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Abstract: This paper is concerned with the modeling and control of a curling Hydraulically
Amplified Self-healing Electrostatic (HASEL) actuator using the port-Hamiltonian (PH) ap-
proach. For that purpose, we use a modular approach and consider the HASEL actuator as an
interconnection of elementary subsystems. Each subsystem is modeled by an electrical compo-
nent consisting of a capacitor in parallel with an inductor connected through the conservation
of volume of the moving liquid to a mechanical structure based on inertia, linear, and torsional
springs. The parameters are then identified, and the model is validated on the experimental
setup. Position control is achieved by using Interconnection and Damping Assignment-Passivity
Based Control (IDA-PBC) with integral action (IA) for disturbance rejection. Simulation results
show the efficiency of the proposed controller.

Keywords: Soft actuator, HASEL actuator, Port-Hamiltonian systems, IDA-PBC design.

1. INTRODUCTION

In recent years, one of the most interesting technologies
that have been developed for soft robotic applications
is the Hydraulically Amplified Self-healing Electrostatic
(HASEL) actuator (Acome et al., 2018).

HASEL actuators blend the advantages of Dielectric Elas-
tomer Actuators (DEAs) and fluid-driven soft actuators,
combining the convenience of electrical control, excellent
electromechanical performances, extensive design flexibil-
ity, and various actuation modes (Rothemund et al., 2021).
There are different types of HASEL actuators, such as
peano, planar, elastomeric donut, quadrant donut, high-
strain peano, and curling actuators. Some interesting
applications of HASEL actuators can be found in the
literature: a soft gripper for aerial object manipulation
(Kim and Cha, 2021), an actuator powering a robotic
arm (Acome et al., 2018), an electro-hydraulic rolling soft
wheel (Ly et al., 2022), a peano actuator for enhanced
strain, load, and rotary motion (Tian et al., 2022) and soft-
actuated joints based on the hydraulic mechanism used in
spider legs (Kellaris et al., 2021).

In this paper, we consider, as a benchmark the design,
modeling, and control of a simple curling HASEL actuator
that can be used as a basic element in more complex
robotic structures such as robotic hands or soft grip-
pers. The considered curling HASEL actuator is based
on a strain limiting layer that is added to the traditional
HASEL mechanism (Acome et al., 2018) to change its mo-
tion from linear to angular deformation (Rothemund et al.,
2021). It is important to derive a reliable model represent-
ing the system’s dynamics to control the actuator. Many
⋆ This work is supported by the EIPHI Graduate School (contract
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papers dealing with the modeling of HASEL actuators
have been recently proposed in the literature. In (Volchko
et al., 2022), Dynamic Mode Decomposition with Control
(DMDc) is applied to derive a linear model, approximating
the system’s dynamics. In (Hainsworth et al., 2022), a non-
linear reduced-order mass-spring-damper (MSD) model
for a linear HASEL actuator is proposed. However, these
works do not take into account the non-linear behavior
(such as the drift effect) or electrical dynamics of HASEL
actuators in the model, which can make the control design
more challenging and difficult to implement in a real-world
application.

Port-Hamiltonian (PH) formulations are particularly well
adapted to represent multi-physical systems. The PH ap-
proach is then an excellent candidate to represent the
considered dynamics of the HASEL actuator. Intercon-
nection and Damping Assignment-Passivity Based Control
(IDA-PBC) serves as a highly effective tool for generating
asymptotically stabilizing controllers for Port-Controlled
Hamiltonian (PCH) models. (Ortega et al., 2002). Pre-
vious works used PHS to model soft robots with energy
shaping and IDA-PBC controllers, showing good results.
In (Franco et al., 2021b) and (Franco et al., 2021a), energy
shaping controllers are used to control the position of
a soft continuum manipulator with a large number of
degrees of freedom (DOF). In (Ayala et al., 2022), the
IDA-PBC method has been successfully used to control
a nonlinear Cosserat rod model using an early lumping
approach. More recently, in (Yeh et al., 2022), a PH for-
mulation of a one DOF of HASEL planar actuator with
position control using an IDA-PBC with Integral Action
(IA) has been proposed. Compare to (Yeh et al., 2022) we
consider here an actuator with bending motion instead of
linear deformation. This introduces nonlinearities in the



interconnection matrix. Furthermore, we aim to capture
the end position drift effect. The main contributions of
this paper are:

• We modeled a curling HASEL actuator using the
port-Hamiltonian approach to capture the actuator’s
electrical and mechanical dynamics.

