
HAL Id: hal-04432854
https://hal.science/hal-04432854v1

Preprint submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Linear realisability on untyped nets
Adrien Ragot, Thomas Seiller, Lorenzo Tortora de Falco

To cite this version:
Adrien Ragot, Thomas Seiller, Lorenzo Tortora de Falco. Linear realisability on untyped nets. 2024.
�hal-04432854�

https://hal.science/hal-04432854v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Linear realisability on untyped nets
Adrien Ragot∗

ragot@lipn.univ-paris13.fr
Université Sorbonne Paris Nord

France

Thomas Seiller†
thomas.seiller@cnrs.fr

CNRS
France

Lorenzo Tortora de Falco
Universitá Roma Tre

Italy

ABSTRACT
We present a new realisability model based on orthogonality for
Linear Logic in the context of nets – untyped proof structures with
generalized axiom. We show that it adequately models second order
multiplicative linear logic.

As usual, not all realizers are representations of a proof, but we
identify specific types (sets of nets closed under bi-othogonality)
that capture exactly the proofs of a given sequent thus proving a
completeness theorem. Furthermore these types are orthogonal’s
of finite sets; this ensures the existence of a correctnesss criterion
that runs in finite time.

CCS CONCEPTS
• Theory of computation→ Linear logic; Proof theory; Pro-
gram semantics.

KEYWORDS
Linear Logic, Realisability, Proof nets, Second order quantification

ACM Reference Format:
Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco. 2018. Linear
realisability on untyped nets. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 30 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Realisability is a technique that extracts the computational content
of proofs [12]. It was first introduced in 1945 by Kleene for Heyting
Arithmetic – an Intuitionnistic axiomatization of arithmetic – based
on the codes of Gödel’s partial recursive functions [9]. Fixing an
untyped computational model, the methodology of Realisability is
based on two aspects:

• Types are given a computational status: the interpretation
of a type1 𝐴 is a set of programs J𝐴K, which behave similarly
– its elements are called realizers of 𝐴. The interpretation
process however is not unique and is parametrized by an

∗The author is supported by a VINCI PhD fellowship from the Franco-Italian Université.
†The author is partially supported by the ANR-22-CE48-0003-01 project DySCo.
1Equivalently, having the Curry–Howard correspondence in mind,𝐴 is a formula.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

interpretation basis B, thus a same formula 𝐴 may be in-
terpreted by different sets of programs J𝐴KB or J𝐴KB′ .

• A co–compiler, a simple process transforming the proofs of
the realized proof system into programs is defined, intro-
ducing a non trivial predicate on programs, namely, some
programs represent a proof, the correct programs, while
others do not, the incorrect programs.
For instance, whenever the computational model is a freely–
generated language equipped with a binary relation captur-
ing program execution, correct programs are well–formed
terms.

Two properties are of interest for an interpretation basis B: Com-
pleteness stating for any formula 𝐴 any program in the type J𝐴KB
is a proof of 𝐴. Hence completeness provides a procedure to assert
whether a program is correct or not. Adequacy which ensure that
the co–compiler process and the interpretations are coherent, stat-
ing that each proof of𝐴 is a realizer of𝐴. Whenever both properties
hold this means that the elements of the interpretation of a formula
𝐴 are exactly its corresponding correct programs; the programs
which are correctly typeable by 𝐴.

For most interpretations completeness does not hold; not all
realizers are correct programs thus not all realizers represent a
proof. In fact, it was revealed by realisability models based on
orthogonality that the presence of incorrect programs is crucial to
give a computational status to correctness.

This can be traced back to the introduction of classical realis-
ability by Jean Louis Krivine [10] aiming at extending realisabil-
ity techniques from intuistionnistic to classical logic, proposing a
model based on orthogonality. Krivine’s construction is based on an
extension of the untyped lambda calculus, but, in order to capture a
given context (stack) to potentially restore it later, the syntax is not
only extended with the call/cc operator but also with a countably
infinite set of stack constants. In that context the correct programs
are those who do not contain stack constants. The orthogonality
relation is understood as a notion of test: a program (here a 𝜆–term)
follows a specification if it passes (e.g. is orthogonal to) the ade-
quate tests (here they are stacks). This is how orthogonality is used
to define the interpretation of types (as the set of terms passing
a given set of tests). From the point of view of orthogonality, the
presence of "incorrect" terms is essential, as it introduces in the
syntax semantic information [13] that can be used to test correct
(and incorrect) terms.

In parallel with the work of Krivine, similar realisability con-
structions have been introduced by Jean-Yves Girard in order to
interpret Linear Logic. While the orthogonality construction was
clearly put forth in Ludics [7], the ideas and first occurrences can
be traced back to the first model of geometry of interaction (goi)
[4], which is restricted to multiplicative linear logic, and interprets
proofs as permutations. Furthermore, in a series of recent papers

1

https://orcid.org/
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

[15–19], Thomas Seiller proposed a combinatorial approach to the
Geometry of Interaction, interaction graphs, which specialises to all
the previous ‘geometries’ of interaction proposed by Girard, and
constructs the types of Linear Logic via a realisabilty method involv-
ing orthogonality within the computational model of interaction
graphs. However, proofs are interpreted in these models as abstract
objects (generalisations of dynamical systems) and remain far from
the general intuition of what a proof is, this makes the co–compiler
hard to reverse and so completeness results are lacking.

The goal of our work is to explore the question of completeness
for realisability models of linear logic (LL). To do so, we work in
the context of nets – essentially the proof structures introduced
by Girard [5]. Since their introduction, proof structures have been
known to represent proofs of LL (meaning a co–compiler is known),
and several correctness criteria, e.g. procedures to assert whether a
proof structure represents a proof, have been provided. The missing
piece to perform realisability in this context is a way to interpret
formulas as types; this will be based on orthogonality relying on
the computational rules on proof structures, rewriting rules gener-
alizing cut–elimination on proof trees. Furthermore this work will
relate correctness criteria with completeness results, for instance
in this paper the Danos Regnier criterion [3] applied to a would–
be proof 𝜋 yields a set of “tests” whose interaction with 𝜋 by cut
elimination will allow to determine whether or not 𝜋 is indeed a
proof.

It will be necessary to consider generalized axiom (daimon) rules;
the correctness of a multiplicative net with binary daimons (which
can be identified with axioms) can be tested by the Danos Reg-
nier criterion, this criterion can be performed via orthogonality
with some nets that we’ll call tests however these nets may have
non binary daimons making it necessary to work in the MLL✠

fragment (Figure 3). See for instance below the net in figure 1a
represents a proof inMLL while its two tests – the nets in figure 1b
and 1c – represent proofs ofMLL✠ . The orthogonality will consists
of making the two nets interact by placing a cut between their
output, if the resulting reduces to a net made of a single daimon
link with no output the nets are orthogonal (essentially this means
that no cycles or disconnections have appeared during cut elimina-
tion defined in definition 2.132.15). In particular in the figure 1 the
orthogonality between the net and its tests will involve only cuts
of the form (✠/✠) or (⊗/`) – later on defined as homogeneous
cuts (definition 2.13). A folklore result which we prove in theo-

2

✠

4

⊗

`

✠

3

·

·

1

(a) AnMLL proof–net.

2

✠

4

`
⊗

✠

3

·

·

1

✠

(b) First test for 1a.

2

✠

4

`
⊗

✠

3

·

·

1

✠

(c) Second test for 1a.
Figure 1: Daimons are needed to construct tests forMLL nets.
rem 5.7 ensures that any multiplicative test represents proofs of
MLL✠ . However, to construct the interpretation of multiplicative
second–order formulas the use of the incorrect terms is necessary.
Realisability naturally provides interpretations for the universal
(resp. existential) second order quantifiers as an intersection (resp.
union) on the set of all types. For instance we want a binary daimon
to behave like an axiom, it can introduce any pair of dual formulas

𝐴,𝐴⊥. Recall that our objects are however untyped therefore this
means that the binary daimon should belong to any interpretation
J𝐴,𝐴⊥KB , that is to be orthogonal to any pair of orthogonal nets.
In particular orthogonality should hold with incorrect nets and this
is necessary to obtain an adequate interpretation of MLL since the
daimon behave well with any correct net. In the figure 2 below
the binary daimon interacts with a net containing a cycle and a
net containg a disconnection – these error will cancel each other
making the orthogonality relation hold.

2

✠

𝑎2

⊗

✠

𝑎1

·

1 𝑏2

⊗

𝑏1

·

✠ ✠

𝑐𝑢𝑡 𝑐𝑢𝑡

(a) A binary daimon
interacting with in-
correct nets.

2

`

✠

1

·

∀
·

(b) A net with
universal
quantifier.

2

✠

4

⊗

✠

3

•

1

∀ ∀

∃

•

•

•

(c) An incorrect ex-
istential quantifier.

Figure 2: Nets and second order quantification.

The presence of incorrect nets enables adequacy for nets with
second order quantifiers (MLL2) – with a dummy version of cut
elimination. For instance the net in figure 2b realizes the formula
∀𝑋 (𝑋,𝑋⊥) but it does not realise the formula (∀𝑋𝑋), 𝑋⊥.

Importantly we will identify interpretations basis B such that
for any formula J𝐴KB is the orthogonal of a finite set. This ensures
that asserting if a net realizes 𝐴 or not is decidable in finite time.
Furthermore these basis can be complete and adequate and so this
provides a way to test correctness in finite time, in other words a
correctness criterion. This will be true for the realisability model
of MLL2 hinting towards a correctness criterion for that fragment
(this is what we explore in the last section). To handle second
order in an untyped setting we define nets with pointers and and
define a contractibility criterion (Danos [2]) which generalizes the
formulation provided by curien in [1] for multiplicatives. This new
criterion somehow breaks down correctness for second order nets
into three independent pieces (1) the existential witness in the net
must be coherent (2) the net must be multiplicatively e.g. pass the
tests of Danos Regnier (3) the net must be sequentializable in the
sense of a contractibility reduction which read backward provides
the reconstruction of a proof.

Specifically the first (1) step is required in an untyped setting: an
existential quantifier isn’t allowed to abstract two distinct formulas.
This is illustrated in figure 2c where two universal quantifiers are
binding distinct formulas 𝑋 and 𝑌 and the existential quantifier
abstract both 𝑋 and 𝑌 and creates a conclusion which would be
typed by ∃𝑍 .𝑍 ⊗ 𝑍 , we forbid this kind of scenario as we want an
existential to substitute exactly one formula with a propositional
variable, hence the conclusion of the existential quantifier should
correspond to a formula ∃𝑍 .𝑍 ⊗ 𝑌 or ∃𝑍 .𝑋 ⊗ 𝑍 (resulting in an
incorrect net).

Ouline of the paper. In Section 2, we recall the general notion of
hypergraph and we adapt it to our framework: a multiplicative net
is a (particular) ordered hypergraph that can be understood as an
untyped version of the notion of proof-structure ([5]). Indeed, it
is possible to perform cut elimination on these nets, and the main
novelty here is the presence of daimon links (denoted by ✠ and
already present in the literarture, see for example [7]) yielding the
non homogeneous cut elimination steps (⊗/✠) and (`/✠), this

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

last step being non deterministic (see remark 11). The intuition is
that a ✠-link with 𝑛 conclusions represents an agent whose logical
correctness is not guaranteed, but which is capable to interact
correctly with 𝑛 other agents.

Section 3 introduces our realisability model, based on the in-
teraction between nets (definition 3.1) and the consequent notion
of orthogonality: two nets are orthogonal when their interaction
yields a ✠-link without conclusions (definition 3.4). One can thus
define the orthogonal of a set of nets and the crucial notion of type,
a set of net equals to its bi-orthogonal (definition 3.5). The set of
types is stable with respect to constructions allowing to interpret
MLL formulas in the very spirit of realisability: a formula is inter-
preted as a set of nets with a similar behaviour (belonging to the
same type interpreting the formula).

Adequacy forMLL andMLL✠ follows in Section 4: a net coming
from a proof of a formula 𝐴 in MLL or MLL✠ always belongs to
the interpretation of 𝐴 (theorem 4.3).

Let us say some words on our path to completeness of MLL✠

andMLL proven in Section 5. We are naturally led to introduce the
notion of test (definition 5.6) and to prove that a test of a formula 𝐴
is a proof of𝐴⊥ (theorem 5.7) which allows to characterize proofs as
those nets with a good interaction with their tests (theorem 5.8), in
a Danos-Regnier style. This last result and adequacy yield complete-
ness forMLL✠ (theorem 5.10). TheMLL case (theorem 5.13) follows
once the intuition that the conclusion of an MLL axiom is any pair
of dual formulas is taken in consideration: the proof relies on the
definition of the intersection and the union type (definition 5.11).

With Section 6 we smoothly move to the second order case: we
introduce a first version of the quantifier links, that are here only
unary links with no pointers. Cut elimination immediately extends
to these new nets. We can thus define the interpretation of second
order formulas as types (definition 6.1) and prove adequacy for this
first version of second order nets (teorem 6.2): a proof of a formula
𝐴 inMLL2 always belongs to the interpretation of 𝐴.

In Section 7 we introduce the notion of computable type (defi-
nition 7.1): the fundamental point is that one can check in finite
time whether or not a given net belongs to such a type. We then
notice that computability is preserved by the previously defined
constructions on types (propositions 7.2 and 7.3), so that one can
interpret MLL2 formulas with computable types. This paves the
way to the possibility of defining a new correctness criterion for
MLL2 (remark 28).

In Section 8 we present a new correctness criterion for untyped
second order multiplicative linear logic, more precisely forMLL2✠ .
To handle quantifiers (remaining untyped!) we add pointers to hy-
pergraphs. There are pointers both for existential and universal
quantifiers but with a different intended meaning: universal point-
ers indicate that the pointed location contains a formula which uses
the quantified variable while the target of existential pointers are
necessarily above the corresponding existential link and indicate
positions of existential witnesses. The notion of pointed tree (def-
inition 8.1) guarantees the uniformity of existential witnesses, a
particularly delicate point in the absence of types: any two targets
of the same existential link need to be coherent (definition 8.6). We
then define a list of contraction rules (definition 8.7) allowing to
characterizeMLL2✠-proofs (theorem 8.9).

2 UNTYPED NETS
2.1 Directed hypergraph
Throughout this document we fix a set Pos of elements called po-
sitions. Given a set 𝑋 we will let P≤ (𝑋) denote the set of totally
ordered finite subsets of 𝑋 .

Definition 2.1. Suppose given a set 𝐿 of labels. A directed (𝐿-
labelled) hypergraph is a tuple (𝑉 , 𝐸, s, t, ℓ) where 𝑉 is a set of posi-
tions, and 𝐸 is a set of elements called links, s : 𝐸 → P≤ (𝑉) is the
source map, t : 𝐸 → P≤ (𝑉) is the target map, and ℓ : 𝐸 → 𝐿 is the
labelling map.

Given a link 𝑒 ∈ 𝐸, since the finite sets t(𝑒) and s(𝑒) are ordered
we will represent them as sequences: they are respectively called
the target and the source sets of 𝑒 . A source of 𝑒 is an element of its
source set s(𝑒), a target of 𝑒 is an element of its target set. The set
of targets and sources of 𝑒 is the domain of the link 𝑒 . We will use
supercripts to denote sequences of positions (𝑝, 𝑞,𝑢, . . .). A link is a
loop when its target set and source set are not disjoint.

Remark 1. Along this work we assume all the hypergraphs to be
loop–free e.g. containing only links which are not loops.

Given an hypergraphH having 𝐸 as set of links, we denote s(H)
(resp. t(H)) the set of all positions which are source (resp. target)
of at least one link:

s(H) =
⋃
𝑒∈𝐸

s(𝑒), t(H) =
⋃
𝑒∈𝐸

t(𝑒).

A conclusion/output (resp. a premise/input) of a directed hyper-
graphH is a position which is the source of no link inH , e.g. an
element of𝑉 \s(H) (resp. in𝑉 \ t(H)). The set of conclusions (resp.
premises) of an hypergraphH is denoted out(H) (resp. in(H)).

The size of a directed hypergraph is the number of its link. An
hypergraph is finite when it contains a finite number of links and
positions.

