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Abstract

An accurate understanding of uncertainty is needed to properly interpret methane emission estimates
from the upstream oil and gas sector in a variety of contexts, from component-level measurements to yearly
industry-wide inventories. One possibility is to derive an uncertainty estimate from the physical model that
connects the measurement data to the emission estimates directly, but this information is often proprietary
and thus unavailable to end users. Instead, we provide a method to develop probability distributions of mea-
surements given a true emission rate empirically using controlled release data. This method is completely
technology-agnostic, and provides a route to summarise uncertainty without the need to release proprietary
modelling or data. To demonstrate the wide applicability of the method, we introduce an algorithm that can
be used to synthesize the uncertainty model and measurement-based surveys to produce an uncertainty range
for new measurements in the field.

Keywords: Methane, Remote sensing, Oil and gas, Quantification uncertainty, Measurement-based
inventories, LDAR, FEMP

1. Introduction

Deep and rapid reductions in methane emissions from leading anthropogenic sources, especially up-
stream oil and gas activities, are crucial in order to avoid the worst outcomes of climate change [1], but doing
this requires instrumentation that can reliably detect and quantify these emissions. Technologies for doing
this include: quantitative optical gas imaging (QOGI) using mid-wavelength infrared (MWIR) cameras [2–
4]; stationary [5] and mobile [6–8] methane concentration sensors; and airborne [9, 10] and satellite-based
[11] measurements. All of these systems utilize a measurement model that relates direct observations and
auxiliary inputs to the methane emission rate. Often the measurement model consists of a spectroscopic
sub-model that connects some radiometric measurement to a column density (ppm×m) or path-averaged
concentration estimate (ppm), and an advection sub-model, usually informed using anemometry data. The
output of the inversion procedure is typically a point estimate of the methane emission rate from the source
(e.g., kg/hr).
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Emissions estimates can only be interpreted properly in the context of uncertainty. This aspect is particu-
larly important in view of existing and emerging methane emissions regulations and reduction commitments
[1, 12, 13], e.g., to answer the question “with what probability is this facility compliant with a particular reg-
ulation?” Methane leak detection and repair (LDAR) programs should also be optimized with quantification
uncertainty in mind to give the best trade-off between cost and emissions reductions, as it has been shown
that high quantification uncertainty contributes to certain types of LDAR programs being less cost effective
[14]. Further, methane emissions measurements are used to develop broader jurisdiction-wide and global in-
ventories [9, 15, 16], which are needed to assess progress towards emissions reduction targets and to inform
policies and regulations, but these decisions can only be made in the context of uncertainty. Therefore, there
is a need for transparent techniques for estimating emissions uncertainty that can be applied consistently in
different contexts.

Approaches for quantifying methane emission uncertainty may be categorized as either physics-based
or data-driven. Physics-based approaches address uncertainty associated with measurement noise, uncertain
model inputs, and, especially, the model errors induced by the approximations and simplifications needed
to derive a tractable measurement model, in an explicit way. As an example, Montazeri et al. [17] derive
formulas for different error components of QOGI estimates, with the aid of virtual data generated from a
computational-fluid dynamics large eddy simulation (CFD-LES). Caultron et al. [8] developed uncertainties
for emission estimates obtained from a truck-mounted concentration sensor and inverse Gaussian plume
model by accounting for uncertainty in the Gaussian model diffusion coefficient, emission source and height,
and wind speed and stability class. Cambaliza et al. [18] developed uncertainties for emission estimates
inferred from aircraft-based concentration measurements using different values for the background carbon
dioxide and methane, depth, changes in the convective boundary layer height, and perpendicular wind speed
parameters.

While physics-based approaches provide key insights into the uncertainty of methane emission estimates
obtained from various technologies, and how they should be deployed to minimize these uncertainties, they
also have several key drawbacks. First, they require detailed knowledge of the measurement model, which
may be very complex or unavailable due to proprietary aspects of the technology. Second, the results of
a physics-based uncertainty analysis are specific to a given technology and will not be broadly applicable,
requiring cumbersome effort for every technology of interest. Third, results of a purely physics-based un-
certainty estimate may not agree with what is observed in real-world scenarios due to missing or inadequate
modelling of uncertainty sources. Moreover, existing physics-based uncertainty analyses do not include
methods or procedures for how the results should be applied in practice, and there is a lack of consistency
in reporting of the results [8]. For example, most physics-based approaches do not show how their results
should be used to derive a 95% confidence interval based on a given measurement from the technology.

Empirical approaches to uncertainty quantification rely on a statistical model which compares true and
measured emission rates from controlled-release data. The statistical model can then be used to predict future
measurements given a true emission rate, or inverted to give a confidence interval for the true emission rate
given a measurement. Empirical approaches have two key benefits over physics-driven approaches: 1) they
are data-driven, meaning the results will likely resemble what is actually observed in the field, and 2) the
statistical framework can be leveraged to provide unified and consistent guidelines for how the results of the
uncertainty analysis should be used in practice.

Empirical approaches require data from controlled-release field trials. To this end, many single-blinded
or double-blinded field trials have been conducted with the goal of assessing the performance of methane
emissions quantification technology, e.g., [10, 19–23]. However, empirical approaches employed on these
data have mainly been limited to linear regression approaches [10, 19–22], with the exception of [23], who
provide an approach to derive the distribution of the true emission rate given a measurement from an airborne
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methane detection and quantification technology. A limitation of these approaches is that the models have
a constant relationship between uncertainty and the true emission rate (either strictly additive or multiplica-
tive). Existing approaches often do not account for the possibility that a technology may detect methane
when there is none being released. Finally, there is a lack of reporting on how the methods should be
applied in different scenarios, such as in performing field measurements in LDAR surveys or as part of a
measurement-based survey.

