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Introduction

Deep and rapid reductions in methane emissions from leading anthropogenic sources, especially upstream oil and gas activities, are crucial in order to avoid the worst outcomes of climate change [1], but doing this requires instrumentation that can reliably detect and quantify these emissions. Technologies for doing this include: quantitative optical gas imaging (QOGI) using mid-wavelength infrared (MWIR) cameras [START_REF] Wilson | New Optical Gas-Imaging Technology for Quantifying Fugitive-Emission Rates[END_REF][START_REF] Mitchell | Measurements of Methane Emissions from Natural Gas Gathering Facilities and Processing Plants: Measurement Results[END_REF][START_REF] Kang | Emission Quantification via Passive Infrared Optical Gas Imaging: A Review[END_REF]; stationary [START_REF] Heltzel | Machine learning techniques to increase the performance of indirect methane quantification from a single, stationary sensor[END_REF] and mobile [START_REF] Brantley | Assessment of Methane Emissions from Oil and Gas Production Pads using Mobile Measurements[END_REF][START_REF] Atherton | Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada[END_REF][START_REF] Caulton | Quantifying uncertainties from mobile-laboratoryderived emissions of well pads using inverse Gaussian methods[END_REF] methane concentration sensors; and airborne [START_REF] Conrad | A measurement-based upstream oil and gas methane inventory for Alberta, Canada reveals higher emissions and different sources than official estimates[END_REF][START_REF] Sherwin | Single-blind test of airplane-based hyperspectral methane detection via controlled releases[END_REF] and satellite-based [START_REF] Varon | Satellite Discovery of Anomalously Large Methane Point Sources From Oil/Gas Production[END_REF] measurements. All of these systems utilize a measurement model that relates direct observations and auxiliary inputs to the methane emission rate. Often the measurement model consists of a spectroscopic sub-model that connects some radiometric measurement to a column density (ppm×m) or path-averaged concentration estimate (ppm), and an advection sub-model, usually informed using anemometry data. The output of the inversion procedure is typically a point estimate of the methane emission rate from the source (e.g., kg/hr).

Emissions estimates can only be interpreted properly in the context of uncertainty. This aspect is particularly important in view of existing and emerging methane emissions regulations and reduction commitments [1,[START_REF] Canfin | Report on the proposal for a regulation of the European Parliament and of the Council on methane emissions reduction in the energy sector and amending Regulation (EU)[END_REF][START_REF]OGMP 2.0 -The Oil & Gas Methane Partnership 2[END_REF], e.g., to answer the question "with what probability is this facility compliant with a particular regulation?" Methane leak detection and repair (LDAR) programs should also be optimized with quantification uncertainty in mind to give the best trade-off between cost and emissions reductions, as it has been shown that high quantification uncertainty contributes to certain types of LDAR programs being less cost effective [START_REF] Fox | Can new mobile technologies enable fugitive methane reductions from the oil and gas industry?[END_REF]. Further, methane emissions measurements are used to develop broader jurisdiction-wide and global inventories [START_REF] Conrad | A measurement-based upstream oil and gas methane inventory for Alberta, Canada reveals higher emissions and different sources than official estimates[END_REF][START_REF] Solazzo | Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases[END_REF][START_REF] Mackay | Methane emissions from upstream oil and gas production in Canada are underestimated[END_REF], which are needed to assess progress towards emissions reduction targets and to inform policies and regulations, but these decisions can only be made in the context of uncertainty. Therefore, there is a need for transparent techniques for estimating emissions uncertainty that can be applied consistently in different contexts.

Approaches for quantifying methane emission uncertainty may be categorized as either physics-based or data-driven. Physics-based approaches address uncertainty associated with measurement noise, uncertain model inputs, and, especially, the model errors induced by the approximations and simplifications needed to derive a tractable measurement model, in an explicit way. As an example, Montazeri et al. [START_REF] Montazeri | On the Viability of Video Imaging in Leak Rate Quantification: A Theoretical Error Analysis[END_REF] derive formulas for different error components of QOGI estimates, with the aid of virtual data generated from a computational-fluid dynamics large eddy simulation (CFD-LES). Caultron et al. [START_REF] Caulton | Quantifying uncertainties from mobile-laboratoryderived emissions of well pads using inverse Gaussian methods[END_REF] developed uncertainties for emission estimates obtained from a truck-mounted concentration sensor and inverse Gaussian plume model by accounting for uncertainty in the Gaussian model diffusion coefficient, emission source and height, and wind speed and stability class. Cambaliza et al. [START_REF] Cambaliza | Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions[END_REF] developed uncertainties for emission estimates inferred from aircraft-based concentration measurements using different values for the background carbon dioxide and methane, depth, changes in the convective boundary layer height, and perpendicular wind speed parameters.

While physics-based approaches provide key insights into the uncertainty of methane emission estimates obtained from various technologies, and how they should be deployed to minimize these uncertainties, they also have several key drawbacks. First, they require detailed knowledge of the measurement model, which may be very complex or unavailable due to proprietary aspects of the technology. Second, the results of a physics-based uncertainty analysis are specific to a given technology and will not be broadly applicable, requiring cumbersome effort for every technology of interest. Third, results of a purely physics-based uncertainty estimate may not agree with what is observed in real-world scenarios due to missing or inadequate modelling of uncertainty sources. Moreover, existing physics-based uncertainty analyses do not include methods or procedures for how the results should be applied in practice, and there is a lack of consistency in reporting of the results [START_REF] Caulton | Quantifying uncertainties from mobile-laboratoryderived emissions of well pads using inverse Gaussian methods[END_REF]. For example, most physics-based approaches do not show how their results should be used to derive a 95% confidence interval based on a given measurement from the technology.

Empirical approaches to uncertainty quantification rely on a statistical model which compares true and measured emission rates from controlled-release data. The statistical model can then be used to predict future measurements given a true emission rate, or inverted to give a confidence interval for the true emission rate given a measurement. Empirical approaches have two key benefits over physics-driven approaches: 1) they are data-driven, meaning the results will likely resemble what is actually observed in the field, and 2) the statistical framework can be leveraged to provide unified and consistent guidelines for how the results of the uncertainty analysis should be used in practice.

