

γ,b.

Proposition 15. Consider γ ∈ (0, 1] and an angular kernel b satisfying the cutoff assumption (1.4b).
Then for any 0 ⩽ f ∈ L1

3(R3), there exists an explicit constant cγ,f > 0 depending on γ and on f

only through its L1 and L1
2 norms and an upper-bound on its L1

3 norm, such that∫
R3

Q−
γ,b(f, f) f(v) ⟨v⟩

2γ dv ⩾ cγ,f ∥b∥1 ∥⟨·⟩
3γ
2 f∥22. (2.25)

Proof. First note that the loss operator may be written as, for any v ∈ R3
,

Q−
γ,b(f, f)(v) = f(v) ∥b∥1 (f ∗ | · |γ)(v).

Then [5, Lemma 8] provides the existence of an explicit cγ,f > 0 depending on γ and on f only

through ∥f∥1, ∥f∥L1
2
and an upper bound on ∥f∥L1

3
such that for any v ∈ R3

,

(f ∗ | · |γ)(v) ⩾ cγ,f ⟨v⟩γ . (2.26)

Combing those two fact, it then comes that∫
R3

Q−
γ,b(f, f) f(v) ⟨v⟩

2γ dv ⩾ cγ,f ∥b∥1
∫
R3

f(v)2 ⟨v⟩3γ dv,

concluding the proof. □

2.4. Derivation of L2
γ bounds. In this subsection, we provide, in Proposition 16, a uniform-in-

time and uniform-in-ε L2
γ bound on the solutions to (1.1). We only recall that, according to the

results in Appendix B, assuming that f in ∈ L1
3(R3) ∩ L∞(R3), for any 0 < ε ⩽ ∥f in∥−1

∞ , the

unique solution f ε
to (BFD Eq.) is such that

sup
t⩾0

∥f ε(t, ·)∥L1
3
⩽ C1,3, (2.27)

withC1,3 > 0 explicit and depending only on γ, b, ϱin, uin, Ein
and an upper-bound on ∥f in∥L1

3
-

in particular, not on ε.

We now have all the tools we need to obtain the following proposition.
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Proposition 16. (L2
γ bound.) Consider a collision kernel B of the form (1.4) with γ ∈ (0, 1]. Given

an initial datum 0 ⩽ f in ∈ L1
3(R3)∩L∞(R3), there exists an explicit constantC2,γ depending only

on γ, b, ϱin, uin, Ein and upper-bounds on ∥f in∥L1
3
and ∥f in∥∞ such that for any ε ∈ (0, ∥f in∥−1

∞ ],
the unique solution f ε to (1.1) satisfies

sup
t⩾0

∥f ε(t)∥L2
γ
⩽ C2,γ . (2.28)

Proof. For the sake of clarity, since we are working here with fixed ε and fixed initial datum, we

simply denote in the following f(t) ≡ f ε(t, ·) for any t ⩾ 0 as the unique solution to

∂tf(t)(v) = Qε
γ,b(f(t), f(t))(v), f(t = 0) = f in.

Using Proposition 2.6 we get, as pointed out in Remark 6 together with the definition of Q̃γ,b (see

Eq. (2.5)), we deduce that, for any t ⩾ 0,

∂tf(t) ⩽ Q̃γ,b(f(t), f(t)) = Q+
γ,b(f(t), f(t)) +

f(t)

∥f(t)∥∞
Γγ,b(f(t), f(t))−Q−

γ,b(f(t), f(t)).

Multiplying both sides by f(t)(v) ⟨v⟩2γ and integrating on v ∈ R3
, it comes that

1

2

d

dt
∥f(t)∥2L2

γ
⩽
∫
R3

(
Q+

γ,b(f(t), f(t))(v) +
f(t)(v)

∥f(t)∥∞
Γγ,b(f(t), f(t))(v)

−Q−
γ,b(f(t), f(t))(v)

)
f(t)(v) ⟨v⟩2γ dv.

In the rest of the proof, we follow the ideas developed in [5, Section 7] (see also [6]) and split

the kernel b into b = b∞ + b1, with b∞ ∈ L∞((−1, 1)). Since b 7→ Q+
γ,b and b 7→ Γγ,b are linear

applications, we can split the above right-hand-side as

1

2

d

dt
∥f(t)∥2L2

γ
⩽

∫
R3

Q+
γ,b∞(f(t), f(t))(v) f(t)(v) ⟨v⟩2γ dv (2.29)

+

∫
R3

Q+
γ,b1

(f(t), f(t))(v) f(t)(v) ⟨v⟩2γ dv (2.30)

+

∫
R3

f(t)(v)

∥f(t)∥∞
Γγ,b∞(f(t), f(t))(v) f(t)(v) ⟨v⟩2γ dv (2.31)

+

∫
R3

f(t)(v)

∥f(t)∥∞
Γγ,b1(f(t), f(t))(v) f(t)(v) ⟨v⟩2γ dv (2.32)

−
∫
R3

Q−
γ,b(f(t), f(t))(v) f(t)(v) ⟨v⟩

2γ dv. (2.33)

All of these terms have been studied and bouned from above in Subsection 2.3. Namely:

• Equation (2.15) in Proposition 8 allows to bound from above (2.29)

• Equation (2.16) in Proposition 9 allows to bound from above (2.30)

• Equation (2.19) in Proposition 11 allows to bound from above (2.31)

• Equation (2.21) in Proposition 12 allows to bound from above (2.32)

• Equation (2.25) in Proposition 15 allows to bound from above (2.33).
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Putting everything together, (2.29)– (2.33) implies

1

2

d

dt
∥f(t)∥2L2

γ
+ cγ,f(t) ∥b∥1 ∥⟨·⟩

3γ
2 f(t)∥22 ⩽ 16 ∥b∞∥∞ ∥⟨·⟩

γ
2 f(t)∥1+

2γ
3

1 ∥⟨·⟩
3γ
2 f(t)∥2−

2γ
3

2

+ 2
3
4 ∥b1∥1 ∥⟨·⟩

3γ
2 f(t)∥1 ∥⟨·⟩

3γ
2 f(t)∥22

+ 32 ∥b∞∥∞ ∥⟨·⟩γf(t)∥1+
2γ
3

1 ∥⟨·⟩
3γ
2 f(t)∥2−

2γ
3

1

+ 2∥b1∥1 ∥⟨·⟩γf(t)∥1 ∥⟨·⟩
3γ
2 f(t)∥22 .