In this work, we introduce a flexible empirical framework to elucidate quantification uncertainty that can
be applied to any technology modality and illustrate its use using field trial data from two campaigns carried
out using four methane detection and quantification technologies as well as controlled release data reported
by [23]. The empirical framework allows for the derivation of two important probability distributions: 1)
the distribution of measurements given the true emission rate and 2) the distribution of the true emission
rate given a measurement. The first distribution is a building block to the second distribution, and has
the potential to be incorporated into simulation software that models LDAR programs such as FEAST,
LDAR-Sim, and AROFemp [24–26]. The second distribution is an important input to simulation methods
used to derive measurement-based inventory estimates such as [27]. Our approach to deriving the second
distribution also provides the opportunity to incorporate context-specific information into the analysis, such
as knowledge of the emission rate distribution in a given region. The results of the analysis are data-driven
and the design of the field trials allows for the assessment of the potential real-world effectiveness of the
uncertainty quantification results.

2. Materials and Methods

2.1. Methane Quantification Technologies
We demonstrate the analysis procedure using controlled release data from four methane quantification

technologies, three of which were evaluated in the field trials described in Sec. 2.2: QOGI; truck-mounted
tunable diode laser-absorption spectroscopy (TDLAS); and airborne near-infrared hyperspectral (NIR HS)
imaging. We also consider an airborne TDLAS system (“Gas Mapping LiDAR™ ” (GML) from Bridger
Photonics, Inc.) based on data reported in Conrad et al. [23]. Examples of the technologies investigated in
the field trials are shown in figure 1.

2.1.1. Quantitative Optical Gas Imaging (QOGI)
QOGI systems are almost exclusively based on a mid-wavelength infrared (MWIR) camera that contains

a cold filter centered on the 3.34 µm methane vibrational-rotational band. The intensity entering the camera
aperture is imaged through the cold-filter and onto a focal plane array (FPA) that produces a pixel intensity.
The cameras are usually calibrated to generate a spectrally-averaged absolute intensity along each pixel
line-of-sight. The camera data is then analyzed in near real-time by software on a peripheral tablet. The
measurement model is composed of a spectroscopic sub-model that generates a column density map of
the gas, and an advection model that infers a 2D projected velocity field from the apparent plume motion
between successive images. These quantities are then combined to obtain a mass flow rate (e.g, kg/s).

The reliability of QOGI-derived emission estimates depends on factors that include measurement dis-
tance between the plume and the camera, thermal contrast between the plume and the background, wind
speed, and leak rate [20, 28, 29]. Identifying favorable measurement scenarios draws considerably on op-
erator experience [30]. Three QOGI systems were deployed by three operators of varying experience, as
summarized in Table 1.

QOGI Operator A used a FLIR GF320™ camera with a Providence QL320™ tablet (v. 3.0.0.5); QOGI
Operator B used the OPGAL EyeCGas™ (v. 1.0.24) and QOGI Operator C used a FLIR GFx320™ camera

3



Figure 1: Technologies studied in the field trials. Top row, left to right: QOGI A, QOGI B, QOGI C. Bottom row, left to right: airborne
NIR HSI, truck-based TDLAS.

Table 1: QOGI operators and equipment
Operator Experience System Field Trial

A Professional FLIR GF320 with Providence QL320
(v. 3.0.0.5)

1

B Professional, new
to system

OPGAL EyeCGas (v. 1.0.24) 2

C Novice FLIR GFx320 with FLIR QL320 (v.
1.4.1)

1 & 2

with the FLIR QL320™ Tablet (v. 1.4.1). Notably, while Operator B was an experienced QOGI operator,
they were unfamiliar with the OPGAL system during the field trial. QOGI Operator A was highly experi-
enced and familiar with their equipment, while QOGI Operator C was a novice, having less than six months
of experience with the system.

2.1.2. Truck-mounted TDLAS
Methane releases were also quantified using a truck-mounted TDLAS system (Boreal Laser GasFinder 3

VB™). The absorptance, and therefore methane column density (e.g., ppm·m), is inferred through wavelength-
modulation spectroscopy (WMS) [31] and then converted to a path-average concentration (ppm). The truck
traversed the plume at distances ranging from 50 to 100 m downwind of the release point. Methane con-
centrations were measured at one second intervals; these concentrations and wind speeds obtained from an
ultrasonic anemometer operated by the service provider were then processed using a backwards Lagrangian
stochastic quantification algorithm [32, 33] to obtain a release estimate for each plume transect.
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2.1.3. Airborne NIR HS imaging (GHGSat-AV™)
The airborne NIR HS system (GHGSat-AV™) consists of a downward-looking wide-angle Fabry-Perot

imaging Fourier transform spectrometer that operates between 1630-1655 nm [34], mounted inside an air-
craft [35]. The aircraft overflew the releases at an approximate altitude of 250 m above ground level and
airspeed of 240 km/hr. Thermal emission from the gas and ground is negligible over this wavelength range;
instead, the camera images sunlight transmitted through the atmosphere, reflected from the ground, and
transmitted back to the camera. The methane column density is inferred from the attenuation of the trans-
mitted light via a multi-layer spectroscopic model, and then combined with an advection model [36] using
wind data from an online weather model to find the emission rate.

2.1.4. Airborne TDLAS
Bridger’s airborne GML™ system consists of two tunable diode lasers, and a sensor that detects the

ground-reflected laser light. One laser is used for range finding and determining ground reflectivity, while
the other scans the 1651 nm CH4 absorption line to determine column density. The lasers move in a conical
pattern, which forms an ellipsoidal swath on the ground. Reflected light from the range-finding and methane-
absorbing lasers are combined to form a column density via WMS. The column density estimates across the
swath are used to form a 3D plume concentration map, which is combined with an advection model using
wind speed from online weather data to obtain a release rate [21].