Empirical approaches require data from controlled-release field trials. To this end, many single-blinded or double-blinded field trials have been conducted with the goal of assessing the performance of methane emissions quantification technology, e.g., [START_REF] Sherwin | Single-blind test of airplane-based hyperspectral methane detection via controlled releases[END_REF][START_REF] Edie | Constraining the accuracy of flux estimates using OTM 33A[END_REF][START_REF] Singh | Field Performance of New Methane Detection Technologies: Results from the Alberta Methane Field Challenge[END_REF][START_REF] Johnson | Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR[END_REF][START_REF] Bell | Single-blind determination of methane detection limits and quantification accuracy using aircraft-based LiDAR[END_REF][START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF]. However, empirical approaches employed on these data have mainly been limited to linear regression approaches [START_REF] Sherwin | Single-blind test of airplane-based hyperspectral methane detection via controlled releases[END_REF][START_REF] Edie | Constraining the accuracy of flux estimates using OTM 33A[END_REF][START_REF] Singh | Field Performance of New Methane Detection Technologies: Results from the Alberta Methane Field Challenge[END_REF][START_REF] Johnson | Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR[END_REF][START_REF] Bell | Single-blind determination of methane detection limits and quantification accuracy using aircraft-based LiDAR[END_REF], with the exception of [START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF], who provide an approach to derive the distribution of the true emission rate given a measurement from an airborne methane detection and quantification technology. A limitation of these approaches is that the models have a constant relationship between uncertainty and the true emission rate (either strictly additive or multiplicative). Existing approaches often do not account for the possibility that a technology may detect methane when there is none being released. Finally, there is a lack of reporting on how the methods should be applied in different scenarios, such as in performing field measurements in LDAR surveys or as part of a measurement-based survey.

In this work, we introduce a flexible empirical framework to elucidate quantification uncertainty that can be applied to any technology modality and illustrate its use using field trial data from two campaigns carried out using four methane detection and quantification technologies as well as controlled release data reported by [START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF]. The empirical framework allows for the derivation of two important probability distributions: 1) the distribution of measurements given the true emission rate and 2) the distribution of the true emission rate given a measurement. The first distribution is a building block to the second distribution, and has the potential to be incorporated into simulation software that models LDAR programs such as FEAST, LDAR-Sim, and AROFemp [START_REF] Kemp | Comparing Natural Gas Leakage Detection Technologies Using an Open-Source "Virtual Gas Field[END_REF][START_REF] Fox | An agent-based model for estimating emissions reduction equivalence among leak detection and repair programs[END_REF][START_REF] Lavoie | Evaluating the benefits of alternative leak detection programs[END_REF]. The second distribution is an important input to simulation methods used to derive measurement-based inventory estimates such as [START_REF] Johnson | Creating measurement-based oil and gas sector methane inventories using source-resolved aerial surveys[END_REF]. Our approach to deriving the second distribution also provides the opportunity to incorporate context-specific information into the analysis, such as knowledge of the emission rate distribution in a given region. The results of the analysis are data-driven and the design of the field trials allows for the assessment of the potential real-world effectiveness of the uncertainty quantification results.

Materials and Methods

Methane Quantification Technologies

We demonstrate the analysis procedure using controlled release data from four methane quantification technologies, three of which were evaluated in the field trials described in Sec. 2.2: QOGI; truck-mounted tunable diode laser-absorption spectroscopy (TDLAS); and airborne near-infrared hyperspectral (NIR HS) imaging. We also consider an airborne TDLAS system ("Gas Mapping LiDAR™ " (GML) from Bridger Photonics, Inc.) based on data reported in Conrad et al. [START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF]. Examples of the technologies investigated in the field trials are shown in figure 1.

Quantitative Optical Gas Imaging (QOGI)

QOGI systems are almost exclusively based on a mid-wavelength infrared (MWIR) camera that contains a cold filter centered on the 3.34 µm methane vibrational-rotational band. The intensity entering the camera aperture is imaged through the cold-filter and onto a focal plane array (FPA) that produces a pixel intensity. The cameras are usually calibrated to generate a spectrally-averaged absolute intensity along each pixel line-of-sight. The camera data is then analyzed in near real-time by software on a peripheral tablet. The measurement model is composed of a spectroscopic sub-model that generates a column density map of the gas, and an advection model that infers a 2D projected velocity field from the apparent plume motion between successive images. These quantities are then combined to obtain a mass flow rate (e.g, kg/s).

The reliability of QOGI-derived emission estimates depends on factors that include measurement distance between the plume and the camera, thermal contrast between the plume and the background, wind speed, and leak rate [START_REF] Singh | Field Performance of New Methane Detection Technologies: Results from the Alberta Methane Field Challenge[END_REF][START_REF] Zeng | Detection limits of optical gas imagers as a function of temperature differential and distance[END_REF][START_REF] Ravikumar | Empirical Tests of Methane Leak Detection Sensitivity of a Commercial Infrared Camera[END_REF]. Identifying favorable measurement scenarios draws considerably on operator experience [START_REF] Zimmerle | Detection Limits of Optical Gas Imaging for Natural Gas Leak Detection in Realistic Controlled Conditions[END_REF]. Three QOGI systems were deployed by three operators of varying experience, as summarized in Table 1.

QOGI Operator A used a FLIR GF320™ camera with a Providence QL320™ tablet (v. 3.0.0.5); QOGI Operator B used the OPGAL EyeCGas™ (v. 1.0.24) and QOGI Operator C used a FLIR GFx320™ camera with the FLIR QL320™ Tablet (v. 1.4.1). Notably, while Operator B was an experienced QOGI operator, they were unfamiliar with the OPGAL system during the field trial. QOGI Operator A was highly experienced and familiar with their equipment, while QOGI Operator C was a novice, having less than six months of experience with the system.

Truck-mounted TDLAS

Methane releases were also quantified using a truck-mounted TDLAS system (Boreal Laser GasFinder 3 VB™). The absorptance, and therefore methane column density (e.g., ppm•m), is inferred through wavelengthmodulation spectroscopy (WMS) [START_REF] Supplee | Theoretical description of frequency modulation and wavelength modulation spectroscopy[END_REF] and then converted to a path-average concentration (ppm). The truck traversed the plume at distances ranging from 50 to 100 m downwind of the release point. Methane concentrations were measured at one second intervals; these concentrations and wind speeds obtained from an ultrasonic anemometer operated by the service provider were then processed using a backwards Lagrangian stochastic quantification algorithm [START_REF] Flesch | Backward-Time Lagrangian Stochastic Dispersion Models and Their Application to Estimate Gaseous Emissions[END_REF][START_REF] Flesch | Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial[END_REF] to obtain a release estimate for each plume transect.

