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In this paper, we study the global controllability and stabilization problems of the harmonic map heat flow from a circle to a sphere. Combining ideas from control theory, heat flow, differential geometry, and asymptotic analysis, we obtain several important properties, such as small-time local controllability, local quantitative rapid stabilization, obstruction to semi-global asymptotic stabilization, and global controllability to geodesics. Surprisingly, due to the geometric feature of the equation we also discover the small-time global controllability between harmonic maps within the same homotopy class for general compact Riemannian manifold targets, which is to be compared with the analogous but longstanding problem for the nonlinear heat equations.
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This geometric equation finds extensive applications across a wide spectrum of disciplines, including physics, fluid dynamics, materials sciences, and even computer vision. For example, it appears in the study of solutions to the Einstein field equations, and it plays a significant role in the understanding of soap films, elasticity, and various other phenomena that connect to minimal surfaces. Concerning fluid dynamics especially to the liquid crystals, this equation is in principle investigated in the following special cases, such as the harmonic mappings from a threedimensional domain to a sphere [START_REF] Leslie | Theory of flow phenomena in liquid crystals[END_REF], the Oseen-Frank equation [START_REF] Epifanio | Variational theories for liquid crystals[END_REF], and the Ericksen model [START_REF] Cavaterra | Optimal boundary control of a simplified Ericksen-Leslie system for nematic liquid crystal flows in 2D[END_REF][START_REF] Lin | Global existence of weak solutions of the nematic liquid crystal flow in dimension three[END_REF]. Harmonic maps and their related flows have also been applied to image analysis, especially in tasks like image denoising, segmentation, and shape matching.

The control of the harmonic maps equation naturally finds applications to the preceding illustrated topics. In a physical example involving liquid crystals, the concept of harmonic maps comes into play through the modeling of the director field. The director field represents the preferred molecular orientation in a given region of a liquid crystal. Understanding how this field evolves and interacts with external influences (such as electric or magnetic fields) is critical to the design and optimization of liquid crystal-based devices, and these fields interact with the director field in a PDEs control background that can quantitatively or qualitatively describe the deformation and response. Nevertheless, the rigorous mathematical investigation of the controllability of this geometric equation remains quite limited [START_REF] Cavaterra | Optimal boundary control of a simplified Ericksen-Leslie system for nematic liquid crystal flows in 2D[END_REF][START_REF] Liu | Control of harmonic map heat flow with an external field[END_REF]. For example, in [Liu20, Theorem 1] Liu has studied the global controllability of the harmonic map heat flow from Ω ⊂ R 3 to S 2 , but his control is not localized due to the use of a strong external magnetic field. We also refer to the recent study by the authors on the control of wave map equations [START_REF] Coron | Global controllability of a geometric wave equation[END_REF][START_REF] Krieger | Semi-global controllability of a geometric wave equation[END_REF]. This is, of course, related to the well-understood topic of control of the heat equations, see for instance the one-dimensional results [CN17, GHXZ22, FR71, GL95, HKT20, Jon77, Lit78, MRR14, MRR16] and the multi-dimensional results [START_REF] Duyckaerts | On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials[END_REF][START_REF] Ervedoza | Sharp observability estimates for heat equations[END_REF][START_REF] Fernández | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF][START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. But to our limited knowledge, there is no result in the literature on the study of the global controllability 1 of harmonic map heat flow with localized controls. As the first paper on the study of global control of harmonic map heat flow with localized control, we restrict ourselves to the simplest case: the initial domain is the periodic domain T 1 := R/2πZ while the target manifold is the Euclidean sphere S k := {u ∈ R k+1 : |u| = 1} with k ∈ N \ {0}. Then the harmonic map heat flow takes the form

∂ t u -∆u = |∂ x u| 2 u.
In this paper, we are interested in the control related properties of the controlled harmonic map heat flow equation. For any given force term f : R + × T 1 → R k+1 the controlled harmonic map heat flow is written as

(1) ∂ t u -∆u = |∂ x u| 2 u + 1 ω f u ⊥ ,
1 Using the standard terminology of control theory of PDEs, by global we mean that the scale of states can be as large as we want. This differs from the widely used definition of "global" in the well-posedness problem for long-time behavior.

Figure 1. The controlled harmonic map heat flow from T 1 to a torus of genus 2. The blue curve is the solution at a given time t, and the red part is the place where we are allowed to add extra control force.

where the notation f u ⊥ represents the projection of f onto the tangent space T u S k ⊂ R k+1 and 1 ω is the characteristic function of ω:

1 ω (x) = 1 if x ∈ ω and 1 ω (x) = 0 if x ∈ T 1 \ ω.
One easily verifies that the solutions (if they exist) remain on the sphere S k if the initial datum takes its values in S k . As usual, in this paper, we consider localized control problems, which means that the force term f can only act on some given open, nonempty, subdomain ω ⊂ T 1 (which can be very small). Physically, this means that our extra force only acts on a localized part of T 1 . By choosing well the force term f we are able to change the deformation of the solution, and one may wonder if, starting from a given initial state, one can then reach a given state. This is called the global controllability problem. If the force term f is chosen in the form of a feedback law that depends on the current state, for example f (t, x) := u x (t, x), we call the system a closed-loop system. If, in addition, the stability of this new system becomes stronger than the original one, we call this process of selecting f and enhancing the stability of the system stabilization. This paper is devoted to the study of global controllability and stabilization of the controlled harmonic map heat flow equation. Throughout this paper we define and consider the energy

(2) E(v(t, •)) := T 1 |∂ x v(t, x)| 2 dx.
When there is no risk of confusion, we simply denote the preceding energy by E(v(t)) or E(t).

We also define the following energy level set.

DEFINITION 1.1 (Energy level set). Let e > 0. Let us denote by H(e) the set of states

H(e) := {v : T 1 → R k+1 : v(x) ∈ S k ∀x ∈ T 1 , E(v(x)) ≤ e}.
1.1. The main results.

1.1.1. Stability of the harmonic map heat flow. We start with the free harmonic map heat flow, namely no extra force is applied to the system:

(3) ∂ t u -∆u = |∂ x u| 2 u, u(0, •) = u 0 (•).

One of the central problems in the study of the harmonic map heat flow is the so-called homotopy problem. Recall the following concepts about approximate harmonic maps.

Figure 2. Deformation of the curve in the same homotopy class. In this picture, the solution remains in the torus of genus 2. We observe that the state u 1 can be continuously deformed to the state u 2 , but it cannot reach the state v. The homotopy problem states that every state is homotopic to a harmonic map. See Proposition 1.3 and the paper [START_REF] Ottarsson | Closed geodesics on Riemannian manifolds via the heat flow[END_REF] for details.

DEFINITION 1.2. Let 0 < ε < 1. We call "ε-approximate harmonic maps" the class of states u : T 1 → S k that belong to the set (4)

Q ε := Φ: a harmonic map u : T 1 → S k : ∥u -Φ∥ H 1 ≤ ε .
The crucial homotopy problem asks about whether a given map ϕ 0 : M → N between two Riemannian manifolds can be deformed into a harmonic map φ : M → N . One of the important methods to this classical problem is the harmonic map heat flow method: for any given initial state ϕ 0 , one investigates the flow of the state and proves that the flow converges to a harmonic map.

For instance, in our framework one easily observes that when the initial energy is smaller than 1/2π the heat flow converges to a constant state. Indeed, by performing the naive energy estimates for the free harmonic map heat flow one observes that (5) 1 2

d dt T 1 |u x | 2 (t, x)dx = - T 1 |u t | 2 (t, x)dx = T 1 (-|u xx | 2 + |u x | 4 )(t, x)dx.
The first part of the preceding equality also implies the global energy dissipation: E(u(t)) decreases with respect to time. This equation, to be combined with a Sobolev interpolation inequality,

-∥u xx ∥ 2 L 2 + ∥u x ∥ 4 L 4 ≤ -∥u xx ∥ 2 L 2 + ∥u x ∥ 2 L 2 ∥u x ∥ 2 L ∞ ≤ ∥u x ∥ 2 L ∞ - 1 π + ∥u x ∥ 2 L 2 ≤ - 1 2π ∥u x ∥ 2 L ∞ provided that ∥u x ∥ 2 L 2 ≤ 1 2π , implies local exponential energy decay (6) d dt E(u(t)) ≤ - 1 2π 2 E(u(t)
) ∀t > 0, provided that E(u(0)) ≤ 1/2π. One may ask if such a direct approach leads to global asymptotic dissipation of the energy. However, the above simple analysis is based on a Sobolev interpolation inequality and the Poincaré inequality, it is not clear that there is uniform exponential stability for initial states belonging to H(2π -ε) for any ε > 0. Besides, since harmonic maps are stationary states of the system, for an initial state with energy larger than 2π it is possible The picture on the left shows that the solution converges to a harmonic map having 2π-energy. This picture is also related to Step 1 of Section 1.2. The picture on the right shows that the solution converges to a constant state. This picture is also related to Step 4 of Section 1.2. that the evolution of the system converges to some non-constant harmonic maps. The global asymptotic behavior of the system becomes more delicate.

Many important works are devoted to the asymptotic convergence to harmonic maps of the harmonic map heat flow resulting in fruitful results. In [START_REF] James Eells | Harmonic mappings of Riemannian manifolds[END_REF] Eells and Sampson proved this convergence when the Riemannian sectorial curvature of N is nonpositive and both M and N are compact manifolds without boundary. Then in [START_REF] Hamilton | Harmonic maps of manifolds with boundary[END_REF] Hamilton further showed the same result when M and N are compact manifolds with boundary. For the case where M is simply T 1 and N is an arbitrary Riemannian manifold, Ottarsson proved the convergence result in [START_REF] Ottarsson | Closed geodesics on Riemannian manifolds via the heat flow[END_REF]. We refer to the review papers [START_REF] Eells | A report on harmonic maps[END_REF][START_REF] Eells | Another report on harmonic maps[END_REF] on this topic. It is noteworthy that in most of the literature the results obtained are the so-called subconvergence property, namely that there exists a harmonic map and a sequence of times {t k } k tending to infinity such that u(t k ) converges to a harmonic map. The "unique asymptotic limit" problem asks if and when we can replace the "subconvergence" by "convergence". Regarding this problem, in cases where the target manifold N is real analytic and satisfies several other conditions, including having non-positive curvature, the result can be improved to a convergence result. See for example [START_REF] Simon | Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems[END_REF]Corollary 2]. Notice that such asymptotic behavior result in our framework is covered by the general result given by Ottarsson in [START_REF] Ottarsson | Closed geodesics on Riemannian manifolds via the heat flow[END_REF], more precisely, one has the following subconvergence result.

PROPOSITION 1.3 ( [Ott85], convergence to harmonic maps of the heat flow). For any initial state u 0 ∈ H 1 (T 1 ; S k ), for any ε > 0, there exists some time T = T (ε, u 0 ) such that the unique solution of (3) becomes a "ε-approximate harmonic map" at time T .

Although Proposition 1.3 is well known in the literature even when S k is replaced by an arbitrary Riemannian manifold N , in this paper we present a direct proof of Proposition 1.3 concerning this specific case for readers' convenience. This direct proof is based on the flux method introduced in [KX22], and it is easier to follow than previous proofs. Its idea is to use the smallness of flux to recover the smallness of states (while, more precisely, the closeness of states to harmonic maps in this specific context); see, in particular, Lemma 3.1. This proof can be found in Section 3.1. This convergence result, together with the continuous dependence property of the flow, implies that for any given initial state u(0, •) that is sufficiently close to u 0 in H 1 -topology, the unique solution becomes a "2ε-approximate harmonic maps" after a certain time T (ε, u 0 ) of evolution. Thanks to the strong smoothing effect of the harmonic map heat flow (see for example Lemma 2.1), for any M > 0 there exists an explicit constant C M such that, for any initial state u(0, •) satisfying ∥u(0)∥ H 1 ≤ M , the unique solution satisfies ∥u(1)∥ H 2 ≤ C M . Thus u(1, •) stays in a compact subspace of H 1 (T 1 ), as the Sobolev embedding H 2 (T 1 ) → H 1 (T 1 ) is compact. This leads to the following uniform convergence result.

COROLLARY 1.4. Let M > 0. For any ε > 0, there exists some time T = T (ε, M ) such that, for any initial state u 0 ∈ H 1 (T 1 ; S k ) belongs to H(M ), the unique solution of (3) becomes a "ε-approximate harmonic maps" at some time t 0 ∈ (0, T ).

Moreover, by combining Lemma 3.1 and the local exponential stability property (6) we immediately obtain the following semi-global stability result, the proof of which we omit.

COROLLARY 1.5 (Semi-global exponential stability). Let ε > 0. There exists C = C(ε) such that for any initial state u 0 ∈ H 1 (T 1 ; S k ) belongs to H(2π -ε) the unique solution of (3) satisfies

E(u(t)) ≤ Ce -1 2π 2 t E(u 0 ) ∀t > 0.
1.1.2. Stabilization of the harmonic map heat flow. Inspired by the recent works on the stabilization of wave maps equation [START_REF] Coron | Global controllability of a geometric wave equation[END_REF][START_REF] Krieger | Semi-global controllability of a geometric wave equation[END_REF], we are also interested in the related stabilization problems for the harmonic map heat flow. According to Corollary 1.5 the system is locally exponentially stable. However, since harmonic maps are steady states, the system is not globally stable. Concerning this subject we successively prove the following results:

• Local rapid stabilization, namely, by adding a well-chosen control force one can enhance the dissipation of the system to make it as fast as we want provided that the initial state is not large enough. • Obstruction to uniform asymptotic stabilization in H(2π). Concerning energy stabilization problems, we search for continuous time-varying (both local and non-local) feedback laws

F : R × H 1 (T 1 ) → L 2 (T 1 ) (t; u) → F (t; u) (7)
to enhance the stability of the original system. Namely, what is the asymptotic behavior of the following closed-loop system (8)

∂ t u(t, x) -∆u(t, x) = |u x | 2 (t, x)u(t, x) + 1 ω (F (t; u(t, •))) u(t,x) ⊥ (t, x)?
The following natural definition is borrowed from [START_REF] Coron | Global controllability of a geometric wave equation[END_REF][START_REF] Coron | Local exponential stabilization for a class of Korteweg-de Vries equations by means of time-varying feedback laws[END_REF] (also refer to the monograph [Hah67, Definition 24.2, page 97]).

DEFINITION 1.6. The system (8) is called uniformly asymptotically stable in the energy level set H(q) if there exists a KL function h, i.e. a continuous function h : R + × R + → R + satisfying for any t ∈ [0, +∞), h(•, t) is strictly increasing and vanishes at 0, for any s ∈ [0, +∞), h(s, •) is decreasing and lim t→+∞ h(s, t) = 0, such that the energy decays uniformly as follows:

(9) E(u(t)) ≤ h(E(u(0)), t) ∀t ∈ (0, +∞), ∀u(0) ∈ H(q).
Due to Corollary 1.5 the system is locally uniformly exponentially stable without adding any special feedback law. However, the exponential decay rate is bounded. To achieve better stability properties such as rapid stability one relies on extra forces, namely feedback laws. The following result shows that with the help of some well-designed explicit feedback laws the system can decay as fast as we want.