2.2. Field Trial Design and Execution

The QOGI, truck-mounted TDLAS, and airborne NIR HS imaging systems were evaluated through
two controlled release field campaigns executed at Carbon Management Canada (CMC)’s Newall County
Research Station near Brooks, Alberta, the first during April 20 - 26, 2022 and the second during September
25 - October 1, 2022. Technology developers and service providers were invited to attend the field trials and
quantify emissions of natural gas in a variety of industrially relevant scenarios, including 1.7 m, 3.4 m, and
4.8 tall stacks, and a 14-m tall unlit flare, following their standards-of-practice. Information on releases and
meteorological conditions are provided in the Supplemental Information. Anonymized release and emissions
estimates data from both trials are available at the github repository augustinewigle/methaneUQ.

An assay showed that the natural gas consisted of 94.2 % methane, 3.4 % ethane, 1.1 % propane, and 1.3
% minor components, predominantly N2 and O2 in roughly atmospheric abundances. The gas was released
from a compressed cylinder via a regulator valve and flowed through a heat exchanger to condition the gas
to atmospheric temperature. The conditioned gas then passed through a mass flow controller (Alicat MCR-
2000SLPM - D-PAR) and discharged to the atmosphere in a manner that depended on the release scenario
as shown in figure 2.

Local meteorological conditions were measured using a portable 81000-L RM Young 3D ultrasonic
anemometer and a Davis WeatherLink Pro+™ weather station. The portable anemometer was located 2.25
m above the ground. Background measurements of methane and other relevant species were monitored
throughout the tests using a Picarro cavity ringdown spectrometer located in a structure approximately 250
m from the release locations. Background methane measurements were between 2 to 2.5 ppm throughout
the tests. Meteorology and controlled release data for these field trials are provided in the supplemental
information (SI).

Service providers did not have access to meteorology data; instead, they conducted their own on-site
measurements or relied on third-party weather models, as they would when deploying the technology in a
practical scenario. Service providers then compiled their own estimates and provided them to the academic
team.
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Figure 2: Controlled release set-up including heat exchanger and mass flow controller.

Additional data was taken from the controlled release studies of the Bridger GML system reported Con-
rad, et al. 2023 [23] to demonstrate the applicability of the methods.

Table 2: Summary of technologies, providers, and available data from the field trials and external sources. N1 and N2 refer to the
number of observations collected for a given technology during the first field trial and second field trial, respectively.“Other” refers to
data from Ref. [23].

Technology N1 N2 Other
QOGI Operator A 117 0 NA
QOGI Operator B 0 71 NA
QOGI Operator C 14 106 NA

Truck TDLAS 142 125 NA
Aerial TDLAS NA NA 405
Aerial NIR HSI 46 37 NA

3. Uncertainty Quantification

3.1. Models for Uncertainty Using Controlled Release Data

We propose a statistical model that answers the following question: For a given true emission rate, what
range of measurements could be expected, given the observed controlled release data, considering model
error and measurement noise? We take a Bayesian approach to fitting the model and thus in Sec. 3.1.2 we

6



give a brief overview of Bayesian analysis, followed by technical details that include the prior distributions,
Sec. 3.1.3, and model selection methods, Sec. 3.1.4.

3.1.1. Novel Flexible Model
Let Qi be the true emission rate corresponding to the ith observation in the field trial, and Mi be the

emission rate estimated by the technology for the ith observation, i = 1, . . . , n where n is the total number
of observations for the given technology. The relationship between Qi and the bias and variability of Mi

can be complicated, since both the bias and the variability may change over the range of Qi. Additionally,
the relationship between Qi and Mi may not be strictly linear, as shown in e.g. figure 3. The model must
also account for the fact that all technologies may report a “false positive”, that is, estimating a non-zero Mi

when Qi = 0.
A flexible likelihood which allows the bias and variance of Mi to vary with Qi and incorporates the

possibility of false positives is given by

log(Mi) = log(ϕi) + ϵi, (1)

where
ϵi ∼ N(0, σ2

i )

and
ϕi = median(Mi).

This likelihood is normal on the log scale, which corresponds to a log-normal likelihood on the measurement
scale. A specification for ϕi is the following continuous piece-wise function of Qi:

ϕi =

α0 + α1Qi + α2Q2
i Qi ≤ γ;

α0 + β0 + (α1 + β1)Qi Qi > γ,

which is quadratic for values of Qi below a threshold γ and linear above γ. To ensure that the function is
continuous at Qi = γ, we impose the restriction that β0 = α2γ

2−β1γ. The specification of ϕi can be modified
to give the best prediction results and fit to the data. For example, the threshold parameter γ, β0 and β1 could
be removed, which would give a quadratic relationship characterized by α0, α1, and α2 over the whole range
of Qi. Table 3 summarizes the parameters that may be removed and Section 3.1.4 shows how the likelihood
is chosen.

The model can be rewritten to facilitate interpretation by exponentiating both sides of Eq. (1):

Mi = ϕi × eϵi , (2)

where ϕi is the median measurement for a true emission rate of Qi.
The likelihood in Eq.(1) is an extension of the scheme proposed by Conrad et al. [23]. That is, their

model is a special case of our likelihood where α0 = 0, α2 = 0, β0 = 0, β1 = 0, and σ2
i = σ

2 for all
i = 1, . . . , n. Briefly, they assume the median value of Mi has a multiplicative relationship with Qi, that is,
ϕi = α1 × Qi, and the multiplicative error term has a constant variance over the range of Qi. Our model
expands on this in three ways. First, we allow for linear and quadratic relationships between the median
measurement and Qi rather than a strictly multiplicative one. This is useful in modelling more complex
relationships. Additionally, it allows false positives to be modelled via α0. Second, the inclusion of the
threshold parameter γ allows more flexibility in modelling the relationship between the median of Mi over
the range of Qi rather than assuming a common median function for all Qi. Third, we investigate different
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variance structures for ϵi which can allow the variance to change with Qi to more accurately model the
patterns observed in controlled data from some instrumentation rather than assuming a constant variance.
Another difference between this approach and that of [23] is that they investigate different distributions for
the error term, whereas we restrict ourselves to the log-normal distribution, but investigate different forms
for the median and variance which are motivated by the data. Finally, we take a fully Bayesian approach to
estimation and inference discussed in section 3.1.2 whereas [23] uses a (frequentist) maximum likelihood
approach.