Airborne NIR HS imaging (GHGSat-AV™)

The airborne NIR HS system (GHGSat-AV™) consists of a downward-looking wide-angle Fabry-Perot imaging Fourier transform spectrometer that operates between 1630-1655 nm [START_REF] Esparza | Monitoring Leaks at Oil and Gas Facilities Using the Same Sensor on Aircraft and Satellite Platforms[END_REF], mounted inside an aircraft [START_REF] Esparza | Analysis of a tiered top-down approach using satellite and aircraft platforms to monitor oil and gas facilities in the Permian basin[END_REF]. The aircraft overflew the releases at an approximate altitude of 250 m above ground level and airspeed of 240 km/hr. Thermal emission from the gas and ground is negligible over this wavelength range; instead, the camera images sunlight transmitted through the atmosphere, reflected from the ground, and transmitted back to the camera. The methane column density is inferred from the attenuation of the transmitted light via a multi-layer spectroscopic model, and then combined with an advection model [START_REF] Varon | Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes[END_REF] using wind data from an online weather model to find the emission rate.

Airborne TDLAS

Bridger's airborne GML™ system consists of two tunable diode lasers, and a sensor that detects the ground-reflected laser light. One laser is used for range finding and determining ground reflectivity, while the other scans the 1651 nm CH 4 absorption line to determine column density. The lasers move in a conical pattern, which forms an ellipsoidal swath on the ground. Reflected light from the range-finding and methaneabsorbing lasers are combined to form a column density via WMS. The column density estimates across the swath are used to form a 3D plume concentration map, which is combined with an advection model using wind speed from online weather data to obtain a release rate [START_REF] Johnson | Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR[END_REF].

Field Trial Design and Execution

The QOGI, truck-mounted TDLAS, and airborne NIR HS imaging systems were evaluated through two controlled release field campaigns executed at Carbon Management Canada (CMC)'s Newall County Research Station near Brooks, Alberta, the first during April 20 -26, 2022 and the second during September 25 -October 1, 2022. Technology developers and service providers were invited to attend the field trials and quantify emissions of natural gas in a variety of industrially relevant scenarios, including 1.7 m, 3.4 m, and 4.8 tall stacks, and a 14-m tall unlit flare, following their standards-of-practice. Information on releases and meteorological conditions are provided in the Supplemental Information. Anonymized release and emissions estimates data from both trials are available at the github repository augustinewigle/methaneUQ.

An assay showed that the natural gas consisted of 94.2 % methane, 3.4 % ethane, 1.1 % propane, and 1.3 % minor components, predominantly N 2 and O 2 in roughly atmospheric abundances. The gas was released from a compressed cylinder via a regulator valve and flowed through a heat exchanger to condition the gas to atmospheric temperature. The conditioned gas then passed through a mass flow controller (Alicat MCR-2000SLPM -D-PAR) and discharged to the atmosphere in a manner that depended on the release scenario as shown in figure 2.

Local meteorological conditions were measured using a portable 81000-L RM Young 3D ultrasonic anemometer and a Davis WeatherLink Pro+™ weather station. The portable anemometer was located 2.25 m above the ground. Background measurements of methane and other relevant species were monitored throughout the tests using a Picarro cavity ringdown spectrometer located in a structure approximately 250 m from the release locations. Background methane measurements were between 2 to 2.5 ppm throughout the tests. Meteorology and controlled release data for these field trials are provided in the supplemental information (SI).

Service providers did not have access to meteorology data; instead, they conducted their own on-site measurements or relied on third-party weather models, as they would when deploying the technology in a practical scenario. Service providers then compiled their own estimates and provided them to the academic team. Additional data was taken from the controlled release studies of the Bridger GML system reported Conrad, et al. 2023 [START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF] to demonstrate the applicability of the methods. 

Uncertainty Quantification

Models for Uncertainty Using Controlled Release Data

We propose a statistical model that answers the following question: For a given true emission rate, what range of measurements could be expected, given the observed controlled release data, considering model error and measurement noise? We take a Bayesian approach to fitting the model and thus in Sec. 3.1.2 we give a brief overview of Bayesian analysis, followed by technical details that include the prior distributions, Sec. 3.1.3, and model selection methods, Sec. 3.1.4.

Novel Flexible Model

Let Q i be the true emission rate corresponding to the ith observation in the field trial, and M i be the emission rate estimated by the technology for the ith observation, i = 1, . . . , n where n is the total number of observations for the given technology. The relationship between Q i and the bias and variability of M i can be complicated, since both the bias and the variability may change over the range of Q i . Additionally, the relationship between Q i and M i may not be strictly linear, as shown in e.g. figure 3. The model must also account for the fact that all technologies may report a "false positive", that is, estimating a non-zero M i when Q i = 0.

A flexible likelihood which allows the bias and variance of M i to vary with Q i and incorporates the possibility of false positives is given by

log(M i ) = log(ϕ i ) + ϵ i , (1) 
where

ϵ i ∼ N(0, σ 2 i ) and ϕ i = median(M i ).
This likelihood is normal on the log scale, which corresponds to a log-normal likelihood on the measurement scale. A specification for ϕ i is the following continuous piece-wise function of Q i :

ϕ i =        α 0 + α 1 Q i + α 2 Q 2 i Q i ≤ γ; α 0 + β 0 + (α 1 + β 1 )Q i Q i > γ,
which is quadratic for values of Q i below a threshold γ and linear above γ. To ensure that the function is continuous at Q i = γ, we impose the restriction that β 0 = α 2 γ 2 -β 1 γ. The specification of ϕ i can be modified to give the best prediction results and fit to the data. For example, the threshold parameter γ, β 0 and β 1 could be removed, which would give a quadratic relationship characterized by α 0 , α 1 , and α 2 over the whole range of Q i . Table 3 summarizes the parameters that may be removed and Section 3.1.4 shows how the likelihood is chosen.