We observe now that 2
3
4 ⩽ 2 and, since γ ∈ (0, 1],

∥⟨·⟩
γ
2 f(t)∥1 ⩽ ∥⟨·⟩γf(t)∥1 ⩽ ∥⟨·⟩

3γ
2 f(t)∥1 ⩽ ∥f(t)∥L1

2
= ∥f in∥L1

2
,

since mass and energy are conserved during the evolution, we deduce that

1

2

d

dt
∥f(t)∥2L2

γ
+ cγ,f(t) ∥b∥1 ∥⟨·⟩

3γ
2 f(t)∥22 ⩽ 48∥b∞∥∞

∥∥f in
∥∥1+ 2γ

3

L1
2

∥⟨·⟩
3γ
2 f(t)∥2−

2γ
3

2

+ 4∥b1∥1∥f in∥L1
2
∥⟨·⟩

3γ
2 f(t)∥22 . (2.34)

We now recall that cγ,f(t), coming from Proposition 15 only depends on f(t) through ∥f∥1, ∥f∥L1
2

and an upper bound on ∥f∥L1
3
. Using now (2.27), we conclude to the existence of a constant

c̃γ,f in > 0 that depends only on γ and f in
, which is explicit and independent of ε, such that for

any t ⩾ 0, we have cγ,f(t) ⩾ c̃γ,f in . Therefore, (2.34) may be recast into

1

2

d

dt
∥f(t)∥2L2

γ
+ c̃γ,f in ∥b∥1 ∥⟨·⟩

3γ
2 f(t)∥22 ⩽ 48∥b∞∥∞

∥∥f in
∥∥1+ 2γ

3

L1
2

∥⟨·⟩
3γ
2 f(t)∥2−

2γ
3

2

+ 4∥b1∥1∥f in∥L1
2
∥⟨·⟩

3γ
2 f(t)∥22 .

We can choose b∞ ∈ L∞((−1, 1)) such that

∥b1∥1 = ∥b− b∞∥1 ⩽
c̃γ,f in ∥b∥1
8∥f in∥L1

2

.

For such a choice of b∞, we set
1
2A1 = 48

∥∥f in
∥∥1+ 2γ

3

L1
2

∥b∞∥∞ and deduce that

1

2

d

dt
∥f(t)∥2L2

γ
+ c̃γ,f in ∥b∥1 ∥⟨·⟩

3γ
2 f(t)∥22 ⩽

1

2
A1∥⟨·⟩

3γ
2 f(t)∥2−

2γ
3

2 +
1

2
c̃γ,f in ∥b∥1 ∥⟨·⟩

3γ
2 f(t)∥22,

that is

d

dt
∥f(t)∥2L2

γ
⩽ A1 ∥⟨·⟩

3γ
2 f(t)∥2−

2γ
3

2 − 2A2 ∥⟨·⟩
3γ
2 f(t)∥22, (2.35)

where we denoted A2 :=
1
2 c̃γ,f in ∥b∥1. Notice that A1 ⩾ 0 and A2 > 0 do not depend on time, nor

on ε. A study of X 7→ A1X
2− 2γ

3 −A2X
2
leads to, for any X ⩾ 0,

A1X
2− 2γ

3 −A2X
2 ⩽

(
2γ
3

2
3
γ (2− 2γ

3 )
1− 3

γ

)
× A

3
γ

1

A
3
γ
−1

2

,
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The term inside the parentheses in the right-hand side is actually increasing in γ, thus can be

bounded by its value at γ = 1, and we conclude that for any X ⩾ 0,

A1X
2− 2γ

3 −A2X
2 ⩽

4

27
× A

3
γ

1

A
3
γ
−1

2

=: A3.

Noticing that ∥⟨·⟩
3γ
2 f(t)∥2 ⩾ ∥f(t)∥L2

γ
, this leads us to

d

dt
∥f(t)∥2L2

γ
⩽ A3 −A2∥⟨·⟩

3γ
2 f(t)∥22 ⩽ A3 −A2∥f(t)∥2L2

γ
, ∀ t ⩾ 0.

A straightforward ODE integration and the fact that f(t = 0) = f in
then yields, for any t ⩾ 0,

∥f(t)∥2L2
γ
⩽ max

(
∥f in∥2L2

γ
,
A3

A2

)
.

We conclude by taking the supremum in time. Finally, note that ∥f in∥2L2
γ
is bounded by ∥f in∥L1

2
∥f in∥∞,

and
A3
A2

is explicit and depends only on γ, b and f in
through its L1

and L1
2 norms and an upper-

bound on its L1
3 norm - in particular, not on ε. □

2.5. Conclusion to the proof of Theorem 3. We assume that the assumptions of Theorem 3 are

in force and adopt the notations introduced therein. We provide in this subsection the conclusion

of the proof of this Theorem. As in the proof of Proposition 16, we denote in the following

f(t) ≡ f ε(t, ·) for any t ⩾ 0 to avoid ambiguity and for clarity, and we have for any v ∈ R3
,

∂tf(t)(v) ⩽ Q+
γ,b(f(t), f(t))(v)+

f(t)(v)

∥f(t)∥∞
Γγ,b(f(t), f(t))(v)−Q−

γ,b(f(t), f(t))(v), t ⩾ 0.

Following the ideas of [5, Subsection 7.3], we split b = bS + bR with bS vanishing in the

vicinity of {−1, 1}. Since Q+
γ,b and Γγ,b depend linearly on the kernel b, we observe that, for any

(t, v) ∈ R+ × R3
,

∂tf(t)(v) +Q−
γ,b(f(t), f(t))(v) ⩽ Q+

γ,bS
(f(t), f(t))(v) +Q+

γ,bR
(f(t), f(t))(v)

+
f(t)(v)

∥f(t)∥∞
Γγ,bS (f(t), f(t))(v)

+
f(t)(v)

∥f(t)∥∞
Γγ,bR(f(t), f(t))(v) .