• We identified the model compared with experimental
data and validated it with different input voltages.

• We designed an IDA-PBC controller with integral
action to control the end point position of the curling
HASEL actuator and reject the input disturbances.

This paper is organized as follows: Section 2 presents the
experimental setup of the curling HASEL actuator and
its modeling under the PH framework. The parameter
identification is detailed in Section 3. In Section 4, the
controller design is presented. Section 5 presents the sim-
ulation results, and the conclusions are given in Section
6.

2. CURLING HASEL ACTUATOR AND ITS PH
MODELING

In this section, we first introduce the experimental curling
HASEL actuator that is used as a benchmark. We de-
scribe the setup and its working principle with reasonable
hypotheses that will be used for modeling purposes. We
then derive the PH model for this actuator.

2.1 Experimental setup

The experimental setup is shown in Fig. 1. To measure the
position, we use a profile laser sensor, Keyence LJ-V7080.
We use the high voltage amplifier Trek model 610E. The
HASEL actuator used in this work comes from Artimus
Robotics. We use a dSPACE card CLP1104 to receive
and send signals from/to the laser position sensor and
high voltage amplifier. The pictures of Fig. 1 (right) show

Fig. 1. Experimental setup laser sensor and curling
HASEL.

the deformation of the actuator without (upper figure)
and with an applied voltage (lower figure). Applying high
voltage, the actuator can achieve a horizontal displacement
of approximately 3 cm.

2.2 Curling HASEL actuator description and hypothesis

The curling HASEL actuator consists of a polymer shell
filled with dielectric liquid and half covered by a pair of
electrodes attached to a strain-limiting layer to get the
bending motion. When an electric field is applied to the
electrodes, it creates Maxwell stress acting on the shell
that pushes the dielectric liquid inside the shell. This
hydraulic pressure changes the shape of the shell and,
from the strain-limiting layer, induces the bending of the
actuator (Rothemund et al., 2021).

We consider that the actuator depth is uniform, so we
proceed to a two-dimensional analysis. We model the
actuator using interconnected subsystems. We separate
each subsystem model into a chamber and a shell (cf Fig.
2).

Fig. 2. Basic subsystem. Left: electrodes are totally un-
zipped. Right: Electrodes are partially zipped when
voltage is applied. The shell is deformed.

The chamber is the area between the electrodes whilst
the shell receives the dielectric liquid when the electrodes
are zipped. The total volume (the shell’s volume plus
the chamber’s volume) is considered constant, and the
dielectric liquid is incompressible. The bending of the
bottom film is modeled as a torsional spring. The top
film of the shell is considered to be elongable and contains
mechanical energy. The elongation is modeled as a linear
spring. The shell will take on a specific shape based on the
volume transferred from the chamber to the shell, resulting
from the zipping of the electrodes, which takes place
when high voltage is applied. The electrodes are modeled
as a variable capacitor. The model considers a variable
length of the zipped electrodes. The distance between the
unzipped electrodes part is considered constant, see Fig.
2.

2.3 Geometric relations

In this part, we present the relations existing between
the angle θ and the length of the zipped electrodes le.
Then, we derive the actuator position h(θ) from θ , i.e.,
the displacement of the end position of the actuator.

It is crucial to obtain a relation between θ and le because
the electrode’s capacitance depends on le. Therefore, it
allows us to relate the electrical charge, that depends
on the capacitance, with the derivative of the electrical



energy respecting the angle θ, joining the electrical and
the mechanical part.

We represent the chamber as a rectangular area and the
shell is modeled as two symmetric triangles. Fig. 2 shows
the model variables of a basic subsystem.

The area inside the shell is equal to:

As =
1

4
lpLvsin(δ1) (1)

with

δ1 =
π + θ

2
− sin−1

(
Lv

lp
sin

(
π − θ

2

))
. (2)

The total area is:

AT = As +Xh(Le − le), (3)

where Lv and lp are the lengths of the bottom and the top
film. Xh is the height of the chamber and Le is the length
of the chamber.