The model can be rewritten to facilitate interpretation by exponentiating both sides of Eq. ( 1):

M i = ϕ i × e ϵ i , (2) 
where ϕ i is the median measurement for a true emission rate of Q i . The likelihood in Eq.( 1) is an extension of the scheme proposed by Conrad et al. [START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF]. That is, their model is a special case of our likelihood where α 0 = 0, α 2 = 0, β 0 = 0, β 1 = 0, and σ 2 i = σ 2 for all i = 1, . . . , n. Briefly, they assume the median value of M i has a multiplicative relationship with Q i , that is,

ϕ i = α 1 × Q i ,
and the multiplicative error term has a constant variance over the range of Q i . Our model expands on this in three ways. First, we allow for linear and quadratic relationships between the median measurement and Q i rather than a strictly multiplicative one. This is useful in modelling more complex relationships. Additionally, it allows false positives to be modelled via α 0 . Second, the inclusion of the threshold parameter γ allows more flexibility in modelling the relationship between the median of M i over the range of Q i rather than assuming a common median function for all Q i . Third, we investigate different variance structures for ϵ i which can allow the variance to change with Q i to more accurately model the patterns observed in controlled data from some instrumentation rather than assuming a constant variance. Another difference between this approach and that of [START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF] is that they investigate different distributions for the error term, whereas we restrict ourselves to the log-normal distribution, but investigate different forms for the median and variance which are motivated by the data. Finally, we take a fully Bayesian approach to estimation and inference discussed in section 3.1.2 whereas [START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF] uses a (frequentist) maximum likelihood approach.

It is important to note that in this model the errors are additive on the log scale, which implies multiplicative errors on the raw measurement scale as shown in Eq. ( 2). The simplest way to model the variation is to set the variance of ϵ i to a constant, σ 2 i = τ -1 for all i, where τ is referred to as the precision parameter. Multiplicative errors may be suitable for lower and moderately-sized emission rates, but for large values of Q i purely multiplicative errors may overestimate variability for some technologies. A possible explanation for this is that for smaller emission rates, both the error in raw concentration or column density estimates and error in the advection model are significant, leading to product uncertainty. For larger emission rates, however, either raw measurement error or advection model error dominates, leading to sub-multiplicative errors in this range. To accommodate this, we also propose using σ 2 i = (τ + Q i /η) -1 as an alternative variance structure for ϵ i which allows the variability of the error terms to decrease with increasing Q i . With this variance form, when Q i = 0, the variance on the log scale is equal to τ -1 , decreases as Q i increases. The parameter η controls how quickly the variance decreases with Q i . The approach to choosing an appropriate likelihood, including the variance specification, is described in Sec. 3.1.4. This section concludes with interpretations of the parameters in the likelihood. Threshold parameter γ allows the linear relationship to change for larger values of Q i . The intercept parameter α 0 represents the median measurement when the true emission rate is zero, which accounts for false positives. Parameters α 1 and α 2 are the coefficients for Q i and Q 2 i , describing the quadratic relationship between the median measurement and the true emission rate when the true emission rate is less than the threshold. Sums α 0 + β 0 and α 1 + β 1 are the slope and intercept of the linear relationship between the median measurement and Q i when Q i exceeds the threshold. Some technologies exhibit simpler relationships between Q i and the median of M i , in which case some or all of γ, α 2 , β 0 , and β 1 may be dropped from the model. Finally, two different variance specifications were used in the likelihood: either

σ 2 i = τ -1 or σ 2 i = (τ + Q i /η) -1 .
In the former case, τ -1 is the variance of all measurements on the log scale. In the latter specification, τ -1 is the variance of the measurements when Q i = 0 and c controls how much the variance changes as Q i increases from zero. A larger value of η corresponds to a milder reduction in variance as Q i increases. Table 3 summarizes the parameters in the likelihood, their units, and scenarios in which they may be included or removed.

Bayesian Analysis

The model parameters are estimated using a Bayesian approach. This is done for several reasons: (i) the method is flexible, allowing the likelihood to be tailored to the data; (ii) data can be synthesized seamlessly from multiple sources (e.g., multiple measurement campaigns or different measurement modalities); (iii) it explicates the use of prior information; and (iv) it provides the full probability distribution of measurements given a true emission rate, amounting to a comprehensive definition of what is known about the emission rate (see Sec. 4.2).

Let the unknown parameters of a statistical model for the measurement M i given a fixed true emission rate Q i be represented by vector θ. For example, in a model where ϕ i = α 0 +α 1 Q i and σ 2 i = σ 2 , the parameter vector is θ = (α 0 , α 1 , σ). In the Bayesian framework, these parameters are envisioned as random variables defined by probability distributions that are related by Bayes' equation,

p(θ | M) = p(M | θ)p(θ) p(M) , (3) 
where M = (M 1 , M 2 , . . . , M n ) ′ . The probability distribution of interest is the posterior distribution, p(θ | M), which summarises the information about θ in the observed measurements along with any external or "prior" knowledge we may have about θ. The likelihood distribution, p(M | θ), is the probability distribution of the set of measurements for a fixed value of θ and is also a function of the vector of true emission rates Q, which is fixed and thus suppressed in the notation in Eq. ( 3). It describes how likely it is to observe M for a given value of θ and Q in the context of measurement noise and model error. Under the assumption that errors are independent between measurements, we also have that

p(M | θ) = n i=1 p(M i | θ).
The prior distribution, p(θ), describes what is known about the unknown parameters before data is collected. Prior distributions for the proposed models are discussed in Sec. 3.1.3. Finally, p(M) is the marginal distribution of the data, which is constant for fixed data. It does not need to be calculated when computational techniques such as Markov Chain Monte Carlo are used to obtain the posterior.

The posterior p(θ | M) is estimated using Markov Chain Monte Carlo (MCMC) sampling, which generates a set of samples from the posterior distribution of θ [START_REF] Gelman | Bayesian Data Analysis[END_REF]. These samples are readily used to derive quantities of interest, such as credibility intervals. MCMC sampling is done using Just Another Gibbs Sampler (JAGS) [START_REF] Plummer | JAGS version 4.3.0 user manual[END_REF] via the runjags R package [START_REF] Denwood | runjags: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS[END_REF].