(2.36)

Here again, all the above terms have been studied and estimated in Subsection 2.3. Namely,

Equation (2.17) in Proposition 10 allows to bound Q+
γ,bS

from above, Equation (2.18) in Proposi-

tion 10 allows to estimate Q+
γ,bR

while (2.23) and (2.24) provide the estimates for Γγ,bS and Γγ,bR

respectively. Finally, Q−
γ,b is bounded from below thanks to (2.26). With all these estimates, (2.36)

becomes

∂tf(t)(v) + cγ,f(t) ∥b∥1 f(t)(v) ⟨v⟩γ ⩽ CbS (2, 2) ∥f(t)∥
2
L2
γ

+ 4 ∥bR∥1 ∥f(t)∥1 ∥f(t)∥∞ ⟨v⟩γ

+ (CbS (1, 2) + CbS (2, 1)) ⟨v⟩
γ ∥f(t)∥L2

γ
∥f(t)∥2

+ 2 ∥bR∥1 ∥f(t)∥L1
γ
f(t)(v) ⟨v⟩γ .
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As already explained in the lines following (2.34), there exists an explicit c̃γ,f in > 0 depending

only on γ and f in
such that for any t ⩾ 0, cγ,f(t) ⩾ c̃γ,f in . Moreover we have for any t ⩾ 0 that

∥f(t)∥1 ⩽ ∥f(t)∥L1
γ
⩽ ∥f(t)∥L1

2
= ∥f in∥L1

2
.

Moreover remarking that ∥f(t)∥2 ⩽ ∥f(t)∥L2
γ
, f(t)(v) ⩽ ∥f(t)∥∞ and 1 ⩽ ⟨v⟩γ , we then obtain

∂tf(t, v) ⩽ (CbS (2, 2) + CbS (1, 2) + CbS (2, 1)) ∥f(t)∥
2
L2
γ
⟨v⟩γ

+ 6∥bR∥1 ∥f in∥L1
2
∥f(t)∥∞ ⟨v⟩γ − c̃γ,f in ∥b∥1 f(t)(v) ⟨v⟩γ .

We now apply Proposition 16, providing the uniform-in-time L2
γ bound

sup
t⩾0

∥f(t)∥2L2
γ
⩽ C2

2,γ .

We choose the kernel bS close enough (in the L1
sense) to b, to ensure that

∥bR∥1 ⩽
c̃γ,f in ∥b∥1
12∥f in∥L1

2

.

In this event, we obtain that for any (t, v) ∈ R+ × R3
we have

∂tf(t, v) ⩽ A′
1 ⟨v⟩γ +A2 ∥f(t)∥∞ ⟨v⟩γ − 2A2 f(t)(v) ⟨v⟩γ ,

where

A′
1 = (CbS (2, 2) + CbS (1, 2) + CbS (2, 1))C

2
2,γ and A2 =

1

2
c̃γ,f in ∥b∥1

are explicit and depend only on γ, b and f in
through its L1

and L1
2 norms and upper-bounds on

its L1
3 and L∞

norms - in particular, neither on time t nor on ε. Fixing t > 0, we then have for

any s ∈ [0, t] that, at fixed v ∈ R3
,

∂sf(s, v) + 2A2 f(s, v) ⟨v⟩γ ⩽ (A′
1 +A2 sup

0⩽t′⩽t
∥f(t′)∥∞)⟨v⟩γ .

Multiplying the above inequation by e−2A2 ⟨v⟩γs
and integrating for s ∈ [0, t], while keeping v

fixed, yields, as the right-hand-side does not depend on s,

f(t, v) ⩽ f in(v) e−2A2 ⟨v⟩γt +

(
A′

1

2A2
+

1

2
sup

0⩽t′⩽t
∥f(t′)∥∞

)
(1− e−2A2 ⟨v⟩γt).

In particular,

f(t, v) ⩽ max

(
∥f in∥∞,

A′
1

2A2
+

1

2
sup

0⩽t′⩽t
∥f(t′)∥∞

)
.

As a consequence

sup
0⩽t′⩽t

∥f(t′)∥∞ ⩽ max

(
∥f in∥∞,

A′
1

2A2
+

1

2
sup

0⩽t′⩽t
∥f(t′)∥∞

)
,

and, since sup0⩽t′⩽t ∥f(t′)∥∞ ⩽ ε−1 < +∞, we easily deduce the bound

sup
0⩽t′⩽t

∥f(t′)∥∞ ⩽ max

(
∥f in∥∞,

A′
1

A2

)
.
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Theorem 3 follows as the right-hand side does not depend on time t, and
A′

1
A2

is explicit and depends

only on γ, b and f in
through its L1

and L1
2 norms and upper-bounds on its L1

3 and L∞
norms -

in particular, not on ε.

3. Explicit rate of convergence to eqilibrium: proof of Theorem 4

To deduce from the above result the proof of Theorem 4, it remains to obtain some suitable

conditions on the initial datum f in
ensuring that the solution f ε

to (1.1) belongs to the class Cε
as described in the introduction. In particular, we first need to prove the existence of pointwise

lower bounds of exponential type. This is the object of the next section which, once again, fully

exploits known results for the classical Boltzmann equation as well as a comparison principle

between Qε
B and QB,

3.1. Maxwellian pointwise lower bound. The following Proposition 17 is the equivalent to [19,

Theorem 1.1] for the fermionic case, the latter being stated for the classical Boltzmann equation.

Proposition 17. Consider the assumptions of Theorem 3 along with the same notations. Then for
any κ0 ∈ (0, 1), ε ∈

(
0, (1− κ0)C

−1
∞
]
and positive time t0 > 0, there exist two positive constants

K0 and A0 depending only on t0, κ0, γ, b and f in only through its L1 and L1
2 norms and an upper

bound on its entropy, such that the solution f ε to (1.1) is such that, for all t ⩾ t0,

f ε(t, v) ⩾ K0 e
−A0 |v|2 , v ∈ R3. (3.1)

Remark 8. We insist on the fact that, as in the previous results, the positive constantsK0, A0 in (3.1)
do not depend on ε.

Proof. We do not provide a full proof of this result since it is, actually, exactly the same proof as

the one valid for the classical Boltzmann equation. Indeed, the key point here is that the solution

f ε
satisfies

∂tf
ε(t, v) ⩾ κ20Q+

γ,b(f
ε(t), fε(t))(v)−Q−

γ,b(f
ε(t), fε(t))(v) ∀(t, v) ∈ R+ × R3 . (3.2)

This is easily seen recalling the splittings (2.1a)–(2.2b) and observing that, under the assumption

κ0 ⩽ 1− εf ⩽ 1, it holds

Qε,+
γ,b (f, f) ⩾ κ20Q+

γ,b(f, f), Qε,−
γ,b (f, f) ⩽ Q−

γ,b(f, f).