The zipped electrodes length is then:

le = Le −
1

Xh

(
AT − Lvlp

4
sin(δ1)

)
. (4)

2.4 Curling HASEL port-Hamiltonian model

This section presents the port-Hamiltonian model for the
curling HASEL actuator. PH formulations consist in using
the energy variables as state variables and in writing the
dynamics of the system on the form (van der Schaft, 2000):

ẋ = [J(x)−R(x)]
∂H

∂x
(x) + g(x)u;

y = gT (x)
∂H

∂x
(x),

(5)

where J(x) = −JT (x) is the interconnection matrix,
R(x) = RT (x) ≥ 0 is the dissipation matrix and H is
the total energy of the system (Hamiltonian).

By combining basic subsystems, we can represent the
overall dynamic behavior of the HASEL actuator. In what
follows we consider four subsystems (cf Fig. 3) but the
model can be extended to n ∈ N subsystems. We consider
that the subsystems share the same input voltage. The
total energy of the system is given by:

H(θ, lp, p, ϕ,Q) = Hθ(θ) +Hlp(lp) +Hg(θ)+
Hp(p) +Hϕ(ϕ,Q)+HQ(Q,ϕ, θ, lp),

(6)

where

Hθ =
1

2

n∑
i=1

Kbiθ
2
i =

1

2
θTKbθ (7)

is the potential energy where Kb = diag[Kb1 Kb2 . . . Kbn ]
is the stiffness matrix and θ = [θ1 θ2 . . . θn] represents
the angular vector of each subsystem, the second term is
the potential energy related to the linear springs:

Hlp =
1

4

n∑
i=1

Ki(lpi − Lpi)
2 =

1

4
(lp − Lp)

TK(lp − Lp), (8)
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Fig. 3. Four interconnected subsystems. The same voltage
is applied to the entire system.

where K = diag[K1 K2 . . . Kn] and lTp = [lp1
lp2

. . . lpn
],

the third term is the total potential energy related to
gravity:

Hg =

n∑
i=1

Hgi , (9)

and the fourth term the kinetic energy:

Hp =
1

2
pTM−1p, (10)

where M is the matrix of inertia and p is the vector of
angular momentum pT = [p1 p2 . . . pn].

The electrical energy has two components: the energy
related to the magnetic flux that allows us to represent
the drift effect and the energy related to the charge. The
inductor discharges the capacitor over time.

Hϕ =
1

2

n∑
i=1

ϕ2
i

Li
=

1

2
ϕTL−1ϕ (11)

The energy stored in the capacitor is:

HQ =
1

2

n∑
i=1

Q2
i

Csi

=
1

2
QTC−1Q, (12)

where ϕT = [ϕ1 ϕ2 . . . ϕn] is the magnetic flux, L
is the inductance of the equivalent electric circuit L =
diag[L1 L2 . . . Ln]. C = diag[Cs1 Cs2 . . . Csn ] is the
capacitance of the equivalent electric circuit and Q =
[Q1 Q2 . . . Qn]

T is the charge. The capacitance of a

subsystem is Csi = C1i + C2i where C1i =
ϵ0ϵrwlei

2t is

the capacitance of the zipped part and C2i =
ϵ0ϵrw(Le−lei )

2t+Xh

the capacitance of the unzipped part.

The input gain is gaT = [ga1 ga2 ... gan]. To capture
the system’s nonlinearities, the input gain is a nonlinear
function that depends on the angular position gai =
γ1 cos (γ2θi).

The conductance of the equivalent electric circuit is R̄ =
diag[ 1

R1

1
R2

... 1
Rn

]. The damping coefficient of the system

is b = diag[b1 b2 ... bn]. The resistance associated to
the inductance is rL = diag[rL1 rL2 ... rLn ]. We define



the term d = diag
(

2As

lp

)
. The proposed port-Hamiltonian

model of the curling HASEL actuator is then:
θ̇
˙lp
ṗ

ϕ̇

Q̇


︸ ︷︷ ︸

ẋ

=


0 0 I 0 0
0 0 d 0 0
−I −d −b 0 0
0 0 0 −rL I
0 0 0 −I −R̄


︸ ︷︷ ︸

J−R


∇θH
∇lpH

∇pH
∇ϕH
∇QH


︸ ︷︷ ︸

∇xH

+


0
0
0
0

R̄ga(θ)


︸ ︷︷ ︸

g

Uin; (13)

y =(R̄ga(θ))TC−1Q︸ ︷︷ ︸
gT∇xH

.