THEOREM 1.7 (Quantitative local rapid stabilization). There exists some effectively computable constant 2 C > 0 such that for any λ > 1 and for any point q ∈ S k , one can design an explicit time-independent feedback law

F = F (λ, q) : H 1 (T 1 ) → L 2 (T 1 ), u → F (u) = F (λ, q)(u), such that for any initial state u 0 ∈ H 1 (T 1 ; S k ) satisfying ∥u 0 -q∥ H 1 ≤ e -C √ λ the unique solution of the system ∂ t u -∆u -|∂ x u| 2 u = 1 ω (F u) u ⊥ , decays exponentially ∥u(t)∥ Ḣ1 ≤ e C √ λ e -λt ∥u 0 ∥ Ḣ1 ∀t ∈ (0, +∞)
where

∥v∥ Ḣ1 := E(v).
The proof of this theorem is based on the stereographic projection as well as the frequency Lyapunov method introduced by the second author in [START_REF] Xiang | Quantitative rapid and finite time stabilization of the heat equation[END_REF][START_REF] Xiang | Small-time local stabilization of the two-dimensional incompressible Navier-Stokes equations[END_REF]. We refer to Section 4, in particular to Lemma 4.2 and Remark 4.3, for details. Moreover, as a direct consequence of this quantitative rapid stabilization result, see Proposition 4.1 for details, one further obtains the following small-time local controllability result.

THEOREM 1.8 (Quantitative local null controllability). The controlled harmonic map heat flow equation

∂ t u -∆u -|∂ x u| 2 u = 1 ω f u ⊥ , u(0, •) = u 0 (•)
, is locally null controllable in small time in the sense that, there exists an effectively computable constant C > 1 such that for any T ∈ (0, 1), for any initial state u 0 ∈ H 1 (T 1 ; S k ) and any point

p ∈ S k satisfying ∥u 0 -p∥ H 1 (T 1 ) ≤ e -C T , we can construct an explicit control f ∈ L ∞ (0, T ; L 2 (T 1 )) satisfying ∥f ∥ L ∞ (0,T ;L 2 (T 1 )) ≤ e C T ∥u 0 -p∥ H 1 (T 1 ) such that the unique solution u ∈ C([0, T ]; H 1 (T 1 )) ∩ L 2 (0, T ; H 2 (T 1 )) of the Cauchy problem satisfies u(T, •) = p.
REMARK 1.9. The local controllability of the nonlinear heat equations is extensively studied in the literature, we refer to [CN17, FR71, GL95, HKT20, Jon77, Lit78, MRR14, MRR16] for the one-dimensional case, as well as to [DZZ08, EZ11, FCZ00, FI96, LR95] for the multidimensional case. However, the study of controllability of such a geometric heat equation is extremely limited, we have only found the recent paper by Liu [Liu20] in the literature. In [Liu20, Proposition 2.6] Liu has proved the local controllability of the harmonic map heat flow equation from Ω ⊂ R 3 to S 2 , his proof is based on the stereographic projection, global Carleman 2 Throughout this paper we use the expression effectively computable to describe a number that can be explicitly calculated, and the notation a ≲ b to indicate that a ≤ Cb where C is some effectively computable constant. Again, due to Corollary 1.5, one may ask for global stabilization. Inspired by the topological argument introduced in [START_REF] Coron | Global controllability of a geometric wave equation[END_REF], this global stabilization does not hold even if the controlled area is the whole domain, i.e. ω = T 1 , as shown by the following proposition. THEOREM 1.10 (Obstruction to uniform asymptotic stabilization in H(2π)). For any timevarying feedback law F satisfying conditions (P1) -(P4) (we refer to Section 2.3 for precise definitions), the closed-loop system (8) is not uniformly asymptotically stable in H(2π).

This obstruction is due to the degree theory, which, roughly speaking, comes from the nontriviality of the homology group H k (S k ). Actually, the same arguments introduced in [CKX23, Section 3.2] can be adapted to our framework. For readers' convenience we sketch this proof here.

Proof of Theorem 1.10. Case k = 1 is trivial since the degree of u(t, •) : T 1 → S 1 does not depend time. In the following we concentrate on the case k ≥ 2. Thanks to [CKX23, Lemma 3.2 as well as equation (32)], there are A k-1 : T 1 k → S k as well as γ k-1 :

T 1 k-1 → H 1 (T 1 ; S k ) with γ k-1 (s 1 , . . . , s k-1 )(x) := A k-1 (s 1 , s 2 , . . . , s k-1 , x) ∀s 1 , . . . , s k-1 , x ∈ T 1 such that deg A k-1 = 2 k-1
and that

E(γ k-1 (s 1 , . . . , s k-1 )(•)) = 2π sin s 1 2 . . . sin s k-1 2 ≤ 2π ∀s 1 , . . . , s k-1 ∈ T 1 .
For instance, A 1 : T 1 2 → S 2 is defined as follows: (see Figure 5) A 1 (s, x) := (sin s cos x, sin s sin x, cos s) T ∀s ∈ [0, π], ∀x ∈ T 1 , (-sin s cos x, sin s sin x, cos s) T ∀s ∈ (π, 2π), ∀x ∈ T 1 , Figure 5. Obstruction to uniform asymptotic stabilization. The constructed map A 1 : T 1 ×T 1 → S 2 has nontrivial degree. This picture is related to Theorem 1.10. and for k ≥ 2 the map is successively constructed as follows, A k : T 1 k+1 → S k+1 is defined as follows: (see Figure 5)

A k (s 1 , ..., s k , x) := sin s 1 A k-1 (s 2 , ..., s k , x) T , cos s 1 T ∀s 1 ∈ [0, π], ∀(s 2 , ..., s k , x) ∈ T 1 k , -sin s 1 A k-1 (s 2 , ..., s k , x) T , cos s 1 T ∀s 1 ∈ [0, π], ∀(s 2 , ..., s k , x) ∈ T 1 k .
Define the flow of the closed-loop system:

Φ : R × H 1 (T 1 ; S k ) → H 1 (T 1 ; S k ) (t, u 0 ) → u(t),
where u(t) is the unique solution of equation ( 8) with the initial state u(0) = u 0 . Suppose that the closed-loop system is uniformly asymptotically stable. Then, for any δ > 0, there exists T > 0 such that E(Φ(T, γ k-1 (s 1 , . . . , s k-1 ))) ≤ δ ∀s 1 , . . . , s k 1 ∈ T 1 . Thanks to the continuity of the flow associated to the closed-loop system, for which we refer to Proposition 2.7,

Φ(t, γ k-1 (s 1 , . . . , s k-1 ))(x) ∈ C 0 T 1 s 1 × . . . × T 1 s k-1 ; C 0 ([0, T ]; C 0 (T 1 ; S k ) .
Then we define

G 1 : [0, T + 1] × (T 1 ) k-1 × T 1 x → S k as G 1 (t; s 1 , . . . , s k 1 , x) :=    Φ(t, γ k-1 (s 1 , . . . , s k-1 ))(x) ∀t ∈ [0, T ] (1 -t + T )H 1 (T ; s 1 , . . . , s k-1 , x) + (t -T )a(s) |(1 -t + T )H 1 (T ; s 1 , . . . , s k-1 , x) + (t -T )a(s 1 , . . . , s k-1 )| ∀t ∈ [T, T + 1],
where, a(s 1 , . . . , s k-1 ) := Φ(T, γ k-1 (s 1 , . . . , s k-1 ))(0). Note that, choosing δ > 0 small enough,

G 1 : [0, T + 1] × (T 1 ) k-1 × T 1 x → S k is continuous. Hence, G 1 (t = 0) : (T 1 ) k-1 × T 1 x → S k is homotopic to G 1 (t = T + 1) : (T 1 ) k-1 × T 1 x → S k . However, deg G 1 (t = 0) = deg A k-1 = 2 k-1 ,
deg G 1 (t = T + 1) = 0 as its value does not depend on x.

This leads to a contradiction and finishes the proof of Theorem 1.10. For general manifold targets N , there may be no closed geodesic that contains both p and p f . The picture on the right shows that we can deform from a constant state p to another constant state p f by steps along different closed geodesics. Alternatively, we can always find a complete geodesic, which is not necessarily a closed geodesic, that contains both p and p f . The idea of deforming on complete geodesics is used in the proof of Lemma 5.1.

or is unknown, one continue to ask whether it is possible to deform between stationary states and whether it is possible to do so in a short time.

Actually, this natural problem is still widely open for many important models, for instance even for the simplest one-dimensional nonlinear heat equation we do not know how to move between any stationary states in small time. More precisely, let us consider the following controlled system

         u t -u xx -u 3 = 0, u(t, 0) = 0, u(t, L) = f (t), u(0, •) = u 0 (•),
whose stationary states set is defined as

S H3 := {u ∈ C 2 ([0, L]) : u xx + u 3 = 0 ∀x ∈ [0, L], u(0) = 0}.
The controllability between stationary states in small time is still largely open for this model. The main difficulty is that we have to deform the state as fast as we want, otherwise the weaker property of controllability between stationary states in large time has been known for decades [START_REF] Coron | Global steady-state controllability of one-dimensional semilinear heat equations[END_REF]. We refer to [Cor07, Open Problem 2] for background on this important open problem.

Surprisingly, this global controllability in small time between stationary states has a positive answer for the harmonic map heat flow equation, thanks to geometric properties of the system. We state three theorems (Theorems 1.11 to 1.13) in this direction and prove them in Section 5. This new observation also works for other geometric equations with compact Riemannian target, such as the wave maps equations.

(i) Small-time global controllability on closed geodesics

We first investigate the simplest case, namely, the harmonic map heat flow T 1 → S 1 , for which, benefiting from the polar coordinates, the system is transformed into the linear heat Figure 7. Small-time global controllability between harmonic maps having different energy: deform from the constant state p f to a harmonic map γ that crosses p f . This is the simplest case of Theorem 1.12. In these pictures, the blue colored curve is the value of u(x)| x∈T 1 \ω , the red colored curve is the value of u(x)| x∈ω , and the green colored arrows represent the direction of the flow along with time. We observe that on the domain ω the speed of the curve u(x) is faster than the speed on T 1 \ ω. This picture is also related to Step 7 of Section 1.2. equation with an interior control. Next, we show that for a sphere S k , if the initial state is in a given closed geodesic and the control force is tangent to this geodesic, then the unique solution remains in the same closed geodesic. Moreover, under the polar coordinates, the system becomes again the controlled linear heat equation with an interior control, for which the controllability is well-investigated.

THEOREM 1.11. Let T > 0. Let the curve C = {γ(x) ∈ S k : x ∈ T 1 } be a closed constantspeed geodesic on S k with energy 2π:

γ(x) ∈ S k , γ xx (x) + |γ x | 2 (x)γ(x) = 0 ∀x ∈ T 1 , T 1 |γ x (x)| 2 dx = 2π. Let k ≥ 1 and N ∈ N. For any initial state v 0 (•) ∈ H 1 (T 1 ; S k ) with values into C and satisfying deg(v 0 , T 1 , C) = N,
and for any r ∈ R, there exists an explicit function f ∈ L ∞ (0, T ; L 2 (T 1 ; R k+1 )) such that the unique solution u(t, x)| t∈(0,T ),x∈T 1 of the controlled harmonic map heat flow equation (1) with initial state v 0 satisfies The proof of this theorem is based on the writing of the harmonic map heat flow in polar coordinates and the controllability of the 1-D linear heat equation. It can be found in Section 5.

u(T, x) = γ(N x + r) ∀x ∈ T 1 .
(ii) Small-time global controllability between harmonic maps having different energy THEOREM 1.12. Let T > 0. Let the curve C = {γ(x) ∈ S k : x ∈ T 1 } be a closed constantspeed geodesic on S k with energy 2π:

γ(x) ∈ S k , γ xx (x) + |γ x | 2 (x)γ(x) = 0 ∀x ∈ T 1 , T 1 |γ x (x)| 2 dx = 2π. Let k ≥ 2. Let v 0 (•) ∈ H 1 (T 1 ; S k ) be an initial state and v 1 (•) ∈ H 1 (T 1 ; S k ) be a target state both with values into C. Assume that there exists N 1 ∈ Z and r ∈ R such that v 1 (x) = γ(N 1 x + r) ∀x ∈ T 1 .
Then, there exists an explicit function f ∈ L ∞ (0, T ; L 2 (T 1 )) such that the unique solution u(t, x)| t∈(0,T ),x∈T 1 of the controlled harmonic map heat flow equation (1) with initial state v 0 satisfies

u(T, x) = v 1 (x) ∀x ∈ T 1 .

(iii) General compact Riemannian targets

Finally one can replace S k -target by a general compact Riemannian submanifold N of R m . Indeed, one has the following general result on the controlled harmonic maps heat flow, (10)

u t -u xx = β u (u x , u x ) + 1 ω f u ⊥ ,
where f u ⊥ represents now the projection of f onto the tangent space

T u N ⊂ R m .
THEOREM 1.13. Let T > 0. Let γ 0 : T 1 → N and γ 1 : T 1 → N be two harmonic maps which are in the same connected component of C 0 (T 1 ; N ). Then there exists a control f ∈ L ∞ (0, T ; L 2 (T 1 )) which steers the harmonic map heat flow from γ 0 to γ 1 during the time interval [0, T ].

We refer to Section 5.2 and Figure 8 for the proof of this result.

1.1.4. Global controllability of the harmonic map heat flow. Finally we deal with the global controllability result. Let us recall that when k = 1 the global controllability with T 1 -target is answered by Theorem 1.11. For k ≥ 2, one has the following theorem.

THEOREM 1.14 (Global controllability). Let k ≥ 2. Let M > 0. There exists some constant

T = T (M ) > 0 such that for any initial state u 0 ∈ H 1 (T 1 ; S k ) belongs to E(M ), for any target state u f ∈ H 1 (T 1 ; S k ) that is a harmonic map, we can construct an explicit control f ∈ L ∞ (0, T ; L 2 (T 1 )
) such that the unique solution of the controlled harmonic map heat flow

∂ t u -∆u -|∂ x u| 2 u = 1 ω f u ⊥ , u(0, •) = u 0 (•), satisfies u(T, •) = u f (•).
REMARK 1.15. It is noteworthy that the time required to control the system only depends on the scale of the initial state, namely the energy of the target state can be as large as we want. This is the consequence of the small-time global exact controllability between harmonic maps, which will be shown in Section 5 Lemma 1.11. However, it is not clear whether we can obtain the stronger small-time global null controllability result.

1.2. The strategy for the proof of the global controllability result (Theorem 1.14).

Our proof is divided into several steps, in which we benefit from different properties of the controlled harmonic map heat flow system, some of which are illustrated in the preceding context such as the convergence of the flow to harmonic maps, while the other properties will be explored later on.