It is important to note that in this model the errors are additive on the log scale, which implies multi-
plicative errors on the raw measurement scale as shown in Eq. (2). The simplest way to model the variation
is to set the variance of ϵi to a constant, σ2

i = τ
−1 for all i, where τ is referred to as the precision parameter.

Multiplicative errors may be suitable for lower and moderately-sized emission rates, but for large values of
Qi purely multiplicative errors may overestimate variability for some technologies. A possible explanation
for this is that for smaller emission rates, both the error in raw concentration or column density estimates
and error in the advection model are significant, leading to product uncertainty. For larger emission rates,
however, either raw measurement error or advection model error dominates, leading to sub-multiplicative
errors in this range. To accommodate this, we also propose using σ2

i = (τ + Qi/η)−1 as an alternative vari-
ance structure for ϵi which allows the variability of the error terms to decrease with increasing Qi. With this
variance form, when Qi = 0, the variance on the log scale is equal to τ−1, decreases as Qi increases. The
parameter η controls how quickly the variance decreases with Qi. The approach to choosing an appropriate
likelihood, including the variance specification, is described in Sec. 3.1.4.

This section concludes with interpretations of the parameters in the likelihood. Threshold parameter γ
allows the linear relationship to change for larger values of Qi. The intercept parameter α0 represents the
median measurement when the true emission rate is zero, which accounts for false positives. Parameters
α1 and α2 are the coefficients for Qi and Q2

i , describing the quadratic relationship between the median
measurement and the true emission rate when the true emission rate is less than the threshold. Sums α0 + β0
and α1 + β1 are the slope and intercept of the linear relationship between the median measurement and Qi

when Qi exceeds the threshold. Some technologies exhibit simpler relationships between Qi and the median
of Mi, in which case some or all of γ, α2, β0, and β1 may be dropped from the model. Finally, two different
variance specifications were used in the likelihood: either σ2

i = τ
−1 or σ2

i = (τ + Qi/η)−1. In the former
case, τ−1 is the variance of all measurements on the log scale. In the latter specification, τ−1 is the variance
of the measurements when Qi = 0 and c controls how much the variance changes as Qi increases from zero.
A larger value of η corresponds to a milder reduction in variance as Qi increases. Table 3 summarizes the
parameters in the likelihood, their units, and scenarios in which they may be included or removed.

3.1.2. Bayesian Analysis
The model parameters are estimated using a Bayesian approach. This is done for several reasons: (i) the

method is flexible, allowing the likelihood to be tailored to the data; (ii) data can be synthesized seamlessly
from multiple sources (e.g., multiple measurement campaigns or different measurement modalities); (iii) it
explicates the use of prior information; and (iv) it provides the full probability distribution of measurements
given a true emission rate, amounting to a comprehensive definition of what is known about the emission
rate (see Sec. 4.2).

Let the unknown parameters of a statistical model for the measurement Mi given a fixed true emission
rate Qi be represented by vector θ. For example, in a model where ϕi = α0+α1Qi and σ2

i = σ
2, the parameter

vector is θ = (α0, α1, σ). In the Bayesian framework, these parameters are envisioned as random variables
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defined by probability distributions that are related by Bayes’ equation,

p(θ | M) =
p(M | θ)p(θ)

p(M)
, (3)

where M = (M1,M2, . . . ,Mn)′. The probability distribution of interest is the posterior distribution, p(θ | M),
which summarises the information about θ in the observed measurements along with any external or “prior”
knowledge we may have about θ. The likelihood distribution, p(M | θ), is the probability distribution of the
set of measurements for a fixed value of θ and is also a function of the vector of true emission rates Q, which
is fixed and thus suppressed in the notation in Eq. (3). It describes how likely it is to observe M for a given
value of θ and Q in the context of measurement noise and model error. Under the assumption that errors are
independent between measurements, we also have that p(M | θ) =

∏n
i=1 p(Mi | θ). The prior distribution,

p(θ), describes what is known about the unknown parameters before data is collected. Prior distributions
for the proposed models are discussed in Sec. 3.1.3. Finally, p(M) is the marginal distribution of the data,
which is constant for fixed data. It does not need to be calculated when computational techniques such as
Markov Chain Monte Carlo are used to obtain the posterior.

The posterior p(θ | M) is estimated using Markov Chain Monte Carlo (MCMC) sampling, which gen-
erates a set of samples from the posterior distribution of θ [37]. These samples are readily used to derive
quantities of interest, such as credibility intervals. MCMC sampling is done using Just Another Gibbs Sam-
pler (JAGS)[38] via the runjags R package [39].

We wish to understand the distribution of a measurement given a fixed value of Qi. Let M̃i represent
a new, unobserved measurement and Qi be an accompanying true emission rate. Then we wish to find the
posterior predictive distribution of M̃i, given by p(M̃i | M,Qi) =

∫
p(M̃i | θ,Qi)p(θ | M)dθ, which is

the integral over θ of the likelihood of Mi given fixed θ and Qi times the posterior distribution of θ. This
distribution can be obtained via simulation using samples from the posterior.