The output y = ie is the current that is power-conjugated
to the input voltage. The energy balance equation can be
written as:

∂H

∂t
= −∂HT

∂x
R
∂H

∂x
+ yTu;

∂H

∂t
≤ yTu = ieUin.

(14)

The displacement for n interconnected subsystems is com-
puted as

h(θ) = (Lv + Le)

 n∑
i=1

sin(

i∑
j=1

θj)

 (15)

3. MODEL IDENTIFICATION AND VALIDATION

We identify the key parameters of the system using the
experimental data obtained from the experimental setup
of Fig. 2.1. The Levenberg–Marquardt algorithm is used to
find the parameters Kb, b, L, γ1 and γ2. The identification
results are shown in Fig. 4 with a fitting of 90.7%. Two
datasets are used to validate the obtained parameters, one
with negative inputs and another with positive inputs, as
shown in Fig. 5.

0 5 10 15

Time (seconds)

0

1

2

3

4

h
 [

cm
]

2 3 4
2

2.5

3

(a)

0 5 10 15

Time (seconds)

-6

-4

-2

0

V
o

lt
ag

e 
[K

V
]

(b)

Fig. 4. (4a) Model identification, fitness: 90.7%. (4b) Input
signal.

The fitting between the model and the experimental data
is computed using the normalized root mean squared error
(NRMSE):

fit(i) =
∥ xref (:)− xdata(:) ∥
∥ xref (:)− (xref (:)) ∥

(16)

where ∥ . ∥ is the 2-norm of a vector.

One can see the identified model can cope with the
main dynamics of the considered Curling HASEL actuator
with a fitting comprised between 85% and 89.33%. The
identified parameters are listed in Table 1.
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Fig. 5. (5a) Model validation, negative input fitness:
85.46% (5b) Input signal. 5c) Model validation, pos-
itive input fitness: 89.33% (5d) Positive input signal.
We can observe the model’s behavior in response to a
variation of 10% around the nominal values.

Symbol Value Units Definition

Lp 0.015 m Length of top film
Lv 0.015 m Length of bottom film
Le 0.015 m Length of electrodes
Xh 0.002 m Chamber high
m 0.047 kg Mass
ϵr 2.2 F/m Relative permittivity
ϵ0 8.854x10−12 F/m Vacuum permittivity
w 0.05 m Actuator width
t 18x10−6 m Film thickness
Ri 10 Ω Resistance
rL 20 Ω Resistance
L 150 F Inductance
K 400 N/m Spring constant
Kb 0.202 Nm/rad Torsional spring constant
b 0.0199 kgs Damping
γ1 104.33 - Gain parameter
γ2 7.67 - Gain parameter

Table 1. Model parameters.

4. POSITION CONTROL DESIGN

In this work, we aim to control the endpoint position of the
curling HASEL actuator (denoted by h). To this end, we
propose an IDA-PBC design method. This method aims
to find a state feedback control law β(x) to map the open-
loop system to a desired closed-loop system of the form:

ẋ = (Jd −Rd)∇xHd (17)

with the desired interconnection and damping matrices Jd,
Rd and the desired energy function Hd in the closed-loop
system. The control scheme is shown in Fig. 6.

The desired equilibrium points x∗ = [θ∗, l∗p, 0, ϕ
∗, Q∗]T

which can be computed from the desired endpoint position
h∗ (solving (15)) and the state variables x = [θ, lp, p, ϕ,Q]T

are the controller (β(x)) inputs. We define as desired
interconnection and dissipation matrices:



IDA-PBC
Controller

β(x) x
h(θ)

hx∗
x∗ (h∗)

h∗
(J−R)∇xH+β(x)

θ

Curling HASEL

Fig. 6. Closed-loop scheme with the controller β(x) inputs
are the state variables x and the desired values x∗.
The system input is the necessary voltage computed
by the controller. h(x) (15) is the function that allows
us to find the final position as a function of each link
angle.