Since ∂tf
ε = Qε,+

γ,b (f, f)−Qε,−
γ,b (f, f), we deduce readily from Corollary 2 that f ε

satisfies (3.2).

With this, one sees that f ε
is a “supersolution” (in the sense of (3.2)) of an equation very similar to

the classical Boltzmann equation, the only difference being that theQ+
γ,b operator is multiplied by

κ20. This allows to resume the whole proof of [19, Theorem 1.1] (the fact that we are dealing with

“supersolution” and not solution to (3.2) plays no role since we consider lower bounds for f ε
). We

notice that, although the conservation of mass and energy and the decrease of the entropy are

not embedded in (3.2), they do hold as f ε
solves (1.1) and this allows to copycat the proof of [19,

Theorem 1.1]. □
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3.2. Conclusion to the proof of Theorem 4. In this last Subsection, we provide the core of the

proof of Theorem 4 and conclude. We recall that we assume here that B is a collision kernel of

the form (1.4) with γ ∈ (0, 1] and an angular kernel b satisfying the cutoff assumption (1.4b). We

fix an initial datum 0 ⩽ f in ∈ L1
3(R3) ∩ L∞(R3).

According to Theorem 3 (more precisely Corollary 2), there is an explicitC∞ > 0 such that for

any κ0 ∈ (0, 1) and ε ∈ (0, (1−κ0)C
−1
∞ ], the associated solution f ε

to (1.1) with f ε(t = 0) = f in

is such that

1− εf ε(t, v) ⩾ κ0 (t, v) ∈ R+ × R3. (3.3)

From now on, we fix κ0 and ε such that (3.3) holds true and denote for simplicity f(t) ≡ f ε(t, ·).

We arbitrarily choose a positive time t0 > 0 (one could for instance take t0 = 1). Using the result

of [16, Theorem 2. (I)], we deduce that, for any s > 2, there exists an explicit constant C1,s > 0

(depending on s,B, ∥f in∥1, ∥f in∥L1
2
and t0 but not ε) such that

sup
t⩾t0

∥f(t)∥L1
s
⩽ C1,s. (3.4)

Moreover, a simple interpolation together with Theorem 3 yields

sup
t⩾0

∥f(t)∥p ⩽ ∥f in∥
1
p

1 C
1− 1

p
∞ ∀p > 1. (3.5)

Moreover, we recall the notation (it is not a norm), for any measurable h : R3 7→ R+ and s ⩾ 0,

∥h∥L1
s logL

=

∫
R3

⟨v⟩s h(v) | log h(v)|dv.

When h ∈ L1
s+1(R3) ∩ L∞(R3), the above can be bounded as follows,

∥h∥L1
s logL

⩽ log+ (∥h∥∞) ∥h∥L1
s
+ ∥h∥L1

s+1
+

∫
R3

e−⟨v⟩⟨v⟩s+1 dv.

Therefore, combining the above (with h = f(t)) with (3.4) and the L∞
bound on f , it holds that

sup
t⩾t0

∥f(t)∥L1
s logL

⩽ log+ (C∞)C1, s +C1,s+1 +

∫
R3

e−⟨v⟩⟨v⟩s+1 dv. (3.6)

Equations (3.5) and (3.6) can be reformulated as the fact that, for all p > 1 and s ⩾ 0, there exist

explicit Cp > 0 and Clog
s > 0 such that

sup
t⩾t0

∥f(t)∥p ⩽ Cp, and sup
t⩾t0

∥f(t)∥L1
s logL

⩽ Clog
s . (3.7)

In particular, both Cp and Clog
s only depend on γ, b and f in

through its L1
and L1

2 norms and

upper-bounds on itsL1
3 andL

∞
norms, and respectively on p and s. Moreover, from Proposition 17,

there exist K0 > 0 and A0 > 0 depending only on t0, κ0, γ, b and f in
through its L1

and L1
2

norms and an upper bound on its entropy, such that for any (t, v) ∈ [t0,+∞)× R3
, we have

f(t, v) ⩾ K0 e
−A0|v|2 . (3.8)

Let us now define, for any t ⩾ 0

g(t) := φε(f(t)) =
f(t)

1− εf(t)
.
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Since, for any t ∈ R+, 0 ⩽ f(t) ∈ L1
2(R3) and 1− εf ⩾ κ0, we also have 0 ⩽ g(t) ∈ L1

2(R3),

as well as, from (3.3)–(3.7), that for any p > 1 and s ⩾ 0, it holds that

sup
t⩾t0

∥g(t)∥p ⩽ κ−1
0 Cp, and sup

t⩾t0

∥g(t)∥L1
s logL

⩽ κ−1
0 Clog

s + κ−1
0 log(κ−1

0 )C1,s. (3.9)

Moreover, since g ⩾ f , Equation (3.8) implies

g(t, v) ⩾ K0 e
−A0|v|2 , ∀t ⩾ t0, v ∈ R3.

We are now able to apply the functional inequality in Theorem 2 to the function g(t), for t ⩾ t0,

which, with the choices

β− = 0, β+ = γ, p = 3, s = 4 +
4

γ
, and q0 = 2 so that α = 1 + γ,

provides the existence of a positive constantA0 > 0 such that

D0(g(t)) ⩾ A0H0

(
g(t)

∣∣Mg(t)
0

)1+γ
. (3.10)

We point out that the positive constantA0 can be defined asA0 = inft⩾t0 A(t) where, according

to Theorem 2, A(t) is depending on A0,K0, upper and lower bounds to ∥g(t)∥1 and ∥g(t)∥L1
2
,

and upper bounds to ∥g(t)∥3, ∥g(t)∥L1
s+2

and ∥g(t)∥L1
s logL

. This shows in particular that the

positive constant A0 depends only on t0, ϱ
in
, uin, Ein

, κ0, K0, A0, C3,C
log
s and C1,s+2.