3.1.3. Prior Distributions
As with any Bayesian model, an appropriate prior distribution depends on the context of the problem at

hand, including pre-existing knowledge and the scale of the data. We summarise the units of each parameter
in Table 3.

Parameter Units Exclusion criteria
α0 [Mi] *
α1 Unitless None
α2 [Mi]−1 †

β0 [Mi] *,†
β1 Unitless †

γ [Mi] †

τ Unitless None
η [Mi] †

Table 3: Summary of the units for each parameter in the likelihood, important to keep in mind when specifying prior distributions.
Exclusion criteria: * = may be removed if technology does not have false positives in controlled release data, † = may be removed if
its removal leads to a simpler model which has adequate fit and predictive performance.

The parameters of the likelihood to be estimated are α0, α1, τ, along with optional parameters α2, γ, β1,
and/or η. All parameters are assumed to be independent, that is,

p(θ) = p(α0, α1, τ, α2, γ, β1, η) = p(α0)p(α1)p(τ)p(α2)p(γ)p(β1)p(η), (4)
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so we can specify individual prior distributions for each parameter.
We can derive empirical prior distributions by considering the role of each parameter in the model and

their units. Since α0 is the median measurement when the true emission rate is zero, it should be small
and non-negative. It is parameterized by a gamma distribution, where the shape and rate parameters can
be chosen so the mean of the distribution is similar to the mean false positives observed in the data. For
example, for the data reported by QOGI Operator A, the average false positive is 0.27 kg/h so we use a
gamma distribution with shape parameter = 0.5 and rate parameter = 2, which has a mean of 0.25 and
variance of 0.125. Note that β0 is a function of other parameters to ensure that the piece-wise function is C1

continuous. A prior is not specified for this parameter.
In a simple linear model, α1 is the slope of Qi so for every one unit increase in Qi, the median mea-

surement increases by α1 units. A perfect technology would have α1 = 1. Thus we use a prior for α1
which has a median of 1 and is non-negative. Further, we seek a distribution with the property that for any
constant k > 1, the probability that α1 > k should be the same as the probability that α1 < 1/k, or in other
words, the probability that the technology over-estimates by a factor of k is the same as the probability that it
under-estimates by a factor of 1/k. This property is desirable in the prior because information about under-
or over-estimation should only come from the data. Thus we use a standard log-normal distribution (shape
parameter equal to one, location parameter equal to zero, and scale parameter equal to zero [40]) because
it has this property. For example, if α1 follows the standard log-normal distribution the probability that
α1 < 1/2 = probability that α1 > 2 = 0.244.

Coefficient α2 is associated with Q2
i when Qi ≤ γ. Similarly to α0 and α1, we restrict this parameter to

be non-negative to avoid taking the log of zero or a negative number. Due to the units of α2, we use a prior
with a relatively small variance. For example, if we wanted the variance to be equivalent to 10 kg/h, that
equals 0.1 [kg/h]−1. Thus we use a half-normal distribution with variance parameter equal to 1.

Parameter β1 (unitless, nonnegative) represents the change in α1 when Qi > γ. As with α1, we use a
standard log-normal distribution as a prior for β1.

The threshold parameter γ represents the value of Qi for which the relationship with Mi changes from
quadratic to linear. The parameter γ must be somewhere in the range of the Qi data. We use a uniform prior
distribution on (0, max) where max is determined by the largest value of Qi observed in the data for a given
technology.

Parameter τ represents either the inverse of the variance of measurements on the log scale in a constant
variance model, or the inverse of the variance of measurements when Qi = 0 on the log scale and is referred
to as the precision parameter. We use a vague non-negative prior of a half-normal with variance parameter
set to 100 on τ−1/2, as suggested in [41].

Finally, if the more complicated variance model is used, a prior must be chosen for η. Little external
information is known about η except it must be non-negative. We use a half-normal with variance set to 100.

The sensitivity of results to prior specification was checked for all models. Results were obtained for
the stated priors. Next, the model was refit with priors where the range and/or variance was changed for
some parameters. The posterior distribution of each parameter was then compared between the two models.
The resulting 90% prediction bands were also compared between the models. Unless otherwise stated in the
results section, the model results were insensitive to the prior specification.

3.1.4. Model Selection
As discussed in Sec. 3.1.1, a variety of candidate models may be formed by adding or removing like-

lihood parameters, each of which may result in different implications for measurement bias and variability.
For example, removing Qi/η from the variance expression leads to a simpler model which has constant vari-
ance on the log scale. In general, a model with more parameters will fit the controlled release data better
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but may also be prone to over-fitting, which can result in poor predictive performance. Therefore, we use
a combination of Deviance Information Criteria, prediction bands, and residual plots to select a model that
provides a good trade-off between goodness of fit and complexity.

The Deviance Information Criterion (DIC) combines goodness-of-fit to the training data and model com-
plexity to provide an overall assessment of the model [37]. It is analogous to the AIC, a frequentist model
selection tool used by Conrad et al. [23] in the context of uncertainty modelling of methane quantifica-
tion technologies. When comparing multiple models, a lower DIC value indicates a better balance between
model fit and complexity, with differences of two or more considered meaningful [42].

We are also guided by plotting prediction bands derived from the posterior predictive distribution of
measurements for different values of Qi over a scatterplot of the data used to fit the model. If the prediction
bands show a much wider or narrower spread than the data used to fit the model, this is an indication that the
variance is not modelled well. Prediction bands can also be compared to additional data that was excluded
from the model fit (“external data”), which indicates the generalizability of the model predictions. If the
model predictions look similar to the external validation data, this is an encouraging sign that the model is
suitable to be used under different conditions. Investigating the residuals, defined as the difference between
the model-predicted value (M̂i) and the observed data point (Mi), that is, residuali = Mi − M̂i provides still
more insight into areas of improvement for the model.