We wish to understand the distribution of a measurement given a fixed value of Q i . Let Mi represent a new, unobserved measurement and Q i be an accompanying true emission rate. Then we wish to find the posterior predictive distribution of Mi , given by p

( Mi | M, Q i ) = p( Mi | θ, Q i )p(θ | M)dθ,
which is the integral over θ of the likelihood of M i given fixed θ and Q i times the posterior distribution of θ. This distribution can be obtained via simulation using samples from the posterior.

Prior Distributions

As with any Bayesian model, an appropriate prior distribution depends on the context of the problem at hand, including pre-existing knowledge and the scale of the data. We summarise the units of each parameter in Table 3.

Parameter Units Exclusion criteria α 0 [M i ] * α 1 Unitless None α 2 [M i ] -1 † β 0 [M i ] *, † β 1 Unitless † γ [M i ] † τ Unitless None η [M i ] †
Table 3: Summary of the units for each parameter in the likelihood, important to keep in mind when specifying prior distributions.

Exclusion criteria: * = may be removed if technology does not have false positives in controlled release data, † = may be removed if its removal leads to a simpler model which has adequate fit and predictive performance.

The parameters of the likelihood to be estimated are α 0 , α 1 , τ, along with optional parameters α 2 , γ, β 1 , and/or η. All parameters are assumed to be independent, that is,

p(θ) = p(α 0 , α 1 , τ, α 2 , γ, β 1 , η) = p(α 0 )p(α 1 )p(τ)p(α 2 )p(γ)p(β 1 )p(η), (4) 
so we can specify individual prior distributions for each parameter. We can derive empirical prior distributions by considering the role of each parameter in the model and their units. Since α 0 is the median measurement when the true emission rate is zero, it should be small and non-negative. It is parameterized by a gamma distribution, where the shape and rate parameters can be chosen so the mean of the distribution is similar to the mean false positives observed in the data. For example, for the data reported by QOGI Operator A, the average false positive is 0.27 kg/h so we use a gamma distribution with shape parameter = 0.5 and rate parameter = 2, which has a mean of 0.25 and variance of 0.125. Note that β 0 is a function of other parameters to ensure that the piece-wise function is C 1 continuous. A prior is not specified for this parameter.

In a simple linear model, α 1 is the slope of Q i so for every one unit increase in Q i , the median measurement increases by α 1 units. A perfect technology would have α 1 = 1. Thus we use a prior for α 1 which has a median of 1 and is non-negative. Further, we seek a distribution with the property that for any constant k > 1, the probability that α 1 > k should be the same as the probability that α 1 < 1/k, or in other words, the probability that the technology over-estimates by a factor of k is the same as the probability that it under-estimates by a factor of 1/k. This property is desirable in the prior because information about underor over-estimation should only come from the data. Thus we use a standard log-normal distribution (shape parameter equal to one, location parameter equal to zero, and scale parameter equal to zero [START_REF]Lognormal Distribution[END_REF]) because it has this property. For example, if α 1 follows the standard log-normal distribution the probability that α 1 < 1/2 = probability that α 1 > 2 = 0.244.

Coefficient α 2 is associated with

Q 2 i when Q i ≤ γ.
Similarly to α 0 and α 1 , we restrict this parameter to be non-negative to avoid taking the log of zero or a negative number. Due to the units of α 2 , we use a prior with a relatively small variance. For example, if we wanted the variance to be equivalent to 10 kg/h, that equals 0.1 [kg/h] -1 . Thus we use a half-normal distribution with variance parameter equal to 1.

Parameter β 1 (unitless, nonnegative) represents the change in α 1 when Q i > γ. As with α 1 , we use a standard log-normal distribution as a prior for β 1 .

The threshold parameter γ represents the value of Q i for which the relationship with M i changes from quadratic to linear. The parameter γ must be somewhere in the range of the Q i data. We use a uniform prior distribution on (0, max) where max is determined by the largest value of Q i observed in the data for a given technology.

Parameter τ represents either the inverse of the variance of measurements on the log scale in a constant variance model, or the inverse of the variance of measurements when Q i = 0 on the log scale and is referred to as the precision parameter. We use a vague non-negative prior of a half-normal with variance parameter set to 100 on τ -1/2 , as suggested in [START_REF] Gelman | Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)[END_REF].

Finally, if the more complicated variance model is used, a prior must be chosen for η. Little external information is known about η except it must be non-negative. We use a half-normal with variance set to 100.

The sensitivity of results to prior specification was checked for all models. Results were obtained for the stated priors. Next, the model was refit with priors where the range and/or variance was changed for some parameters. The posterior distribution of each parameter was then compared between the two models. The resulting 90% prediction bands were also compared between the models. Unless otherwise stated in the results section, the model results were insensitive to the prior specification.

Model Selection

As discussed in Sec. 3.1.1, a variety of candidate models may be formed by adding or removing likelihood parameters, each of which may result in different implications for measurement bias and variability. For example, removing Q i /η from the variance expression leads to a simpler model which has constant variance on the log scale. In general, a model with more parameters will fit the controlled release data better but may also be prone to over-fitting, which can result in poor predictive performance. Therefore, we use a combination of Deviance Information Criteria, prediction bands, and residual plots to select a model that provides a good trade-off between goodness of fit and complexity.

The Deviance Information Criterion (DIC) combines goodness-of-fit to the training data and model complexity to provide an overall assessment of the model [START_REF] Gelman | Bayesian Data Analysis[END_REF]. It is analogous to the AIC, a frequentist model selection tool used by Conrad et al. [START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF] in the context of uncertainty modelling of methane quantification technologies. When comparing multiple models, a lower DIC value indicates a better balance between model fit and complexity, with differences of two or more considered meaningful [START_REF] Spiegelhalter | Bayesian measures of model complexity and fit[END_REF].

We are also guided by plotting prediction bands derived from the posterior predictive distribution of measurements for different values of Q i over a scatterplot of the data used to fit the model. If the prediction bands show a much wider or narrower spread than the data used to fit the model, this is an indication that the variance is not modelled well. Prediction bands can also be compared to additional data that was excluded from the model fit ("external data"), which indicates the generalizability of the model predictions. If the model predictions look similar to the external validation data, this is an encouraging sign that the model is suitable to be used under different conditions. Investigating the residuals, defined as the difference between the model-predicted value ( Mi ) and the observed data point (M i ), that is, residual i = M i -Mi provides still more insight into areas of improvement for the model.