A position 𝑝 is isolated in an hypergraphH if 𝑝 is both an output
and an input ofH , e.g. it belongs to no link as an input nor as an
output.

Notation 1. A link 𝑒 will be written as ⟨𝑢 ▷𝑙 𝑣⟩ where s(𝑒) = 𝑢,
t(𝑒) = 𝑣 , and ℓ (𝑒) = 𝑙 . With this notation, a directed labelled
hypergraph with no isolated position can always be written as a
formal sum ∑︁

𝑒∈𝐸
⟨s(𝑒) ▷ℓ (𝑒) t(𝑒)⟩.

Notation 2. We write 𝑢 · 𝑣 the concatenation of sequences.
Given 𝑢 = (𝑢1, . . . , 𝑢𝑛) a sequence of element in a set 𝑋 and an

integer 𝑖 ∈ {1, . . . , 𝑛}, we denote by 𝑢<𝑖 (resp. 𝑢>𝑖) the sequence
(𝑢1, . . . , 𝑢𝑖−1) (resp. (𝑢𝑖+1, . . . , 𝑢𝑛)).

Moreover, given two – potentially empty – sequences 𝑢 and 𝑣
we denote by 𝑢 [𝑖 ← 𝑣] the sequence 𝑢<𝑖 · 𝑣 ·𝑢>𝑖 . We can generalize
this notation as follow

𝑢 [𝑖1 ← 𝑣1, . . . , 𝑖𝑛 ← 𝑣𝑛] = (. . . (𝑢 [𝑖1 ← 𝑣1]) . . .) [𝑖𝑛 ← 𝑣𝑛] .

Definition 2.2 (Initial and final links). A link is initial (resp. final)
when it has no input (resp. no output). A position is initial (resp.
final) when it belongs to the domain of an initial (resp. final) link.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝐴, 𝐵 := 𝑋,𝑋⊥ | 𝐴 ⊗ 𝐵 | 𝐴` 𝐵 | ∀𝑋𝐴 | ∃𝑋𝐴. ax
𝐴,𝐴⊥

✠
Γ

Γ, 𝐴 Δ, 𝐴⊥
cut

Γ,Δ

Γ, 𝐴 Δ, 𝐵
⊗

Γ,Δ, 𝐴 ⊗ 𝐵
Γ, 𝐴, 𝐵 `
Γ, 𝐴` 𝐵

Γ, 𝐴, 𝐵,Δ
ex

Γ, 𝐵, 𝐴,Δ

Γ, 𝐴
∃

Γ, ∃𝑋𝐴
Γ, 𝐴

∀
Γ,∀𝑋𝐴

Figure 3: The rules (✠, ⊗,`, cut, , ex) define the MLL✠ proof system. Adding to MLL✠ the quantifier rules (∀, ∃) constitutes
MLL2✠ . Substituting the daimon rule (✠) with the axiom rule (ax) inMLL✠ (resp. MLL2✠) results inMLL (resp.MLL2).

Example 2.3. For instance a link ⟨▷ 𝑎, 𝑏, 𝑐⟩ is an initial link. And
in the hypergraph ⟨▷ 𝑎, 𝑏, 𝑐⟩ + ⟨𝑎 ▷ 𝑑⟩ + ⟨▷ 𝑒⟩ + ⟨𝑒 ▷⟩ the set
of initial positions are {𝑎, 𝑏, 𝑐, 𝑒}, while 𝑒 is the only final position
belonging to the final link ⟨𝑒 ▷⟩.

A link is terminal when its outputs are conclusions – thus a final
link is a terminal link.

2.2 Sum of hypergraphs
Hypergraphs enjoy a natural notion of sum based on the disjoint
union of the set of links.

Notation 3. Given a function 𝑓 : 𝑋 → 𝐸 and 𝑋0 ⊆ 𝑋 we denote the
restriction of 𝑓 to 𝑋0 by 𝑓 ↾𝑋0 or simply 𝑓 ↾ 𝑋0.

Given two disjoint sets 𝑋0 and 𝑋1 and two functions 𝑓 : 𝑋0 → 𝐸

and 𝑔 : 𝑋1 → 𝐸 we denote 𝑓 ⊎ 𝑔 the function which takes an
element 𝑥 of 𝑋0 ⊎ 𝑋1 and returns 𝑓 (𝑥) if 𝑥 ∈ 𝑋0 or 𝑔(𝑥) if 𝑥 ∈ 𝑋1.

Definition 2.4. Given two hypergraphsH1 = (𝑉1, 𝐸1, t1, s1) and
H2 = (𝑉2, 𝐸2, t2, s2). The sum ofH1 andH2 is defined as:

H1 + H2 = (𝑉1 ∪𝑉2, 𝐸1 ⊎ 𝐸2, t1 ⊎ t2, s1 ⊎ s2).

Remark 2. WheneverH1 = (𝑉1, 𝐸1, t1, s1) andH2 = (𝑉2, 𝐸2, t2, s2)
are such that 𝐸1 ∩ 𝐸2 ≠ ∅, we will abusively write their sum as
H1 + H2 = (𝑉1 ∪𝑉2, 𝐸1 ⊎ 𝐸2, t1 ⊎ t2, s1 ⊎ s2), using implicitly the
isomorphism between 𝐸1 ⊎ 𝐸2 and 𝐸1 ∪ 𝐸2 which exists in this
case, since up to renaming the set of links of two hypergraphs can
always be considered to be disjoint.

Remark 3. Vertices may overlap in a sum (as we take the union
of vertex sets rather than the disjoint union). As a consequence, a
position may be input (or output) of several distinct links.

As mentioned above, we can therefore describe hypergraphs as
sums of simple hypergraphs; namely those that contain only one
link. Indeed, an hypergraph consisting of two links ⟨𝑎1, . . . , 𝑎𝑖 ▷ℓ

𝑏1, . . . , 𝑏 𝑗 ⟩ and ⟨𝑎′1, . . . , 𝑎
′
𝑖′ ▷ℓ ′ 𝑏

′
1, . . . , 𝑏

′
𝑗 ′ ⟩ is in fact equal to the

sum of the single-link hypergraphs ⟨𝑎1, . . . , 𝑎𝑖 ▷ℓ 𝑏1, . . . , 𝑏 𝑗 ⟩ and
⟨𝑎′1, . . . , 𝑎

′
𝑖′ ▷ℓ ′ 𝑏

′
1, . . . , 𝑏

′
𝑗 ′ ⟩. By induction on the number of links,

this formally shows thatH =
∑
𝑒∈𝐸 ⟨s(𝑒) ▷ℓ (𝑒) t(𝑒)⟩ when consid-

ering an hypergraphs with no isolated positions.

Remark 4. The sum of hypergraphs enjoys the properties of an
abelian monoid; associativity, commutativity, and a neutral element
which is the empty hypergraph.

We will also use extensively the notion of parallel composition
or parallel sum of hypergraphs, an analogue of the union–graph of
two simple graphs.

Definition 2.5 (Parallel sum). Given H1 = (𝑉1, 𝐸1, t1, s1) and
H2 = (𝑉2, 𝐸2, t2, s2) two hypergraphs we define their parallel sum
as:H1 ∥ H2 = (𝑉1 ⊎𝑉2, 𝐸1 ⊎ 𝐸2, t1 ⊎ t2, s1 ⊎ s2).

Remark 5. The parallel sum of two hypergraphsH1 andH2 corre-
sponds to a regular sum whenever the sets of vertices are disjoint.
Just like the sum, parallel composition can always be performed
between two hypergraphs up to renaming their vertex sets.

2.3 Ordered Hypergraphs
An arrangement of a directed hypergraphH is a total order <a on
its set of conclusions, equivalently, the order may be identified as a
bijection a : {1, . . . , 𝑐𝑎𝑟𝑑 (out(H))} → out(H).

Definition 2.6 (Ordered hypergraph). An ordered hypergraph is a
pair (H , a) of an hypergraph together with an arrangement. The
arrangement a is denoted a(H).
Notation 4. Given a finite and ordered hypergraph (H , a) with
𝑛 conclusions for an integer 1 ≤ 𝑖 ≤ 𝑛, we denote a(𝑖) by H(𝑖)
whenever there is no ambiguity.

Notation 5. A segment of N is denoted [𝑛;𝑛 + 𝑘] and corresponds
to set of integers 𝑖 such that 𝑛 ≤ 𝑖 ≤ 𝑛 + 𝑘 . For any integer 𝑘 we
denote tr𝑘 : N→ N, 𝑛 ↦→ 𝑛 + 𝑘 .

Given a partial function 𝑓 : N → 𝐸 with a finite domain of
cardinality 𝑛 and ordered as 𝑖1 < 𝑖2 < · · · < 𝑖𝑛 , we denote 𝑓 ↾↾ the
total function of type [1;𝑛] → 𝐸 such that 𝑓 (𝑚) = 𝑓 (𝑖𝑚) for any
integer 1 ≤ 𝑚 ≤ 𝑛.

In particular given a restricted function 𝑓 ↾ 𝑋0 we denote 𝑓 ↾
𝑋0↾↾ by 𝑓 ↾↾𝑋0. Furthermore, we denote 𝑓 ↾↾𝑋𝑐

0 by 𝑓 ↿↿𝑋0 meaning the
function 𝑓 to which we have removed the element of 𝑋0 from its
domain and rearrange the domain of 𝑓 to be a segment of N.

Given 𝑓 : [1;𝑛] → 𝐸 and 𝑔 : [1;𝑚] → 𝐸 two functions defined
on segments and with a common domain, we denote by 𝑓 ⊔+ 𝑔 their
sum with translation, namely the disjoint functional sum of 𝑓 ⊎ (𝑔◦
tr−𝑛 ↾ [𝑛+1;𝑛+𝑚]). The sumwith translation is not a commutative
operation.

Definition 2.7. Two hypergraphsH1 andH2 are summablewhen-
ever their target sets and source sets are disjoint, e.g.

t(H1) ∩ t(H2) = ∅ and s(H1) ∩ s(H2) = ∅
Remark 6. A position 𝑝 can occur in two summable hypergraphs
only if 𝑝 is a target inH1 and a source inH2 – or the converse –
or whenever 𝑝 is isolated in (at least) one of the two hypergraphs.

Since the conclusions of an hypergraphs with no isolated points
are targets, summable hypergraphs have arrangements a1 and a2
with disjoint codomains. As a consequence, their disjoint sum func-
tion a1 ⊔+ a2 remains a bijection.

Definition 2.8 (Arrangement of the sum of ordered hypergraphs).
Given two summable ordered hypergraphs H1 and H2. The ar-
rangement a(H1 + H2) of there sum is;

a(H1 + H2) = a(H1)↿↿s(H2) ⊔+ a(H2)↿↿s(H1)
Remark 7. Given two summable hypergraphs since s(H1) and
s(H2) are disjoint the arrangement a(H1 + H2) is equal to

a(H1) ⊔+ a(H2)↿↿s(H1) ∪ s(H2) .
Remark 8. The ordered sum of ordered hypergraphs H1 and H2
given as (H1 + H2, a(H1) + a(H2)) is – unlike the standard sum
of hypergraphs – not commutative.

However an hypergraph with no conclusions commutes with
any other ordered hypergraph under the ordered sum. Futhermore

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

internal sub–hypergraphs commute for the ordered sum, an hyper-
graphH0 ⊂ H1 + H2 included in a sum and such that none of the
conclusion ofH0 is a conclusion ofH1 + H2 commutes with any
link in the sumH1 +H2. More precisely, in an hypergraphH given
as a sum

∑
𝑒∈𝐸 ⟨s𝑒 ▷ℓ t𝑒⟩, each link 𝑒 commutes with any link of 𝐸

if 𝑒 is not terminal or 𝑒 has no conclusion.

2.4 Properties of hypergraphs
Definition 2.9. We say a hypergraphH = (𝑉 , 𝐸, t, s) is:
• surjective whenever t(H) = 𝑉 .
• source–disjoint if the sets s(𝑒) for 𝑒 ∈ 𝐸 are pairwise disjoint.
• target–disjoint if the sets t(𝑒) for 𝑒 ∈ 𝐸 are pairwise disjoint.

IfH is both surjective and target–disjoint, we will say it is full. In
this case, the sets t(𝑒) for 𝑒 ∈ 𝐸 define a partition of 𝑉 .

Up to this point we have allowed any kind of link to occur in an
hypergraph. We now restrict the discussion to untyped multiplica-
tive nets in which will only considered specific sets of links:

• Generalized axioms: links of the form 𝑒 = ⟨▷ 𝑝1, 𝑝2 . . . , 𝑝𝑛⟩;
• Cuts: links of the form 𝑒 = ⟨𝑝1, 𝑝2 ▷⟩.
• Connectives: links of the form 𝑒 = ⟨𝑝1, 𝑝2 . . . , 𝑝𝑛 ▷ 𝑎⟩.

In particular, we will restrict in the next section to binary con-
nectives only, with the additional restriction that those binary con-
nectives should be labelled either by ⊗ or `. As a consequence,
the hypergraphs considered will closely resemble multiplicative
linear logic proof nets, with two important points of divergence:
the absence of typing, and the presence of generalised axioms.

Note that these restrictions leave a number of questions open
for future investigations. For instance, one can wonder how a gen-
eralized cut of the form ⟨𝑎, 𝑏, 𝑐 ▷⟩ would behave.

2.5 Multiplicative nets
We now fix the set of labels as the set made of the daimon (✠) the
tensor (⊗) the parr (`) and the (cut) symbol.

Definition 2.10. Amultiplicativemodule is an ordered hypergraph
(H , 𝑎) where H is source–disjoint and target–disjoint, and such
that✠-labelled links have no inputs, cut-labelled links have exactly
two inputs and no outputs, ⊗- and `-labelled links have exactly
two inputs and one output.

In other words,H is a sum of links of the form:

⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩, ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩, ⟨𝑝1, 𝑝2 ▷` 𝑝⟩, ⟨𝑝1, 𝑝2 ▷cut⟩.

Whenever there is no ambiguity we might relax the notation:
⟨▷ 𝑝1, . . . , 𝑝𝑛⟩ will denote ⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩, and ⟨𝑝1, 𝑝2 ▷⟩ will
denote ⟨𝑝1, 𝑝2 ▷cut⟩.

Definition 2.11. A multiplicative net is a surjective multiplicative
module.

Notation 6. We will denote Mod the set of multiplicative modules
and Net the set of multiplicative nets.

Notation 7. Given an integer 𝑛 we denote by ✠𝑛 any multiplicative
net consisting of a single daimon link with 𝑛 outputs, e.g. isomor-
phic2 to ⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩.
2The notion of isomorphism between hypergraphs is recalled in the appendix, see
definition B.1.

2.6 Homogeneous cut elimination
The set of untyped nets we have defined comes with its very own
notion of computation, which corresponds to some graph rewriting.
The computation is called the cut elimination and to describe it
roughly consists in removing the cut links. How to remove a cut
link will depend on what this link is attached to, this defines the
type of the cut, we give it a clear definition in the following.

Definition 2.12 (Types of cut). Given a multiplicative net 𝑆 the
type of cut link 𝑐 = ⟨𝑝, 𝑞 ▷⟩ occuring in 𝑆 is the pair of labels of
the links of output 𝑝 and 𝑞. Thus there are 6 types of cuts (up to
symmetry). More precisely, we distinguish:

• multiplicative cuts, of type (⊗/`);
• clash cuts, of type (⊗/⊗) or (`/`);
• glueing cuts, of type (✠/✠);
• non–homogeneous cuts, of type (⊗/✠) or (`/✠), they are

respectively called reversible and irreversible cuts.

Remark 9. A cut to which we can assign a type forms a redex,
whenever a redex occurs in an hypergraphH the links which define
the redex commute with any link contained inH under the ordered
sum – as in remark 8– this allows us to define cut–elimination as a
local rewriting of redexes.