The DIC, prediction bands, and residual plots were used for model selection as follows: First, the sim-
plest model possible with constant variance was fit to the data (a multiplicative model with α1 if there are no
false positives in the data or a linear model with α0 and α1 otherwise). The DIC was calculated using JAGS.
Prediction bands were compared to the data used to fit the model and residual plots were inspected. If the
prediction bands were much wider or narrower than the spread of the data, this indicated that the variance
model should be explored. If the residual plots showed systematic problems, this indicated that the median
specification should be explored. Models were then augmented as suggested by the diagnostic plots, refit,
and DIC was re-calculated. This process was repeated until the diagnostic plots were satisfactory and the
DIC was at least three less than that of the previous model.

4. Results and Discussion

4.1. Uncertainty Results

In this section, we present the selected likelihoods for five different methane quantification technolo-
gies/operators, discuss the performance, and comment on the generalizability of the model if applicable.
The chosen models are summarized in Table 4.

4.1.1. QOGI Technologies
Prediction bands and posterior median predictions are shown for QOGI Operators A, B, and C in Figures

3, 4 and 5, respectively. All QOGI technologies underestimate emissions on average. The likelihoods
from QOGI Operators B and C are best modelled using a quadratic function for the median below a small
threshold, then a linear function. QOGI Operator A is best modelled using a quadratic function for the
median. Data provided by Operator A has a more limited range than the other QOGI technologies - with
a max Qi value of 30 kg/h, compared to 80 kg/h for Operator C and 50 kg/h for Operator B. For QOGI
technologies in general, the likelihood has more curvature in the lower range of Qi while a linear relationship
on the log scale is suitable for higher release rates.

The results for QOGI Operator B are quite distinct from those of Operators A and C. This may be
attributed to this operator’s lack of familiarity with the camera settings during the testing, as reported by the
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Table 4: Summary of selected models for each methane quantification technology provider.

Technology Selected likelihood
ϕi σ2

i
QOGI A α0 + α1Qi + α2Q2

i (τ + Qi/η)−1

QOGI B

α0 + α1Qi + α2Q2
i Qi ≤ γ;

α0 + β0 + (α1 + β1)Qi Qi > γ.
τ−1

QOGI C

α0 + α1Qi + α2Q2
i Qi ≤ γ;

α0 + β0 + (α1 + β1)Qi Qi > γ.
(τ + Qi/η)−1

Truck TDLAS α0 + α1Qi (τ + Qi/η)−1

Aerial TDLAS α1Qi (τ + Qi/η)−1

Aerial NIR HSI α0 + α1Qi τ−1

operator. This lack-of-familiarity manifests as an additional factor that influences (broadens and biases) the
likelihood.

QOGI Operator C was present for both field trials. Only 14 measurements were made for this technology
at the first field trial, which we use as external data. These data points fall within the 95% prediction band,
suggesting that the model is generalizable.

4.1.2. TDLAS
Results from the selected models for truck and aerial TDLAS systems are shown in Figs. 6 and 7. The

truck-based TDLAS tends to underestimate emissions, while the aerial technology overestimates on average.
For truck-based TDLAS, the model was fit using data from the second field trial, while data from the

first field trial was used as external data to assess the model’s generalizability. Most of the external data
points fall within the prediction bands. However, the median trend appears different for the external data. A
possible explanation for this is that weather conditions may have differed between trials one and two in such
a way that estimates were systematically larger during the first trial than the second.

Figure 8 shows the predictions resulting from the Bayesian uncertainty model derived for the airborne
TDLAS compared to the one presented by Conrad et al. [9]. The Bayesian model gives narrower prediction
bands than the other model, which is particularly noticeable in the upper range of Qi. This is likely due
to the different variance specifications used in the models; the model in Ref. [23] uses a constant variance
whereas the selected model from our proposed Bayesian approach allows the variance to change with Qi.
The median predictions (solid black line) are very similar between the two models.

4.1.3. Airborne NIR HS Imaging
The prediction bands from the selected model for the airborne NIR HS imaging technology are shown

in Fig. 9. The technology tends to overestimates emissions. The model was fit to data from the second field
trial, while data from the first field trial were used as external data. There appear to be systemic differences
between the data from the two field trials, with the data from the first field trial underestimating emissions
more often, and data from the second field trial overestimating emissions more often. During the first field
trial, the operator remarked that the conditions were considered marginal due to excessive cloud cover and
would not be typical of those under which commercial measurements were conducted, while those of the
second field trial were nearly ideal. However, most of the external data points still fall within the 95%
prediction bands, which is a positive indication of the applicability of the model.
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Figure 3: Uncertainty quantification model results for QOGI Operator A. The model was fit to data from the first field trial. No external
data were available.
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Figure 4: Uncertainty quantification model results for QOGI Operator B. The model was fit to data from the second field trial. No
external data were available.
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Figure 5: Uncertainty quantification model results from QOGI Operator C. The model was fit to data from the second field trial.
Controlled release data from the first field trial was used as external data.
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Figure 6: Uncertainty quantification model results for truck-based TDLAS data. The model was fit to data from the second field trial.
Controlled release data from the first field trial was used as external data.
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Figure 7: Uncertainty quantification model results for airborne TDLAS data provided by [23].
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Figure 8: Side-by-side comparison of Bayesian model proposed in table 4 and that presented in [23] for airborne TDLAS.
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Figure 9: Uncertainty quantification model results for airborne NIR HS data. The model was fit to data from the second field trial.
Controlled release data from the first field trial was used as external data.
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4.2. Application: Quantifying Uncertainty in New Measurements
4.2.1. Algorithm