Step 1. Benefit on the natural dissipation.

In this step we do not add any specific control and let the system evolve itself for a period with length T 1 to be chosen later on

∂ t u -∆u -|∂ x u| 2 u = 0, t ∈ (0, T 1 ), u(t = 0, •) = u 0 (•).
Suppose that the initial state u 0 (•) belongs to H(J 0 2π -δ 0 ), where J 0 is some integer. Due to the asymptotic property Proposition 1.3, after some time of evolution T 1 the solution becomes a "ε-approximate harmonic map" and is therefore close to a harmonic map u 1 satisfying E(u 1 ) = J 1 2π for some integer J 1 that is strictly smaller than J 0 . This proposition is proved in Section 3.1. See the picture on the left of Figure 3.

Step 2. Across the critical energy level set.

Because the harmonic map u 1 has energy J 1 2π, in general for the state u(t = T 1 ) sufficiently close to u 1 the energy of the flow can not pass the energy level set J 1 2π without any extra control force. In the case that u 1 is non-trivial, inspired by the recent work on wave maps [START_REF] Coron | Global controllability of a geometric wave equation[END_REF] and based on the power series expansion method, we construct an explicit control

f (t)| t∈[T 1 ,T 1 +τ 1 ] = f 1 (t)| t∈[T 1 ,T 1 +τ 1 ]
with τ 1 small such that the solution of

∂ t u -∆u -|∂ x u| 2 u = 1 ω f u ⊥ 1 , t ∈ (T 1 , T 1 + τ 1 ), which is equal to u(t = T 1 ) at time T 1 satisfies E(u(t = T 1 + τ 1 )) < E(u 1
). Thus u(t = T 1 + τ 1 ) ∈ H((J 1 )2π -δ 1 ) for some δ 1 > 0. This construction is provided by Proposition 3.3 which will be shown in Section 3.2. Otherwise, there is no need to add other specific control. See Figure 10.

Step 3. Iterate the preceding two-step procedure.

We iterate the process, which yields

u(t = T i ) is close to the harmonic map u i , where E(u i ) = J i 2π, for i ∈ {1, 2, . . . , K}, J 0 > J 1 > J 2 > . . . > J K = 0, until at time t = T K such that u(t = T K
) is close to a trivial harmonic map u K . We shall keep in mind that the values of T 1 , T 2 , . . . , T K may become large but only depend on the value of E(u 0 ). Step 4. Exponential decay of the energy.

Again we do not add any specific control. Since the state is sufficiently small, thanks to Corollary 1.5 the energy decreases exponentially with rate 1/(2π 2 ), for any ε > 0 there exists a certain time t = T K + t d such that

∥u(t = T K + t d ) -p∥ H 1 ≤ ε,
for some p ∈ S k . See Figure 3 (the picture on the right).

Step 5. Local null controllability.

We adapt the local null controllability result, Theorem 1.8, to find some control

f (t)| t∈(T K +t d ,T K +t d + T ) = f (t)| t∈(T K +t d ,T K +t d + T )
that steers the state from u(t

= T K + t d ) to u(t = T K + t d + T ) = p, ∂ t u -∆u -|∂ x u| 2 u = 1 ω f u ⊥ , t ∈ (T K + t d , T K + t d + T ).
The proof of Theorem 1.8 is shown in Section 4, which is further divided by three stages: in the first stage we obtain quantitative rapid stabilization result Lemma 4.2, namely for any given decay rate λ we construct an explicit feedback control such that the energy exponential dissipation of is enhanced to this decay rate, then in the second stage we cut the time interval by infinite many pieces [0, T ] = n∈N [T n , T n+1 ] and adapt an infinite-step iteration scheme, finally using quantitative estimates we show that the unique solution converges to 0 at time T and get the null controllability result. See Figure 4. Step 6. Move from any constant state to any other constant state.

Suppose that the final state is a harmonic map u f , and that a point p f belongs to u f . We can find some control in a short period

f (t)| t∈(T K +t d + T ,T K +t d + T + T1 ) = f (t)| t∈(T K +t d + T ,T K +t d + T + T1 )
to drive the state from p to p f . This task can be achieved via two different approaches. Due to the local controllability result around points, Theorem 1.8, we find a sequence of points {p i : i = 0, 1, . . . , n} satisfying p 0 = p and p n = p f such that one can move the solution from p i to p i+1 in a short time for each i.

Alternatively, we define a closed geodesic C (an equator) that connects p and p f . By restricting the evolution of the system on this equator, which is possible if the initial state belongs the equator and if the control stays in the subtangent space T C ⊂ T R k+1 . According to Theorem 1.11 that will be proved in Section 5, this inhomogeneous geometric heat equation with constraint becomes the linear inhomogeneous heat equation without constraint. Thus the state p f is a reachable state from p. Notice that by restricting the flow in the geodesic C the degree of the flow u(t) : T 1 → C cannot be modified with respect to time. This gives a necessary condition for two states that can be deformed from one to another. However, one shall also note that this topological condition is not a sufficient condition to find the reachable set due to the strong smoothing effect of the heat equation. See Figure 6.

Step 7. Move from any constant state to any harmonic map that passes through this constant.

Relying on the previous step based on Theorem 1.11 one can not change the degree of the flow if it is restricted to a closed geodesic. In this final step we show that, with the help of Theorem 1.12 which is proved in Section 5, during a short period one can move the state from one harmonic map to another even if their degree do not coincide but k ≥ 2. This finishes the proof of Theorem 1.14. See Figure 7.

1.3. The organization of the paper. This paper is organized as follows. After the preliminary Section 2, all the proofs of technical theorems can be found in Sections 3-5. More precisely,

• Section 3 is devoted to the so-called "global approximate controllability". More precisely, we first prove Proposition 1.3 and then show Proposition 3.3. This part is also related to Step 1-Step 4 for the proof of Theorem 1.14. • Next in Section 4 we provide "quantitative local controllability and stabilization" properties that is also devoted to Step 5. It includes the proofs of the local null controllability Theorem 1.8 as well as the local rapid stabilization 1.7. • Finally, we conclude the paper by presenting the "global exact controllability between harmonic maps" in Section 5. This section is also related to Step 6 and Step 7 that Step 1 is the consequence of Proposition 1.3, and is illustrated by Figure 3;

Step 2 is the result of Proposition 3.3, and is illustrated by Figure 10;

Step 3 is the iteration of the preceding two steps;

Step 4 is the consequence of Corollary 1.5, and is again illustrated by Figure 3;

Step 5 is deduced from Theorem 1.8, and we refer to Figure 4;

Step 6 is the characterized by Theorem 1.11, and we observe this deformation in Figure 6;

Step 7 is shown using Theorem 1.12, and is illustrated by Figure 7.

contains Theorem 1.11 and Theorem 1.12. Thus we also finish the proof of Theorem 1.14.

1.4. Some further questions. We believe that there are many interesting follow-up questions to consider. Here are some of them:

• In Theorem 1.14 we proved the global controllability of the harmonic map heat flow. However, this proof relies on the natural dissipation of the flow, so it is necessary to wait for a while to prepare the control. It is known that using the return method introduced by the first author one prove the global controllability of some nonlinear partial differential equations in a short time, for example for the Euler equations [START_REF] Coron | On the controllability of 2-D incompressible perfect fluids[END_REF][START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF] or the Navier-Stokes equations [START_REF] Coron | Controllability of the Navier-Stokes equation in a rectangle with a little help of a distributed phantom force[END_REF]. Is it possible to get small-time global controllability for this geometric model? • In Theorem 1.7, thanks to the frequency Lyapunov method introduced by the second author [Xia20, Xia23], we obtained local rapid stabilization. Moreover, this quantitative rapid stabilization result also yields the small-time local finite-time stabilization. However, this technique does not apply to semi-global rapid stabilization. Can we construct an explicit feedback law to rapidly stabilize the system in H(2π -ε) for any small ε?

Notice that due to Theorem 1.10, it is impossible to achieve uniform asymptotic stabilization in H(2π). We refer to the papers by the authors concerning the topic of (global) finite-time stabilization [START_REF] Coron | Small-time global stabilization of the viscous Burgers equation with three scalar controls[END_REF]. • In Theorem 1.12 and Theorem 1.13, thanks to the geometric feature of the equation, we have proved the small-time global controllability between harmonic maps within the same homotopy class for general compact Riemannian manifold targets, which is to be compared with the analogous but longstanding problem for the nonlinear heat equations. Recently, Hartmann-Kellay-Tucsnak developed a novel method to characterize the reachable set of the heat equation [START_REF] Hartmann | From the reachable space of the heat equation to Hilbert spaces of holomorphic functions[END_REF]. Is it possible to combine their ideas to discover the reachable set of this geometric equation and even to find a new pheonomenon? • What is the situation for more complicated geometric models? For example, what if the sphere target is replaced by a general compact Riemannian manifold? What if the space T 1 is further replaced by a general domain Ω or even a general compact Riemannian manifold? Can we expect similar controllability and stabilization results? Recall that in [START_REF] Liu | Control of harmonic map heat flow with an external field[END_REF] the local controllability of the flow from Ω to S 2 has been considered. Here we mainly refer to global control problems.

Preliminary part

In this preliminary section, we provide some definitions, well-posedness results, and basic properties of the controlled harmonic map heat flow that is related to this paper, parts of which are inspired by the authors' previous works on the controlled wave maps equations [START_REF] Coron | Global controllability of a geometric wave equation[END_REF][START_REF] Krieger | Semi-global controllability of a geometric wave equation[END_REF].

2.1. Some basic properties of the controlled harmonic map heat flow.

2.1.1. Rotation invariance. The controlled harmonic map heat flow is invariant under the action of the orthogonal group. To be more precise, for any given solution, (u, f ), of the controlled harmonic map heat flow form T 1 to S k (with k ≥ 1):

∂ t u -∆u = |∂ x u| 2 u + 1 ω f u ⊥ , u(0, x) = u 0 (x),
and for any matrix A belongs to O(k + 1), the pair (ū, f ) := (Au, Af ) is also a solution of

∂ t ū -∆ū = |∂ x ū| 2 ū + 1 ω f ū⊥ , ū(0, x) = Au 0 (x).
This is a consequence of straightforward calculation. In particular, every harmonic map from T 1 to S k can be characterized as follows: for any harmonic map u : T 1 → S k ⊂ R k+1 , there exist an integer N and a matrix A ∈ O(k + 1) such that

E(u) = 2πN 2 and Au(x) = φ(N x) ∀x ∈ T 1 ,
where φ is the simplest non-trivial harmonic map:

(11) φ(x) := (cos x, sin x, 0, . . . , 0) T ∀x ∈ T 1 .

2.1.2. Well-posedness and continuous dependence results. Now we present some related wellposedness results. This covers the inhomogeneous heat equation and the controlled harmonic map heat flow equations, while the closed-loop systems are introduced later on in Section 2.3.

LEMMA 2.1 (The inhomogeneous heat equation). Let T > 0. For any initial state v 0 :

T 1 → R k+1 in H 1 (T 1
) and for any force term f : [0, T ] × T 1 → R k+1 in L 2 (0, T ; L 2 (T 1 )), the inhomogeneous heat equation

(12) ∂ t u -∆u = f with u(0, •) = v 0 (•),
admits a unique solution in C 0 ([0, T ]; H 1 (T 1 )). This solution satisfies

1 2 d dt ∥u∥ 2 L 2 + T 1 |u x | 2 dx = T 1
⟨f, u⟩dx in the sense of distributions on (0, T ), ( 13)

∥u(t)∥ L 2 (T 1 ) ≤ ∥v 0 ∥ L 2 (T 1 ) + ∥f ∥ L 1 (0,t;L 2 (T 1 )) ∀t ∈ [0, T ], ( 14 
)
∥u x ∥ 2 L 2 (0,t;L 2 (T 1 )) ≤ ∥v 0 ∥ 2 L 2 (T 1 ) + 2∥f ∥ 2 L 1 (0,t;L 2 (T 1 )) ∀t ∈ [0, T ], (15) ∥u x (t)∥ 2 L 2 (T 1 ) + ∥u xx ∥ 2 L 2 (0,t;L 2 (T 1 )) ≤ ∥v 0x ∥ 2 L 2 (T 1 ) + ∥f ∥ 2 L 2 (0,t;L 2 (T 1 )) ∀t ∈ [0, T ]. ( 16 
)
The existence and uniqueness of a solution to (12) are classical; see for example the book by Brezis [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Theorem 10.11]. Concerning the other statements, it suffices to observe that 1 2

d dt ∥u∥ 2 L 2 = T 1 ⟨u t , u⟩dx = T 1 ⟨u xx + f, u⟩dx = -∥u x ∥ 2 L 2 + T 1 ⟨f, u⟩dx, 1 2 d dt ∥u x ∥ 2 L 2 = T 1 ⟨u tx , u x ⟩dx = - T 1 ⟨u t , u xx ⟩dx ≤ - 1 2 ∥u xx ∥ 2 L 2 + 1 2 ∥f ∥ 2 L 2 .
Concerning the controlled harmonic map heat flow one has similar results:

LEMMA 2.2 (The controlled harmonic map heat flow). There exists an explicit constant C > 0 such that for any T > 0, for any initial state v 0 :

T 1 → S k ⊂ R k+1 in H 1 (T 1
), and for any force term f :

[0, T ] × T 1 → R k+1 in L 2 (0, T ; L 2 (T 1
)), the controlled harmonic maps heat equation (1) admits a unique solution in C 0 ([0, T ]; H 1 (T 1 ; S k )), which satisfies

∥u x (t)∥ 2 L 2 (T 1 ) + ∥u t ∥ 2 L 2 (0,t;L 2 (T 1 )) ≤ ∥v 0x ∥ 2 L 2 (T 1 ) + ∥f ∥ 2 L 2 (0,t;L 2 (T 1 )) ∀t ∈ [0, T ], ∥u xx ∥ 2 L 2 (0,T ;L 2 (T 1 )) ≤ ∥v 0x ∥ 2 L 2 (T 1 ) + C T ∥v 0x ∥ 6 L 2 (T 1 ) + ∥f ∥ 2 L 2 (0,T ;L 2 (T 1 )) + T ∥f ∥ 6 L 2 (0,T ;L 2 (T 1 )) .
Proof of Lemma 2.2. We first concentrate on the a priori estimates. Thanks to direct integration by parts and the geometric condition, there is 1 2

d dt ∥u x ∥ 2 L 2 = T 1 ⟨u tx , u x ⟩dx = - T 1 ⟨u t , u t -1 ω f u ⊥ ⟩dx ≤ - 1 2 ∥u t ∥ 2 L 2 + 1 2 ∥f ∥ 2 L 2 which implies ∥u x ∥ 2 C([0,T ];L 2 ) ≤ ∥v 0x ∥ 2 L 2 + ∥f ∥ 2 L 2 (0,T ;L 2 ) . We also have 1 2 d dt ∥u x ∥ 2 L 2 = - T 1 ⟨u xx + |u x | 2 u + 1 ω f u ⊥ , u xx ⟩dx ≤ -∥u xx ∥ 2 L 2 + ∥f ∥ L 2 ∥u xx ∥ L 2 + T 1 ⟨|u x | 2 u, -u t + |u x | 2 u + 1 ω f u ⊥ ⟩dx ≤ - 3 4 ∥u xx ∥ 2 L 2 + 2∥f ∥ 2 L 2 + 2∥u x ∥ 4 L 4 ≤ - 1 2 ∥u xx ∥ 2 L 2 + 2∥f ∥ 2 L 2 + C∥u x ∥ 6 L 2 ,
where we have used the inequality

∥u x ∥ 4 L 4 ≲ ∥u x ∥ 2 L 2 ∥u x ∥ 2 L ∞ ≲ ∥u x ∥ 3 L 2 ∥u xx ∥ L 2 .
Therefore,

∥u xx ∥ 2 L 2 (0,T ;L 2 ) ≤ ∥v 0x ∥ 2 L 2 + 4∥f ∥ 2 L 2 (0,T ;L 2 (T 1 )) + C T 0 ∥u x (s)∥ 6 L 2 ds ≤ ∥v 0x ∥ 2 L 2 + 4∥f ∥ 2 L 2 (0,T ;L 2 (T 1 )) + CT ∥v 0x ∥ 6 L 2 + ∥f ∥ 6 L 2 (0,T ;L 2 )
. This finishes the proof of desired estimates.