Definition 2.13 (homogeneous cut elimination). The relation of
homogeneous cut elimination on multiplicative nets is the rewriting
relation defined as the contextual closure of the following:

⟨▷✠ 𝑝 ⟩ + ⟨▷✠ 𝑞⟩ + ⟨𝑝𝑖 , 𝑞 𝑗 ▷ ⟩ → ⟨▷✠ 𝑝 [𝑖 ← 𝜖] · 𝑞 [𝑗 ← 𝜖] ⟩
⟨𝑝1, 𝑝2 ▷⊗ 𝑝 ⟩ + ⟨𝑞1, 𝑞2 ▷` 𝑞⟩ + ⟨𝑝,𝑞 ▷ ⟩ → ⟨𝑝1, 𝑞1 ▷ ⟩ + ⟨𝑝2, 𝑞2 ▷ ⟩

Remark 10. The commutation of a cut link ⟨𝑝, 𝑞 ▷cut⟩ is the link
⟨𝑞, 𝑝 ▷cut⟩. The input of a cut link ⟨𝑝, 𝑞 ▷cut⟩ are ordered, however
this plays no role during cut elimination, the redex of a cut link
⟨𝑝, 𝑞 ▷cut⟩ or ⟨𝑞, 𝑝 ▷cut⟩ are the same upto the commutation of
cutlinks.

The following result is easily established, in particular using that
the number of links strictly decreases during homogeneous cut
elimination.

Proposition 2.14. Homogeneous cut elimination is confluent and
strongly normalizing.

2.7 Non homogeneous cut elimination
Definition 2.15 (Non–homogeneous cut elimination). The non ho-

mogeneous reduction is denoted→𝑛ℎ , and defined as the extension
of the homogeneous cut-elimination with the following rules:

• A redex ⟨▷✠ 𝑝⟩ + ⟨𝑝𝑖 , 𝑞 ▷cut⟩ + ⟨𝑞1, 𝑞2 ▷` 𝑞⟩ reduces
to ⟨▷✠ 𝑢, 𝑟1⟩ + ⟨▷✠ 𝑣, 𝑟2⟩ + ⟨𝑟1, 𝑞1 ▷cut⟩ + ⟨𝑟2, 𝑞2 ▷cut⟩,
where 𝑢, 𝑣 are such that 𝑢 · 𝑣 is a reordering of 𝑝 [𝑖 ← 𝜖],
and 𝑟1, 𝑟2 are fresh positions.

• A redex ⟨▷✠ 𝑝⟩ + ⟨𝑝𝑖 , 𝑞 ▷cut⟩ + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩ reduces to
⟨▷✠ 𝑢⟩ + ⟨𝑟1, 𝑞1 ▷cut⟩ + ⟨𝑟2, 𝑞 ▷cut⟩, where 𝑟1, 𝑟2 are fresh
positions and 𝑢 = 𝑝<𝑖 · 𝑟1 · 𝑟2 · 𝑝>𝑖 .

Remark 11. From the interactive viewpoint daimon links behave
like proof nets ([5]) and they are able to interact with any net. As
a consequence, the non homogeneous cut–eliminations simulates
proof search in the sequent calculus.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

𝑞

✠

𝑐𝑢𝑡

𝑞𝑛· · ·𝑝1

✠

𝑝· · · 𝑝𝑛 𝑞1

→ ✠

𝑞𝑛· · ·𝑝1 · · · 𝑝𝑛 𝑞1

𝑝1 𝑝2

𝑝

`
𝑞1 𝑞2

𝑞

⊗

𝑐𝑢𝑡

→ 𝑝1 𝑞1

𝑐𝑢𝑡

𝑝2 𝑞2

𝑐𝑢𝑡

𝑝1 𝑝2

𝑝

`
𝑎

✠

𝑐𝑢𝑡

𝑞𝑛· · ·𝑞1

→ 𝑝1 𝑎1

✠

𝑐𝑢𝑡

𝑞𝑛· · ·𝑞1𝑝2

𝑐𝑢𝑡

𝑎2

𝑝1 𝑝2

𝑝

⊗

𝑎

✠

𝑐𝑢𝑡

𝑞𝑛· · ·𝑞1

→ 𝑝1 𝑎1

✠

𝑐𝑢𝑡

𝑞1
𝑛1· · ·𝑞11

✠

𝑞2
𝑛2· · ·𝑞21𝑝2

𝑐𝑢𝑡

𝑎2

Figure 4: Rules for the homogeneous cut elimination and non homogeneous cut–elimination.
The non–homogeneous cut elimination of a daimon against a`–link is non deterministic, {𝑞11, . . . , 𝑞1𝑛1}, {𝑞21, . . . , 𝑞2𝑛2} is a partition of {𝑞1, . . . , 𝑞𝑛 }.
On the left hand side of each reduction rule one can find the different types of cuts of definition 2.12.

✠
Γ, 𝐴⊥ ⊗ 𝐵⊥

→
✠

Δ1, 𝐴⊥
✠

Δ2, 𝐵⊥ ⊗
Γ, 𝐴⊥ ⊗ 𝐵⊥

✠
Γ, 𝐴⊥ ` 𝐵⊥

→
✠

Γ, 𝐴⊥, 𝐵⊥ `
Γ, 𝐴⊥ ` 𝐵⊥

This is where the non determinism comes from, in particular the
rule eliminating the (✠/`) cuts corresponds to proof search on
a formula of the form 𝐴 ⊗ 𝐵, going from bottom to top the ⊗–
introduction rules splits the context Γ, which isn’t a deterministic
process. Simultaneously, some of the different possible reductions
will, play the role of the switchings used in correctness criteria [3].
These intuitions will be important in understanding further results.

A consequence of non determinism is the loss of confluence for
cut–elimination; since splitting the context is irreversible, see for
instance the reduction of the net in figure 2.

3 REALISABILITY MODEL
3.1 Interaction of nets

Definition 3.1 (Interaction between nets). The interface of two nets
𝑆 and 𝑅 is an injective and functional relation on out(𝑆) × out(𝑅).
An interface is total whenever it is defined for all conclusions of 𝑆 .

An interface between two nets (𝑆, 𝑝1 < · · · < 𝑝𝑛) and (𝑅, 𝑞1 <

· · · < 𝑞𝑚). is regular whenever it contains only pair of the form
(𝑝𝑖 , 𝑞𝑖). The identity interface is the relation, denoted id𝑛 , defined
when 𝑛 =𝑚 by id𝑛 = {(𝑝𝑖 , 𝑞𝑖) | 1 ≤ 𝑖 ≤ 𝑛}. The projective interface
of size 𝑘 ≤ 𝑛 is the regular interface between 𝑆 and 𝑅 that is defined
exactly for the elements of {𝑝1, . . . , 𝑝𝑘 } we denote it pr𝑘 .

The interaction of the nets 𝑆 and 𝑇 along the interface 𝜎 , is
denoted 𝑆 ::𝜎 𝑇 and corresponds to

𝑆 ::𝜎 𝑇 ≜ 𝑆 +𝑇 +
∑︁
(𝑝,𝑞) ∈𝜎

⟨𝑝, 𝑞 ▷cut⟩.

Notation 8. For the purpose of readability given two nets 𝑆 and
𝑇 with respective conclusions 𝑝1, . . . , 𝑝𝑛 and 𝑞1, . . . , 𝑞𝑘 , say 𝑚 =

𝑚𝑖𝑛(𝑛, 𝑘), we will denote the interaction 𝑆 ::pr𝑚 𝑇 by 𝑆 :: 𝑇 , when-
ever there is no ambiguity.

For instance if 𝑆 and 𝑇 have the same number of conclusion,
𝑆 :: 𝑇 denotes 𝑆 ::id 𝑇 .

Notation 9. Given 𝜎 ⊆ out(𝑆) × out(𝑇 + 𝑅) an interface between a
net 𝑆 and a sum of nets 𝑇 ∥ 𝑅. The notation 𝜎 | 𝑇 will denote the
interface which relates conclusion of 𝑆 to conclusion of 𝑇 given as
𝜎 ∩ out(𝑆) × out(𝑇). Obviously this also defines 𝜎 | 𝑅.

Proposition 3.2 (Interaction as an action). Given 𝑆,𝑇 and
𝑅 three multiplicative nets, and 𝜎 an interface between 𝑆 and 𝑇 ∥ 𝑅.
𝑆 ::𝜎 (𝑇 ∥ 𝑅) is equal to (𝑆 ::𝜎 |𝑇 𝑇) ::𝜎 |𝑅 𝑅.

Definition 3.3. A net 𝑆 fails cut elimination when it has no re-
duction to ⟨▷✠⟩.

Remark 12. Failure of cut elimination is preserved by anti–reduction.
Moreover, clashing cuts are preserved during cut elimination, thus
a net containing such a cut fails cut elimination.

3.2 Orthogonality
Definition 3.4 (Orthogonality). Two nets 𝑆1 and 𝑆2 are orthogonal

if there exists an interface 𝜎 such that 𝑆1 ::𝜎 𝑆2 →∗ ✠0. 3 In that
case we write 𝑆1 ⊥ 𝑆2.

Remark 13. Since cuts are asymetric, namely ⟨𝑝, 𝑞 ▷cut⟩ and ⟨𝑞, 𝑝 ▷cut
⟩ are distinct the interaction 𝑆 :: 𝑇 and 𝑇 :: 𝑆 are not the same nets.
However this has no consequence on cut elimination, because the
reduction steps are defined up to commutation of the input of a cut
link thus 𝑆 :: 𝑇 reduces to ✠0 if and only if𝑇 :: 𝑆 does. As expected
the relation of orthogonality is symmetric.

Remark 14. Since cut elimination preserves the conclusions of a net,
two nets may only be orthogonal when they have the same number
of conclusion. Furthermore if two nets are orthogonal, there exists
a reordering of the conclusions of 𝑆1 such that the orthogonality is
witnessed by the identity interface.

Definition 3.5 (Type). Given a set 𝐴 of multiplicative nets, we
define the orthogonal of 𝐴 as 𝐴⊥ = {𝑃 | ∀𝑅 ∈ 𝐴, 𝑃 ⊥ 𝐴}. A type A
is a set of multiplicative nets such that A⊥⊥ = A.4

Remark 15. Two nets which are orthogonal have the same number
of output. As a consequence two orthogonal types which are non
empty, must contain nets with the same number of outputs.

Notation 10. We will denote by #𝑆 the number of outputs of 𝑆 . For
a type A we let #A denote the number of outputs of the nets in A.

Remark 16. There cannot be simultaneously a net with a terminal
` (or ⊗) link in its 𝑖–th position in A and A⊥: their interaction con-
tains a clashing cut and by remark 12 it would fail cut elimination,
meaning the nets cannot be orthogonal.

Proposition 3.6 (Symmetry of types). For any type A with one
conclusion; (1) there exists a net 𝑆 with a terminal`–link that belongs
to A or A⊥, and (2) there exists a net 𝑆 with a terminal ⊗–link that
belongs to A or A⊥.

3Note that, we require the existence of such a reduction, not all reductions need to
behave this way.
4Equivalently, a type is a set A such that A = 𝐵⊥ for some set 𝐵, see, for instance, [8].

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

3.3 Construction on Types
Definition 3.7 (Constructions on types). Given two sets of nets A

and B their functional composition denoted A � B, and their parallel
composition denoted A ∥ B are defined as follows:

A � B ≜ {𝑆 | for any 𝑎 ∈ A⊥, 𝑆 :: 𝑎 ∈ B and #𝑆 ≥ #A},
A ∥ B ≜ {𝑎 ∥ 𝑏 | 𝑎 ∈ A, 𝑏 ∈ B}⊥⊥ .

Remark 17. The side condition that #𝑆 ≥ #A is to avoid ambiguious
situtation where potentially A contains a net 𝑇 which has more
conclusions than 𝑆 . In that case in 𝑆 :: 𝑇 the remaining conclusions
are conclusions of 𝑇 hence for some other net 𝑈 the interaction
(𝑆 :: 𝑇) :: 𝑈 isn’t 𝑆 :: (𝑇 ∥ 𝑈) but 𝑇 :: (𝑆 ∥ 𝑈) (upto commutation
of the input of cuts between 𝑆 and 𝑇). With this condition the
interaction (𝑆 :: 𝑇) :: 𝑈 when 𝑇 ∈ A⊥ and 𝑈 ∈ B⊥ is the net
𝑆 :: (𝑇 ∥ 𝑈).

Proposition 3.8 (Duality). Given two types A and B: (A ∥
B)⊥ = A⊥ � B⊥ and (A � B)⊥ = A⊥ ∥ B⊥.
Remark 18. The duality of the constructions – proposition 3.8 –
ensures that the set of types is closed under the ∥ and � operations.
Furthermore the set of types is also closed under any intersection
however it isn’t closed under union, this will influence the definition
of intersection and union type 5.11.

Proposition 3.9 (Associativity). Given A,B and C three types
we have the following commutations:

• (A ∥ B) ∥ C is equal to A ∥ (B ∥ C).
• (A � B) � C is equal to A � (B � C).

Proof. It is clear that the parallel construction is associative.
Hence its dual construction, the composition, is associative too. □

Definition 3.10 (Sequential constructions on types). Given A and
B two types with one conclusion, we define their tensor product
(denoted ⊗) and their compositional product (denoted `):

A ⊗ B ≜ {𝑆 + ⟨𝑆 (1), 𝑆 (2) ▷⊗ 𝑝⟩ | 𝑆 ∈ A ∥ B}⊥⊥ ,
A` B ≜ {𝑆 + ⟨𝑆 (1), 𝑆 (2) ▷` 𝑝⟩ | 𝑆 ∈ A � B}⊥⊥ ,

where 𝑝 denotes a fresh position.

Proposition 3.11 (Duality). Given A and B two types with one
conclusion, (A ⊗ B)⊥ = A⊥ ` B⊥ and (A` B)⊥ = A⊥ ⊗ B⊥.

3.4 Interpretation of formulas
We interpret formulas and hypersequent of multiplicative and sec-
ond order multiplicative linear logic. We will respectively denote
MLL andMLL2 the multiplicative and second order multiplicative
fragments of Linear Logic. On the other MLL✠ will denote the
multiplicative fragment with generalized axiom, as found in [1].

The definition of formulas and proofs of MLL2 (and MLL) is
standard and can be found in [11]. The notion of hypersequent we
use is similar to the tree–hypersequents used in some modal logics,
for instance in [14]. Namely our hypersequent are constructed
by a simple induction; they are either a formula 𝐴, or H1,H2, or
H1 ∥ H2 whereH1 andH2 are hypersequents.

Definition 3.12 (Interpretation Basis). An interpretation basis B
is a function that associate with each atomic proposition 𝑋 a type
J𝑋 KB , the interpretation of 𝑋 , such that:

• Each net in J𝑋 KB has one conclusion.
• For any atomic proposition 𝑋 , we have J𝑋⊥KB ⊆ J𝑋 K⊥B .

Definition 3.13 (Interpretation of an hyper–sequent). Given an
interpretation basis B, the interpretation of a formula is lifted from
atomic formulas to any formula ofMLL and any hypersequent of
MLL formulas by induction;

J𝐴 ⊗ 𝐵KB ≜ J𝐴KB ⊗ J𝐵KB .
J𝐴` 𝐵KB ≜ J𝐴KB ` J𝐵KB .

JH1,H2KB ≜ JH1KB � JH𝑛KB .
JH1 ∥ H2KB ≜ JH1KB ∥ JH𝑛KB .

Definition 3.14 (Realizer). A multiplicative net realizes – with
respect to an interpretation basis B – an hypersequentH ofMLL
formulas whenever it belongs to JHKB .

Notation 11. Given a hypersequent H , 𝑆 ⊩B H denotes the as-
sertion 𝑆 ∈ JHKB . Whenever there is no ambiguity the notation
𝑆 ⊩B H (resp. JHKB) may be relaxed to 𝑆 ⊩ H (resp. JHK).

4 ADEQUACY
As we mentionned in the introduction realisability models comes
with a simple process transforming sequent calculus proofs into
programs (in our case nets). In the case of Proof structures (e.g.
nets) that process is well–known. Proof structures have been intro-
duced by Jean Yves Girard in his seminal paper [5] and provide a
natural way to represent the proofs of linear logic up to "irrelevant"
permutations of their deduction rules. The nets which represent a
proof, called proof nets, or correct nets, are inductively defined on
the size of the sequent calculus proof they represent. For second
order multiplicative linear logic the definition can for instance be
found in [5, 6] and easily adapts to our framework.