Finally, we describe a possible downstream application of the distributions derived in section 4.1. Sup-
pose we wish to calculate a credible interval for the true emission rate based on methane measurements made
in the field where the true emission rate is not known. Let Qnew represent the unknown true emission rate
associated with the new measurement and Mnew be the measurement made in the field. We wish to know
the distribution of Qnew given Mnew and our uncertainty model derived from controlled release data. The
distribution of interest is p(Qnew | Mnew,M). Using Bayes equation, Eq. (3), we can say that

p(Qnew | Mnew,M) ∝ p(Mnew | Qnew,M)p(Qnew | M)
= p(Mnew | Qnew,M)p(Qnew), (5)

where the true emission rate is modeled as independent of the measurements from the controlled release
trials. Computational techniques can be used to obtain p(Mnew | Qnew,M). We can say that

p(Mnew | Qnew,M) =
∫

p(Mnew | Qnew, θ,M)p(θ | Qnew,M)dθ

=

∫
p(Mnew | Qnew, θ)p(θ | M)dθ. (6)

The distribution p(Mnew | Qnew, θ) is the likelihood given by the uncertainty model from 3.1.1 where Qi =

Qnew. p(θ | M) is the posterior distribution of θ given the controlled release data. This integral can be
approximated via Monte Carlo simulation as follows:

1. Sample θ j j = 1, . . . , J times from p(θ | M)
2. For j = 1, . . . , J, calculate p(Mnew | Qnew, θ j)

3. The integral in (6) ≈
∑J

j=1 p(Mnew |Qnew,θ j)
J

This process can also be performed for repeated measurements of the same source, that is, where Mnew

is a vector, Mnew = (Mnew
1 , . . . ,M

new
n ). Under the assumption that the uncertainty in each measurement is

independent of previous measurements, conditional on Qnew, at step two, p(Mnew | Qnew, θ j) =
∏n

i=1 p(Mnew
i |

Qnew, θ j).
The distribution p(Qnew) in Eq. (5) is the prior distribution of Qnew, where we assume the new mea-

surement is independent of the controlled release data. This distribution can be informed using relevant
pre-existing data, such as survey data on leak rates in the region where the measurement was made. This
facilitates the natural synthesis of external data with controlled release data and the new observed measure-
ment.

The posterior distribution of interest p(Qnew | Mnew,M) can be approximated using a weighted bootstrap
(also called sampling-importance-resampling or SIR) [37, 43] procedure as follows:

1. Draw a sample of size L from the prior distribution p(Qnew): S = {Qnew
1 , . . . ,Q

new
L }

2. For l = 1, . . . , L, approximate p(Mnew | Qnew
l ,M) using the previously described algorithm

3. Calculate weights

wl =
p(Mnew | Qnew

l ,M)∑L
k=1 p(Mnew | Qnew

k ,M)
(7)

4. Resample with replacement from S with sampling probabilities wl for l = 1, . . . , L K times, K < L, to
get a sample of size K from the posterior distribution p(Qnew | Mnew,M).
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4.2.2. Set-up
The algorithm described in the previous section is demonstrated using the model selected in Sec. 4.1 for

QOGI Operator C. To approximate the distribution in (6) we use J = 10, 000 samples from the posterior. We
set L to 5000 and K to 4000. We consider two data scenarios: one where a single measurement of a source
is made, and one where five independent measurements of the same source are made. We also investigate
two different prior distributions, p(Qnew), to show how information flows from the prior to the posterior
distribution.

We simulate the process of performing measurements in the field (e.g., as part of a LDAR survey pro-
gram) as follows: First, we choose a hypothetical true value for the source we will measure, which we set
to Qi = 25 kg/h. Then, we simulate “measurements” by drawing from the posterior predictive distribu-
tion defined in Sec. 3.1.2, p(M̃i | Mi,Qi = 25 kg/hr). This is done five times to produce five independent
“measurements” of the same source. Let Mnew

1 , . . . ,M
new
5 represent the five simulated measurement values:

19.7 kg/h, 11.6 kg/h, 8.4 kg/h, 18.1 kg/h, and 17.0 kg/h.
To understand how prior information impacts the estimates, we use two different prior distributions. The

first prior is a uniform distribution where we only impose the upper limit of 200 kg/h, while the second is a
log-normal distribution, as this distribution has been suggested to model leak rate distributions [44].

To summarise, we investigate four different scenarios:

1. Only Mnew
1 is used, and p(Qnew) is a uniform distribution from 0 to 200 kg/h.

2. All of Mnew
1 , . . . ,M

new
5 are used, and p(Qnew) is a uniform distribution from 0 to 200 kg/h.

3. Only Mnew
1 is used, and p(Qnew) is a log-normal distribution with shape parameter 1, location param-

eter equal to zero, and scale parameter equal to 2.6 [40]
4. All of Mnew

1 , . . . ,M
new
5 are used, and p(Qnew) is a log-normal distribution with shape parameter 1,

location parameter equal to zero, and scale parameter equal to 2.6 [40]

4.2.3. Results
The different information expressed in the two priors can be visualized by comparing the histograms in

Fig. 10. The uniform prior expresses that all values between 0 and 200 kg/h are equally likely. This may
be a naive choice, because surveys have shown that extremely high emitters are much less likely than lower
emitters [44, 45]. The log-normal prior expresses that there is about a 50% chance that the emission rate is
less than 13.6 kg/h and 75% chance that the emission rate is less than 26.2 kg/h, with very large values being
rare.

Also, posterior distributions are not centred around the measured values, which were all less than the
“true” value of 25 kg/h. This is a reflection of the results shown in Fig. 5, where it is clear that the technology
systematically underestimates the true emission rate. The algorithm presented in this section allows the
information captured in the model derived from Sec. 3.1 to be inverted and produce estimates that are equal
to the true emission rate, on average.