Let us now deal with the proof of the well-posedness result. Since f u ⊥ can be written as f -⟨f, u⟩u, the geometric equation ( 1) is equivalent to the following nonlinear heat equation:

∂ t u -∆u = |∂ x u| 2 u + 1 ω f -⟨1 ω f, u⟩u.
By regarding 1 ω f as some source term g, the preceding equation becomes a standard nonlinear (subcritical) heat equation. This observation, to be combined with the a priori estimates given in Lemma 2.1 and the standard Banach fixed-point argument, leads to the existence and uniqueness of the solution to the system. Indeed, it suffices to consider the map Γ :

X T → X T v → u
where the Banach space X T is defined in the following in (17), and the state u = Γv is the unique solution of

∂ t u -∆u = |∂ x v| 2 v + 1 ω f -⟨1 ω f, v⟩v, u(0, •) = u 0 (•)
. This map admits a unique fixed-point in X T . Thus we finish the proof of the well-posedness result.

□

To state the continuous dependence result we work with the following standard space X T in space-time:

X T := {f : f ∈ C([0, T ]; H 1 (T 1 )), f xx ∈ L 2 (0, T ; L 2 (T 1 ))}, (17) ∥f ∥ X T := ∥f ∥ C([0,T ];H 1 (T 1 )) + ∥f xx ∥ L 2 (0,T ;L 2 (T 1 )) ∀f ∈ X T . ( 18 
)
LEMMA 2.3 (Continuous dependence of the controlled harmonic map heat flow). Let T 0 > 0, let M > 0. There exists some effectively computable constant C d depending on the values of (T 0 , M ) such that for any initial states v 1 (x), v 2 (x) ∈ H 1 (T 1 ; S k ) and any force terms

f 1 , f 2 ∈ L ∞ (0, T 0 ; L 2 (T 1 )) satisfying ∥v i ∥ H 1 + ∥f i ∥ L ∞ (0,T 0 ;L 2 (T 1 )) ≤ M ∀i ∈ {1, 2},
the unique solutions of the controlled harmonic map heat flow ∀i ∈ {1, 2},

∂ t u i -∆u i = |∂ x u i | 2 u i + 1 ω f u ⊥ i i , u i (0, x) = v i (x), satisfy ∥u 1 -u 2 ∥ X T 0 ≤ C d ∥v 1 -v 2 ∥ H 1 (T 1 ) + ∥f 1 -f 2 ∥ L 2 (0,T 0 ;L 2 (T 1 )) .
Proof of Lemma 2.3. The proof is a direct combination of the preceding well-posedness result (Lemma 2.2) and a bootstrap argument as we are now going to detail. For some T ∈ (0, T 0 ] to be fixed later on, we consider the equations on time interval (0, T ). Compare the equations on u 1 and u 2 , we know that w(t, x) := u 1 (t, x) -u 2 (t, x) satisfies

∂ t w -∆w = |u 1x | 2 w + ⟨w x , u 1x + u 2x ⟩u 2 + 1 ω (f 1 -f 2 ) + 1 ω ⟨f 1 , u 1 ⟩w + 1 ω ⟨f 1 , w⟩u 2 + 1 ω ⟨f 1 -f 2 , u 2 ⟩u 2 , =: L(w) + 1 ω (f 1 -f 2 ) + 1 ω ⟨(f 1 -f 2 ), u 2 ⟩u 2 .
Thanks to Lemma 2.2, we know that

∥u 1 ∥ X T 0 + ∥u 2 ∥ X T 0 ≲ 1, which further implies that for i = 1, 2, ∥u ix ∥ 2 L 2 (0,T ;L ∞ ) ≲ T 0 ∥u ix (t)∥ L 2 ∥u ixx (t)∥ L 2 dt ≲ T 1 2 .
By plugging these estimates into the preceding equation on w, according to Lemma 2.1, we obtain

∥w∥ X T ≲ ∥w(0)∥ H 1 + ∥f 1 -f 2 ∥ L 2 (0,T ;L 2 ) + ∥L(w)∥ L 2 (0,T ;L 2 ) .
Successively, we have

∥|u 1x | 2 w∥ L 2 (0,T ;L 2 ) ≲ ∥u 1x ∥ L ∞ (0,T ;L 2 ) ∥u 1x ∥ L 2 (0,T ;L ∞ ) ∥w∥ L ∞ (0,T ;L ∞ ) ≲ T 1 4 ∥w∥ X T , ∥⟨w x , u 1x ⟩u 2 ∥ L 2 (0,T ;L 2 ) ≲ ∥w x ∥ L ∞ (0,T ;L 2 ) ∥u 1x ∥ L 2 (0,T ;L ∞ ) ∥u 2 ∥ L ∞ (0,T ;L ∞ ) ≲ T 1 4 ∥w∥ X T , ∥⟨w x , u 2x ⟩u 2 ∥ L 2 (0,T ;L 2 ) ≲ ∥w x ∥ L ∞ (0,T ;L 2 ) ∥u 2x ∥ L 2 (0,T ;L ∞ ) ∥u 2 ∥ L ∞ (0,T ;L ∞ ) ≲ T 1 4 ∥w∥ X T , ∥⟨f 1 , u 1 ⟩w∥ L 2 (0,T ;L 2 ) ≲ ∥f 1 ∥ L 2 (0,T ;L 2 ) ∥u 1 ∥ L ∞ (0,T ;L ∞ ) ∥w∥ L ∞ (0,T ;L ∞ ) ≲ T 1 2 ∥w∥ X T , ∥⟨f 1 , w⟩u 2 ∥ L 2 (0,T ;L 2 ) ≲ ∥f 1 ∥ L 2 (0,T ;L 2 ) ∥u 2 ∥ L ∞ (0,T ;L ∞ ) ∥w∥ L ∞ (0,T ;L ∞ ) ≲ T 1 2 ∥w∥ X T .
Therefore, by selecting T sufficiently small, one obtains

∥w∥ X T ≲ ∥w(0)∥ H 1 + ∥f 1 -f 2 ∥ L 2 (0,T ;L 2 ) .
Then, we iterate this procedure to achieve the required estimates. □ 2.2. Controllability within each homotopy class. Concerning controllability, due to a simple topological argument, one shall consider the deformation of the state within its homotopy class. Indeed, for any given initial state u(t = 0, •) ∈ H 1 (T 1 ; S k ) and any force f ∈ L 2 (0, T ; L 2 (T 1 )), the unique solution of (1) satisfies u ∈ C([0, T ]; H 1 (T 1 )) and therefore is in C([0, T ]; C x (T 1 )). Hence u(t, •) = u(t)(•) can be regarded as a continuous deformation of a closed curve on S k , which forces u(0)(•) and u(T )(•) to be homotopic. This leads to the following definition. See Figure 2 to illustrate this natural definition.

DEFINITION 2.4. Let N be a compact Riemannian submanifold of R m . The controlled harmonic map heat flow equation u : R + × T 1 → N is said to be "globally null controllable in each homotopy class" if for any pair of initial and final states (v 0 , v 1 ) in H 1 (T 1 ; N ) that are homotopic, where v 1 is a harmonic map from T 1 to N , there exists a control f 0 ∈ L 2 t,x ([0, T ]×T 1 ) for some T > 0 depending on the given pair of states such that, the unique solution of the controlled harmonic map heat flow equation with initial state u(0,

•) = v 0 (•) and control f 0 satisfies u(T, •) = v 1 (•).

Stabilization and closed-loop systems.

A map F as defined in (7) is called a Carathéodory map if the following three properties are satisfied:

(P 1 ) There exists a nondecreasing function R ∈ (0, +∞) → C B (R) ∈ (0, +∞) such that, for every R ∈ (0, +∞) and for every t ∈ R,

∥u 0 ∥ Ḣ1 ≤ R ⇒ ∥F (t; u 0 )∥ L 2 ≤ C B (R); (P 2 ) For all u 0 ∈ H 1 (T 1 ; S k ), the function t ∈ R → F (t, u 0 ) ∈ L 2 (T 1 ) is measurable; (P 3 ) for almost every t ∈ R, the function u 0 ∈ H 1 x (T 1 ; S k ) → F (t, u 0 ) ∈ L 2 (T 1 ; R k+1 ) is continuous.
This map F is further called a Lipschitz map if (P 4 ) For every R > 0, there exists K(R) > 0 such that

∥u 1 ∥ Ḣ1 ≤ R, ∥u 2 ∥ Ḣ1 ≤ R ⇒ (∥F (t, u 1 ) -F (t, u 2 )∥ L 2 ≤ K(R)∥u 1 -u 2 ∥ H 1 ) .
This motivates the definition of solutions to the closed-loop system (8): DEFINITION 2.5. Let F be a map in the form of (7) that satisfies conditions (P 1 ), (P 2 ), and (P 3 ). Let T 1 ∈ R. Let u 0 ∈ L 2 (T 1 ; S k ). A function u is a solution to the Cauchy problem

(19) ∂ t u(t, x) -∆u(t, x) = |u x | 2 (t, x)u(t, x) + 1 ω (F (t; u(t))) u(t,x) ⊥ u(T 1 , x) = u 0 (x),
if there exists an interval I with a non-empty interior satisfying I ∩ (-∞, T 1 ] = {T 1 } such that u is defined on I × T 1 and is such that, for every 

T 2 > T 1 such that [T 1 , T 2 ] ⊂ I, the restriction of u to [T 1 , T 2 ] × T 1 is in C([T 1 , T 2 ]; H 1 (T 1 ; S k ))
D(u) ⊂ D(ũ), u(t, •) = ũ(t, •) for every t ∈ D(u), one has D(u) = D(ũ).
DEFINITION 2.6. Let F be a map in the form of (7) that satisfies conditions (P 1 ), (P 2 ), and (P 3 ). Let I be a nonempty interval of R. A function ϕ is a solution of the closed-loop system (8

) on I if, for every [T 1 , T 2 ] ⊂ I, the restriction of ϕ to [T 1 , T 2 ] × T 1 is a solution of the Cauchy problem (19) with initial state ϕ(T 1 , •).
Similar to the open-loop system, one obtains the well-posedness of this closed-loop system.

PROPOSITION 2.7. Let F be a map in the form of (7) that satisfies conditions (P 1 ), (P 2 ), (P 3 ), and (P 4 ). Then, 1) For every R ∈ (0, +∞), there exist a time T (R) > 0 and a constant L(R) > 0 such that

• For every T 1 ∈ R and for every initial state u 0 satisfying ∥u 0 ∥ Ḣ1 ≤ R, the Cauchy problem (19) with initial state u 0 at time T 1 has a unique solution on [T 1 , T 1 + T (R)]; • For every T 1 ∈ R, for every u 0 (resp. ũ0 ) satisfying ∥u 0 ∥ Ḣ1 ≤ R (resp. ∥ũ 0 ∥ Ḣ1 ≤ R), the unique solution u (resp. ũ) of the Cauchy problem (19) with initial state u 0 (resp. ũ0 ) at time T 1 satisfies

∥u(t) -ũ(t)∥ H 1 ≤ L(R)∥u 0 -ũ0 ∥ H 1 ∀t ∈ [T 1 , T 1 + T (R)].
2) For every T 1 ∈ R, for every initial state u 0 ∈ H 1 (T 1 ; S k ), the Cauchy problem has a unique maximal solution u. If D(u) is not equal to [T 1 , +∞), then there exists some τ ∈ (T 1 , +∞) such that D(u) = [T 1 , τ ) and one has

lim t→τ - ∥u(t)∥ H 1 = +∞.
Since the proof of this proposition for closed-loop systems is closely related to the ones of Lemma 2.2-2.3 for open-loop systems (i.e., it is essentially based on bootstrap arguments and direct energy estimates), we omit it. Note that the transition of well-posedness and continuous dependence theory from open-loop systems to closed-loop systems is a standard problem in the study of stabilization problems since, as typically treated in [CRX17, Lemma 3 for open-loop systems and Theorems Theorem 7-8 for closed-loop systems] for KdV equations.

Global approximate controllability

3.1. Part 1: global stability of the harmonic map heat flow. This section is devoted to the proof of Proposition 1.3 concerning the uniform convergence of the flow to harmonic maps. This proposition is also related to Step 1 of Section 1.2. First we present the following auxiliary lemma.

LEMMA 3.1. Let T > 0. Let N ≥ 0. There exists a non-decreasing function b : (0, 1) → (0, 1) satisfying lim δ→0 + b(δ) = 0, such that for any initial state u 0 satisfying, for some δ ∈ (0, 1), (20)

T 1 |u 0x (x)| 2 dx ∈ (2πN 2 + δ, 2π(N + 1) 2 -δ),
the unique solution of the harmonic map heat flow (3) satisfies

T 0 T 1 |u t (t, x)| 2 dxdt ≥ b(δ).
Proof of Lemma 3.1. The proof is based on a standard compactness argument. Indeed, suppose that this property is not true, then we can find a sequence of initial states {v n (x)} n∈N satisfying the condition (20) such that the corresponding solutions {u n (t, x)} n∈N of (3) for the initial condition u n (0,

•) = v n satisfy (21) T 0 T 1 |u nt | 2 dxdt ≤ 1 n .
Thanks to Lemma 2.2, we know that {u n } n∈N are uniformly bounded in C([0, T ]; H 1 (T 1 )) ∩ L 2 (0, T ; H 2 (T 1 )), which immediately implies that {∂ t u n } n∈N are uniformly bounded in L 2 (0, T ; L 2 (T 1 )). Hence, there exists some u ∈ C([0, T ]; H 1 (T 1 )) ∩ L 2 (0, T ; H 2 (T 1 )) such that

u n ⇀ u weakly in L 2 (0, T ; H 2 (T 1 )), (22) 
∂ t u n ⇀ ∂ t u weakly in L 2 (0, T ; L 2 (T 1 )). ( 23 
)
The preceding convergence results, combined with the Aubin-Lions lemma and a standard diagonal argument, imply that up to a selection of a subsequence, still denoted by {u n } n∈N , (24)

u n → u strongly in L 2 (0, T ; H 2-r (T 1 )) ∀r ∈ (0, 2].