Notation 12. Let𝔓 denote one of the proof system under consid-
eration, namelyMLL,MLL✠ or later onMLL2,MLL2✠ . Let 𝑆 be a
multiplicative net, we denote 𝑆 ⊢𝔓 Γ whenever there exists a proof
𝜋 in𝔓 such that 𝑆 is the representation of 𝜋 in Net.

Furthermore we let ⦃Γ : 𝔓⦄ denote the set of all the nets 𝑆 ⊢𝔓 Γ.

Definition 4.1 (Approximable type and basis). A type with one
conclusion is approximable whenever it contains the net ✠1. Let 𝑋
be a propositional variable, an interpretation basis is; (1) standard
in 𝑋 whenever J𝑋 K⊥B = J𝑋⊥KB ; (2) approximable in 𝑋 whenever
both J𝑋 KB and J𝑋⊥KB are approximable.

An interpretation basis is: (1) regular whenever it is standard or
approximable in any propositional variable; (2) approximable when
it maps atomic formulas to approximable types.

Remark 19. A type A is approximable if and only if {✠1}
⊥⊥ ⊆ A

which is also equivalent to A⊥ ⊆ {✠1}⊥.

Remark 20. An approximable interpretation basis is regular.

Proposition 4.2. For any types with one output A ⊆ B⊥; ✠2
belongs to A⊥ � B⊥.

Theorem 4.3. Let 𝑆 be a multiplicative net, B an interpretation
basis, and Γ a sequent:

• if B is regular, then 𝑆 ⊢MLL Γ ⇒ 𝑆 ⊩B Γ,
• if B is approximable, then 𝑆 ⊢MLL✠ Γ ⇒ 𝑆 ⊩B Γ.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

5 COMPLETENESS
5.1 Test of a formula

Definition 5.1 (Support of a daimon). For a daimon link 𝑑 = ⟨▷✠
𝑝1, . . . , 𝑝𝑛⟩ we define its support as s(𝑑) = {𝑝1, . . . , 𝑝𝑛}. For a sum
of daimon links 𝐷 = 𝑑1 + · · · + 𝑑𝑘 , we define its support s(𝐷) =
{s(𝑑1), . . . , s(𝑑𝑛)}.

Definition 5.2 (switching). The switching rewriting, denoted→`,
is the non–deterministic rewriting given by

⟨𝑝 ▷𝑙 𝑞1, 𝑝1, 𝑞2⟩ + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩ →𝑙` ⟨𝑝 ▷𝑙 𝑞1, 𝑝, 𝑞2⟩
⟨𝑝 ▷𝑙 𝑞1, 𝑝2, 𝑞2⟩ + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩ →𝑟` ⟨𝑝 ▷𝑙 𝑞1, 𝑝, 𝑞2⟩

The detached position of a switching rewriting is 𝑝2 (resp. 𝑝1) in
the →𝑙` (resp. →𝑟`) case of the rewriting. Each switching of a
net 𝑆 equipped with an order 𝑢 = (𝑝1, . . . , 𝑝𝑛) on its conclusions,
produces a net 𝑆 ′ with conclusions ordered as 𝑢 · 𝑞 where 𝑞 is the
detached position of the switching step.

A switching of a net 𝑆 is a normal form of 𝑆 with respect to the
switching rewriting.

Remark 21. A normal form for the switching rewriting is a net
which contains no `–link.

Definition 5.3. A position 𝑝 is above a position 𝑞 in a net 𝑆 if
there exists a directed path from 𝑝 to 𝑞.

Given a position 𝑞 we denote 𝑞 ↑𝑖 𝑆 the set of initial positions
which are above 𝑞 in 𝑆 .

Remark 22. Given a net 𝑆 with conclusions 𝑝1, . . . , 𝑝𝑛 the sets
𝑝1 ↑𝑖 𝑆, . . . , 𝑝𝑛 ↑𝑖 𝑆 form a partition of the initial positions of 𝑆 . We
denote this partition ↑𝑖 𝑆 .
Notation 13. Given a net 𝑆 we write 𝑆✠ the net made of its ✠ links.

Notation 14. Given Γ = (𝐴1, . . . , 𝐴𝑛) the representant of a se-
quent we denote by Γ(𝑖) the formula 𝐴𝑖 . We denote a net 𝑆 by
𝑆 [𝑝1, . . . , 𝑝𝑛] whenever the conclusion of 𝑆 are ordered as𝑝1, . . . , 𝑝𝑛 .

Definition 5.4 (Witness of a sequent). A net 𝑆 is a witness of a
sequent Γ, denoted 𝑆 |∼ Γ, when:

• If Γ is a sequent of 𝑛 atomic formulas, 𝑆 = ✠𝑛 ;
• If 𝑆 |∼𝐴, 𝐵, Γ, then 𝑆 + ⟨𝑆 (1), 𝑆 (2) ▷⊗ 𝑝⟩ |∼𝐴 ⊗ 𝐵, Γ.
• If 𝑆 |∼𝐴, 𝐵, Γ, then 𝑆 + ⟨𝑆 (1), 𝑆 (2) ▷` 𝑝⟩ |∼𝐴` 𝐵, Γ.
• If 𝑆 [𝑝1, 𝑞1, 𝑞2, 𝑝2] |∼Γ, 𝐴, 𝐵,Δ, then 𝑆 [𝑝1, 𝑞2, 𝑞1, 𝑝2] |∼Γ, 𝐵, 𝐴,Δ.

Remark 23. A cut–free proof net 𝑆 ⊢ Γ is in particular a witness 𝑆 |∼
Δ of a sequent Δ such that 𝜃Δ = Γ for some substitution 𝜃 . However
a net 𝑆 |∼ Γ may not be a proof net and could contain cycles or
disconnections: the witness condition only provide information on
multiplicative connectives constituting the net 𝑆 . This information
is crucial in order to apply the test of a formula 𝐴: orthogonality
with the tests of 𝐴 coincides with correctness for any nets 𝑆 |∼𝐴.

Definition 5.5 (Invertion). Given a net 𝑆 the invertion of 𝑆 denoted
𝑆 corresponds to 𝑆 in which the ` and ⊗ labels have been inverted.

Remark 24. Whenever 𝑆 witnesses a sequent 𝐴1, . . . , 𝐴𝑛 then 𝑆

witnesses 𝐴⊥1 , . . . , 𝐴
⊥
𝑛 .

Definition 5.6 (Test of a formula). A cut-free net 𝑇 is a test of a
formula𝐴 if (1)𝑇 is a witness of𝐴⊥ and (2) there exists a switching
𝜎𝑇 of the net 𝑇 such that ↑𝑖 𝜎𝑇 = 𝑠𝑢𝑝𝑝 (𝑇✠).

We denote by tests(𝐴) the set of tests of 𝐴.

Theorem 5.7 (Correctness of tests). Any test of a formula 𝐴
is a proof inMLL✠ of the negation 𝐴⊥.

Proof Sketch. Consider a test of the formula 𝐴, meaning a
net 𝑇 which witness 𝐴⊥ and such that 𝑠𝑢𝑝𝑝 (𝑇✠) =↑𝑖 𝜎𝑇 . We will
assume that𝑇 is not correct and show it implies that✠2 isn’t correct,
which is absurd. To conclude we perform a series of transformation
preserving correctness on ✠2 which results in 𝑇 :

(1) First, perform some 𝜂–expansions from ✠2 to obtain a
witness of 𝐴,𝐴⊥ that we denote𝑊 .

(2) Perform the switching on the syntactical part 𝐴 in𝑊 ob-
taining a net𝑊 ′ with 𝑛 + 1 conclusions.

(3) Make the 𝑛 conclusions of the switching interact with ✠1.
(4) The switching of 𝐴 is made only of tensor links thus the

cut–elimination results in some daimons 𝐷 which have for
support the partition of the switching 𝑠𝑢𝑝𝑝 (𝐷) =↑𝑖 𝜎𝐴.

(5) After eliminating the remaining glueing cuts the partitions
goes above 𝐴⊥, we obtain a net 𝑇 witnessing 𝐴⊥ and such
that 𝑠𝑢𝑝𝑝 (𝑇✠) = 𝑠𝑢𝑝𝑝 (𝐷) =↑𝑖 𝜎𝐴. □

Theorem 5.8 (Danos Regnier Tests, [3]). Given a cut–free net
𝑆 |∼𝐴1, . . . , 𝐴𝑛 , the two following assertions are equivalent:

• 𝑆 ⊢MLL✠ 𝐴1, . . . , 𝐴𝑛 ;
• 𝑆 is orthogonal to tests(𝐴1) ∥ · · · ∥ tests(𝐴𝑛).

5.2 Intersection Types and Completeness
Definition 5.9 (self dual type). A type A is self–dual whenever

A ⊆ A⊥. An interpretation basis is self–dual when it maps any
propositional variable to a self dual type.

Notation 15. A substitution 𝜃 : V → FMLL can be lifted to for-
mulas by the induction 𝜃𝐴□𝐵 = 𝜃𝐴□𝜃𝐵 where □ is a symbol `
or ⊗. Furthermore substitutions can be lifted to hypersequent by
𝜃H1,H2 = 𝜃H1, 𝜃H2 and 𝜃H1 ∥ H2 = 𝜃H1 ∥ 𝜃H2.

Given two hypersequents we denote Δ ≤ Γ whenever there
exists a substitution 𝜃 such that 𝜃Δ = Γ.

Remark 25. Given a net 𝑆 since daimon rules may introduce any
sequent, whenever 𝑆 ⊢MLL✠ Δ and Δ ≤ Γ it follows that 𝑆 ⊢MLL✠ Γ.

Theorem 5.10 (MLL✠ completeness). Let 𝑆 be a cut–free net
and Γ be a sequent. For any self dual and approximable interpretation
basis B, if 𝑆 belongs to JΓKB then 𝑆 represents a proof of Γ inMLL✠ .

Proof Sketch. Let Γ = 𝐴1, . . . , 𝐴𝑛 be a sequent. Consider a 𝑆
a cut free net in JΓKB , since the basis is self–dual the syntactical
part of 𝑆 is borned by Γ, hence 𝑆 |∼ Δ such that 𝜃Δ ≤ Γ for some
substitution 𝜃 . 𝑆 belonging to the interpretation of Γ equivalently
means:

𝑆 ⊥ J𝐴⊥1 K ∥ · · · ∥ J𝐴⊥𝑛 K .

By adequacy for any index 𝑖 , ⦃𝐴⊥
𝑖
: MLL✠⦄ ⊆ J𝐴⊥

𝑖
K. Further-

more Δ ≤ Γ hence Δ = 𝐵1, . . . , 𝐵𝑛 such that 𝐵𝑖 ≤ 𝐴𝑖 for each 𝑖 and
thus 𝐵⊥

𝑖
≤ 𝐴⊥

𝑖
. As a consequence ⦃𝐵⊥

𝑖
: MLL✠⦄ ⊆ ⦃𝐴⊥

𝑖
: MLL✠⦄.

Finally from theorem 5.7 we have tests(𝐵𝑖) ⊆ ⦃𝐵⊥
𝑖

: MLL✠⦄.
Hence we conclude

𝑆 ⊥ tests(𝐵⊥1) ∥ · · · ∥ tests(𝐵
⊥
𝑛) .

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Since 𝑆 |∼Δ by theorem 5.8 we conclude 𝑆 ⊢MLL✠ Δ and so using
remark 25, 𝑆 ⊢MLL✠ Γ. □

Notation 16. Given an interpretation basis B and a type A we let
B{𝑋 ↦→ A} denote the basis which maps 𝑋 to A, 𝑋⊥ to A⊥ and
any propositional 𝑌 that isn’t 𝑋 or its dual to J𝑌 KB .

Definition 5.11 (Intersection and union type). LetB be an interpre-
tation basis, and Ω a set of types with one output. Given Γ a sequent
of MLL formulas and 𝑋 a propositional variable the intersection
type and union type on Ω of Γ in 𝑋 w.r.t. to B are defined as follow:

J
⋂
𝑋 ∈Ω

ΓKB ≜
⋂
𝑅∈Ω

JΓKB{𝑋 ↦→𝑅} , J
⋃
𝑋 ∈Ω

ΓKB ≜

(⋃
𝑅∈Ω

JΓKB{𝑋 ↦→𝑅}

)⊥⊥
.

Remark 26. We can naturally consider the intersection and unions
on types that are not build by sequential operations, for instance
on parallel composition of types or on functional composition of
types. For example the following type;⋂

𝑅∈Ω
J𝐴1KB{𝑋 ↦→𝑅} ∥ · · · ∥ J𝐴𝑛KB{𝑋 ↦→𝑅} .

Definition 5.12. A net is proof like whenever its daimon links are
only of the form ⟨▷✠ 𝑝1, 𝑝2⟩, e.g isomorphic to ✠2.

Theorem 5.13. Let 𝑆 be a cut–free and proof–like net, Γ be a
sequent and Ω denote the set of all types with one output. For any
self dual and approximable interpretation basis B, if 𝑆 belongs to⋂

𝑋 ∈VJ
⋂

𝑋 ∈Ω ΓKB then 𝑆 represents a proof of Γ in MLL.

6 ADEQUACY AT (PRE–)SECOND ORDER
We now present how our approach can be extended to second order
linear logicMLL2, and provide an adequate model forMLL2. The
hypergraphs are now build with the multiplicative links of defini-
tion 2.10 to which we add two new kind of unary connective links,
namely ⟨𝑝 ▷∀ 𝑞⟩ and ⟨𝑝 ▷∃ 𝑞⟩ which respectively corresponds to
universal and existential quantification. In that context, the mod-
ules and nets are hypergraphs build from this wider set of links
which follow the same specification as for multiplicative nets (see
the definitions 2.10 and 2.11).

Furthermore we need to extend cut elimination in the presence of
these new links, for nowwe give a dummy version of cut elimination
similar to the elimination in the multiplicative case, namely the cuts
(∀/∃) and (∃/✠) and (∀/✠) can be eliminated as follow, while the
other kind of cut are treated as clashing cuts;

• ⟨𝑝 ▷∀ 𝑝′⟩ + ⟨𝑝′, 𝑞′ ▷cut⟩ + ⟨𝑞 ▷∃ 𝑞′⟩ → ⟨𝑝, 𝑞 ▷cut⟩.
• ⟨𝑝 ▷∀ 𝑝′⟩ + ⟨𝑝′, 𝑞 ▷cut⟩ + ⟨▷✠ 𝑞⟩ → ⟨𝑝, 𝑞 ▷cut⟩.
• ⟨𝑝 ▷∃ 𝑝′⟩ + ⟨𝑝′, 𝑞 ▷cut⟩ + ⟨▷✠ 𝑞⟩ → ⟨𝑝, 𝑞 ▷cut⟩.

Definition 6.1 (realizers of MLL2). Let B be an interpretation
basis. The set of realizers of a formula 𝐴 of MLL2 is defined by
adding the two following cases to definition 3.13 (the net 𝑆 has one
conclusion):

J∀𝑋 𝐴K ≜ {𝑆 + ⟨𝑆 (1) ▷∀ 𝑞⟩ | 𝑆 ∈ J
⋂

𝑋 ∈Ω 𝐴K}⊥⊥

J∃𝑋 𝐴K ≜ {𝑆 + ⟨𝑆 (1) ▷∃ 𝑞⟩ | 𝑆 ∈ J
⋃

𝑋 ∈Ω 𝐴K}⊥⊥

Remark 27. Proposition 4.2 ensures that ✠2 belongs to A � A⊥ for
any type A. In particular for any interpretation basis B it belongs

to the intersection
⋂

𝑅∈Ω (J𝑋 KB{𝑋 ↦→𝑅} � J𝑋⊥KB{𝑋 ↦→𝑅}) and is the
only cut free net occuring in that intersection.

This implies that ⟨▷✠ 𝑝1, 𝑝2⟩ + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩ belongs to⋂
𝑅∈Ω

(
J𝑋 KB{𝑋 ↦→𝑅} ` J𝑋⊥KB{𝑋 ↦→𝑅}

)
.