The DIC, prediction bands, and residual plots were used for model selection as follows: First, the simplest model possible with constant variance was fit to the data (a multiplicative model with α 1 if there are no false positives in the data or a linear model with α 0 and α 1 otherwise). The DIC was calculated using JAGS. Prediction bands were compared to the data used to fit the model and residual plots were inspected. If the prediction bands were much wider or narrower than the spread of the data, this indicated that the variance model should be explored. If the residual plots showed systematic problems, this indicated that the median specification should be explored. Models were then augmented as suggested by the diagnostic plots, refit, and DIC was re-calculated. This process was repeated until the diagnostic plots were satisfactory and the DIC was at least three less than that of the previous model.

Results and Discussion

Uncertainty Results

In this section, we present the selected likelihoods for five different methane quantification technologies/operators, discuss the performance, and comment on the generalizability of the model if applicable. The chosen models are summarized in Table 4.

QOGI Technologies

Prediction bands and posterior median predictions are shown for QOGI Operators A, B, and C in Figures 3, 4 and5, respectively. All QOGI technologies underestimate emissions on average. The likelihoods from QOGI Operators B and C are best modelled using a quadratic function for the median below a small threshold, then a linear function. QOGI Operator A is best modelled using a quadratic function for the median. Data provided by Operator A has a more limited range than the other QOGI technologies -with a max Q i value of 30 kg/h, compared to 80 kg/h for Operator C and 50 kg/h for Operator B. For QOGI technologies in general, the likelihood has more curvature in the lower range of Q i while a linear relationship on the log scale is suitable for higher release rates.

The results for QOGI Operator B are quite distinct from those of Operators A and C. This may be attributed to this operator's lack of familiarity with the camera settings during the testing, as reported by the 

Technology

Selected likelihood

ϕ i σ 2 i QOGI A α 0 + α 1 Q i + α 2 Q 2 i (τ + Q i /η) -1 QOGI B        α 0 + α 1 Q i + α 2 Q 2 i Q i ≤ γ; α 0 + β 0 + (α 1 + β 1 )Q i Q i > γ. τ -1 QOGI C        α 0 + α 1 Q i + α 2 Q 2 i Q i ≤ γ; α 0 + β 0 + (α 1 + β 1 )Q i Q i > γ. (τ + Q i /η) -1
Truck TDLAS

α 0 + α 1 Q i (τ + Q i /η) -1 Aerial TDLAS α 1 Q i (τ + Q i /η) -1 Aerial NIR HSI α 0 + α 1 Q i τ -1
operator. This lack-of-familiarity manifests as an additional factor that influences (broadens and biases) the likelihood. QOGI Operator C was present for both field trials. Only 14 measurements were made for this technology at the first field trial, which we use as external data. These data points fall within the 95% prediction band, suggesting that the model is generalizable.

TDLAS

Results from the selected models for truck and aerial TDLAS systems are shown in Figs. 6 and7. The truck-based TDLAS tends to underestimate emissions, while the aerial technology overestimates on average.

For truck-based TDLAS, the model was fit using data from the second field trial, while data from the first field trial was used as external data to assess the model's generalizability. Most of the external data points fall within the prediction bands. However, the median trend appears different for the external data. A possible explanation for this is that weather conditions may have differed between trials one and two in such a way that estimates were systematically larger during the first trial than the second.

Figure 8 shows the predictions resulting from the Bayesian uncertainty model derived for the airborne TDLAS compared to the one presented by Conrad et al. [START_REF] Conrad | A measurement-based upstream oil and gas methane inventory for Alberta, Canada reveals higher emissions and different sources than official estimates[END_REF]. The Bayesian model gives narrower prediction bands than the other model, which is particularly noticeable in the upper range of Q i . This is likely due to the different variance specifications used in the models; the model in Ref. [START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF] uses a constant variance whereas the selected model from our proposed Bayesian approach allows the variance to change with Q i . The median predictions (solid black line) are very similar between the two models.

Airborne NIR HS Imaging

The prediction bands from the selected model for the airborne NIR HS imaging technology are shown in Fig. 9. The technology tends to overestimates emissions. The model was fit to data from the second field trial, while data from the first field trial were used as external data. There appear to be systemic differences between the data from the two field trials, with the data from the first field trial underestimating emissions more often, and data from the second field trial overestimating emissions more often. During the first field trial, the operator remarked that the conditions were considered marginal due to excessive cloud cover and would not be typical of those under which commercial measurements were conducted, while those of the second field trial were nearly ideal. However, most of the external data points still fall within the 95% prediction bands, which is a positive indication of the applicability of the model. 4 and that presented in [START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF] for airborne TDLAS. 

Application: Quantifying Uncertainty in New Measurements 4.2.1. Algorithm

Finally, we describe a possible downstream application of the distributions derived in section 4.1. Suppose we wish to calculate a credible interval for the true emission rate based on methane measurements made in the field where the true emission rate is not known. Let Q new represent the unknown true emission rate associated with the new measurement and M new be the measurement made in the field. We wish to know the distribution of Q new given M new and our uncertainty model derived from controlled release data. The distribution of interest is p(Q new | M new , M). Using Bayes equation, Eq. ( 3), we can say that

p(Q new | M new , M) ∝ p(M new | Q new , M)p(Q new | M) = p(M new | Q new , M)p(Q new ), (5) 
where the true emission rate is modeled as independent of the measurements from the controlled release trials. Computational techniques can be used to obtain p(M new | Q new , M). We can say that

p(M new | Q new , M) = p(M new | Q new , θ, M)p(θ | Q new , M)dθ = p(M new | Q new , θ)p(θ | M)dθ. (6) 
The distribution p(M new | Q new , θ) is the likelihood given by the uncertainty model from 3.1.1 where

Q i = Q new . p(θ | M)
is the posterior distribution of θ given the controlled release data. This integral can be approximated via Monte Carlo simulation as follows:

1. Sample

θ j j = 1, . . . , J times from p(θ | M) 2. For j = 1, . . . , J, calculate p(M new | Q new , θ j ) 3. The integral in (6) ≈ J j=1 p(M new |Q new ,θ j ) J
This process can also be performed for repeated measurements of the same source, that is, where M new is a vector, M new = (M new 1 , . . . , M new n ). Under the assumption that the uncertainty in each measurement is independent of previous measurements, conditional on Q new , at step two, p(

M new | Q new , θ j ) = n i=1 p(M new i | Q new , θ j ).
The distribution p(Q new ) in Eq. ( 5) is the prior distribution of Q new , where we assume the new measurement is independent of the controlled release data. This distribution can be informed using relevant pre-existing data, such as survey data on leak rates in the region where the measurement was made. This facilitates the natural synthesis of external data with controlled release data and the new observed measurement.