We now apply Proposition 1 to get that

Hε(f(t)
∣∣Mf(t)

ε ) ⩽ H0

(
g(t)

∣∣Mg(t)
0

)
and Dε(f(t)) ⩾ κ40 D0 (g(t)) ,

which, combined with (3.10) yields

Dε(f(t)) ⩾ κ40A0Hε(f(t)
∣∣Mf(t)

ε )1+γ . (3.11)

Now notice that for any t ⩾ 0, we have, since f solves (BFD Eq.),

Mf(t)
ε = Mf in

ε .

According to the entropy identity (B.1) (see Theorem 6), for all t ⩾ 0, we have

d

dt
Hε(f(t)

∣∣Mf in

ε ) =
d

dt
Hε(f(t)) = −Dε(f(t)).

In particular, according to (3.11),

d

dt
Hε(f(t)

∣∣Mf in

ε ) ⩽ −κ40A0Hε(f(t)
∣∣Mf in

ε )1+γ , ∀t ⩾ t0.

Integrating this inequality on the interval [t0, t] and using, as the entropy decreases with time,

that

Hε

(
f(t0)

∣∣Mf in

ε

)
⩽ Hε

(
f in
∣∣Mf in

ε

)
,

we easily deduce that

Hε(f(t)
∣∣Mf in

ε ) ⩽
(
Hε(f

in
∣∣Mf in

ε )−γ + γκ40A0 (t− t0)
)− 1

γ
, ∀t ⩾ t0.
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Finally, using again that the mapping t 7→ Hε(f(t)
∣∣Mf in

ε ) is nonincreasing, we deduce that for

all t ⩾ 0, it holds that

Hε(f(t)
∣∣Mf in

ε ) ⩽ B (1 + (t− t0)+)
− 1

γ ,

with

B = max
(
Hε(f

in
∣∣Mf in

ε ),
(
γκ40A0

)− 1
γ

)
.

The latter then implies (1.22) for all ε ∈ (0, (1− κ0)C
−1
∞ ], with CH = (1 + t0)

1
γ B.

While for (1.22), one could take εin = (1− κ0)C
−1
∞ , we choose for the following

εin = min
(
(1− κ0)C

−1
∞ , ε†sat

)
,

where ε†sat is defined in Lemma 20 in Appendix C, is explicit and (as we apply the lemma to

f = f in
) depends only on ϱin an Ein

(it is approximately 0.06 εsat).

We finally show (1.23) for all ε ∈ (0, εin]. We make use of the weighted Lp
Cszisàr-Kullback-

Pinsker inequality recalled in Proposition 19 in Appendix B, with p = 1 and ϖ = ⟨·⟩k for some

k ⩾ 0, giving for any t ⩾ 0, asMf(t)
ε = Mf in

ε ,∥∥∥f(t)−Mf in

ε

∥∥∥2
L1
k

⩽ 2max

(∥∥∥Mf in

ε

∥∥∥
L1
2k

, ∥f(t)∥L1
2k

)
Hε

(
f(t)

∣∣Mf in

ε

)
.

Since ε ⩽ ε†sat, Lemma 20 in Appendix C provides the existence ofCM,1,2k , explicit and depending

only on ϱin and Ein
(in particular, not on ε) such that ∥Mf in

ε ∥L1
2k

⩽ CM,1,2k. Then, letting

CH,1,k =
√
2max (CM,1,2k , C1,2k)CH, (3.12)

we obtain, using the proven (1.22),∥∥∥f(t)−Mf in

ε

∥∥∥
L1
k

⩽ CH,1,k (1 + t)
− 1

2γ . (3.13)

Finally, let p > 1. As

∥ · ∥Lp
k
⩽ ∥ · ∥

1− 1
p

∞ ∥ · ∥
1
p

L1
pk
,

and since, as ε ⩽ ε†sat, Lemma 20 in Appendix C provides the existence of CM,∞, explicit

and depending only on ϱin and Ein
(in particular, not on ε) such that ∥Mf in

ε ∥∞ ⩽ CM,∞, we

deduce (1.23) from (3.13), with

CH,p,k = max (CM,∞, C∞)
1− 1

p CH,1,pk

1
p ,

where we used the fact that ∥f(t) − Mf in

ε ∥∞ ⩽ max
(
∥Mf in

ε ∥∞, ∥f(t)∥∞
)
, which holds as

both f(t) andMf in

ε are nonnegative.

Since every presented constant is explicit and depends only (at most) on γ, b, ϱin, uin, Ein
and

upper-bounds to ∥f in∥L1
3
and ∥f in∥∞, in particular not on ε, the proof of Theorem 4 is complete.
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Appendix A. More physically relevant models

We briefly discuss here the possibility to recover the results established in the core of the text

when dealing with more realistic collision kernels. We begin with briefly recalling some facts

about such physically relevant kernels.

A.1. Quantum collision kernels. While collision kernels B are fully explicit for classical

particles, the situation is much involved for quantum (pseudo)-particles. In this case, (BFD Eq.)

has been derived from the Schrödinger equation in the weak-coupling regime and the derived

kernel B takes the form

B(v, v∗, σ) = |z|
[
ϕ̂

(∣∣∣∣z sin(θ

2

)∣∣∣∣)− ϕ̂

(∣∣∣∣z cos(θ

2

)∣∣∣∣)]2 ,
z = v − v∗, cos θ =

z

|z|
· σ , (A.1)

and where ϕ̂ is the (generalized) Fourier transform of the particle interaction potential ϕ = ϕ(|x|),
x ∈ R3. As in [15], we make the general assumption on B:

Assumptions 2. The collision kernelB(v, v∗, σ) = B(|v−v∗|, σ) = B(|v−v∗|, cos θ) is assumed
to be such that

|z|γ Φ∗(|z|) b∗(cos θ) ⩽ B(|z|, cos θ) = B(v, v∗, σ) ⩽ (1 + |z|)γ b∗(cos θ)

for γ ∈ (0, 1] and some Borel even functions b∗(·), b∗(·) defined on (−1, 1) and a Borel function
Φ∗ : R+ → R+ such that

0 < b∗(cos θ) ⩽ b∗(cos θ), θ ∈ (−π, π);

∫ π

0
b∗(cos θ) sin θdθ < ∞ (A.2)

and
Φ∗(r) > 0 ∀r > 0, inf

r⩾1
Φ∗(r) ⩾ 1, sup

r⩾0
Φ∗(r) < ∞ . (A.3)

Example 9. It has been observed in [15, Appendix A] that, for potential interactions of the type

ϕ(x) = |x|−α, 0 < α < 3

the kernel B defined by (A.1) is such that

B(z, σ) = |z|γb(cos θ), γ = 2α− 5

with

b(cos θ) = Cα

(
(1− cos θ)−β − (1 + cos θ)β

)2
, β =

3− α

2
for some positive constant Cα. One can check that b actually meets the cutoff assumption (1.4b). In
particular, it satisfies Assumption 2 as soon as α ∈

(
5
2 , 3
)
. Notice that such a kernel is of the form of

kernels studied in the core of our work here.