Since the sequence of functions {u n } n∈N is uniformly bounded in C([0, T ]; H 1 (T 1 ))∩L 2 (0, T ; H 2 (T 1 )), we know from direct interpolation that it is also uniformly bounded in

(25) L p (0, T ; H 2-r (T 1 )) ∀r ∈ (0, 1), ∀p ∈ [2, 2 1 -r ).
From ( 23), ( 25), and the Aubin-Lions lemma one gets that, up to a selection of a subsequence, (26)

u n → u strongly in L p (0, T ; H 2-r (T 1 )) ∀r ∈ (0, 1), ∀p ∈ [2, 2 1 -r ).
In particular, by selecting p = 4 we know that

(27) u nx → u x strongly in L 4 (0, T ; H 1 2 -ε (T 1 )) ∀ε ∈ (0, 1 2 ).
Thanks to the Sobolev embedding theorem H 1/4 (T 1 ) → L 4 (T 1 ), one gets (28) u nx → u x strongly in L 4 (0, T ; L 4 (T 1 )).

Due to assumption ( 21) and ( 23), one knows that ∂ t u = 0, thus u(t, •) = u(•) is time independent. Then, from ( 22), ( 24) with r = 1, the Sobolev embedding H 1 (T 1 ) → L ∞ (T 1 ), and (28),

0 = -∂ t u n + ∂ xx u n + |u nx | 2 u n ⇀ ∂ xx u + |u x | 2 u weakly in L 1 (0, T ; L 2 (T 1 )).
Therefore, u is a harmonic map, which implies that, for some Ñ ∈ N, (29)

T 1 |u x | 2 (t, x)dx = 2π Ñ 2 ∀t ∈ [0, T ].
Recall that, for every n, one has by (13) (30)

T 1 |u nx | 2 (t, x)dx - T 1 |v nx | 2 (x)dx = -2 t 0 T 1 |u nt | 2 (t, x)dxdt,
which, together with (20) for v n , (21), and (24) with r = 1, implies that

T 0 T 1 |u x | 2 dxdt = lim n T 0 T 1 |u nx | 2 dxdt ∈ T [2πN 2 + δ, 2π(N + 1) 2 -δ],
which leads to a contradiction with (29). This concludes the proof of Lemma 3.1. □

Armed with this auxiliary lemma we come back to the proof of Proposition 1.3.

Proof of Proposition 1.3. The preceding lemma indicates that for any initial state v(x)

∈ H 1 (T 1 ) there is N ∈ N such that (31) E(t) → 2πN 2 .
Therefore, for any given ε > 0, there exists some T 0 > 0 such that

E(t) ∈ [2πN 2 , 2πN 2 + ε) ∀t > T 0 .
Notice that on t ∈ [T 0 , T 0 + 1] one has

∂ t u -∆u -|∂ x u| 2 u = 0, thus d dt E(t) = -2⟨u t , u xx ⟩ = -2⟨u t , u t ⟩.
Therefore,

T 0 +1 T 0 T 1 |u t | 2 dxdt = 1 2 (E(T 0 ) -E(T 0 + 1)) ≤ ε 2 .
Thus there exists some t 0 ∈ [T 0 , T 0 + 1] such that

T 1 |u t | 2 (t 0 , x)dx ≤ ε/2,
which, to be combined with the harmonic map heat equation satisfied by u, further implies that (32)

T 1 |u xx + |u x | 2 u| 2 (t 0 , x)dx ≤ ε/2.
We also know that for any

x 0 , x 1 ∈ T 1 , |u x | 2 (t 0 , x 0 ) -|u x | 2 (t 0 , x 1 ) = 2 x 0 x 1 u x • u xx (t 0 , x)dx = 2 x 0 x 1 u x • u t (t 0 , x)dx = O(ε 1 2 ).
Since

T 1 |u x | 2 (t 0 , x)dx ∈ [2πN 2 , 2πN 2 + ε), one concludes that (33) |u x | 2 (t 0 , x) = N 2 + O(ε 1 
2 ) ∀x ∈ T 1 . Therefore, using also (32),

T 1 |u xx + N 2 u| 2 (t 0 , x)dx ≲ ε.
Since u(t 0 , x) belongs to H 2 (T 1 ), we can express it via Fourier series:

u(t 0 , x) = n∈Z a n e inx where a n = a -n ∈ C k+1 with n∈Z |a n | 2 n 4 < +∞.
One mimics the framework in [CKX23, Proposition 4.4], and obtains

n (N 2 -n 2 ) 2 a 2 n ≲ ε.
This yields

|a n | ≲ ε 1 2
n 2 uniformly for n ∈ Z \ {-N, N }. Combining these inequalities with the fact that |u(t 0 , x)| = 1, one has

|a N e iN x + a -N e -iN x | = 1 + O(ε 1 2 ) ∀x ∈ T 1 .
Hence, there exists some harmonic maps γ(x) in the form of

γ(x) = b N e iN x + b N e -iN x , b N = 1 2 (α N + iβ N ) with α N ∈ R k+1 , β N ∈ R k+1 , |α N | = |β N | = 1, and α N • β N = 0, such that |(a N e iN x + a -N e -iN x ) -(b N e iN x + b N e -iN x )| ≲ ε 1 2 ∀x ∈ T 1 . Hence ∥u(t 0 , x) -γ(x)∥ H 1 (T 1 ) ≤ ∥(a N e iN x + a -N e -iN x ) -γ(x)∥ H 1 (T 1 ) + ∥ n̸ =±N a n e inx ∥ H 1 (T 1 ) ≲ ε 1 2 .
This implies that u(t 0 , x) is a "O(ε 1 2 )-approximate harmonic map", and ends the proof of Theorem 1.3. □ 3.2. Part 2: the power series expansion method to construct controls to cross the critical energy levels. This part is related to Step 2 of Section 1.2. The proof is based on the power series expansion method of nonlinear control theory. We adapt the strategy introduced in [CKX23] concerning the wave maps equation, where we recall that the function φ is defined in (11).

LEMMA 3.2. Let N ∈ N * . Let T > 0. There exist an effectively computable constant ε 0 > 0 and an explicit function f 1 (t, x) ∈ L ∞ (0, T ; L 2 (T 1 )) such that, for any ε ∈ (0, ε 0 ], the unique solution of the controlled harmonic map heat flow

(34) ∂ t ū -∆ū = |∂ x ū| 2 ū + 1 ω (εf 1 ) ū⊥ , ū(0, x) = φ(N x), satisfies E(T ) ∈ (2πN 2 -3πN 2 ε 2 , 2πN 2 -πN 2 ε 2 ).
This lemma indicates that with the help of a well-designed control one can reduce the energy of the system if it is not 0. This observation, together with the rotation invariance of the forced harmonic map heat equation as well as the continuous dependence property of Lemma 2.3, immediately implies the following: There exist some effectively computable constant ν 1 , ε 1 > 0 and an explicit function h ∈ L ∞ (0, T ; L 2 (T 1 ; R k+1 )) such that, for any ν 1approximate harmonic maps, namely v ∈ Q ν 1 , such that E(v) ∈ (2πN 2 -1, 2πN 2 + 1) we can find an explicit rotation matrix A ∈ O(k + 1) such that the solution of the controlled harmonic map heat flow equation

∂ t u -∆u = |∂ x u| 2 u + 1 ω (Ah) u ⊥ , u(0, x) = v(x), satisfies T 1 |u x (T, x)| 2 dx ∈ (2πN 2 -10ε 1 , 2πN 2 -ε 1 ).
Now we turn to the proof of Lemma 3.2.

Proof of Lemma 3.2. Notice that the control εf 1 is spatially supported in ω, thus 1 ω (εf 1 ) ū⊥ equals (εf 1 )

ū⊥ and the equation (34) becomes

(35) ∂ t ū -∆ū = |∂ x ū| 2 ū + (εf 1 ) ū⊥ , ū(0, x) = φ(N x).
This proof relies on the power series expansion method. We first formally illustrate the main idea, while the rigorous proof will be rendered later on. Roughly speaking, for ū and f we assume that

ū := ū0 + εū 1 + ε 2 ū2 + . . . with ūi = (ū 1 i , ū2 i , ū3 i , . . . , ūk+1 i ) T , f := εf 1 with f 1 = (0, 0, f 3 1 , . . . , f k+1 1 ) T .
By substituting these expansions into equation ( 35) one deduces the equation that governs the zeroth order term ū0 :

∂ t ū0 -∆ū 0 = |∂ x ū0 | 2 ū0 , u 0 (0, •) = φ(N •),
indicating that u 0 (t, x) = φ(N x) ∀x ∈ T 1 . One further finds that the first order term ū1 satisfies:

∂ t ū1 -∆ū 1 = 2(ū 0x • ū1x )ū 0 + |ū 0x | 2 u 1 + f 1 -(f 1 • ū0 )ū 0 , ū1 (0) = 0. Thus ∂ t       ū1 1 ū2 1 ū3 1 . . . ūk+1 1       -∆       ū1 1 ū2 1 ū3 1 . . . ūk+1 1       = N -(sin N x)u 1 1x + (cos N x)u 2 1x       cos N x sin N x 0 . . . 0       +N 2       ū1 1 ū2 1 ū3 1 . . . ūk+1 1       +       0 0 f 3 1 . . . f k+1 1       This implies that ū1 1 = ū2 1 = 0 and that ∂ t ūi 1 -∆ū i 1 -N 2 ūi 1 = f i 1 ∀i = 3, . . . , k + 1.
Observe the following approximate controllability result on the one-dimensional heat equation.

LEMMA 3.4. Let T > 0. There exists an explicit control g ∈ L ∞ (0, T ; L 2 (T 1 ; R)) such that the unique solution w of (36)

∂ t w -∆ w -N 2 w = 1 ω g, w(0, x) = 0, satisfies w(T, x) = 1. Moreover, T 0 T 1 ⟨ wt , -wt + g⟩dxdt = -πN 2 .
Proof. Again, we first remove the 1 ω term in the equation (36) as the control g is supported in the spatial domain ω. The preceding energy equality comes from direct energy estimate: 1 2

d dt T 1 w2 x -N 2 w2 dx = T 1 ⟨ wt , -wt + g⟩dx.
Thus, it suffices to show the existence of control that steers the state from 0 to 1. Notice that since 1 is not a stationary state of the system (36), this control result is not a direct consequence of the well-known null controllability of heat equations. By defining y(t, x) := w(t, x)e -N 2 t ∀t ∈ [0, T ], ∀x ∈ T 1 , one obtains y t -∆y = e -N 2 t g ∀t ∈ [0, T ], ∀x ∈ T 1 .

Hence it suffices to control the state y(t, •) from 0 to e -N 2 T . We further define

z(t, x) := y(t, x) -e -N 2 T ∀t ∈ [0, T ], ∀x ∈ T 1 ,
and obtains

z t -∆z = e -N 2 t g ∀t ∈ [0, T ], ∀x ∈ T 1 , z(0, x) = -e -N 2 T .
Thanks to the null controllability of the heat equation, see for example [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Xiang | Quantitative rapid and finite time stabilization of the heat equation[END_REF], we can construct an explicit control g supported in [0, T ] × ω such that the unique solution satisfies z(T, •) = 0. This finishes the proof of the lemma. □

By selecting f 3 1 := g, f 4 1 = . . . = f k+1 1 = 0, one obtains ū3 1 (T, x) = 1, ū4 1 (T, x) = . . . = ūk+1
1 (T, x) = 0 and one can further prove the following energy estimate: LEMMA 3.5. The solution ū of the equation (34) satisfies

(37) E(T ) -E(0) = -2πN 2 ε 2 + O(ε 3 ).
Proof of Lemma 3.5. Let us define the reminder term R := ū -ū0 -εū 1 . One can show that

(38) ∥R∥ X T ≲ ε 2 .
Indeed, one easily obtains from the definition of ū, ū0 , ū1 , R and Lemmas 2.1-2.2 that

∥ū∥ X T + ∥ū 0 ∥ X T + ∥ū 1 ∥ X T + ∥R∥ X T ≲ 1
and that ∥(ū t , ū1t , R t )∥ L 2 (0,T ;L 2 (T 1 )) ≲ 1. By comparing the equations on ū, ū0 and ū1 we know that R satisfies, where, to simplify the notations we denote (ū, ū0 , ū1 ) by (u, u 0 , u 1 ),

∂ t R -∆R = |u x | 2 u + (εf 1 ) u ⊥ -|u 0x | 2 u 0 -ε 2(u 0x•u 1x )u 0 + |u 0x | 2 u 1 + f 1 -(f 1 • u 0 )u 0 , = ⟨u 0x + εu 1x + R x , u 0x + εu 1x + R x ⟩(u 0x + εu 1x + R) + (εf 1 ) u ⊥ -|u 0x | 2 u 0 -ε 2(u 0x•u 1x )u 0 + |u 0x | 2 u 1 + f 1 -(f 1 • u 0 )u 0 , = |R x | 2 + 2R x • (u 0x + εu 1x ) u + |u 0x + εu 1x | 2 R -ε⟨f 1 , u⟩R -ε⟨f 1 , R⟩(u 0 + εu 1 ) + ε 2 |u 1x | 2 (u 0 + εu 1 ) + 2(u 0x • u 1x )u 1 -(f 1 • u 1 )(u 0 + εu 1 ) -(f 1 • u 0 )u 1 = N (R) + N 2 (ε),
where

N (R) := |R x | 2 + 2R x • (u 0x + εu 1x ) u + |u 0x + εu 1x | 2 R -ε⟨f 1 , u⟩R -ε⟨f 1 , R⟩(u 0 + εu 1 ), N 2 (ε) := ε 2 |u 1x | 2 (u 0 + εu 1 ) + 2(u 0x • u 1x )u 1 -(f 1 • u 1 )(u 0 + εu 1 ) -(f 1 • u 0 )u 1 .
According Lemma 2.1, for any T 1 ∈ (0, T ] the reminder term R satisfies