Hence, by definition this net extended with a universal quantifier
link is an element of J∀𝑋,𝑋 ` 𝑋⊥KB .

Theorem 6.2 (Adeqacy forMLL2). Given 𝑆 a proof inMLL2
of a sequent Γ. For any regular interpretation basis B, 𝑆 ∈ JΓKB .

7 COMPUTABILITY OF TYPES
This section shows that the adequate model we constructed enjoys
a property of finiteness, namely each type is the orthogonal of a
finite set. As mentionned in the introduction, this hints towards a
correctness criterion forMLL2 which will be the object of the last
section. Given a type A and a type 𝑆 how difficult is to assert that 𝑆
belongs toA. Orthogonality provides a natural tool to talk about the
computability of such a problem. Given a sequent Γ = 𝐴1, . . . , 𝐴𝑛

we denote Γ the sequent 𝐴⊥1 , . . . , 𝐴
⊥
𝑛 .

Definition 7.1. A type A is computable whenever there exists a
finite set 𝐵 such thatA = 𝐵⊥. A type A is syntactically computable if
for each sequent Γ there exists a finite set A⊥ (Γ) of nets witnessing
Γ such that, for any net 𝑆 witnessing Γ; 𝑆 ∈ A⇔ 𝑆 ⊥ A⊥ (Γ).

Remark 28. A computable type A = 𝐵⊥ is a type such that the
statement 𝑆 ∈ A can be decided interactively by testing the orthog-
onality with each element of the finite set 𝐵.

This notion is strongly related to the correctness criterion of
proof nets [5]; given a sequent Γ and a proof system 𝔓 the com-
putability of the set ⦃Γ : 𝔓⦄ = 𝐵⊥ provides a way to assert in finite
time5 if a net 𝑆 is a proof net of Γ or not. 6

Proposition 7.2. The functional composition A � B and the par-
allel composition A ∥ B of two syntactically computable types are
syntactically computable.

Proposition 7.3. The union (⋃𝑖∈𝐼 A𝑖)
⊥⊥

of a family of com-
putable types is computable. The intersection

⋂
𝑖∈𝐼 A𝑖 of a finite

family of computable types is computable.

Notation 17. We write abusively ✠ the type {✠1}
⊥⊥

and define the
following particular types:

⊗✠ = {⟨▷✠ 𝑝1, 𝑝2⟩ + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩}
⊥⊥

`✠ = {⟨▷✠ 𝑝1⟩ + ⟨▷✠ 𝑝2⟩ + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩}
⊥⊥

Proposition 7.4. Let𝜔 be the set of types {⊗✠,`✠,✠,✠⊥} and
B be a basis which maps any 𝑋 to ✠. For any hyper–sequentH :

J
⋂
𝑋 ∈𝜔
HKB = J

⋂
𝑋 ∈Ω
HKB .

5However there can be a high complexity cost in order to decide 𝐵.
6In particular, in the case ofMLL✠ using the theorem 5.8 we have shown that the nets
which represent a cut–free proof of a formula 𝐹 are the cut–free elements of a type A
which are orthogonal to a finite set tests(𝐹) , the set of tests of 𝐹 , see definition 5.6.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Remark 29. Since the set 𝜔 is a finite set, the previous propositions
implies that for an approximable and self dual basis, the intersection
type J

⋂
𝑋 ∈ΩHKB is computable.

Remark 30. The preservation of computability of the preconstruc-
tions ∥,�,⋂ and

⋃
naturally extend to the preservation of com-

putability for the construction on types, namely `, ⊗,∀ and ∃. In
the case quantifiers this is because (1) a daimon link against a ∃ link
can match the reduction of a ∀ link against ∃ link, and vice versa,
and (2) the dummy elimination rules introduced for the elimination
of the quantifier links can always be performed first during cut
elimination, e.g. they commute to the left during cut elimination.

8 SECOND ORDER NETS
Confirming the hint of the existence of correctness criterion for
second order multiplicative linear logic nets provided by the finite-
ness of the union and intersection types, this section is dedicated
to the definition of a novel correctness criterion forMLL2✠ nets,
e.g. nets with exists–link and forall–links.

The criterion we present is based on the contractibility criterion
forMLL (Danos [2]) as formulated in [1]. Our criterion is distinct
from Girard’s [6] for several reasons; (1) It is designed for untyped
proof structures ofMLL2✠ , (2) we are not bound to Girard’s restric-
tion of the criterion to proof structures having only closed formulas
as conclusions. Furthermore, the contractibility criterion always
reduces the size of the net and enjoys a quadratic complexity. As a
consequence, increasing the number of dependencies of a universal
quantifier do not increase the number of switchings (and so the time
complexity) exponentially (which is the case in Girard’s criterion).

In this section we introduce hypergraphs equipped with point-
ers, in order to handle second order quantification and to inter-
pret proofs of MLL2✠ . The challenge in the definition is to add
quantifiers while keeping an untyped setting. Pointers are used to
reintroduce exactly the needed information to deal with quantifiers
(which is usually implicitly given by types).

In previous sections, the vertices of an hypergraph belonged to
a set positions P. In order to handle pointers we enrich the set of
positions as P ∪ P• where the elements of P• are called pointer
ports or pointer positions. We will usually denote pointer ports as
p, q, s, The elements of P ∪ P• are called positions, while ele-
ments of P will be called regular positions. A pointer or pointer–link
is an link with one source which is a pointer port and one target
which is a position, and the label p. Moreover, we will distinguish
between existential and universal pointers. We will denote a univer-
sal (resp. existential) pointer ⟨s ▷p 𝑡⟩ by ⟨s

∀
𝑡⟩ (resp. ⟨s ∃

𝑡⟩).
A pointer structure is an hypergraph made only of pointers. An
hypergraph with pointers P is an hypergraphH summed with a
pointer structure P. A pointer belongs to an hypergraphH when
its source and target are positions ofH .

As for multiplicative nets, we define modules for second order
multiplicative linear logic as sums of the following links:

⟨𝑝, 𝑞 ▷cut⟩ ⟨▷✠ 𝑝⟩ ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩ ⟨𝑝1, 𝑝2 ▷` 𝑝⟩
⟨𝑝 ▷∀ 𝑞, s⟩ ⟨𝑝 ▷∃ 𝑞, s⟩ ⟨s

∀
𝑡⟩ ⟨s ∃

𝑡⟩.

Pointer positions are involved exclusively in existential, uni-
versal, and pointer links. We distinguish universal and existential

pointer links and the semantics of these pointers pointers will be
distinct. A pre-net is a moduleH with pointers P such that:

• Existential pointers sources are pointer positions involved
in existential links, and their target lies above their sources,
i.e. there exists a directed path from the target to the source;
moreover, given two existential links 𝑒1 and 𝑒2 with respec-
tive pointer positions s1 and s2 such that 𝑒2 is above 𝑒1 a
pointer of source s1 cannot point on a position which is
above the target of a pointer of source s2;

• Universal pointers sources are pointer positions involved
in universal links, and their targets are either conclusions
of ✠ links or pointer positions of existential links;

• A given position is the target of at most one existential
pointer link;

• H is target–disjoint, source–disjoint, and target–surjective.

Remark 31. In a second order netH + P only the underlying hy-
pergraph H need to be target and source disjoint, pointers have
no such restriction in particular two pointers may have the same
source such as ⟨s 𝑡⟩ and ⟨s 𝑡 ′⟩ while occurring in the same
net. Similarly two distinct pointers may share their target, this may
occur for instance when two distinct ∀ links point to the same
position, indicating it should contain a formula depending on the
two corresponding quantified variables. Similarly, a ∀ pointer link
may share its target with an ∃ pointer link, indicating that the exis-
tential witness in that position contains the universally quantified
propositional variable.

8.1 Trees, pointers, and approximations
Pre-nets still lack an important property ensured by types: that all
existential witnesses are the same. Without this property, we would
allow an existential quantifier to point to two distinct witnesses
with different principal connectives. We overcome the challenge of
expressing this constraint without introducing types by defining
a notion of coherence between positions in a pre-net. Intuitively
coherent positions are positions which can host a unifying witness.

In order to formulate properly this constraint, we need to intro-
duce the notion of tree with pointers. Along this section a tree is a
tree with pointers.

Definition 8.1. Given a position 𝑝 , trees with pointers of conclu-
sion 𝑝 or 𝑝–trees are inductively defined as follows:

• A unary link ⟨▷✠ 𝑝⟩ is a 𝑝–tree;
• If S is 𝑝–tree disjoint with S′ a 𝑝′–tree and 𝑞 is a fresh

position, then S∪S′ + ⟨𝑝, 𝑝′ ▷⊗ 𝑞⟩ and S∪S′ + ⟨𝑝, 𝑝′ ▷`
𝑞⟩ is a 𝑞–tree;
• If S is a 𝑝–tree, 𝑞 is a fresh regular position and s a fresh

pointer position, then S + ⟨𝑝 ▷∀ 𝑞, s⟩ and S + ⟨𝑝 ▷∃ 𝑞, s⟩
is a 𝑞–tree.

• IfS is a 𝑝–tree, 𝑡 is a regular position inS, and s is a pointer
position:
– if s is conclusion of an ∃ link, then S + ⟨s ∃

𝑡⟩ is a
𝑝–tree;

– if s is not conclusion of an ∃ link (hence possibly a
fresh pointer position) and 𝑝′ is either the conclusion
of a ✠ link or the pointer position of an ∃ link, then
S + ⟨s ∀

𝑡⟩ is a 𝑝–tree.
10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Given a pre-net H + P and a position 𝑝 , we now define in a
straightforward way the tree (with pointers) above 𝑝 inH + P. This
will then be used to define the syntactic tree above the vertex,
including the pointers of ∀ links that may point to vertices in that
syntactic tree.

Definition 8.2. Given a pre-netH + P and a position 𝑝 , the tree
(with pointers) above 𝑝 inH + P, written SH+P (𝑝), is defined as the
largest 𝑝–tree S that is contained inH + P when its daimon links
are removed.

We now define a notion of approximation on trees. We first need
to introduce useful notations that will simplify statements.

Definition 8.3. Given a pre-netH + P and a position 𝑝 , we define
P∀ (→𝑝) (resp. P∃ (→𝑝)) as the set of all universal (resp. existential)
pointer links in P of target 𝑝 . We similarly define P∀ (𝑝→) (resp.
P∃ (𝑝→)) as the set of all universal (resp. existential) pointer links
in P of source 𝑝 .

Notation 18. Given 𝑝 and 𝑞 two positions we denote [𝑝 := 𝑞] the
function which takes a position 𝑠 and returns 𝑞 if 𝑠 = 𝑝 and returns 𝑠
otherwise. We adopt an infix notation 𝑠 [𝑝 := 𝑞] to denote the image
of 𝑠 under [𝑝 := 𝑞]. We lift these functions to pointer links, given a
link ⟨s 𝑡⟩ defining ⟨s 𝑡⟩[𝑝 := 𝑞] as ⟨s[𝑝 := 𝑞] 𝑡 [𝑝 :=
𝑞]⟩. Furthermore we lift this notation to sets of pointers 𝑋 so that
𝑋 [𝑝 := 𝑞] denotes the images of the elements of 𝑋 under [𝑝 := 𝑞].

Definition 8.4. The approximation relation ≺ on trees is defined
as the transitive closure of the relation shown in Figure 5, where
in the first two lines the positions 𝑝, 𝑞 do not appear in left hand
tree and in the last two lines the positions 𝑝, s do not appear in left
hand tree. Note that when pointers are renamed, two pointers may
become equal. In this case, only one link is kept.

A set of trees S1, . . . ,S𝑘 is coherent when there exists a tree R,
a witness, such that S𝑖 ≺ R up to a renaming of positions.

We note that verifying that a set of trees 𝑆1, . . . , 𝑆𝑛 or respective
conclusion 𝑝1, . . . , 𝑝𝑛 is coherent is not as costly as it could be
thought at first sight. On can simply compare the tree from their
conclusions while bookkeeping renamings of positions. Inductively,
one performs the following steps:

• check if there exists a type of link such that all 𝑝𝑖 are either
targets of this type of link (type c) or target of a ✠ link
(type a) and deduce needed renamings (e.g. that 𝑝1, . . . , 𝑝𝑛
should be identified);

• check if the sets P∃ (→𝑝𝑖) are all equal (up to renaming);
• check if the sets P∀ (→𝑝𝑖) for 𝑝𝑖 of type a are equal (up

to renaming), and bookkeep one of them to check, when
available, that it is equal, for each 𝑝𝑖 of type c, to

∪𝑟 ′ above 𝑝𝑖P∀ (→𝑟 ′) \ ∪𝑟 ′ above 𝑝𝑖P∀ (𝑟
′→).

The algorithm just described can furthermore be used to construct
a witness, which in fact is minimal.

Lemma 8.5. Given a coherent set of trees S1, . . . ,S𝑘 , there exists a
minimal witness, notedWit(S1, . . . ,S𝑘).

We are now ready to define nets as pre-nets for which ∃ links
possess a witness.

Definition 8.6. A pre-netH + P is a net if for all link ⟨𝑝 ▷∃ 𝑞, s⟩
inH , the set of trees S = {SH+P (𝑟) | 𝑟 ∈ P∃ (s→)} is coherent. The
minimal witness Wit(S) is called the minimal witness of the link
⟨𝑝 ▷∃ 𝑞, s⟩, and sometimes abusively written as Wit(⟨𝑝 ▷∃ 𝑞, s⟩).

8.2 Contractibility criterion
The next step is to define the notion of contraction for second order
nets which will be used to define the correctness criterion.

Definition 8.7. The contraction relation on second order nets is
defined by the contextual closure of the following reduction steps
(rules are shown in Figure 7 where we replaced sums by sets to
ease readability, and illustrated in Figure 6):

• If P∀ (→𝑝) ≠ ∅ and P∃ (→𝑝) ≠ ∅, we write ⟨s ∃
𝑝⟩ the

unique element of P∃ (→𝑝) and we can apply the pointers
rule (Figure 7e);

• The tensor (Figure 7a) and parr rule (Figure 7b) can be
applied without any side condition.

• If P∀ (→𝑝) is empty, we can apply the existential rule (Fig-
ure 7c);

• If either P∀ (s→) is empty or contains only the pointer link
⟨s ∀

𝑝⟩, we can apply the universal rule (Figure 7d).
Note that two pointers may become equal after applying a rule. In
this case, only one link is kept.

Multiplicative rules for contractibility can be understood as
Curien’s contractibility rules forMLL [1], extended to handle point-
ers. This rewriting of pointers in the net is crucial: the existential
pointers which were on premisses are destroyed (we lose the infor-
mation of the existential witness), whereas the universal pointers
are moved to the conclusion of the contracted link – keeping track
of the dependence. The existential link contraction can always be
performed, and removes any pointers targetting its pointer posi-
tion: this is the only rule erasing universal pointers. The universal
link contraction can only be performed when no pointers exists
from this link to a position that is not above it. This intuitively
corresponds to the usual condition on the context in the universal
quantifier introduction rule. The last rule is the essential one: if a
conclusion 𝑝 of a daimon link is at the same time the target of an
existential pointer and the target of (possibly multiple) universal
pointers, we move the universal pointers to the pointer position of
the existential link pointing to 𝑝 . This records the dependence of
the existential witness on the universal quantifiers.

Definition 8.8. A netH + P with 𝑛 conclusions is contractible if
there exists a sequence of contractibility reduction rules ending on
✠𝑛 , i.e. 𝑆 →∗𝑐 ✠𝑛 .

Remark 32. The contractibility rewriting preserves the number
of conclusions of a net. During contraction steps, the number of
links always decreases except in the case of Figure 7e in which
the number of universal pointers pointing to a regular position
decrease; this makes the rewriting strongly normalizing.

We are now ready to state the main theorem of this Section: the
contractibility correctness criterion for second order nets.