Jd −Rd =


0 0 J13 0 α1

0 0 J23 0 α2

−J13 −J23 −r33 J43 α3

0 0 −J43 0 α4

−α1 −α2 −α3 −α4 −r55

 , (18)

where J13, J23, J43, α1, α2, α3 and α4 are the control de-
sign parameters to be determined. The desired closed loop
energy function is defined from the desired equilibrium
position of the actuator as:

Hd = (θ − θ∗)T K̃b(θ − θ∗) + (lp − l∗p)
T K̃(lp − l∗p)

+pTM−1p+ (ϕ− ϕ∗)T K̃ϕ(ϕ− ϕ∗)

+(Q−Q∗)T K̃Q(Q−Q∗)

(19)

The derivative of Hd with respect to x is given by:

∇xHd =


K̃b(θ − θ∗)

K̃(lp − l∗p)
M−1p

K̃ϕ(ϕ− ϕ∗)

K̃Q(Q−Q∗)

 . (20)

To get the state feedback matching the closed-loop system
with a desired PH system ẋ = (Jd − Rd)∇xHd defined
above we need to solve the following matching equation:

g⊥[J −R]∇xH = g⊥[Jd −Rd]∇xHd, (21)

with g⊥ is a full rank annihilator of the input matrix g.
We choose the annihilator as follows:

g⊥ =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 . (22)

We find J13, J23, J43 as a function of α1, α2, α3 and α4.

J13 =diag((diag(M−1p))−1(M−1p− α1K̃Q(Q−Q∗))); (23)

J23 =diag((diag(M−1p))−1(dM−1p− α2K̃Q(Q−Q∗))); (24)

r33 =diag((diag(M−1p))−1(∇θH + d∇lpH + bM−1p (25)

+ α3K̃Q(Q−Q∗)− J13K̃b(θ − θ∗)− J23K̃(lp − l∗p)

+ J43K̃ϕ(ϕ− ϕ∗))).

J43 =diag((diag(M−1p))−1(rLL
−1ϕ− C−1Q+ α4K̃Q(Q−Q∗));

(26)

We obtain the control law considering the next design
parameters α1 = I, α2 = 0, α3 = I and α4 = 0.

β(x) = (R̄gaT R̄ga)−1R̄gaT (−K̃b(θ − θ∗)−M−1p

−r55K̃Q(Q−Q∗) + L−1ϕ+ (R̄C−1Q)),
(27)

Given fixed values for l∗p and θ∗ from the desired endpoint
position h∗, we can determine Q∗ from the model at steady
state.

4.1 Disturbance rejection using Integral Action

In this subsection, we propose to improve the robustness of
the controller (27) to two types of disturbances acting on
the actuator using a structure-preserving integral action.
The first one is the unknown mass load, which can be
regarded as the unactuated external force disturbance
(du). The other one is the disturbance on the actuated
input (da) i.e. the input voltage. Thus, the disturbed
closed-loop system with the previous proposed IDA-PBC
control law (27) can be written as:

Q̇

θ̇

l̇p
ṗ

ϕ̇

 = [Jd −Rd]


∇QHd

∇θHd

∇lpHd

∇pHd

∇ϕHd

+


da
0
0
du
0

 , (28)

where the desired interconnection and the damping matrix
are defined as:

Jd(x) :=

[
Jaa(x) Jau(x)

−J
T
au(x) Juu(x)

]
=


0 −α1 −α2 −α3 −α4

α1 0 0 −J13 0

α2 0 0 −J23 0

α3 J13 J23 0 −J43

α4 J13 0 J43 0

 ; (29)

Rd(x) :=

[
Raa(x) Rau(x)

R
T
au(x) Ruu(x)

]
=


r55 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 r33 0

0 0 0 0 0

 . (30)

Using the method described in (Ferguson et al., 2017) we
choose the new closed-loop Hamiltonian as:

Hcl = Hd +
Kint

2
(Q− xc)

2
(31)

and the new closed loop system can be derived as:

ẋa

ẋu

ẋc

 = (Jcl −Rcl)

∇xa
Hcl

∇xu
Hcl

∇xc
Hcl

+


da
0
0
du
0
0

 . (32)

The structure-preserving Integral Action (IA) controller is
then given by:

ẋc = −Rc2(x)∇xa
H + (Jau +Rau)∇xu

H,
uint = [−Jaa +Raa + Jc1(x)−Rc1(x)−

Rc2(x)]∇xa
H + [Jc1(x)−

Rc1(x)]Kint(xa − xc) + 2Rau∇xu
H;

(33)

where uint is the output of the IA controller. xc is the
IA controller state. The actuated state is the charge Qm

whilst the unactuated states are the angle θ, the length lp,
the angular momentum p, and the magnetic flux ϕ.