∥R∥ X T 1 ≲ ∥R(0)∥ H 1 + ∥N (R) + N 2 (ε)∥ L 2 (0,T 1 ;L 2 (T 1 )) . Recall that ∥(u x , u 0x , u 1x , R x )∥ L 2 (0,T 1 ;L ∞ (T 1 )) ≲ T 1 4 1 . Concerning N (R) one has ∥ |R x | 2 + 2R x • (u 0x + εu 1x ) u∥ L 2 (0,T 1 ;L 2 (T 1 )) ≲ T 1 4 1 ∥R∥ X T 1 , ∥|u 0x + εu 1x | 2 R∥ L 2 (0,T 1 ;L 2 (T 1 )) ≲ T 1 4 1 ∥R∥ L ∞ ((0,T 1 )×T 1 ) ≲ T 1 4 1 ∥R∥ X T 1 , ∥ε⟨f 1 , u⟩R∥ L 2 (0,T 1 ;L 2 (T 1 )) ≲ ε∥f 1 ∥ L ∞ (0,T 1 ;L 2 ) ∥u∥ L 2 (0,T 1 ;L ∞ ) ∥R∥ L ∞ ((0,T 1 )×T 1 ) ≲ T 1 4 1 ∥R∥ X T 1 , ∥ε⟨f 1 , R⟩(u 0 + εu 1 )∥ L 2 (0,T 1 ;L 2 (T 1 )) ≲ T 1 4 1 ∥R∥ X T 1 , while for N 1 (ε) one has ∥|u 1x | 2 (u 0 + εu 1 )∥ L 2 (0,T 1 ;L 2 (T 1 )) ≲ T 1 4 1 , ∥(u 0x • u 1x )u 1 ∥ L 2 (0,T 1 ;L 2 (T 1 )) ≲ T 1 4 1 , ∥(f 1 • u 1 )(u 0 + εu 1 )∥ L 2 (0,T 1 ;L 2 (T 1 )) ≲ T 1 4 1 , ∥(f 1 • u 0 )u 1 ∥ L 2 (0,T 1 ;L 2 (T 1 )) ≲ T 1 4 1 . Hence, ∥R∥ X T 1 ≲ ∥R(0)∥ H 1 + ∥N (R) + N 2 (ε)∥ L 2 (0,T 1 ;L 2 (T 1 )) ≲ ∥R(0)∥ H 1 + T 1 4 1 ε 2 + ∥R∥ X T 1 .
Selecting T 1 small enough, one has

∥R∥ X T 1 ≲ ∥R(0)∥ H 1 + T 1 4 1 ε 2 .
We iterate this bootstrap argument and get the required estimate on R:

(39) ∥R∥ X T ≲ ∥R(0)∥ H 1 + T ε 2 ≲ ε 2 .
By substituting the preceding estimate into the equation on R one further obtains

∥R t ∥ L 2 (0,T ;L 2 (T 1 )) = ∥R xx + N (R) + N 2 (ε)∥ L 2 (0,T ;L 2 (T 1 )) ≲ ε 2 .
Now, we come back to the proof of the required estimate on E(t). One has 1 2

d dt E(t) = - T 1 ⟨u t , u xx ⟩dx = T 1 -|u t | 2 + εu t • f u ⊥ 1 dx, which implies that 1 2 E(T ) -E(0) = T 0 T 1 -|u t | 2 + εu t • f u ⊥ 1 dxdt = T 0 T 1 -|εu 1t + R t | 2 + ε⟨εu 1t + R t , f 1 -(f 1 • u)u⟩dxdt = T 0 T 1 -|εu 1t | 2 + ε 2 ⟨u 1t , f 1 ⟩ -2(εu 1t • R t ) -|R t | 2 -ε⟨εu 1t + R t , (f 1 • u)u⟩ + ε(R t • f 1 )dxdt = T 0 T 1 -|εu 1t | 2 + ε 2 ⟨u 1t , f 1 ⟩ -ε⟨εu 1t , (f 1 • u)u⟩dxdt + O(ε 3 ) = T 0 T 1 -|εu 1t | 2 + ε 2 ⟨u 1t , f 1 ⟩ -ε⟨εu 1t , (f 1 • (εu 1 + R))u⟩dxdt + O(ε 3 ) = T 0 T 1 -|εu 1t | 2 + ε 2 ⟨u 1t , f 1 ⟩dxdt + O(ε 3 ) = T 0 T 1 -|ε wt | 2 + ε 2 ⟨ wt , g⟩dxdt + O(ε 3 ) = - π 2 N 2 ε 2 + O(ε 3 ).
This ends the proof of Lemma 3.5. □

Finally, thanks to Lemma 3.5, one immediately gets Lemma 3.2. □

Quantitative local null controllability and rapid stabilization

This section is devoted to the local null controllability and the local quantitative rapid stabilization, and is also related to Step 5 of Section 1.2. Using the frequency Lyapunov method introduced in [Xia23, Xia20], we first show that our geometric (nonlinear) system (1) is locally rapidly stabilizable. Then, relying on our time-periodic feedback control, we further obtain the local null controllability. This local controllability result, to be combined with the previous proved global approximate controllability, lead to the global null controllability. As commented in Remark 1.9, the local null controllability problem of the harmonic map heat flow has been studied in [START_REF] Liu | Control of harmonic map heat flow with an external field[END_REF]Proposition 2.6]. Here we introduce a different method to prove this null controllability. This new approach shares the advantage of presenting quantitative cost estimates. 4.1. An iteration approach. It sounds natural to rely on the iteration argument introduced in [KX22] for the local exact controllability of the wave maps equations. Heuristically speaking, one shall construct a sequence of "approximate solutions" {u n } n having initial state u n (t = 0) = u 0 and final state u n (t = T ) = N + e n , where N := (0, . . . , 0, 1) T is the constant map equal to the North pole and e n → 0,

u n t -∆u n = |u n x | 2 u n -1 ω ⟨f n , u n ⟩u n + 1 ω f n , u n (0, •) = u 0 (•), u n+1 (T, •) = N + e n
and find an exact solution by passing to the limit n → +∞. The idea is that for the n-th iterate (u n , f n ) we first consider a correction (v n , h n ) which satisfies the linear controlled heat equation such that it eliminates the error term of (u n , f n ), namely e n . Thus the state (u n + v n , f n + h n ) almost solves the controlled harmonic map heat equation, moreover the error is smaller than the preceding one. Then we correct the error source term to find an exact solution (u n+1 , f n+1 ) such that its final state e n+1 becomes smaller than e n , where u n+1 ≈ u n + v n and f n+1 = f n + h n . This strategy was successfully applied on the controlled wave equation. However, in the current setting, due to strong smoothing effect of the heat equation the heat equation is null controllable but not exactly controllable. Consequently, it becomes more complicated when one aims to construct the correction term v n . Independently of the approximate solutions illustrated above, it is equally natural to consider iterations of the form:

u n+1 t -∆u n+1 = |u n x | 2 u n -1 ω ⟨f n , u n ⟩u n + 1 ω f n+1 , u n+1 (0, •) = u 0 (•),
or of the form

u n+1 t -∆u n+1 -|u n x | 2 u n+1 = -1 ω ⟨f n , u n ⟩u n + 1 ω f n+1 , u n+1 (0, •) = u 0 (•).
Nevertheless, in these circumstances, some uniform decay properties of the source term should be involved, making the analysis more delicate. 4.2. The stereographic projection. Instead of the iteration method used above, we now use the stereographic projection from the South pole onto the tangent space T N S k of the North pole N = (0, . . . , 0, 1) T to the sphere

S k (T N S k = {(x 1 , . . . , x k , 1) T ; (x 1 , . . . , x k ) T ∈ R k } ≃ R k ).
It maps the state u which belongs to the geometric target S k onto this tangent space. Let us remark that the stereographic projection is a standard method for the study of the harmonic map heat flow with sphere targets. Recently, this technique has been used by Liu to study of the local controllability of harmonic map heat flow [Liu20, Proposition 2.6]. Taking advantage of this projection, the controlled harmonic map heat flow equation becomes the controlled nonlinear heat equation (without any constraint), the reason for which will be rendered later on,

∂ t v -∆v + 2s x 4 + s v x - 2|v x | 2 4 + s v = 1 ω g where v, g ∈ R k .
More precisely, we define the bijection

P : S k \ {(0, 0, . . . , -1) T } -→ R k , (40) (u 1 , . . . , u k+1 ) T → (v 1 , . . . , v k ) T ,
for which, by denoting

s := k i=1 (v i ) 2 , one has (u 1 , . . . , u k+1 ) T = P -1 (v 1 , . . . , v k ) T = 4v 1 4 + s , . . . , 4v k 4 + s , 4 -s 4 + s T .
Therefore, for any given function v(t, x) ∈ R k the corresponding function u(t, x) on S k ⊂ R k+1 satisfies that for ∀i ∈ {1, . . . , k},

∂ t u i = 4 v i t 4 + s - v i s t (4 + s) 2 , ∂ x u i = 4 v i x 4 + s - v i s x (4 + s) 2 , ∂ xx u i = 4 v i xx 4 + s - 2v i x s x + v i s xx (4 + s) 2 + 2v i (s x ) 2 (4 + s) 3 , ∂ t u k+1 = -8 s t (4 + s) 2 , ∂ x u k+1 = -8 s x (4 + s) 2 , ∂ xx u k+1 = -8 s xx (4 + s) 2 - 2(s x ) 2 (4 + s) 3 . Notice that |u x | 2 = k i=1 (u i x ) 2 + (u k+1 x ) 2 = 16 k i+1 v i x 4 + s - v i s x (4 + s) 2 2 + 16 4(s x ) 2 (4 + s) 4 = 16|v x | 2 (4 + s) 2 .
Defining ū := (u 1 , . . . , u k ) T , thanks to the preceding equations, one has

ūt -∆ū -|u x | 2 ū = 4 4 + s v t - 4s t (4 + s) 2 v - 4 4 + s ∆v + 8s x (4 + s) 2 v x + 4s xx (4 + s) 2 v - 8(s x ) 2 (4 + s) 3 v - 64|v x | 2 (4 + s) 3 v = 4 4 + s v t - 4 4 + s ∆v + 8s x (4 + s) 2 v x - 8|v x | 2 (4 + s) 2 v + - 4s t (4 + s) 2 + 4s xx (4 + s) 2 - 8(s x ) 2 (4 + s) 3 - 8(4 -s)|v x | 2 (4 + s) 3 v, and 
u k+1 t -∆u k+1 -|u x | 2 u k+1 = - 8s t (4 + s) 2 + 8s xx (4 + s) 2 - 16(s x ) 2 (4 + s) 3 - 16(4 -s)|v x | 2 (4 + s) 3 .
Inspired by the preceding formulas, we define (41)

I := - 8s t (4 + s) 2 + 8s xx (4 + s) 2 - 16(s x ) 2 (4 + s) 3 - 16(4 -s)|v x | 2 (4 + s) 3 , and obtain    ūt -∆ū -|u x | 2 ū = 4 4 + s ∂ t v -∆v + 2s x 4 + s v x - 2|v x | 2 4 + s v + 1 2 Iv, u k+1 t -∆u k+1 -|u x | 2 u k+1 = I.
Conversely, suppose that for some control function g supported in [0, T ] × ω, the function v satisfies (42)

∂ t v -∆v + 2s x 4 + s v x - 2|v x | 2 4 + s v = 1 ω g = g.
Remark that for any given initial state v(0, •) and control function g, the preceding equation admits a unique solution. By plugging this equation into the definition of I one obtains

- 1 8 I = s t (4 + s) 2 - s xx (4 + s) 2 + 2(s x ) 2 (4 + s) 3 + 2(4 -s)|v x | 2 (4 + s) 3 = 1 (4 + s) 2 s t -s xx + 2(s x ) 2 4 + s + 2(4 -s)|v x | 2 4 + s = 1 (4 + s) 2 2v • (∆v - 2s x 4 + s v x + 2|v x | 2 4 + s v + g) -2|v x | 2 -2vv xx + 2(s x ) 2 4 + s + 2(4 -s)|v x | 2 4 + s = 2vg (4 + s) 2 .
This further implies that u = P -1 v satisfies

     ūt -∆ū -|u x | 2 ū = 4 4 + s g - 8vg (4 + s) 2 v, u k+1 t -∆u k+1 -|u x | 2 u k+1 = - 16vg (4 + s) 2 .
One observes from this preceding equation that in the uncontrolled domain, where the value of g vanishes, one has u t -∆u -|u x | 2 u = 0, and that in the controlled domain ω one has

u t -∆u -|u x | 2 u =    4 4 + s g - 8vg (4 + s) 2 v - 16vg (4 + s) 2    since    4 4 + s g - 8vg (4 + s) 2 v - 16vg (4 + s) 2    • u =    4 4 + s g - 8vg (4 + s) 2 v - 16vg (4 + s) 2    •    4 4 + s ū 4 -s 4 + s    = 0.
Namely, it suffices to investigate the control system (42) on v, since this automatically provides an explicit trajectory to the control system on u.

4.3.

Quantitative rapid stabilization and null controllability. As illustrated above, it suffices to study the transformed system (42). Actually, we are able to prove the following quantitative result: PROPOSITION 4.1. Let T ∈ (0, 1]. The controlled system

∂ t v -∆v + 2v • v x 4 + |v 2 | v x - 2|v x | 2 4 + |v| 2 v = 1 ω g
is locally null controllable in the sense that, there exists some effectively computable C > 1 which is independent of the value of T ∈ (0, 1] such that for any initial state v(0, •) satisfying

∥v(0, •)∥ H 1 (T 1 ) ≤ e -C T ,
we can construct an explicit control g ∈ L ∞ (0, T ; L 2 (T 1 )) satisfying

∥g∥ L ∞ (0,T ;L 2 (T 1 )) ≤ e C T ∥v(0, •)∥ H 1 (T 1 ) ,
such that the unique solution v ∈ C([0, T ]; H 1 (T 1 ))∩L 2 (0, T ; H 2 (T 1 )) of the controlled harmonic map heat flow satisfies v(T, •) = 0.

We use the Frequency Lyapunov method introduced in [START_REF] Xiang | Small-time local stabilization of the two-dimensional incompressible Navier-Stokes equations[END_REF][START_REF] Xiang | Quantitative rapid and finite time stabilization of the heat equation[END_REF] to prove this local null controllability result. This stabilization-based approach provides constructive and explicit controls to achieve both quantitative rapid stabilization and finite time stabilization (thus consequently null controllability).