Remark 33. Our way of dealing with existential quantifiers in nets
forces witnesses to appear as principal formulas in the proof. Conse-
quently, not all sequent calculus proofs are represented directly in

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

⟨▷✠ 𝑟 ⟩ + P∀ (→𝑝) [𝑝 := 𝑟] + P∀ (→𝑞) [𝑞 := 𝑟] ≺ ⟨▷✠ 𝑝⟩ + P∀ (→𝑝) + P∃ (→𝑝) + ⟨▷✠ 𝑞⟩ + P∀ (→𝑞) + P∃ (→𝑞) + ⟨𝑝, 𝑞 ▷` 𝑟 ⟩
⟨▷✠ 𝑟 ⟩ + P∀ (→𝑝) [𝑝 := 𝑟] + P∀ (→𝑞) [𝑞 := 𝑟] ≺ ⟨▷✠ 𝑝⟩ + P∀ (→𝑝) + P∃ (→𝑝) + ⟨▷✠ 𝑞⟩ + P∀ (→𝑞) + P∃ (→𝑞) + ⟨𝑝, 𝑞 ▷⊗ 𝑟 ⟩

⟨▷✠ 𝑟 ⟩ + P∀ (→𝑝) [𝑝 := 𝑟] ≺ ⟨▷✠ 𝑝⟩ + P∀ (→𝑝) + P∃ (→𝑝) + ⟨𝑝 ▷∃ 𝑞, s⟩ + P∀ (→s)
⟨▷✠ 𝑟 ⟩ + P∀ (→𝑝) [𝑝 := 𝑟] ≺ ⟨▷✠ 𝑝⟩ + P∀ (→𝑝) + P∃ (→𝑝) + ⟨𝑝 ▷∀ 𝑞, s⟩ + P∀ (s→)

Figure 5: Approximation reduction steps

⊗

𝑟

𝑞

✠

·. . .

s∀

·

✠

·. . .→𝑐
·

✠

𝑝. . .

s∃

. . .𝑟

s∀

(a) Tensor rule

`
𝑟

𝑞

✠

·. . .

s∀

✠

·→𝑐
𝑝

s∃

. . .𝑟

s∀

(b) Parr rule

∀

𝑞

𝑝

✠

·. . .

s

𝑞

✠

·. . .→𝑐

(c) Universal rule

∃

𝑞

𝑝

✠

·. . .

s

𝑞

✠

·. . .→𝑐

s𝑛s1 s2 . . .

(d) Existential rule

∃

𝑡

𝑞

✠

·. . .

s

→𝑐

s𝑛s1 s2 . . .

𝑝

∃

𝑡

𝑞

✠

·. . .

s

s𝑛s1 s2 . . .

𝑝

(e) Pointers rule
Figure 6: Contraction rules illustrated

©«

⟨▷✠ 𝑝, ®𝑝⟩
⟨▷✠ 𝑞, ®𝑞⟩
⟨𝑝, 𝑞 ▷⊗ 𝑟 ⟩
P∀ (→𝑝)
P∃ (→𝑝)
P∀ (→𝑞)
P∃ (→𝑞)

ª®®®®®®®®®¬
→𝑐

©«
⟨▷✠ 𝑟, ®𝑝, ®𝑞⟩

P∀ (→𝑝) [𝑝 := 𝑟]
P∀ (→𝑞) [𝑞 := 𝑟]

ª®¬
(a) Tensor rule

©«

⟨▷✠ 𝑝, 𝑞, ®𝑝⟩
⟨𝑝, 𝑞 ▷` 𝑟 ⟩
P∀ (→𝑝)
P∃ (→𝑝)
P∀ (→𝑞)
P∃ (→𝑞)

ª®®®®®®®¬
→𝑐

©«
⟨▷✠ 𝑟, ®𝑝⟩

P∀ (→𝑝) [𝑝 := 𝑟]
P∀ (→𝑞) [𝑞 := 𝑟]

ª®¬
(b) Parr rule

©«

⟨▷✠ 𝑝, ®𝑝⟩
⟨𝑝 ▷∃ 𝑞, s⟩
P∀ (→𝑝)
P∃ (→𝑝)
P∃ (s→)
P∀ (→s)

ª®®®®®®®¬
→𝑐

(
⟨▷✠ 𝑞, ®𝑝⟩

)

(c) Existential rule

©«
⟨▷✠ 𝑝, ®𝑝⟩
⟨𝑝 ▷∀ 𝑞, s⟩
P∀ (→𝑝)
P∃ (→𝑝)
P∀ (s→)

ª®®®®®¬
→𝑐

(
⟨▷✠ 𝑞, ®𝑝⟩

P∀ (→𝑝) [𝑝 := 𝑞] \ {⟨s ∀
𝑝⟩}

)

(d) Universal rule

©«
⟨▷✠ 𝑝, ®𝑝⟩
P∀ (→𝑝)
P∃ (→𝑝)

ª®¬→𝑐
©«

⟨▷✠ 𝑝, ®𝑝⟩
P∀ (→𝑝) [𝑝 := s]

P∃ (→𝑝)
ª®¬

(e) Pointers rule
Figure 7: Contraction rules

our syntax. Proofs introducing existential quantifiers with a witness
appearing only as a subformula (e.g. a subformula of an axiom’s con-
clusion) need to be partially 𝜂-expanded for all witnesses to appear
as principal formulas. With this mild requirement, we can show
that second order nets represent second order sequent calculus.

Theorem 8.9 (Contractibility Criterion). Given a netH + P,
the following assertions are equivalent:

(1) H + P is contractible and its
(2) H + P is sequentialisable: there exists a proof 𝜋 in MLL2✠

of a sequent Γ such thatH + P represents 𝜋 ,

Proof sketch. To show 1⇒ 2, we start from a contractible
net and consider the sequence of rules leading to the final ✠ rule.
We then argue that each reduction rule can be followed in reverse: if
the reduct is sequentialisable, then the redex is. Formally, we show
that a contractible net is the interpretation of any sequent with the
right structure, where the structure describes constraints on the
formulas: dependencies on some variables, syntactical structure.

The initial step is straightforward: a net ✠𝑛 is the interpretation
of the proof of ⊢ 𝐴1, . . . , 𝐴𝑛 using one daimon rule, for any set of
formulas 𝐴1, . . . , 𝐴𝑛 .

Now, if a net 𝑅 represent the proof of any sequent ⊢ Γ with
constraints, and 𝑅 is obtained from 𝑅′ through a tensor rule con-
structing a daimon of conclusions 𝑃,𝐴1, . . . , 𝐴𝑘 , 𝐵1, . . . , 𝐵𝑚 , one
can then impose the additional structural constraint 𝑃 = 𝐴 ⊗ 𝐵

imposing that 𝑃 has a tensor as principal formula. The rule applica-
tion furthermore allows to recover dependency constraints from
the universal pointers: if 𝑃 depended on the universal variables
𝑋1, . . . , 𝑋𝑝 , the rule can be used to redirect those dependencies to
𝐴 and 𝐵. Lastly, the rule may have deleted an existential pointer: in

that case, we recover structural constraints as the pointed formula
should be equal to the existential witness of the source.

A similar argument can be followed for the parr, universal, and
existential rules. We get from the rule application a structural con-
straint on the formulas involved, as well as information from the
pointers.

Lastly, the pointers rule allows to recover the universal depen-
dencies of witnesses, leading to structural constraints; however the
redex and the reduct represent the sameMLL2 proofs.

To show 2⇒ 1, we proceed by induction on the proof 𝜋 , looking
at its last rule. Whenever the last rule is daimon rule the implication
directly follows. If the last rule is a `– or ⊗–rule the induction
hypothesis allows us to conclude as in [1].

In the following, we let given a proof 𝜋 in MLL2✠ we let ⟨⟨𝜋⟩⟩
denote a net which represents 𝜋 . If the last rule is the introduction
of ∃–connective then 𝑆 is of the form ⟨⟨𝜋0⟩⟩ + ⟨𝑝 ▷∃ 𝑞, s⟩ +P∃ (s→),
the new existential link points to the positions which corresponds
to the abstracted formula by the quantifier. By induction ⟨⟨𝜋0⟩⟩ →𝑐

⟨▷✠ 𝑝, 𝑝⟩ hence 𝑆 → ⟨▷✠ 𝑝, 𝑝⟩ + ⟨𝑝 ▷∃ 𝑞, s⟩ + P∃ (s→) and the
remaining pointers can only be in P∃ (s→). Indeed we can perform
a contraction step and reduce the net to ⟨▷✠ 𝑝, 𝑞⟩ meaning that 𝑆
is contractible.

If the last rule is a universal quantification, 𝑆 = ⟨⟨𝜋0⟩⟩ + ⟨𝑝 ▷∀
𝑞, s⟩ + P∀ (s→) eventually the new link points to positions of
⟨⟨𝜋0⟩⟩, but since the quantified variable cannot appear in the context
the pointers occur above a position which is pointed by an exists
link. As a consequence performing the same contraction as for
⟨⟨𝜋0⟩⟩ → ⟨▷✠ 𝑝, 𝑝⟩ together with somemore rerouting contraction
we obtain 𝑆 → ⟨▷✠ 𝑝, 𝑝⟩+⟨𝑝 ▷∀ 𝑞 | +⟩P∀ (s→) and the remaining

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

pointers may only point to 𝑝 , hence the contraction rule be applied
and 𝑆 reduce to ⟨▷✠ 𝑝, 𝑞⟩ and so is contractible. □

REFERENCES
[1] Pierre-Louis Curien. 2005. Introduction to linear logic and ludics, part II. CoRR

abs/cs/0501039 (2005). arXiv:cs/0501039 http://arxiv.org/abs/cs/0501039
[2] Vincent Danos. 1990. La Logique Linéaire appliquée à l’étude de divers processus

de normalisation (principalement du Lambda-calcul). Ph. D. Dissertation. http:
//www.theses.fr/1990PA077188 Thèse de doctorat dirigée par Girard, Jean-Yves
Mathématiques Paris 7 1990.

[3] Vincent Danos and Laurent Regnier. 1989. The structure of multiplicatives.
Archive for Mathematical Logic 28, 3 (01 10 1989), 181–203. https://doi.org/10.
1007/BF01622878

[4] Jean-Yves Girard. 1987. Multiplicatives. In Logic and Computer Science: New
Trends and Applications, G. Lolli (Ed.). Rosenberg & Sellier, 11–34.

[5] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987), 1
– 101. https://doi.org/10.1016/0304-3975(87)90045-4

[6] Jean-Yves Girard. 1991. Quantifiers in linear logic II. Nuovi problemi della logica
e della filosofia della scienza 2 (1991), 1.

[7] Jean-Yves Girard. 2001. Locus Solum: From the Rules of Logic to the Logic
of Rules. In Computer Science Logic, Laurent Fribourg (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 38–38.

[8] Jean-Baptiste Joinet and Thomas Seiller. 2021. From abstraction and indiscernibil-
ity to classification and types: revisitingHermannWeyl’s theory of ideal elements.
Kagaku tetsugaku 53, 2 (2021), 65–93. https://doi.org/10.4216/jpssj.53.2_65

[9] S. C. Kleene. 1945. On the interpretation of intuitionistic number theory. The
Journal of Symbolic Logic 10, 4 (1945), 109–124. https://doi.org/10.2307/2269016

[10] Jean-Louis Krivine. 2005. Realizability in classical logic. Panoramas et synthèses
27 (2005), 197–229. https://hal.science/hal-00154500

[11] Yves Lafont. 1996. The undecidability of second order linear logic without
exponentials. The Journal of Symbolic Logic 61, 2 (1996), 541–548. https://doi.
org/10.2307/2275674

[12] Alexandre Miquel. 2009. De la formalisation des preuves à l’extraction de pro-
grammes. Habilitation at Université Paris Diderot (2009). https://www.fing.edu.
uy/~amiquel/publis/hdr.pdf

[13] Alberto Naibo, Mattia Petrolo, and Thomas Seiller. 2016. On the Computational
Meaning of Axioms. Springer International Publishing, Cham, 141–184. https:
//doi.org/10.1007/978-3-319-26506-3_5

[14] Francesca Poggiolesi. 2009. The Method of Tree-hypersequents for Modal Propo-
sitional Logic. In Towards Mathematical Philosophy, David Makinson, Jacek
Malinowski, and Heinrich Wansing (Eds.). Trends in logic, Vol. 28. Springer,
31–51. https://doi.org/10.1007/978-1-4020-9084-4_3 Paper from the Studia
Logica conference Trends in Logic IV.

[15] Thomas Seiller. 2012. Interaction Graphs: Multiplicatives. Annals of Pure and
Applied Logic 163, 12 (2012), 1808–1837. https://doi.org/10.1016/j.apal.2012.04.005

[16] Thomas Seiller. 2013. Interaction Graphs: Exponentials. Log. Methods Comput.
Sci. 15 (2013).

[17] Thomas Seiller. 2015. Interaction Graphs: Full Linear Logic. CoRR abs/1504.04152
(2015). arXiv:1504.04152 http://arxiv.org/abs/1504.04152

[18] Thomas Seiller. 2016. Interaction Graphs: Additives. Annals of Pure and Applied
Logic 167, 2 (2016), 95–154. https://doi.org/10.1016/j.apal.2015.10.001

[19] Thomas Seiller. 2017. Interaction Graphs: Graphings. Annals of Pure and Applied
Logic 168, 2 (2017), 278–320. https://doi.org/10.1016/j.apal.2016.10.007

13

https://arxiv.org/abs/cs/0501039
http://arxiv.org/abs/cs/0501039
http://www.theses.fr/1990PA077188
http://www.theses.fr/1990PA077188
https://doi.org/10.1007/BF01622878
https://doi.org/10.1007/BF01622878
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.4216/jpssj.53.2_65
https://doi.org/10.2307/2269016
https://hal.science/hal-00154500
https://doi.org/10.2307/2275674
https://doi.org/10.2307/2275674
https://www.fing.edu.uy/~amiquel/publis/hdr.pdf
https://www.fing.edu.uy/~amiquel/publis/hdr.pdf
https://doi.org/10.1007/978-3-319-26506-3_5
https://doi.org/10.1007/978-3-319-26506-3_5
https://doi.org/10.1007/978-1-4020-9084-4_3
https://doi.org/10.1016/j.apal.2012.04.005
https://arxiv.org/abs/1504.04152
http://arxiv.org/abs/1504.04152
https://doi.org/10.1016/j.apal.2015.10.001
https://doi.org/10.1016/j.apal.2016.10.007

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Contents

Abstract 1
1 Introduction 1
2 Untyped nets 3
2.1 Directed hypergraph 3
2.2 Sum of hypergraphs 4
2.3 Ordered Hypergraphs 4
2.4 Properties of hypergraphs 5
2.5 Multiplicative nets 5
2.6 Homogeneous cut elimination 5
2.7 Non homogeneous cut elimination 5
3 Realisability model 6
3.1 Interaction of nets 6
3.2 Orthogonality 6
3.3 Construction on Types 7
3.4 Interpretation of formulas 7
4 Adequacy 7
5 Completeness 8
5.1 Test of a formula 8
5.2 Intersection Types and Completeness 8
6 Adequacy at (pre–)second order 9
7 Computability of Types 9
8 Second order nets 10
8.1 Trees, pointers, and approximations 10
8.2 Contractibility criterion 11
References 13
Contents 14
A Second order multiplicative linear logic 14
A.1 Formulas 14
A.2 Sequents and Hypersequents 15
A.3 Proofs 15
B Complements to section 2 15
B.1 Complements to section 2.1 15
B.2 Complements to section 2.2 15
C Complements to section 3 16
C.1 Proofs of section 3.1 16
C.2 Rewriting properties of nets 16
C.3 Proofs of section 3.3 18
D Complements to section 4 19
D.1 Proof Nets 19
D.2 The Merge Operator 19
D.3 Proofs of section 4 20
E Complements to section 5 22
E.1 Proof of Theorem 5.8 – Reformulating Danos

Regnier 22
E.2 Correctness of Tests 23
E.3 Decomposition 23
E.4 Contracted, open and self dual Types 24
E.5 Truncation Lemma 24
E.6 Proofs of section 5.2 25
F Complements to section 6 25
G Complements to section 7 26
G.1 Measures of Types 26
G.2 Properties of Intersection and Union 27
G.3 Proofs of Section 7 28

A SECOND ORDER MULTIPLICATIVE LINEAR
LOGIC

We recall the basic notions of formulas and proofs for second order
multiplicative linear logic (denoted MLL2) – and thus also of its
sub–fragment; multiplicative linear logic (denotedMLL). We define
the notion of hypersequent used for realizers. Furthermore we also
give the denition of the proof system MLL✠ e.g. the multiplicative
fragment with generalized axiom.