Example 10. Choosing a potential of the form

ϕ(|x|) = 1

2βΓ(β)

∫ ∞

0
Gt(|x|) tβ−1 exp

(
− t

2

)
dt, x ∈ R3, 0 ⩽ β <

1

4
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where Γ(·) is the Gamma function and Gt(|x|) is the heat kernel

Gt(|x|) = (2πt)−
3
2 exp

(
−|x|2

2t

)
, x ∈ R3, t > 0

one can check that B defined by (A.1) is such that

B(z, σ) =
4β|z|

(2 + |z|2)2β
(
(1− a(|z|) cos θ)−β − (1 + a(|z|) cos θ)β

)2
, a(|z|) = |z|2

2 + |z|2
.

It has been then observed in [15] that B satisfies then Assumptions 2 with γ = 1− 4β ∈ (0, 1],

Φ∗(r) =

(
2r2

1 + r2

)2β+2

, b∗(cos θ) = cβ cos
2 θ, b∗(cos θ) = Cβ cos

2 θ sin−4β(θ)

for some positive constants Cβ, cβ > 0.

Example 11. A general subclass of kernels B satisfying Assumptions 2 has been considered in [22]

and corresponds to the choice γ = 1 and

Φ∗(r) = 2
rβ

1 + rβ
, β ⩾ 0,

and
b∗(cos θ) ⩾

1

2
b0 > 0, b∗(cos θ) ⩽ b1 < ∞.

This means in particular that

b0
|v − v∗|β+1

1 + |v − v∗|β
⩽ B(v, v∗, σ) ⩽ b1|v − v∗|.

A.2. Main mathematical changes induced by quantum collision kernels. For simplicity of

presentation, let us assume that the collision kernel is of a type generalising the above example

and assume that there exist b1 ⩾ b0 > 0 and γ, β ∈ (0, 1) with γ + β ∈ (0, 1) such that

b0
|v − v∗|β+γ

1 + |v − v∗|β
⩽ B(v, v∗, σ) ⩽ b1|v − v∗|γ , v, v∗, σ ∈ R3 × R3 × S2. (A.4)

We briefly explain here what should be the main changes/obstacles for the derivation of the results

obtained in the core of the paper for kernels of the type (1.4).

Notice that, for such collision kernels, as pointed out already in [15], the construction and

properties of solutions as described in the above Appendix B are easy to adapt (see the discussion

hereafter).

We can check without too much difficulty that the whole set of results in Section 2 are still

valid under the above assumption (A.4) culminating in the following version of Theorem 3

Theorem 5. Let γ ∈ (0, 1] and β ⩾ 0 and let B be a collision kernel satisfying (A.4) with
b1 ⩾ b0 > 0. For any 0 ⩽ f in ∈ L1

3(R3)∩L∞(R3), there exists an explicitC∞(B) > 0, depending
only on B and f in only through its L1 and L1

2 norms and upper-bounds on its L∞ and L1
3 norms,

such that for any ε ∈ (0, ∥f in∥−1
∞ ], the unique solution f ε to (1.1) associated to ε, the collision kernel

defined by (1.4) and initial datum f in satisfies

sup
t⩾0

∥f ε(t)∥∞ ⩽ C∞(B).
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Indeed, the representation formula for Q+
B allows again to define ΓB as in (2.3) and, as in

Section 2, we can define

Q̃+
B[f ](g, h) := Q+

B(g, h) +
f

∥f∥∞
ΓB(g, h),

and Q̃B[f ](g, h) := Q̃+
B[f ](g, h) − Q−

B(g, h). With this, Proposition 3 and Lemma 4 still hold

with obvious change of notations. Since the results in Section 2 are obtained through estimates

involving somehow the weak form of Q+
B , one checks easily that Proposition 7 (with ∥b∥∞

replaced with b1) can be deduced from Prop. 5. All the results, up to Prop. 14 remain then valid.

The only change to be made lies in the proof of Proposition 15 but the proof of [6, Lemma 4] can

be adapted to deduce the same result. All these results would yield Theorem 5.

Of course, the results recalled in the Introduction regarding the entropy production and entropy

estimates remain valid for this class of collision kernel. The only result which does not seem to

be directly deduced from existing results is the one in Section 3.1. Typically, it would be very

interesting to check whether Proposition 17 (or a variant of it) still holds for collision kernels

satisfying (A.4). Notice that the obstacle has nothing to do here with the quantum nature of

the Boltzmann operator and one should rather check if the classical Boltzmann operator Q+
B is

satisfying the estimates derived in the original proof of [19]. It seems to us that the key point to be

checked is the spreading properties of the collision operatorQ+
B when B(v, v∗, σ) = b0

|v−v∗|β+γ

1+|v−v∗|β ,

namely, can we still prove that there exist η > 0, r > 1 such that

Q+
B(1B(v0,δ0),1B(v0,δ0)) ⩾ η 1B(v0, rδ0)

holds true for any δ0 > 0, v0 ∈ R3
? Here above, B(v, δ) denotes the closed ball of R3

centered at

v ∈ R3
with radius δ > 0. Such a result, obtained usually through the Carleman representation

of the gain part operator, allows to initiate the iterative procedure yielding the derivation of

pointwise bounds. To keep the paper simple enough, we did not elaborate on this point but are

confident that Proposition 17 is still true for general kernels B of the form (A.4). If this were

the case, which is highly expected as, on a finite ball, the kernel B behaves like |v − v∗|γ+β
, for

which we know the result holds, it would be straightforward then to resume the proof derived in

Section 3.2 and obtain an analogue of Theorem 4.

Appendix B. Known results about (BFD Eq.) and the Fermi-Dirac entropy

We collect in this section some knwon facts about (BFD Eq.) obtained in [16, 17] as well as

some recent results regarding the relative Fermi-Dirac entropy obtained by the first author.