Table 5: Summary of 90% credible intervals (CrI) for the four different data scenarios, and their lengths.
Prior Number of Values 90% CrI Length of CrI

Unif(0,200) 1 (13.1, 71.7) 58.6
Unif(0,200) 5 (15.0, 37.2) 22.2

LogNormal(2.6, 1) 1 (2.1, 47.3) 45.2
LogNormal(2.6, 1) 5 (13.0, 34.1) 21.1
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Figure 10: Comparison of histograms for the two different prior distributions p(Mnew) investigated in the analysis.

4.3. Discussion

As highlighted by Figs. 3 - 9, relying solely on measurements without considering uncertainty can lead
to significant misinterpretations of the emission rate. The methods presented in Sec 3.1 provide a way to
summarise both the variability and systematic bias of a technology. They are situated in the Bayesian statisti-
cal framework which facilitates probabilistic inference, the derivation of credible intervals, and downstream
approaches, as exemplified in Sec. 4.2.

Specifically, the algorithm presented in Sec. 4.2 provides a distribution of the true emission rate given
all available information, including a measurement or set of measurements, controlled release data, and
external prior knowledge, e.g., what is a believable leak rate for a given scenario? This prior knowledge
strongly informs the posterior when the measurement data is limited, but its influence diminishes as more
measurements becomes available. This is beneficial because it formalises an informal process: in the absence
of data, we must rely more on previous knowledge, whereas when more data are available, we rely less on our
previous knowledge. The results also show that increasing the numbers of measurements reduces uncertainty
in the posterior; that is, as we collect more data, we can be more certain about the true value of the emission
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Figure 11: Posterior distributions for the true value of the emission rate given the observed measurement(s), prior distribution, and
controlled release data.

rate. The models presented here could be used to determine how many measurements should be performed
for a certain technology and emission rate to ensure that the credibility intervals are within a certain value.
This algorithm in tandem with the models described in Sec. 3.1 could be used in the future to help plan
or assess the effectiveness of LDAR programs, e.g., by identifying the optimal combination of technologies
that achieve a certain credibility interval.

Although extensive meteorological data were collected during the field trials (as detailed in the SI),
we refrain from incorporating them in the statistical models. This is because the goal of the models is to
summarise the performance of a technology over a variety of conditions. To this end, the field trials were
conducted at different times of year, involved different release structures, and each trial was carried out over
multiple days, so that the results could be used to assess the performance of the technologies over a variety
of conditions. This also enabled the use of external validation - checking to see if data collected under one
set of conditions can be used to predict data collected under a different set of conditions. However, it may
be possible to improve the predictive performance of the models by incorporating meteorological data into
the likelihood, discussed further in the Conclusion section.

5. Conclusions

A wide range of quantification technologies have been deployed to measure methane emissions from the
upstream oil and gas sector, including ground-based infrared cameras, airborne hyperspectral imaging, and
truck and airborne laser absorption spectroscopy. However, measurements from these technologies can only
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be interpreted properly in the context of uncertainty, which arise from measurement noise, uncertain model
parameters, and, especially, the approximations and simplifications that must be made to render the models
tractable (model error).

This paper presented a formalism for developing uncertainty estimates from controlled release data
within the Bayesian framework. The outcome of this analysis are posterior probability density functions
that comprehensively define what is known about an emission rate, based on the measurement data, con-
trolled release data, and prior information. This approach is entirely technology-agnostic, does not require
knowledge of the underlying physical model, and may be adapted to a wide range of scenarios. Further,
we demonstrate in section 4.2 how the results should be used in down-stream applications to quantify the
uncertainty in measurements from methane quantification technologies. Code for implementing the analyses
in sections 4 is freely available at https://github.com/augustinewigle/methaneUQ.

The probability density functions may be summarized as credibility intervals (e.g., the range of emis-
sion rates that correspond to a given probability) and may be used for other purposes, such as the input to
probabilistic simulations to assess the effectiveness of alternative fugitive emissions management plans (alt-
FEMPs) or in calculating the uncertainty attached to inventory estimates. This study demonstrates clearly
the importance of multiple measurements during any particular emission survey study. The implications of
this result are immediately of significance for regulation and policy. Currently the structure and schedule of
regulations tends to specify only the annual frequencies of site and equipment emission monitoring surveys.
A key result of this study is that the uncertainty of a given survey is dependent on the number of measure-
ments made. Due to the relatively large uncertainties observed for different technologies in this study, it is
likely that multiple measurements would be required to achieve a desired emission rate uncertainty. There-
fore, regulators would be advised to specify the minimum number of observations at any emission source in
addition to the annual emissions survey frequencies. Alternatively, and perhaps more appropriately due to
the relationship between uncertainty and true emission rate, a desired uncertainty range per emission source
should be specified and the number of measurements required to achieve this uncertainty should be made.

An important aspect of methane detection and quantification technologies not covered by the methodol-
ogy so far is the detection probability, that is, how likely it is that a technology will detect a given emission
source under a set of conditions. Work has been done to characterise probability of detection and uncertainty
separately, e.g., [23]. An advantage of the Bayesian approach taken in this paper is that it lends itself well
to model extension. Modelling of detection probability could be done simultaneously to uncertainty mod-
elling by using a hierarchical Bayesian model. Extending the model to simultaneously consider detection
probability and measurement uncertainty is an important avenue of future work.

Another area of further exploration lies in the incorporation of meteorological data into the likelihood.
Given a large amount of controlled release data, it may be possible to narrow the posterior probability by
incorporating the meteorological data into the likelihood. For example, the likelihood could be modified so
that the median function is

ϕi = α0 + α1Qi + β1(wind speedi).

In other words, the meteorological data becomes an additional observable. Another caveat to the inclusion of
covariates is that more controlled release data would be needed to accurately estimate the increased number
of model parameters. However, it has the potential to improve the predictive performance of the models.
Incorporating meteorological data into the model could be investigated further.
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