For any given constant λ > 0, we define the low-frequency projection

P λ v := 1 π   1≤n 2 ≤ √ λ ⟨v, cos(n 2 x)⟩ L 2 (T 1 ) cos(n 2 x)   + 1 2π ⟨v, 1⟩ L 2 (T 1 ) + 1 π   1≤n 1 ≤ √ λ ⟨v, sin(n 1 x)⟩ L 2 (T 1 ) sin(n 1 x)   . ( 43 
)
Recall that {sin(nx)/ √ π} n∈N\{0} ∪{cos(nx) √ π} n∈N\{0} ∪{1/ √ 2π} is an orthonormal basis made of eigenfunctions of the Laplace operator on the torus T 1 . The essential step of the frequency Lyapunov method is the following quantitative rapid stabilization result: LEMMA 4.2. There exist effectively computable constants C 0 , C 1 > 1 such that for any λ > 1, the unique solution of the closed-loop system (44)

∂ t v -∆v + 2v • v x 4 + |v 2 | v x - 2|v x | 2 4 + |v| 2 v = -λe C 0 √ λ 1 ω P λ v,
decays exponentially as

∥v(t, •)∥ H 1 ≤ e 2C 0 √ λ e -λ 4 t ∥v(0, •)∥ H 1 ∀t ∈ (0, +∞), provided that the initial state v(0, •) satisfies ∥v(0, •)∥ H 1 ≤ C -1 1 e -6C 0 √ λ .
REMARK 4.3. This lemma is devoted to the rapid stabilization of v = Pu (recall the definition of P in equation (40), and the relation between the equation on u and the equation on v). After applying the inverse of the stereographic projection, the function u satisfies the following closedloop system

u t -∆u -|u x | 2 u = 1 ω F (u) := 1 ω    4 4 + s g - 8vg (4 + s) 2 v - 16vg (4 + s) 2    where v = Pu, s = |Pu| 2 , g = -λe C 0 √ λ 1 ω P λ (Pu).
Since v decays rapidly so does u. This automatically gives the proof of Theorem 1.7 on the local rapid stabilization of the harmonic map heat flow around N = (0, . . . , 0, 1) T . The stabilization around other points is a direct consequence of the rotation invariance of the forced harmonic map heat flow.

We first provide the proof of Proposition 4.1 with the help of Lemma 4.2, while this auxiliary lemma will be shown later.

Proof of Proposition 4.1. Armed with the preceding lemma, the construction of controls leading to null controllability of the system is an explicit iteration procedure. We refer to Section 4 of the article [Xia23, Theorem 4.1] by the last author concerning this precise construction. Roughly speaking, one shall cut the time interval (0, T ) by infinitely many pieces: (0, T ) = ∪ ∞ k=1 (t k , t k+1 ], and on each piece construct a feedback law as 1 ω g := -λ k e C 0 √ λ k 1 ω P λ k v such that the solution decays exponentially fast with rate λ k /4 in the period t ∈ (t k , t k+1 ). After a careful selection of the values of {t k , λ k } k∈N * as well as a constant C > 1, we finally show that for any initial state v(0, •) satisfying ∥v(0, •)∥ H 1 (T 1 ) ≤ e -C T the unique solution v(t)| t∈(0,T ) of the equation 

∂ t v -∆v + 2v • v x 4 + |v 2 | v x - 2|v x | 2 4 + |v| 2 v = -λ k e C 0 √ λ k 1 ω P λ k v ∀t ∈ (t k , t k+1 ], ∀k ∈ N * , satisfies: ∥v(t k , •)∥ H 1 (T 1 ) ≤ C -1 1 e -6C 0 √ λ k ∀k ∈ N * , ∥v(t, •)∥ H 1 (T 1 ) ≤ e 2C 0 √ λ k e -λ k 4 t ∥v(t k , •)∥ H 1 (T 1 ) ∀t ∈ (t k , t k+1 ], ∀k ∈ N * , ∥1 ω g(t)∥ L 2 (T 1 ) = ∥λ k e C 0 √ λ k 1 ω P λ k v∥ L 2 (T 1 ) ≤ e C T ∀t ∈ (t k , t k+1 ], ∀k ∈ N * , v(t, •) t→T - ----→ 0 in H 1 (T 1 ).
47) 1 2 ∥v∥ 2 H 1 (T 1 ) ≤ V λ (v) ≤ µ λ ∥v∥ 2 H 1 (T 1 ) . ( 
In the following context, if we do not emphasize L 2 (ω), then the L 2 notation infers to L 2 (T 1 ). Let us consider the variation of V λ (v) with respect to time:

d dt V λ (v) = 2µ λ P λ v, d dt P λ v L 2 + 2 ∂ x P ⊥ λ v, d dt ∂ x P ⊥ λ v L 2 = 2µ λ P λ v, d dt v L 2 -2 ∆P ⊥ λ v, d dt v L 2 .
By denoting

a(v, v x ) := - 2v • v x 4 + |v 2 | v x + 2|v x | 2 4 + |v| 2 v, there is ∥a(v, v x )∥ L 2 ≲ ∥v x ∥ 2 L 4 ≲ ∥v x ∥ 3 2 L 2 ∥∆v∥ 1 2 L 2 .
We also recall the so-called spectral inequality (see [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] for a general result on this inequality):

LEMMA 4.4 (Spectral inequality, [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]). There exists some constant C 0 independent of λ > 1 such that

(48) ∥P λ f ∥ L 2 (ω) ≥ e -C 0 √ λ ∥P λ f ∥ L 2 (T 1 ) ∀f ∈ L 2 (T 1 ), ∀λ > 1.
Lastly, we recall the Young's inequalities 4 .

a 3 2 b 1 2 ≤ 3a 2 + b 2 4 , a 3 
On the one hand,

-2 ∆P ⊥ λ v, d dt v L 2 = -2 ∆P ⊥ λ v, ∆v + a(v, v x ) -1 ω γ λ P λ v L 2 ≤ -2∥∆P ⊥ λ v∥ 2 L 2 + 2∥∆P ⊥ λ v∥ L 2 ∥a(v, v x )∥ L 2 + γ λ ∥∆P ⊥ λ v∥ L 2 ∥P λ v∥ L 2 ≤ -2∥∆P ⊥ λ v∥ 2 L 2 + C∥∆v∥ 3 2 L 2 ∥v x ∥ 3 2 L 2 + γ λ ∥∆P ⊥ λ v∥ L 2 ∥P λ v∥ L 2 ≤ - 3 2 ∥∆P ⊥ λ v∥ 2 L 2 + γ 2 λ ∥P λ v∥ 2 L 2 + C∥∆v∥ 3 2 L 2 ∥v x ∥ 3 2 L 2 .
On the other hand, thanks to the spectral inequality and the standard energy estimates,

2 P λ v, d dt v L 2 = 2 P λ v, ∆v + a(v, v x ) -1 ω γ λ P λ v L 2 = -2∥∂ x P λ v∥ 2 L 2 -2γ λ P λ v, P λ v L 2 (ω) + 2 P λ v, a(v, v x ) L 2 ≤ -2γ λ e -C 0 √ λ ∥P λ v∥ 2 L 2 -2∥∂ x P λ v∥ 2 L 2 + C∥P λ v∥ L 2 ∥v x ∥ 3 2 L 2 ∥∆v∥ 1 2 L 2 ≤ -2γ λ e -C 0 √ λ ∥P λ v∥ 2 L 2 -2∥∂ x P λ v∥ 2 L 2 + C∥v∥ 5 2 H 1 ∥∆v∥ 1 2
L 2 . Recall that by the definition of the projection P λ -∥∆P ⊥ λ v∥ 2 L 2 ≤ -λ∥∂ x P ⊥ λ v∥ 2 L 2 . By combing the preceding estimates together one obtains

d dt V λ (v) ≤ -2µ λ γ λ e -C 0 √ λ ∥P λ v∥ 2 L 2 -2µ λ ∥∂ x P λ v∥ 2 L 2 + Cµ λ ∥v∥ 5 2 H 1 ∥∆v∥ 1 2 L 2 - 3 2 ∥∆P ⊥ λ v∥ 2 L 2 + γ 2 λ ∥P λ v∥ 2 L 2 + C∥∆v∥ 3 2 L 2 ∥v x ∥ 3 2 L 2 = -∥∆P ⊥ λ v∥ 2 L 2 -2µ λ γ λ e -C 0 √ λ ∥P λ v∥ 2 L 2 + γ 2 λ ∥P λ v∥ 2 L 2 - 1 2 ∥∆P ⊥ λ v∥ 2 L 2 -2µ λ ∥∂ x P λ v∥ 2 L 2 + Cµ λ ∥v∥ 5 2 H 1 ∥∆v∥ 1 2 L 2 + C∥∆v∥ 3 2 L 2 ∥v x ∥ 3 2 L 2 ≤ -∥∆P ⊥ λ v∥ 2 L 2 -2µ λ γ λ e -C 0 √ λ ∥P λ v∥ 2 L 2 + γ 2 λ ∥P λ v∥ 2 L 2 - 1 2 ∥∆v∥ 2 L 2 + Cµ λ ∥v∥ 5 2 H 1 ∥∆v∥ 1 2 L 2 + C∥∆v∥ 3 2 L 2 ∥v x ∥ 3 2 L 2 ≤ -λ∥∂ x P ⊥ λ v∥ 2 L 2 -2µ λ γ λ e -C 0 √ λ ∥P λ v∥ 2 L 2 + γ 2 λ ∥P λ v∥ 2 L 2 + Cµ 4 3 λ ∥v∥ 10 3 H 1 + C∥v∥ 6 H 1
, where both C and C 0 are independent of the choice of λ ∈ (1, +∞). By selecting (49)

γ λ = λe C 0 √ λ and µ λ = λe 2C 0 √ λ , we have (50) d dt V λ (v) ≤ -λV λ + C e 4C 0 √ λ V 5 3 λ + V 3 λ .
Using this a priori energy estimate one can easily conclude the local (in time) existence and uniqueness of the solution for the closed-loop system. Moreover, for any initial state that satisfies

(51) ∥v∥ H 1 ≤ C -1 1 e -6C 0 √ λ ,
this unique solution decays exponentially:

V λ (v(t)) ≤ e -λ 2 t V λ (v(0)), and 
∥v(t)∥ H 1 ≤ e 2C 0
√ λ e -λ 4 t ∥v(0)∥ H 1 ∀t ∈ (0, +∞). Thus we finish the proof of Lemma 4.2. □ 5. Small-time global exact controllability between harmonic maps 5.1. The sphere target case. This part is devoted to the proofs of Theorem 1.11 and Theorem 1.12. We first investigate the simplest case, namely, the harmonic map heat flow T 1 → S 1 , for which, benefiting from the polar coordinates, the system is transformed into the linear heat equation with an interior control. Next, we show that for a sphere S k , if the initial state is in a given closed geodesic and the control force is tangent to this geodesic, then the unique solution to the harmonic map heat flow remains in the same closed geodesic. Moreover, under the polar coordinates, the system becomes again the controlled heat equation, for which the controllability is well-investigated.

Since γ is a closed constant-speed geodesic on S k with energy 2π, there exists an orthogonal matrix A ∈ O(k + 1) such that Aγ(x) = φ(x) where φ(x) := (cos x, sin x, 0, . . . , 0) T .

In the following, without loss of generality, we assume that γ = φ, and that ω = (2π -δ, 2π). We denote by N the integer such that deg(v 0 , T 1 , C) = N .

(i). We first prove Theorem 1.11. Recall that this result is related to Step 6 of Section 1.2. We express the controlled harmonic map heat flow in term of the polar coordinates as follows:

u(t, x) = (cos θ, sin θ, 0, . . . , 0) T with θ = θ(t, x) ∈ R, f u ⊥ (t, x) = h(t, x)(-sin θ, cos θ, 0, . . . , 0) T with h(t, x) ∈ R and supp [0, T ] × ω. Thus the function θ(t, x)| t∈[0,T ],x∈[0,2π] satisfies          θ t (t, x) -θ xx (t, x) = h(t, x), θ(t, 2π) = θ(t, 0) mod 2π, θ x (t, 2π) = θ x (t, 0), θ(0, x) = θ 0 (x) with h(t, x) ∈ L ∞ (0, T ; L 2 ([0, 2π]; R)).
Clearly, for initial state θ 0 satisfying θ 0 (2π) = θ 0 (0) + 2πN , the unique solution θ satisfies

θ ∈ C([0, T ]; H 1 ([0, 2π]; R)) ∩ L 2 ([0, T ]; H 2 ([0, 2π]; R)), θ(t, 2π) = θ(t, 0) + 2πN ∀t ∈ [0, T ]. By considering w(t, x) := θ(t, x) -N x -r, we obtain      w t (t, x) -w xx (t, x) = h(t, x), w(t, 0) = w(t, 2π), w x (t, 0) = w x (t, 2π),
which is a controlled heat equation on T 1 . Similarly to the proof of Proposition 4.1, we can construct an explicit control h ∈ L ∞ (0, T ; L 2 ) such that w(T, x) = 0. Actually, we can directly cite the results given in [FR71, GL95, Jon77, Lit78, MRR14, CN17, MRR16, HKT20] concerning the one-dimensional heat equations. Therefore, the final state of the forced harmonic map heat flow equation is u(T, x) = (cos θ(T, x), sin θ(T, x), 0, . . . , 0) T = (cos(N x + r), sin(N x + r), 0, . . . , 0) T .

This finishes the proof of Theorem 1.11.

(ii). Next we turn to the proof of Theorem 1.12 keeping in mind that it is related to Step 7 of Section 1.2. Again, we express the controlled harmonic map heat flow equation in terms of the polar coordinates. Without loss of generality, let r = 0. Assume that the initial state is v 0 (x) = (cos(θ 0 (x)), sin(θ 0 (x)), 0, . . . , 0) T with θ 0 ∈ H 1 (0, 2π) and θ 0 (2π) = θ 0 (0) + 2πN.

We define a C 2 ([0, 2π]) function θ 1 (•) as follows:

θ 1 (x) = N 1 x, if x ∈ [0, 2π -δ], N 1 x -(N 1 -N )2π, if x ∈ [2π -δ/2, 2π].
This function satisfies (θ 1 ) x (0) = (θ 1 ) x (2π). Then we show that there exists a control h ∈ L ∞ (0, T ; L 2 (0, 2π)) supported in [0, T ] × ω such that the unique solution of

         θ t (t, x) -θ xx (t, x) = h(t, x), θ(t, 2π) = θ(t, 0) + 2πN, θ x (t, 2π) = θ x (t, 0), θ(0, x) = θ 0 (x), satisfies θ(T, •) = θ 1 (•). Indeed, since the function θ 1 satisfies      -θ 1xx (x) = h 1 (x), θ 1 (2π) = θ 1 (0) + 2πN, θ 1x (2π) = θ 1x (0) = N 1 ,
with h 1 supported in (2π-δ, 2π-δ/2), it suffices to control the function w(t, x) := θ(t, x)-θ 1 (x) that is governed by the controlled equation on T 1 :

        
w t (t, x) -w xx (t, x) = (h -h 1 )(t, x), w(t, 2π) = w(t, 0), w x (t, 2π) = w x (t, 0), w(0, x) = θ 0 (x) -θ 1 (x).

Since the preceding equation is null controllable, there exists an explicit function h supported in (0, T ) × ω such that the unique solution satisfies w(T, x) = 0. Hence, θ(T, x) = θ 1 (x). Define u 1 (x) := (cos(θ 1 (x)), sin(θ 1 (x)), 0, . . . , 0) T ∀x ∈ T 1 , u 2 (x) := (cos(N 1 x), sin(N 1 x), 0, . . . , 0) T ∀x ∈ T 1 .