B.1. Cauchy problem andmoment estimates. We briefly recall here the notion of solutions we

consider in the present paper, the Cauchy result established in [16] as well as moments estimates.

We adopt the following framework and recall here that we always assume B to be a collision

kernel satisfying (1.4).

Definition 3. Let ε > 0 and 0 ⩽ f in ∈ L1
2(R3) satisfying 1− εf in ⩾ 0. We say that a Lebesgue

measurable function
f ε : [0,∞)× R3 →

[
0, ε−1

)
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such that supt⩾0 ∥f(t)∥L1
2
< ∞ is a weak solution to (BFD Eq.) if there is Λ ∈ R3 with zero

Lebesgue measure such that∫ T

0
dt

∫
R3×S2

B(v, v∗, σ)G
±(t, v, v∗, σ)dv∗dσ < ∞, ∀0 < T < ∞, ∀v ∈ R3 \ Λ

where

G+(t, v, v∗, σ) =
[
f ′f ′

∗(1− εf)(1− εf∗)
]
, G−(t, v, v∗, σ) =

[
ff∗(1− εf ′)(1− εf ′

∗)
]

and

f ε(t, v) = f in(v) +

∫ t

0
Qε

B(f
ε, fε)(τ, v)dτ, t ⩾ 0.

For that class of solutions, existence of solutions have been established in [11, Theorem 1] and

stability, uniqueness of solutions as well as the entropy identity have been established in [16, 17]:

Theorem 6. Given ε > 0 and 0 ⩽ f in ∈ L1
2(R3) satisfying 1 − εf in ⩾ 0, there exists a unique

solution f ε = f ε(t, v) to (1.1) in the sense of Definition 3. Moreover, such a solution satisfies the
entropy identity

Hε(f
ε(t)) = Hε(f

in)−
∫ t

0
Dε (f

ε(τ)) dτ, ∀t ⩾ 0. (B.1)

We also recall that moments are created for solutions to (1.1) associated to a collision kernel

of the form (1.4) where we recall that γ ∈ (0, 1] :

Proposition 18. Given ε > 0 and 0 ⩽ f in ∈ L1
2(R3) satisfying 1− εf in ⩾ 0, let f ε = f ε(t, v) be

the unique conservative solution to (1.1) in the sense of Definition 3. For any s > 2, one has

∥f ε(t)∥L1
s
⩽

[
a1

1− exp (−a2t)

] s−2
γ

, ∀t > 0

where a1 > 0, a2 > 0 are constants depending only on B, ∥f in∥1, ∥f in∥L1
2
and not on ε. Moreover,

given s > 2, there exists CB(f
in) > 0 depending only on B, ∥f in∥1, ∥f in∥L1

2
and ∥f in∥L1

s
but not

on ε such that

sup
t⩾0

∥f ε(t)∥L1
s
⩽ CB(f

in). (B.2)

Remark 12. Such a result is a simple consequence of [16, Theorem 2. (I)] where the creation of
an L1

s bound has been derived. We point out that,if one assumes the initial datum f in ∈ L1
s(R3),

then the uniform-in-time bound provided in (B.2) can be easily deduced from the equation just

preceeding [16, proof of Thorem 2, Equation (3.8)], which has a similar form as (2.35), and easily
provides a short-time bound that satisfies the above mentioned properties.

Remark 13. As explained in the Introduction of [15], the above properties (existence, uniqueness,
moments estimates and entropy dissipation) of solutions to (1.1), obtained for collision kernel of the
form (1.4) are easily extended to more general – and physically relevant – interaction kernels of the
form described in Section A. We refer to [15] as well as [13] for more details about this question.
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B.2. Csiszár-Kullback-Pinsker inequalities. We here state a recent improvement of the usual

Csiszár-Kullback-Pinsker inequality (CKP inequality). We only recall here that the usual, original

CKP inequality asserts that ∥∥∥f −Mf
0

∥∥∥2
1
⩽ 2∥f∥1H0

(
f
∣∣Mf

0

)
for any f ∈ L1

2(R3) where Mf
0 is the Maxwellian state with same mass, momentum and energy

as f .

Such a result has been extended recently by the first author and generalized to Fermi-Dirac

relative entropy yielding the following weighted Lp
-version of the CKP inequality

Proposition 19. For any ε > 0 and 0 ⩽ f ∈ L1
2(R3) \ {0} satisfying (1.10) and such that

1− εf ⩾ 0 and rE > 2
5 , we have

∥f −Mf
ε∥2L1

2
⩽ 8∥Mε∥L1

4
Hε

(
f
∣∣Mε

)
and, for any weight function ϖ : R3 → R+ and any p ∈ [1, 2], it holds∥∥∥ϖ (f −Mf

ε

)∥∥∥2
p
⩽ 2max

(∥∥∥ϖ2Mf
ε

∥∥∥
p

2−p

, ∥ϖ2 f∥ p
2−p

)
Hε

(
f
∣∣Mf

ε

)
,

where Mf
ε is the Fermi-Dirac distribution associated to f .

Remark 14. Recall that, as observed in the Introduction, the assumption rE > 2
5 is equivalent to

ε < εsat where εsat is defined in (1.11) and this implies that f ̸= Fε where Fε is the saturated steady
state defined in (1.9), and the existence ofMf

ε . Of course, in the above result, for p = 2, we adopt the
convention ∥ · ∥ p

2−p
= ∥ · ∥∞.

Appendix C. Explicit and uniform-in-ε bounds for Fermi-Dirac statistics

In this last Appendix section, we provide, in the following Lemma 20, explicit uniform-in-ε

bounds on the L∞
and L1

k, k ⩾ 0, norms of the Fermi-Dirac Statistics.

Lemma 20. Consider a nonnegative f ∈ L1
2(R3), which density, average velocity and temperature

we denote respectively by ϱ, u and E. We let

ε†sat := 2
5
2 · 3

3
2 · 5−

5
2 · π

3
2 ϱ−1E

3
2 .