The posterior distribution of interest p(Q new | M new , M) can be approximated using a weighted bootstrap (also called sampling-importance-resampling or SIR) [START_REF] Gelman | Bayesian Data Analysis[END_REF][START_REF] Smith | Bayesian Statistics without Tears: A Sampling-Resampling Perspective[END_REF] procedure as follows:

1. Draw a sample of size L from the prior distribution p(Q new ): S = {Q new 1 , . . . , Q new L } 2. For l = 1, . . . , L, approximate p(M new | Q new l , M) using the previously described algorithm 3. Calculate weights

w l = p(M new | Q new l , M) L k=1 p(M new | Q new k , M) (7) 
4. Resample with replacement from S with sampling probabilities w l for l = 1, . . . , L K times, K < L, to get a sample of size K from the posterior distribution p(Q new | M new , M).

Set-up

The algorithm described in the previous section is demonstrated using the model selected in Sec. 4.1 for QOGI Operator C. To approximate the distribution in [START_REF] Brantley | Assessment of Methane Emissions from Oil and Gas Production Pads using Mobile Measurements[END_REF] we use J = 10, 000 samples from the posterior. We set L to 5000 and K to 4000. We consider two data scenarios: one where a single measurement of a source is made, and one where five independent measurements of the same source are made. We also investigate two different prior distributions, p(Q new ), to show how information flows from the prior to the posterior distribution.

We simulate the process of performing measurements in the field (e.g., as part of a LDAR survey program) as follows: First, we choose a hypothetical true value for the source we will measure, which we set to Q i = 25 kg/h. Then, we simulate "measurements" by drawing from the posterior predictive distribution defined in Sec. [START_REF] Mitchell | Measurements of Methane Emissions from Natural Gas Gathering Facilities and Processing Plants: Measurement Results[END_REF] To understand how prior information impacts the estimates, we use two different prior distributions. The first prior is a uniform distribution where we only impose the upper limit of 200 kg/h, while the second is a log-normal distribution, as this distribution has been suggested to model leak rate distributions [START_REF] Zavala-Araiza | Methane emissions from oil and gas production sites in Alberta, Canada[END_REF].

To summarise, we investigate four different scenarios: 

Results

The different information expressed in the two priors can be visualized by comparing the histograms in Fig. 10. The uniform prior expresses that all values between 0 and 200 kg/h are equally likely. This may be a naive choice, because surveys have shown that extremely high emitters are much less likely than lower emitters [START_REF] Zavala-Araiza | Methane emissions from oil and gas production sites in Alberta, Canada[END_REF][START_REF] Brandt | Methane Leaks from Natural Gas Systems Follow Extreme Distributions[END_REF]. The log-normal prior expresses that there is about a 50% chance that the emission rate is less than 13.6 kg/h and 75% chance that the emission rate is less than 26.2 kg/h, with very large values being rare.

Also, posterior distributions are not centred around the measured values, which were all less than the "true" value of 25 kg/h. This is a reflection of the results shown in Fig. 5, where it is clear that the technology systematically underestimates the true emission rate. The algorithm presented in this section allows the information captured in the model derived from Sec. 3.1 to be inverted and produce estimates that are equal to the true emission rate, on average. 

Discussion

As highlighted by Figs. 3456789, relying solely on measurements without considering uncertainty can lead to significant misinterpretations of the emission rate. The methods presented in Sec 3.1 provide a way to summarise both the variability and systematic bias of a technology. They are situated in the Bayesian statistical framework which facilitates probabilistic inference, the derivation of credible intervals, and downstream approaches, as exemplified in Sec. 4.2.

Specifically, the algorithm presented in Sec. 4.2 provides a distribution of the true emission rate given all available information, including a measurement or set of measurements, controlled release data, and external prior knowledge, e.g., what is a believable leak rate for a given scenario? This prior knowledge strongly informs the posterior when the measurement data is limited, but its influence diminishes as more measurements becomes available. This is beneficial because it formalises an informal process: in the absence of data, we must rely more on previous knowledge, whereas when more data are available, we rely less on our previous knowledge. The results also show that increasing the numbers of measurements reduces uncertainty in the posterior; that is, as we collect more data, we can be more certain about the true value of the emission rate. The models presented here could be used to determine how many measurements should be performed for a certain technology and emission rate to ensure that the credibility intervals are within a certain value. This algorithm in tandem with the models described in Sec. 3.1 could be used in the future to help plan or assess the effectiveness of LDAR programs, e.g., by identifying the optimal combination of technologies that achieve a certain credibility interval.

Although extensive meteorological data were collected during the field trials (as detailed in the SI), we refrain from incorporating them in the statistical models. This is because the goal of the models is to summarise the performance of a technology over a variety of conditions. To this end, the field trials were conducted at different times of year, involved different release structures, and each trial was carried out over multiple days, so that the results could be used to assess the performance of the technologies over a variety of conditions. This also enabled the use of external validation -checking to see if data collected under one set of conditions can be used to predict data collected under a different set of conditions. However, it may be possible to improve the predictive performance of the models by incorporating meteorological data into the likelihood, discussed further in the Conclusion section.

Conclusions

A wide range of quantification technologies have been deployed to measure methane emissions from the upstream oil and gas sector, including ground-based infrared cameras, airborne hyperspectral imaging, and truck and airborne laser absorption spectroscopy. However, measurements from these technologies can only be interpreted properly in the context of uncertainty, which arise from measurement noise, uncertain model parameters, and, especially, the approximations and simplifications that must be made to render the models tractable (model error).