Next, using the assumption k ≥ 2, we can construct a continuous deformation u(t, We refer to Figure 7 concerning this deformation process. This finishes the proof of Theorem 1.12. 5.2. The general compact Riemannian manifold target case. Here we turn to cases where the S k -target is replaced by a general compact Riemannian submanifold of R m : Theorem 1.13. In fact, by the Nash embedding theorem, it then covers the case where the target manifold is any compact Riemannian manifold. The main ingredient of our proof of Theorem 1.13 is the following lemma.

LEMMA 5.1. Let Γ be a complete geodesic of N and let q 0 , q 1 be two points in this geodesic. Let 0 < a < a 1 < a 0 < π and the controlled domains be ω = [0, a 0 ] ∩ [2π -a 0 , 2π], ω 0 = [a, a 0 ] ∩ [2π -a 0 , 2π -a] and ω 1 = [a, a 1 ] ∩ [2π -a 1 , 2π -a]. Let T > 0.

(i) We consider the harmonic map heat flow [0, T ] × T 1 → N :

(52) u t -u xx = β u (u x , u x ) + 1 ω f u ⊥ , u(0, •) = u 0 (•) ⊂ Γ Assume that the initial state has values inside the geodesic Γ and also that the control is always tangent to this geodesic. Then the controlled harmonic map heat flow has values in Γ and becomes a linear controlled heat equation.

(ii) We consider the harmonic map heat flow [0, T ] × (a, 2π -a) → N :

(53)

         u t -u xx = β u (u x , u x ) + 1 ω 0 f u ⊥ , u(t, a) = q 0 , u(t, 2π -a) = q 1 , u(0, •) = u 0 (•) ⊂ Γ,
where the initial state satisfies the compatibility condition u 0 (a) = q 0 and u 0 (2π -a) = q 1 . Assume that the control is always tangent to the geodesic Γ. Then the controlled harmonic map heat flow has values in Γ and becomes a linear controlled heat equation. Moreover, for any point q 2 ∈ Γ and any initial state u 0 ∈ C 2 ([a, 2π -a]), there exists a control The second part of Lemma 5.1 can be combined with the following gluing lemma to construct 2π-periodic strong solutions of the controlled harmonic map heat flow. = ūs (φ) (φ t -φ xx -1 ω f 0 ) .

Note that, since ū is a non-constant harmonic map, ūs (φ) does not vanish. Hence u is a solution to the controlled harmonic map heat flow if and only if φ is a solution to the controlled heat equation (63) φ t -φ xx = 1 ω f 0 .

(ii) Assume that (64) q 0 = ū(A), q 1 = ū(B) and q 2 = ū(D).

Similarly, assume that u(t, x) = ū(φ(t, Next, we show that there exists a continuous control f such that the solution satisfies u(T, x) = q 3 for every x ∈ [a 1 , 2π -a 1 ]. It suffices to show that there exists f 0 such that the solution of (65) satisfies φ(T, x) = D ∀x ∈ [a 1 , 2π -a 1 ].

We construct a steady state φ ∈ C 2 ([a, 2π -a]; R) such that, for some function g 0 ∈ C 2 ([a, 2π -a]; R) with a support contained in ω 1 , (66)

         -φxx = 1 ω 1 g 0 , φ(a) = A, φ(2π -a) = B, φ(x) = D ∀x ∈ [a 1 , 2π -a 1 ],
and consider the state ϕ := φ -φ which satisfies (67)

        
ϕ t -ϕ xx = 1 ω 0 f 0 -1 ω 1 g 0 , ϕ(t, a) = 0, ϕ(t, 2π -a) = 0, ϕ(0, •) = φ(0, •) -φ(0, •) ∈ C 2 ([a, 2π -a]; R).

The preceding system on ϕ is null controllable with 1 ω 0 f 0 ∈ C 0 . Thus we have constructed a solution φ that satisfies φ(T, x) = D ∀x ∈ [a 1 , 2π -a 1 ]. This concludes the proof of Lemma 5.1. □ Thanks to the previous lemmas, one can adapt the ideas of Theorems 1.11-1.12 to get the small-time global controllability between homotopic harmonic maps, i.e. Theorem 1.13. More precisely, the proof consists of the following five stages which are illustrated in Figure 8.

The proof of Theorem 1.13. We select p 0 ∈ γ 0 , p 1 ∈ γ 1 and further find a constant speed complete geodesic Γ = {ū(s) : s ∈ R} such that ū(a) = p 0 , ū(2π -a) = p 1 . Stage 1. In this first stage we use the idea of Theorems 1.11, or Lemma 5.1 for the special case that Γ is a closed geodesic, to deform the state on the geodesic γ 0 . It suffices to select controls that are tangent to this geodesic. Since the initial state is the harmonic map γ 0 , which is smooth, we can find a control f ∈ C 0 ([0, T /5] × T 1 ) to steer the controlled harmonic map heat flow from γ 0 (•) to v 1 ∈ C 2 (T 1 ; N ) satisfying v 1 (x) ∈ {γ(s) : s ∈ T 1 } ∀x ∈ T 1 , v 1 (x) = p 0 ∀x ∈ [a, 2π -a 1 ].

Figure 3 .

 3 Figure 3. The natural energy dissipation of the harmonic map heat flow from T 1 to S 2 . The green arrow indicates the deformation of the curve (solution). See Proposition 1.3 for details on this convergence result.The picture on the left shows that the solution converges to a harmonic map having 2π-energy. This picture is also related to Step 1 of Section 1.2. The picture on the right shows that the solution converges to a constant state. This picture is also related to Step 4 of Section 1.2.

Figure 4 .

 4 Figure 4. The local quantitative rapid stabilization and local null controllability of the equation around some given point p ∈ S 2 . See Theorem 1.7 and Theorem 1.8 for details. This picture is also related to Step 5 of Section 1.2.

  □ 1.1.3. Small-time global exact controllability between harmonic maps and an open problem. Global exact controllability is one of the most difficult problems in control theory. For example the Lions problem on the global controllability of the Navier-Stokes equations with the no-slip Stokes condition and the optimal time for the global controllability of the semilinear wave equations are widely open. In the case that (small-time) global (exact) controllability fails

Figure 6 .

 6 Figure 6. Small-time global controllability on closed geodesics: the picture on the left shows that how to deform from a constant state p to another constant state p f along geodesics on sphere. See Theorem 1.11 for details. This picture is also related to Step 6 of Section 1.2.For general manifold targets N , there may be no closed geodesic that contains both p and p f . The picture on the right shows that we can deform from a constant state p to another constant state p f by steps along different closed geodesics. Alternatively, we can always find a complete geodesic, which is not necessarily a closed geodesic, that contains both p and p f . The idea of deforming on complete geodesics is used in the proof of Lemma 5.1.

Figure 8 .

 8 Figure 8. Small-time global controllability between harmonic maps are that homotopic on general compact Riemannian manifold, Theorem 1.13 : deform from γ 0 to γ 1 . The blue, red and green curves have the same meaning as in Figure 7. Stage 1 and Stage 5 are based on the idea of Theorem 1.11 to control the state on closed geodesics γ 0 and γ 1 . Stage 2 and Stage 4 are based on the idea of Theorem 1.12 to deform the state on N without moving the uncontrolled part. See Figure 7 for such a deformation on S 2 . Stage 3 adapts Lemma 5.1 (ii) and Lemma 5.2 to move the uncontrolled part on a given complete geodesic Γ.

Figure 9 .

 9 Figure 9. The strategy for the proof of the global controllability to harmonic maps: Theorem 1.14Step 1 is the consequence of Proposition 1.3, and is illustrated by Figure3;Step 2 is the result of Proposition 3.3, and is illustrated by Figure10;Step 3 is the iteration of the preceding two steps;Step 4 is the consequence of Corollary 1.5, and is again illustrated by Figure3;Step 5 is deduced from Theorem 1.8, and we refer to Figure4;Step 6 is the characterized by Theorem 1.11, and we observe this deformation in Figure6;Step 7 is shown using Theorem 1.12, and is illustrated by Figure7.

Figure 10 .

 10 Figure10. The process of using explicit controls to cross the critical energy level set. This picture is also related to Step 2 of Section 1.2.

  ) : [T, 2T ] × T 1 → S k such that u(t, x)| t∈[T,2T ],x∈T 1 ∈ C 1 ([T, 2T ]; C 2 (T 1 ; S k )), u(T, x) = u 1 (x), u(2T, x) = u 2 (x), u(t, x) = (cos(N 1 x), sin(N 1 x), 0, . . . , 0) T ∀t ∈ [T, 2T ], ∀x ∈ [0, 2π -δ]. The above constructed function u(t, x)| t∈[T,2T ],x∈T 1 satisfies u t -u xx = |u x | 2 u + f,with f := u t -u xx -|u x | 2 u having a support included in [T, 2T ] × ω. Therefore, we have constructed a control f supported in [0, 2T ]×ω and a function u(t, x)| t∈[0,2T ],x∈T 1 as a solution to the controlled harmonic map heat flow equation such that u(0, •) = v 0 (•), u(T, •) = u 1 (•) and u(2T, •) = u 2 (•).

f

  ∈ C 0 ([0, T ]×[a, 2π -a]) such that the unique strong solution satisfies u ∈ C 0 ([0, T ]; C 2 [a, 2πa]) ∩ C 1 ([0, T ]; C 0 [a, 2π -a]) and (54) u(T, x) = q 2 ∀x ∈ [a 1 , 2π -a 1 ].

LEMMA 5. 2 .

 2 Let γ be a closed curve on N . Assume that the map u : [0, T ] × (a, 2π -a) → N belongs to C 0 ([0, T ]; C 2 [a, 2π -a]) ∩ C 1 ([0, T ]; C 0 [a, 2π -a]) space. Then we can extend u to ũ : [0, T ] × [0, 2π] → N so that the extension ũ satisfiesũ ∈ C 0 ([0, T ]; C 2 [0, 2π]) ∩ C 1 ([0, T ]; C 0 [0, 2π]), (55) ũ(t, 0) = ũ(t, 2π), ∀t ∈ [0, T ], (56) ũx (t, 0) = ũx (t, 2π), ∀t ∈ [0, T ], (57) ũxx (t, 0) = ũxx (t, 2π), ∀t ∈ [0, T ], (58) ũ(t, •) is homotopic to γ, ∀t ∈ [0, T ]. (59)Proof of Lemma 5.1. The statement concerning the values of the flow follows by checking that the solution to the controlled harmonic map heat flow with values in the Riemannian submanifold Γ ⊂ R m is also a solution to the controlled harmonic map heat flow with values in the Riemannian submanifold N ⊂ R m . Concerning the second statement, suppose thatū : R → Γ ⊂ N s → ū(s) is a non-constant harmonic map: (60) -ū ss = β ū(ū s , ūs ) ∀s ∈ R,where β is the second fundamental form of N . Note that ū(R) = Γ. We also note that for any two points p and p f in the same connected component of N , there exists a complete geodesic Γ containing both points. (i) We know that u is a solution to the controlled harmonic map heat flow if and only if(61) u t -u xx = β u (u x , u x ) + 1 ω 0 f u ⊥ .Assume that u(t, x) = ū(φ(t, x)) for every (t, x) ∈ [0, T ] × T 1 , withφ : [0, T ] × T 1 → R,and that f = f 0 ūs (φ) ∈ T ū(φ) Γ ⊂ T ū(φ) N , where f 0 : [0, T ] × T 1 → R. Let (62) A := u t -u xx -β u (u x , u x ) -1 ω f u ⊥ . It satisfies A = ūs (φ)φ t -ūss(φ)|φ x | 2 -ūs (φ)φ xx -β ū(ū s (φ), ūs (φ))|φ x | 2 -1 ω f 0 ūs (φ) = ūs (φ) (φ t -φ xx -1 ω f 0 ) -ūss (φ) + β ū(ū s (φ), ūs (φ)) |φ x | 2

  x)) ∀(t, x) ∈ [0, T ] × [a, 2π -a], with φ : [0, T ] × [a, 2π -a] → R, and that f = f 0 ūs (φ) ∈ T u(φ) Γ ⊂ T u(φ) N , where f 0 : [0, T ] × [a, 2π -a] → R. Then u t -u xx -β u (u x , u x ) -1 ω f u ⊥ = ūs (φ) (φ t -φ xx -1 ω 0 f 0 ) .Hence u is a solution to the controlled harmonic map heat flow if and only if φ is a solution to the controlled t -φ xx = 1 ω 0 f 0 , φ(t, a) = A, φ(t, 2π -a) = B, φ(0, •) ∈ C 2 ([a, 2π -a]; R).

  

  

  and is a solution to the Cauchy problem (1) with f (t, x) := F (t, u(t, •))(x). The interval I is denoted by D(u). We say that a solution u to the Cauchy problem (19) is maximal if, for every solution ũ to the Cauchy problem (19) such that

  This finishes the proof of the quantitative null controllability property. □

	Proof of Lemma 4.2. According to the frequency Lyapunov method, one directly considers the
	frequency-based Lyapunov function
	(45)	V λ (v) := µ λ ∥P λ v∥ 2 L 2 (T 1 ) + ∥∂ x P ⊥ λ v∥ 2 L 2 (T 1 ) ,
	as well as the following choice of feedback law
	(46)	g(v) := -γ

λ P λ v,

with the exact value of γ λ , µ λ ∈ [λ, +∞) to be fixed later on. Remark that the Lyapunov function V λ is equivalent to the H 1 -norm, since
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Stage 2. Using the idea of Theorem 1.12 we can find a control f ∈ C 2 ([T /5, 2T /5] × T 1 ) to move the state from v 1 to any state v 2 ∈ C 2 (T 1 ; N ) satisfying

However, currently we only fix the value of v 2 on [a, 2π -a], while the explicit choice of v 2 on T 1 \ [a, 2π -a] will be fixed later on in the next step. Stage 3. Notice that v 2 | x∈[a,2π-a] has values in the complete geodesic Γ. We adapt the idea of Lemma 5.1 (ii) to the harmonic map heat flow [2T /5, 3T /5] × (a, 2π -a) → N :

Thus there exists a control g ∈ C 0 ([2T /5, 3T /5]×ω 0 ) such that the solution w

Thanks to the gluing Lemma 5.2, we can extend the control g to f on [2T /5, 3T /5] × ω and the state w to u on [2T /5, 3T /5] × T 1 such that (69)

Hence, we will choose the exact value of v 2 (•) as u(2T /5, •) ∈ C 2 (T 1 ; N ). We denote the value of u(3T /5) as v 3 ∈ C 2 (T 1 ; N ) which satisfies

Stage 4. Similar to Step 2, we use the idea of Theorem 1.12 to find a control f ∈ C 2 ([T /5, 2T /5]× T 1 ) that steers the state from v

Stage 5. Finally, in the last step, similar to Step 1, using the idea of Theorem 1.11 we can find a control that is tangent to the geodesic γ 1 to deform the state from v 4 to γ 1 . □