From Jau = −[α1 0 α3 0], Jc1 = Rc2 = Rau = 0 and Rc1=
r55 we obtain the control law:

uint = −r55Kint(Q− xc);

ẋc = −(α1K̃b(θ − θ∗) + α3M
−1p).

(34)

where the design parameter Kint is chosen as a vector of
dimensions 1 × n. The dimension of the controller β(x)
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Fig. 7. Closed-loop scheme with IA.

is 1×1. The control scheme is shown in Fig. 7 and the
interconnection and damping matrix are given by:

Jcl :=

 0 Jau 0
−JT

au Juu 0
0 0 0

 ; Rcl :=

[
r55 0 r55
0 r33 0
r55 0 r55

]
. (35)

5. NUMERICAL SIMULATION

In this section, we validate the proposed control meth-
ods with numerical simulations. The parameters of the
actuator are given in Table. 1. We implement the IDA-
PBC controller (27) with the Integral action controller
(34) to achieve the desired endpoint position of the curling
actuator. To show the different closed loop dynamics per-
formances, we vary the tuning parameter K̃b while keeping
the rest of the tuning parameters constant. The controller
parameters values are r55 = diag([0.1 0.1 0.1 0.1]) and
Kint = [0.5 11 1.2 0.5]. One can observe the endpoint
regulation to the desired position in Fig. 8 using the IDA-
PBC method and the rejection of external disturbances in
Fig. 9 with the IDA-PBC+IA method.

Fig. 8 represents the actuator displacement when K̃b is
tuned, while the parameter K̃Q is fixed to a constant value.
The desired endpoint position is h∗(θ) = 2 cm. From
simulation results shown in Fig. 8, the response time of
the closed-loop system decreases when K̃b increases, since
K̃b can be seen as the actuator’s stiffness in the closed-loop
system.
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Fig. 8. Position control keeping constant the parameters
K̃Q = 1000, the set-point equal to 2cm and varying
the tuning parameter related with the desired angle
K̃b.

Fig. 9 shows the actuator displacement to different desired
set points. The external unactuated disturbance du =
−0.04Nm is added at 3s during 2s , and the actuated
disturbance da = −30V is added at 7s during 2s (0.3%
of full scale according to the amplifier specifications). The
proposed controller with IA can reject the disturbances,
while the controller without IA can not reject these dis-
turbances. From the simulation results shown in Fig. 9(b),
it is seen that the applied controlled voltage on the closed
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Fig. 9. (9a) Position control K̃Q = 1000, K̃b = 10 and
Kint = [0.5 11 1.2 0.5]. The simulation presents
disturbances du and da at 3s and 7s respectively. (9b)
IDA-PBC and IDA-PBC+IA control signals.

loop actuator always remains below 10kV, which aligns
with the physical consistency of the experimental setup.

6. CONCLUSION

In this paper we use the port-Hamiltonian framework
to model and control a curling HASEL actuator. The
actuator’s dynamics is divided into two components. The
mechanical part of the actuator is characterized by linear
and torsional springs, while the deformable capacitor and
the inductor represent the electrical part of the system, the
coupling being done through the conservation of volume
of the overall system. This model can cope with the main
dynamic behavior of the actuator with nonlinearities such
as the drift effect. An IDA-PBC controller with the integral
action is proposed to control the position of the actuator. It
is shown that the actuator endpoint position follows the set
point and that we can adjust the dynamic performances
by varying the tuning parameters of the controller. The
use of integral action has improved the robustness of the
closed-loop system against external disturbances.

The perspectives of this work are to implement and
validate the proposed IDA-PBC controller with IA in
the experimental setup. Furthermore, we intend to model
and control more complex structures and soft robots
based on HASEL actuators (e.g., scorpion, fish, human
hands-inspired designs) with the interconnection of basic
subsystems.
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