A.1 Formulas
We assume that we are given a set of propositional variables V
together with an involution (·)⊥ : V → V : 𝑋 ↦→ 𝑋⊥ on the
propositional variables.

Definition A.1 (formulas ofMLL2). The formulas of second order
multiplicative linear logic are defined as follows:

𝐴, 𝐵 ::= 𝑋,𝑋⊥ | 𝐴 ⊗ 𝐵 | 𝐴` 𝐵 | ∀𝑋 𝐴 | ∃𝑋 𝐴

The involution (·)⊥ is lifted to formulas using de morgan laws:
(𝐴 ⊗ 𝐵)⊥ ≜ 𝐴⊥ ` 𝐵⊥

(𝐴` 𝐵)⊥ ≜ 𝐴⊥ ⊗ 𝐵⊥
(∀𝑋 𝐴)⊥ ≜ ∃𝑋 𝐴⊥

(∃𝑋 𝐴)⊥ ≜ ∀𝑋 𝐴⊥

Remark 34. The formulas of the multiplicative fragment of linear
logic are the formulas of MLL2 which contain no quantifiers. In
other words the formulas generated by the following induction;

𝐴, 𝐵 ::= 𝑋,𝑋⊥ | 𝐴 ⊗ 𝐵 | 𝐴` 𝑏

Definition A.2 (Substitution). The substitution of a propositional
variable𝑋 by a formula 𝐹 ofMLL in a formula𝐴 ofMLL2, is denoted
𝐴[𝑋 ← 𝐹], and is defined inductively:

𝑋 [𝑋 ← 𝐹] ≜ 𝐹

𝑌 [𝑋 ← 𝐹] ≜ 𝑌

(𝐴` 𝐵) [𝑋 ← 𝐹] ≜ 𝐴[𝑋 ← 𝐹] ` 𝐵 [𝑋 ← 𝐹]
(𝐴 ⊗ 𝐵) [𝑋 ← 𝐹] ≜ 𝐴[𝑋 ← 𝐹] ⊗ 𝐵 [𝑋 ← 𝐹]

(∀𝑋𝐴) [𝑋 ← 𝐹] ≜ ∀𝑋𝐴
(∀𝑌𝐴) [𝑋 ← 𝐹] ≜ ∀𝑌𝐴[𝑋 ← 𝐹]
(∃𝑋𝐴) [𝑋 ← 𝐹] ≜ ∃𝑋𝐴
(∃𝑌𝐴) [𝑋 ← 𝐹] ≜ ∃𝑌𝐴[𝑋 ← 𝐹]

Where 𝑌 is a propositional variable that is distinct from 𝑋 , i.e.
𝑋 ≠ 𝑌 .

PropositionA.3 (Substitution andnegation commute). Given
𝐴 and 𝐹 two formulas respectively from MLL2 and MLL, together
with 𝑋 a propositional variable.

𝐴[𝑋 ← 𝐹]⊥ = 𝐴⊥ [𝑋 ← 𝐹]

Definition A.4. The universally (resp. existentially) bounded vari-
ables of aMLL2 formula is given by induction;

U(𝑋) ≜ ∅
U(𝐴 ⊗ 𝐵) ≜ U(𝐴) ∪ U(𝐵)
U(𝐴` 𝐵) ≜ U(𝐴) ∪ U(𝐵)
U(∀𝑋𝐴) ≜ U(𝐴) ∪ {𝑋 }
U(∃𝑋𝐴) ≜ U(𝐴)

E(𝑋) ≜ ∅
E(𝐴 ⊗ 𝐵) ≜ E(𝐴) ∪ E(𝐵)
E(𝐴` 𝐵) ≜ E(𝐴) ∪ E(𝐵)
E(∀𝑋𝐴) ≜ E(𝐴)
E(∃𝑋𝐴) ≜ E(𝐴) ∪ {𝑋 }

A propositional variable is bounded in a formula 𝐹 whenever it’s
universally or existentially bounded in 𝐹 .

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Definition A.5 (𝛼–equivalence). Two formulas of MLL2 are 𝛼–
equivalent which we denote 𝐹 ≡𝛼 𝐺 if they have the same main
connective and satisfy one of the inductive cases:

𝑋 ≡𝛼 𝑌 ⇔ 𝑋 = 𝑌 or 𝑋 = 𝑌⊥

𝐴` 𝐵 ≡𝛼 𝐴′ ` 𝐵′⇔ 𝐴 ≡𝛼 𝐴′ and 𝐵 ≡𝛼 𝐵′

𝐴 ⊗ 𝐵 ≡𝛼 𝐴′ ⊗ 𝐵′ ⇔ 𝐴 ≡𝛼 𝐴′ and 𝐵 ≡𝛼 𝐵′

∀𝑋𝐴 ≡𝛼 ∀𝑌𝐴′ ⇔ 𝐴 ≡𝛼 𝐴′ [𝑌 ← 𝑋]
∃𝑋𝐴 ≡𝛼 ∃𝑌𝐴′⇔ 𝐴 ≡𝛼 𝐴′ [𝑌 ← 𝑋]

Remark 35. formulas of the second order multiplicative fragment
of linear logic are consider modulo 𝛼–equivalence, in order to avoid
that a formula occurs both free and bounded in a same formula. Any
formula 𝐹 containing variables that are simultaneously bounded
and free is 𝛼–equivalent to a formula where variables cannot be
both free and bounded. Intuitively this is because 𝛼–equivalence
allows to rename bounded variables occuring in 𝐹 by any other
propositional variables, thus we may chose a propositional variable
that does not occur yet in 𝐹 .

For instance in the formula 𝐹 ≜ 𝑋 ` ∃𝑋 .𝑋⊥ the propositional
variable 𝑋 occurs both free and bounded but 𝐹 is 𝛼–equivalent to
𝑋 `∃𝑌 .𝑌 . Indeed ∃𝑋 .𝑋⊥ and ∃𝑌 .𝑌 are 𝛼–equivalent since 𝑋⊥ and
𝑌 [𝑌 ← 𝑋] = 𝑋 are by definition 𝛼–equivalent.

Remark 36. By working modulo 𝛼–equivalence we can assume
that propositional variables cannot be simultaneously universally
and existentially bounded. This is because we may rename any
bounded propositional variable with a fresh propositional variable,
in particular, this implies that distinct quantifiers can always bind
distinct propositional variables.

A.2 Sequents and Hypersequents
Definition A.6 (hypersequent). A hypersequentH ofMLL2 for-

mulas (resp. MLL) is an inductively defined structure as follows;

H1,H2 ::= 𝐴 | H1,H2 | H1 ∥ H2

Where 𝐴 is any formula ofMLL2 (resp. MLL).

Remark 37. Note that the hypersequents we consider in that work
are not only of the form Γ1 ∥ · · · ∥ Γ𝑛 where each Γ𝑖 is a sequent.
For instance, 𝐴, (𝐵 ∥ 𝐶) is a possible hypersequent.

Definition A.7 (Sequent). A sequent is a multiset of formula i.e. a
map Γ : FMLL → N of finite support. The representant of a sequent
Γ is a sequence of MLL formulas 𝛾 : (𝐴1, . . . , 𝐴𝑛) such that

Γ = 𝛾 : 𝐴 ↦→ card{1 ≤ 𝑖 ≤ 𝑛 | 𝐴𝑖 = 𝐴}.
Given Γ = (𝐴1, . . . , 𝐴𝑛) the representant of a sequent we denote
by Γ(𝑖) the formula 𝐴𝑖 . The size of a sequent Γ denoted | Γ | is the
number of formulas it contains, e.g. the lenght of its representants
(as sequences of formulas).

Remark 38. We will use the notion of sequent loosely, implicitely,
a sequent will be given by one of its representant e.g. a sequence a
formulas.

Definition A.8 (Flattening of an hypersequent). The flattening of
an hypersequent, denoted ↓ H , is defined inductively;

↓ 𝐴 ≜ 𝐴.
↓ (H1,H2) ≜ ↓ H1, ↓ H2.
↓ (H1 ∥ H2) ≜ ↓ H1, ↓ H2.

A.3 Proofs
Definition A.9. A proof in MLL2 of a sequent Γ of formulas in

MLL2 is a tree of root Γ constructed by the following rules;

ax
𝐴,𝐴⊥

Γ, 𝐴 Δ, 𝐴⊥
cut

Γ,Δ

Γ, 𝐴 Δ, 𝐵
⊗

Γ,Δ, 𝐴 ⊗ 𝐵
Γ, 𝐴, 𝐵 `
Γ, 𝐴` 𝐵

Γ, 𝐴, 𝐵,Δ
ex

Γ, 𝐵, 𝐴,Δ

Γ, 𝐴
∃

Γ, ∃𝑋𝐴
Γ, 𝐴

∀
Γ,∀𝑋𝐴

The universal quantifier rule (∀) can only be applied whenever
𝑋 does not occur free in Γ.

Remark 39. The proofs ofMLL are the trees constructed only using
the first rows.

Definition A.10. A proof in MLL✠ of a sequent Γ of formulas in
MLL✠ is a tree of root Γ constructed by the following rules;

✠
Γ

Γ, 𝐴 Δ, 𝐴⊥
cut

Γ,Δ

Γ, 𝐴 Δ, 𝐵
⊗

Γ,Δ, 𝐴 ⊗ 𝐵
Γ, 𝐴, 𝐵 `
Γ, 𝐴` 𝐵

Γ, 𝐴, 𝐵,Δ
ex

Γ, 𝐵, 𝐴,Δ

The daimon rule (✠) can introduce any kind of sequent.

Remark 40. The proofs ofMLL are the trees constructed using only
the first row of the definition A.9. Equivalently they are proofs of
MLL✠ such that the daimon rule introduces only sequents of the
form 𝐴,𝐴⊥.

Remark 41. The presence of the exchange rule is equivalent to
assuming that each of the rule may be applied to any of the formulas
in the sequents – not necessarily only to the last or first formulas.

B COMPLEMENTS TO SECTION 2
B.1 Complements to section 2.1
We recall the notion of homomorphism and isomorphism between
hypergraphs.

Definition B.1 (Homomorphism and isomorphisms of hypergraphs).
An homomorphism between two (labelled) hypergraphsH1 = (𝑉1, 𝐸1, s1, t1, ℓ1)
andH2 = (𝑉2, 𝐸2, s2, t2, ℓ2) is a pair of bijective maps ⟨𝑓 𝑉 , 𝑓 𝐸⟩, such
that

• (commutation) For any edge 𝑒1 ofH1, s2 (𝑓 𝐸 (𝑒1)) = 𝑓 𝑉 (s1 (𝑒1)),
i.e. the following diagram commutes:

𝑒1 s1 (𝑒1)

𝑒2 s2 (𝑒2)

s1

𝑓 𝐸 𝑓 𝑉

s2

• (label-preserving) The function 𝑓 𝐸 preserves the labels
of the links, i.e. for any link 𝑒 inH1; ℓ (𝑒) = ℓ (𝑓 𝐸 (𝑒))

The homomorphism is an isomorphism if both 𝑓 𝑉 and 𝑓 𝐸 are bi-
jective.

B.2 Complements to section 2.2
In that section we recall how multiplicative nets (e.g. multiplicative
proof structures using the original terminology from [5]) may be
defined inductively.

Proposition B.2. An ordered hypergraph is a multiplicative net
if and only if it belongs to the following inductively defined set Net:

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

• (⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩, 𝑝1 < · · · < 𝑝𝑛) belongs to Net.
• If (𝑆, 𝑎) belongs to Net with 𝑎 = (𝑝1, . . . , 𝑝𝑛) then for any

𝑖 ∈ {1, . . . , 𝑛 − 1} and fresh position 𝑝 , (𝑆 + ⟨𝑝𝑖 , 𝑝𝑖+1 ▷`
𝑝⟩, 𝑎′) and (𝑆 + ⟨𝑝𝑖 , 𝑝𝑖+1 ▷⊗ 𝑝⟩, 𝑎′) belong to Net, where
𝑎′ = 𝑎[𝑖 ← 𝑝, 𝑖 + 1← 𝜖].
• If (𝑆, 𝑎) belongs to Net with 𝑎 = (𝑝1, . . . , 𝑝𝑛) then for any

𝑖 ∈ {1, . . . , 𝑛 − 1}, (𝑆 + ⟨𝑝𝑖 , 𝑝𝑖+1 ▷cut⟩, 𝑎′) belongs to Net,
where 𝑎′ = 𝑎[𝑖 + 1← 𝜖, 𝑖 ← 𝜖].

• If (𝑆, 𝑎) belongs to Net with 𝑎 = (𝑝1, . . . , 𝑝𝑛), then for any
𝑖 ∈ {1, . . . , 𝑛 − 1} the net (𝑆, 𝑎′) belongs to Net, where 𝑎′ =
𝑎[𝑖 ← 𝑝𝑖+1, 𝑖 + 1← 𝑝𝑖].
• If (𝑆1, 𝑎) and (𝑆2, 𝑏) belong toNet and have disjoint positions

i.e.𝑉1 ∩𝑉2 = ∅. then their sum (𝑆1 + 𝑆2, 𝑎 ·𝑏) belongs to Net.

Proof. 1 ⇒ 2. Assume that (𝑆, 𝑎) is a multiplicative net and
we want to show it belongs to Net. To do so we will operate by
induction on the number of links in 𝑆 .

- If 𝑆 has only one link, since 𝑆 is surjective all its position
must be the target of some link. Thus 𝑆 can only be of the
form ⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩, the order 𝑎 may then be any total
order on 𝑝1, . . . , 𝑝𝑛 .
By definition (𝑆, 𝑎0) is inNetwhen 𝑎0 = (𝑝1, . . . , 𝑝𝑛). Then
by doing exchanges we can rearrange the sequence 𝑎0 into
any sequence on {𝑝1, . . . , 𝑝𝑛} in particular in 𝑎. Since Net
is stable under this operation, this concludes that (𝑆, 𝑎) is
in Net.

- 𝑆 may be a sum of daimons, again the previous argument
will work.

- 𝑆 may contain a terminal binary link such as 𝑙1 ::= ⟨𝑝1, 𝑝2 ▷`
𝑝⟩ or 𝑙2 ::= ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩ or 𝑙3 ::= ⟨𝑝1, 𝑝2 ▷cut⟩. Thus 𝑆
is of the form 𝑆 ′ + 𝑙𝑖 , and in that case 𝑆 ′ has conclusions
𝑝1, 𝑝2, 𝑞1, . . . , 𝑞𝑘 . The order on the conclusion of 𝑆 ′ may be
any. We can call the induction hypothesis on 𝑆 ′ and claim
that (𝑆 ′, 𝑎′) belong to Net. Then (𝑆, 𝑎′ [𝑝1 ← 𝑝, 𝑝2 ← 𝜖])
(the case for cut is similar) is by construction still in the class.
Note that 𝑎′ [𝑝1 ← 𝑝, 𝑝2 ← 𝜖] is made of the conclusions
of 𝑆 thus after a series of exchange it can be reorganized as
any sequence 𝑎 on the conclusion of 𝑆 , so we can conclude.

2 ⇒ 1. We will do so by the induction given by the definition of
Net.

- If 𝑆 is daimon ⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩with the order (𝑝1, . . . , 𝑝𝑛) It
is surjective, affine and linear so indeed it is a multiplicative
net.

- If 𝑆1 and 𝑆2 are two affine linear are surjective nets, note
that their disjoint sum (i.e. we assume𝑉1 ∩𝑉2 = ∅) will still
be surjective affine and linear.

- If we assume that (𝑆, 𝑎) is a multiplicative net then perform-
ing an exchange will still make it a multiplicative net.