Then there existCM,∞ > 0 and,CM,1,k > 0, for any k ⩾ 0, which are explicit and depend only on
ϱ, u and E, such that for any ε ∈ (0, ε†sat], we have

∥Mf
ε∥∞ ⩽ CM,∞, (C.1)

and, for any k ⩾ 0,

∥Mf
ε∥L1

k
⩽ CM,1,k. (C.2)

Notice in particular that ε†sat = 2
1
2 · 3

5
2 · 5−4 · π

1
2 εsat ∼ 0.06 εsat.
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Proof. For the sake of simplicity, we prove the lemma with the extra assumption u = 0 and briefly

discuss the case u ̸= 0 at the end of the proof. Let us recall the notation, for any v ∈ R3
,

Mf
ε (v) =

eaε+bε|v|2

1 + εeaε+bε|v|2
,

as well as

rE :=
E

T (ϱ, ε)
, T (ϱ, ε) :=

1

2

(
3εϱ

4π

) 2
3

.

It is proven in [7, Proposition 18] that for any ε ∈ (0, εsat), as soon as

rE ⩾ r†, r† :=

(
4

π

) 1
3
(
5

3

) 5
3

, (C.3)

we have

ε eaε ⩽
2

3

(rE
r†

)− 3
2
.

The above can be reformulated as

eaε ⩽
2

3
r†

3
2 E− 3

2

(
3ϱ

4π

)
,

which, by direct computation, gives in particular

eaε ⩽ ϱE− 3
2 . (C.4)

We notice that, letting

ε†sat := 2
5
2 · 3

3
2 · 5−

5
2 · π

3
2 ϱ−1E

3
2 , (C.5)

the condition (C.3) is equivalent to assuming ε ∈ (0, ε†sat]. In this event, we have proven (C.1)

with CM,∞ = ϱE− 3
2 , since

∥Mf
ε∥∞ ⩽ eaε .

Moving on to the proof of (C.2), and still assuming ε ∈ (0, ε†sat], we have by definition, for any

k ⩾ 0,

∥Mf
ε∥L1

k
=

∫
R3

Mf
ε (v) ⟨v⟩k dv,

so that

∥Mf
ε∥L1

k
⩽ eaε

∫
R3

ebε|v|
2 ⟨v⟩k dv. (C.6)

Passing to spherical coordinates v ∈ R3 \ {0} 7→ (r, σ) ∈ R∗
+ × S2 and then performing the

change of variables r ∈ R∗
+ 7→ x =

√
−bε r ∈ R∗

+ (recall that bε is negative), we get

∥Mf
ε∥L1

k
⩽ eaε |S2|

(
|bε|

3
2 min(1, |bε|)k

)−1
∫
R+

e−x2
x2(1 + x2)

k
2 dx, (C.7)

where we used the fact that 1 +
(

x√
−bε

)2
⩽ min(1, |bε|)−1 (1 + x2). Letting

C0
M,1,k = ϱE− 3

2 4π

∫
R+

e−x2
x2(1 + x2)

k
2 dx,
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which is explicit and has the same properties as CM,∞, Equation (C.7) yields, as we just proved

eaε ⩽ ϱE− 3
2 ,

∥Mf
ε∥L1

k
⩽ C0

M,1,k

(
|bε|

3
2 min(1, |bε|)k

)−1
. (C.8)

Let us now provide an explicit lower bound for |bε|. We follow a similar reasoning to the one

of [7, proof of Proposition 18] It is proven in [16, proof of Proposition 3] that, letting

Is(τ) :=

∫ ∞

0

rs

1 + τ er2
dr, P (τ) := I4(τ) I2(τ)

−5/3, τ ∈ R∗
+,

the function P is increasing from R∗
+ to

(
35/3

5 ,+∞
)
, and we have

( ε

4π

)2/3
P

(
1

εeaε

)
=

3ϱE

ϱ5/3
, bε = −

(
4π

εϱ
I2

(
1

εeaε

)) 2
3

. (C.9)

As by definition of P , I2(τ) =
(
I4(τ)
P (τ)

) 3
5
for any τ ⩾ 0, we deduce that, using both equations

in (C.9),

|bε| =

4π

εϱ

{
I4

(
1

εeaε

) ( ε

4π

)2/3 ϱ5/3

3ϱE

} 3
5


2
3

,

which, raised to the power
5
2 , rewrites

|bε|
5
2 =

(
4π

3 ε ϱE

)
I4

(
1

εeaε

)
. (C.10)

As it holds for any r ⩾ 0 and τ ⩾ 0 that

1

1 + τ er2
⩾

e−r2

1 + τ
,

we have for any τ ⩾ 0 that

I4(τ) ⩾
1

1 + τ

∫ ∞

0
r4 e−r2 dr =

1

1 + τ
· 3

8
√
π
,

where the constant on the right-hand-side was computed from
1
2Γ
(
5
2

)
, with Γ standing (here

only) for the Gamma function. It thus comes that

I4

(
1

εeaε

)
⩾

3

8
√
π

εeaε

1 + εeaε
.

Since ε ⩽ ε†sat, we can again make use of the result of [7, Proposition 18] (as, with their notation,

γ/γ† ⩾ 1) to obtain that

εeaε ⩽
2

3
,

implying 1 + εeaε ⩽ 2
3 ⩽ 5

3 , so that, also recalling (C.10), we have

|bε|
5
2 ⩾

(
4π

3 ϱE

)
9

8 · 5
√
π

eaε . (C.11)
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The last part of the proof consists in proving a lower bound for eaε . We use a similar reasoning as

previously. As it holds for any r ⩾ 0 and τ ⩾ 0 that

e−r2

τ
⩾

1

1 + τ er2
⩾

e−r2

1 + τ
,

we deduce that, for any τ ⩾ 0,

P (τ) ⩾
τ

5
3

1 + τ
· 3 · 2

1
3

π
1
3

,

where the constant on the right-hand-side comes from
1
2Γ
(
5
2

) (
1
2Γ
(
3
2

))− 5
3
. Setting τ = (εeaε)−1

in the previous inequality, and using (C.9), we obtain

3ϱE

ϱ5/3

(
4π

ε

)2/3

⩾
(εeaε)−

2
3

1 + εeaε
· 3 · 2

1
3

π
1
3

.

Again, since 1 + εeaε ⩽ 5
3 , we thus have obtained, for any ε ∈ (0, ε†sat],

eaε ⩾

(
3

10π

) 3
2

ϱE− 3
2 .

Defining finally

CM,1,k = C0
M,1,k

(
b

3
2 min(1, b)k

)−1
, b =

3

10π
2
5

E−1 ,

this concludes the proof of (C.2). □
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