This paper presented a formalism for developing uncertainty estimates from controlled release data within the Bayesian framework. The outcome of this analysis are posterior probability density functions that comprehensively define what is known about an emission rate, based on the measurement data, controlled release data, and prior information. This approach is entirely technology-agnostic, does not require knowledge of the underlying physical model, and may be adapted to a wide range of scenarios. Further, we demonstrate in section 4.2 how the results should be used in down-stream applications to quantify the uncertainty in measurements from methane quantification technologies. Code for implementing the analyses in sections 4 is freely available at https://github.com/augustinewigle/methaneUQ.

The probability density functions may be summarized as credibility intervals (e.g., the range of emission rates that correspond to a given probability) and may be used for other purposes, such as the input to probabilistic simulations to assess the effectiveness of alternative fugitive emissions management plans (alt-FEMPs) or in calculating the uncertainty attached to inventory estimates. This study demonstrates clearly the importance of multiple measurements during any particular emission survey study. The implications of this result are immediately of significance for regulation and policy. Currently the structure and schedule of regulations tends to specify only the annual frequencies of site and equipment emission monitoring surveys.

A key result of this study is that the uncertainty of a given survey is dependent on the number of measurements made. Due to the relatively large uncertainties observed for different technologies in this study, it is likely that multiple measurements would be required to achieve a desired emission rate uncertainty. Therefore, regulators would be advised to specify the minimum number of observations at any emission source in addition to the annual emissions survey frequencies. Alternatively, and perhaps more appropriately due to the relationship between uncertainty and true emission rate, a desired uncertainty range per emission source should be specified and the number of measurements required to achieve this uncertainty should be made.

An important aspect of methane detection and quantification technologies not covered by the methodology so far is the detection probability, that is, how likely it is that a technology will detect a given emission source under a set of conditions. Work has been done to characterise probability of detection and uncertainty separately, e.g., [START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF]. An advantage of the Bayesian approach taken in this paper is that it lends itself well to model extension. Modelling of detection probability could be done simultaneously to uncertainty modelling by using a hierarchical Bayesian model. Extending the model to simultaneously consider detection probability and measurement uncertainty is an important avenue of future work.

Another area of further exploration lies in the incorporation of meteorological data into the likelihood. Given a large amount of controlled release data, it may be possible to narrow the posterior probability by incorporating the meteorological data into the likelihood. For example, the likelihood could be modified so that the median function is

ϕ i = α 0 + α 1 Q i + β 1 (wind speed i ).
In other words, the meteorological data becomes an additional observable. Another caveat to the inclusion of covariates is that more controlled release data would be needed to accurately estimate the increased number of model parameters. However, it has the potential to improve the predictive performance of the models.

Incorporating meteorological data into the model could be investigated further.
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Figure 1 :

 1 Figure 1: Technologies studied in the field trials. Top row, left to right: QOGI A, QOGI B, QOGI C. Bottom row, left to right: airborne NIR HSI, truck-based TDLAS.

Figure 2 :

 2 Figure 2: Controlled release set-up including heat exchanger and mass flow controller.

Figure 3 :

 3 Figure 3: Uncertainty quantification model results for QOGI Operator A. The model was fit to data from the first field trial. No external data were available.

Figure 4 :

 4 Figure 4: Uncertainty quantification model results for QOGI Operator B. The model was fit to data from the second field trial. No external data were available.

Figure 5 :

 5 Figure 5: Uncertainty quantification model results from QOGI Operator C. The model was fit to data from the second field trial. Controlled release data from the first field trial was used as external data.

Figure 6 :

 6 Figure 6: Uncertainty quantification model results for truck-based TDLAS data. The model was fit to data from the second field trial. Controlled release data from the first field trial was used as external data.

Figure 7 :

 7 Figure 7: Uncertainty quantification model results for airborne TDLAS data provided by [23].

Figure 8 :

 8 Figure 8: Side-by-side comparison of Bayesian model proposed in table4and that presented in[START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF] for airborne TDLAS.

Figure 9 :

 9 Figure 9: Uncertainty quantification model results for airborne NIR HS data. The model was fit to data from the second field trial. Controlled release data from the first field trial was used as external data.

Figure 10 :

 10 Figure 10: Comparison of histograms for the two different prior distributions p(M new ) investigated in the analysis.

Figure 11 :

 11 Figure 11: Posterior distributions for the true value of the emission rate given the observed measurement(s), prior distribution, and controlled release data.

Table 2 :

 2 Summary of technologies, providers, and available data from the field trials and external sources. N 1 and N 2 refer to the number of observations collected for a given technology during the first field trial and second field trial, respectively."Other" refers to data from Ref.[START_REF] Conrad | Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies[END_REF].

	Technology	N 1	N 2 Other
	QOGI Operator A 117	0	NA
	QOGI Operator B	0	71	NA
	QOGI Operator C	14 106	NA
	Truck TDLAS	142 125	NA
	Aerial TDLAS	NA NA	405
	Aerial NIR HSI	46	37	NA

Table 4 :

 4 Summary of selected models for each methane quantification technology provider.

  .1.2, p( Mi | M i , Q i = 25 kg/hr). This is done five times to produce five independent "measurements" of the same source. Let M new 1 , . . . , M new 5 represent the five simulated measurement values: 19.7 kg/h, 11.6 kg/h, 8.4 kg/h, 18.1 kg/h, and 17.0 kg/h.

  and p(Q new ) is a log-normal distribution with shape parameter 1, location parameter equal to zero, and scale parameter equal to 2.6[START_REF]Lognormal Distribution[END_REF] 4. All of M new 1 , . . . , M new 5 are used, and p(Q new ) is a log-normal distribution with shape parameter 1, location parameter equal to zero, and scale parameter equal to 2.6[START_REF]Lognormal Distribution[END_REF] 

	1. Only M new 1 2. All of M new is used, and p(Q new ) is a uniform distribution from 0 to 200 kg/h. 1 , . . . , M new are used, and p(Q new ) is a uniform distribution from 0 to 200 kg/h. 5 3. Only M new 1 is used,

Table 5 :

 5 Summary of 90% credible intervals (CrI) for the four different data scenarios, and their lengths.

	Prior	Number of Values	90% CrI	Length of CrI
	Unif(0,200)	1	(13.1, 71.7)	58.6
	Unif(0,200)	5	(15.0, 37.2)	22.2
	LogNormal(2.6, 1)	1	(2.1, 47.3)	45.2
	LogNormal(2.6, 1)	5	(13.0, 34.1)	21.1
		21