- If we add one terminal link to 𝑆 note that surjectivity is
preserved because the added position 𝑝 belongs to the target
of the new link. Furthermore linearity is preserved because
the position of 𝑆 don’t become the target of any new link.
Then affine property is preserved because the points that
now belong to a new source where conclusions in 𝑆 , thus
it still true that any position belongs to at most the source
of one link.

□

C COMPLEMENTS TO SECTION 3
C.1 Proofs of section 3.1

Definition C.1 (Functional and injective relation). A binary relation
between two sets 𝐴 and 𝐵 is a subset of 𝐴 × 𝐵. A binary relation
R ⊂ 𝐴 × 𝐵 is

• functional whenever for any (𝑎, 𝑏) ∈ R there is no other
pair (𝑎, 𝑏′) with 𝑏 ≠ 𝑏′ that belongs to R.

• injective whenever for any (𝑎, 𝑏) ∈ R there is no other pair
(𝑎′, 𝑏) with 𝑞 ≠ 𝑞′ that belongs to R.

A relation R is defined on an element 𝑎 ∈ 𝐴 whenever there exists
𝑏 ∈ 𝐵 such that (𝑎, 𝑏) belongs to R.
Remark 42. Equivalently to the definition 3.1 an interface between
two nets 𝑆 and𝑇 of respective conclusions 𝑝1, . . . , 𝑝𝑛 and 𝑞1, . . . , 𝑞𝑘 .
as partial injective maps 𝜎 : {𝑝1, . . . , 𝑝𝑛} → {𝑞1, . . . , 𝑞𝑘 }. However
the notion of map is highly asymmetrical thus we cannot express
easily the property of commutativity without mentioning the in-
verse of the map 𝜎 .

On the other hand, working with the previous definition, given 𝑆
and𝑇 two nets and 𝜎 an interface between 𝑆 and𝑇 , the interaction
along 𝜎 is a commmutative operation, e.g. 𝑆 ::𝜎 𝑇 is equal to𝑇 ::𝜎 𝑅.

Proposition 3.2 (Interaction as an action). Given 𝑆,𝑇 and
𝑅 three multiplicative nets, and 𝜎 an interface between 𝑆 and 𝑇 ∥ 𝑅.
𝑆 ::𝜎 (𝑇 ∥ 𝑅) is equal to (𝑆 ::𝜎 |𝑇 𝑇) ::𝜎 |𝑅 𝑅.

Proof. of proposition 3.2. First simply unfold the definition;

𝑆 ::𝜎 (𝑇 + 𝑅) ≜ 𝑆 +𝑇 + 𝑅
∑︁
(𝑝,𝑞) ∈𝜎

⟨𝑝, 𝑞 ▷cut⟩.

Nownote that the interface𝜎 is partitioned in two sets, the positions
that are related to conclusions of 𝑅 and the positions that are related
to conclusions of 𝑇 . Thus the sum can be rewritten as:∑︁
(𝑝,𝑞) ∈𝜎

⟨𝑝, 𝑞 ▷cut⟩ =
∑︁

(𝑝,𝑞) ∈𝜎 |𝑇
⟨𝑝, 𝑞 ▷cut⟩ +

∑︁
(𝑝,𝑞) ∈𝜎 |𝑅

⟨𝑝, 𝑞 ▷cut⟩.

Hence since the sum is commutative and associative the interaction
𝑆 ::𝜎 (𝑇 + 𝑅) is equal to the following,

𝑆 +
∑︁

(𝑝,𝑞) ∈𝜎 |𝑇
⟨𝑝, 𝑞 ▷cut⟩ +𝑇 +

∑︁
(𝑝,𝑞) ∈𝜎 |𝑅

⟨𝑝, 𝑞 ▷cut⟩ + 𝑅.

The first part of this expression corresponds to 𝑆 ::𝜎 |𝑇 𝑇 . To
conclude note that since 𝜎 | 𝑅 relates conclusions of 𝑆 to conclusion
of 𝑅 and since out(𝑆 ::𝜎 |𝑇 𝑇) contains out(𝑅), it follows that 𝜎 | 𝑅
is an interface between 𝑆 ::𝜎 |𝑇 𝑇 and 𝑅. Thus 𝑆 ::𝜎 (𝑇 + 𝑅) is equal
to 𝑆 ::𝜎 |𝑇 𝑇 ::𝜎 |𝑅 □

C.2 Rewriting properties of nets
Proposition C.2 (Non–Deterministic non homogeneous cut

elimination commutes to the right). Given 𝑆 some net contain-
ing a non homogeneous cut link 𝑐 of a daimon link against a `–link.
The diagram below commutes, for any cut kind of cut link 𝑐′;

𝑆 𝑆1

𝑆 ′1 𝑆2

𝑐

𝑐′ 𝑐′

𝑐

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Where the dotted arrows are the existence of a reduction.

Proof. First note that the commutation of the cut elimination
steps always hold whenever the two cuts involve a different part of
the net. Furthermore if 𝑐′ is a multiplicative cut the commutation
holds. Thus 𝑐′ is a glueing or non homogeneous cut involving the
same daimon link as 𝑐 . Let us treat each cases;

• In the first case, in all generality the reduction will be of
the form:

⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩ + ⟨𝑟1, 𝑟2 ▷` 𝑟 ⟩ + ⟨▷✠ 𝑞1, . . . , 𝑞𝑘 ⟩ + ⟨𝑝1, 𝑟 ▷cut⟩ + ⟨𝑝2, 𝑞1 ▷cut⟩
→ ⟨▷✠ 𝑝11, 𝑝2, 𝐴⟩ + ⟨▷✠ 𝑝21, 𝐵⟩ + ⟨▷✠ 𝑞1, . . . , 𝑞𝑘 ⟩ + ⟨𝑝11, 𝑟2 ▷cut⟩ + ⟨𝑝21, 𝑟2 ▷cut⟩ + ⟨𝑝2, 𝑞1 ▷cut⟩
→ ⟨▷✠ 𝑝11, 𝑞1, . . . , 𝑞𝑘 , 𝐴⟩ + ⟨▷✠ 𝑝21, 𝐵⟩ + ⟨𝑝

1
1, 𝑟2 ▷cut⟩ + ⟨𝑝21, 𝑟2 ▷cut⟩

By consistently chosing the partition during the elimination
of the cut 𝑐 this can be matched by first starting with the
elimination of the glueing cut 𝑐′.

⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩ + ⟨𝑟1, 𝑟2 ▷` 𝑟 ⟩ + ⟨▷✠ 𝑞1, . . . , 𝑞𝑘 ⟩ + ⟨𝑝1, 𝑟 ▷cut⟩ + ⟨𝑝2, 𝑞1 ▷cut⟩
→ ⟨▷✠ 𝑝1, 𝑞1, . . . , 𝑞𝑘 , . . . , 𝑝𝑛⟩ + ⟨𝑟1, 𝑟2 ▷` 𝑟 ⟩ + ⟨𝑝1, 𝑟 ▷cut⟩
→ ⟨▷✠ 𝑝11, 𝑞1, . . . , 𝑞𝑘 , 𝐴⟩ + ⟨▷✠ 𝑝21, 𝐵⟩ + ⟨𝑝

1
1, 𝑟1 ▷cut⟩ + ⟨𝑝21, 𝑟2 ▷cut⟩

• In the first non homogeneous case the redex is of the fol-
lowing form

⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩+⟨𝑟1, 𝑟2 ▷` 𝑟 ⟩+⟨𝑞1, 𝑞2 ▷⊗ 𝑞⟩+⟨𝑝1, 𝑟 ▷cut⟩+⟨𝑝2, 𝑞 ▷cut⟩.

After one step of cut elimination this becomes in all gen-
erality, given that 𝐴 = {𝑎1, . . . , 𝑎𝑘 } and 𝐵 = {𝑏1, . . . , 𝑏𝑙 }
partition 𝑝2, . . . , 𝑝𝑛 ,

⟨▷✠ 𝑝11, 𝑝2, 𝐴
′⟩+⟨▷✠ 𝑝21, 𝐵⟩++⟨𝑞1, 𝑞2 ▷⊗ 𝑞⟩+⟨𝑝11, 𝑟1 ▷cut⟩+⟨𝑝21, 𝑟2 ▷cut⟩+⟨𝑝2, 𝑞 ▷cut⟩.

Without loss of generality assume that 𝑝2 occurs in the
class 𝐴 = {𝑝2} ∪𝐴′, then after one step of cut elimination
this becomes;

⟨▷✠ 𝑝11, 𝑝
1
2, 𝑝

2
2, 𝐴
′⟩+⟨▷✠ 𝑝21, 𝐵⟩++⟨𝑝

1
1, 𝑟1 ▷cut⟩+⟨𝑝21, 𝑟2 ▷cut⟩+⟨𝑝12, 𝑞1 ▷cut⟩+⟨𝑝22, 𝑞2 ▷cut⟩.

Indeed one can obtain the same redex by first eliminating 𝑐′,
when eliminating the`–link we need to make a consistent
choice e.g. the partition of 𝑝12, 𝑝

2
2, . . . , 𝑝𝑛 made of the two

classes 𝐵 and 𝐴′ ∪ {𝑝12, 𝑝
2
2}:

⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩ + ⟨𝑟1, 𝑟2 ▷` 𝑟 ⟩ + ⟨𝑞1, 𝑞2 ▷⊗ 𝑞⟩ + ⟨𝑝1, 𝑟 ▷cut⟩ + ⟨𝑝2, 𝑞 ▷cut⟩
→ ⟨▷✠ 𝑝1, 𝑝12, 𝑝

2
2 . . . , 𝑝𝑛⟩ + ⟨𝑟1, 𝑟2 ▷` 𝑟 ⟩ + ⟨𝑝1, 𝑟 ▷cut⟩ + ⟨𝑝12, 𝑞1 ▷cut⟩ + ⟨𝑝22, 𝑞2 ▷cut⟩

→ ⟨▷✠ 𝑝1, 𝑝12, 𝑝
2
2, . . . , 𝑝𝑛⟩ + ⟨𝑟1, 𝑟2 ▷` 𝑟 ⟩ + ⟨𝑝1, 𝑟 ▷cut⟩ + ⟨𝑝12, 𝑞1 ▷cut⟩ + ⟨𝑝22, 𝑞2 ▷cut⟩

→ ⟨▷✠ 𝑝11, 𝑝
1
2, 𝑝

2
2, 𝐴
′⟩ + ⟨▷✠ 𝑝21, 𝐵⟩ + +⟨𝑝

1
1, 𝑟1 ▷cut⟩ + ⟨𝑝21, 𝑟2 ▷cut⟩ + ⟨𝑝12, 𝑞1 ▷cut⟩ + ⟨𝑝22, 𝑞2 ▷cut⟩.

• In the non homogeneous second case both cuts are made of
` links against a daimon thus in all generality a reduction
is of the following form form;

⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩ + ⟨𝑟1, 𝑟2 ▷` 𝑟 ⟩ + ⟨𝑞1, 𝑞2 ▷` 𝑞⟩ + ⟨𝑝1, 𝑟 ▷cut⟩ + ⟨𝑝2, 𝑞 ▷cut⟩
→ ⟨▷✠ 𝑝11, 𝑝2, 𝐴⟩ + ⟨▷✠ 𝑝21, 𝐵⟩ + ⟨𝑞1, 𝑞2 ▷` 𝑞⟩ + ⟨𝑝2, 𝑞 ▷cut⟩ + ⟨𝑝11, 𝑟1 ▷cut⟩ + ⟨𝑝21, 𝑟2 ▷cut⟩
→ ⟨▷✠ 𝑝11, 𝑝

1
2, 𝐴1⟩ + ⟨▷✠ 𝑝22, 𝐴

2
2⟩ + ⟨▷✠ 𝑝21, 𝐵⟩ + ⟨𝑝

1
2, 𝑞1 ▷cut⟩ + ⟨𝑝22, 𝑞2 ▷cut⟩ + ⟨𝑝11, 𝑟1 ▷cut⟩ + ⟨𝑝21, 𝑟2 ▷cut⟩

Indeed starting by eliminating the cut 𝑐′ we can obtain the
same redex by making consistent choices in the partitions:

⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩ + ⟨𝑟1, 𝑟2 ▷` 𝑟 ⟩ + ⟨𝑞1, 𝑞2 ▷` 𝑞⟩ + ⟨𝑝1, 𝑟 ▷cut⟩ + ⟨𝑝2, 𝑞 ▷cut⟩
→ ⟨▷✠ 𝑝12, 𝑝1, 𝐴1 ∪ 𝐵⟩ + ⟨▷✠ 𝑝22, 𝐴2⟩ + ⟨𝑟1, 𝑟2 ▷` 𝑟 ⟩ + ⟨𝑝1, 𝑟 ▷cut⟩ + ⟨𝑝12, 𝑞1 ▷cut⟩ + ⟨𝑝22, 𝑞2 ▷cut⟩
→ ⟨▷✠ 𝑝11, 𝑝

1
2, 𝐴1⟩ + ⟨▷✠ 𝑝22, 𝐴2⟩ + ⟨▷✠ 𝑝21, 𝐵⟩ + ⟨𝑝

1
2, 𝑞1 ▷cut⟩ + ⟨𝑝22, 𝑞2 ▷cut⟩ + ⟨𝑝11, 𝑟1 ▷cut⟩ + ⟨𝑝21, 𝑟2 ▷cut⟩

□

Proposition C.3 (Deterministic non homogeneous cut elim-
ination commutes to the left). Given 𝑆 some net containing a
non homogeneous cut link 𝑐 of a daimon link against a ⊗–link. The
diagram below commutes, for any cut kind of cut link 𝑐′;

𝑆 𝑆1

𝑆 ′1 𝑆2

𝑐′

𝑐 𝑐

𝑐′

Where the dotted arrows are the existence of a reduction.

Proof. We reason as in the proof for proposition C.2, if the two
cuts involved different link of the net we conclude. Furthermore if
𝑐′ is an homogeneous cut the proposition hold. Thus we assume
that 𝑐 and 𝑐′ are both non–homogeneous and involve the same
daimon link.

• If 𝑐′ is also a tensor link its clear that the elimination of the
two cuts commute.

• If 𝑐′ is a ` link we can call the previous proposition C.2
on the cut 𝑐′, claiming that its elimination commutes on
the right with any step of cut elimination. In particular any
elimination of 𝑐′ followed by any elimination of 𝑐 can be
matched by an elimination of 𝑐 followed by an elimination
of 𝑐′. Thus we conclude.

□

Proposition C.4 (General right commutation). For any net 𝑆
containing an irreversible cut 𝑐 , and given𝛼∗ a series of cut elimination
of cuts occuring in 𝑆 then the following diagram commutes;

𝑆 𝑆1

𝑆 ′1 𝑆2

𝑐

𝛼∗ 𝛼∗

𝑐

Proof. This follows from a simple induction on 𝛼∗. If 𝛼∗ is
made of only one cut the proposition C.2 gets us the conclusion.
Otherwise we decompose the sequence of reductions as 𝛼∗ = 𝛽 ·
𝛽∗ and by applying the proposition C.2 we obtain the following
diagram.

𝑆 𝑆1

𝑆 ′1 𝑆2

𝑆3

𝑐

𝛽 𝛽

𝑐

𝛽∗

Calling the induction hypothesis on 𝛽∗ we can complete the diagram
as follows and conclude.

𝑆 𝑆1

𝑆 ′1 𝑆2

𝑆 ′2 𝑆3

𝑐

𝛽 𝛽

𝑐

𝛽∗ 𝛽∗

𝑐

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

□

Remark 43. Moreover, following a similar method, we can easily
establish that multiplicative glueing and clashing cuts commute to
the left with any kind of cut.

This means that whenever two net 𝑆 and𝑇 are orthogonal and a
reversible cut 𝑐 occurs in 𝑆 :: 𝑇 we can chose to start the reduction
the reduction 𝑆 :: 𝑇 → ⟨▷✠⟩ by eliminating 𝑐 . Thus the redex 𝑅 of
𝑆 :: 𝑇 obtained after eliminating 𝑐 still verifies that 𝑅 → ⟨▷✠⟩.

Proposition C.5 (General left commutation). For any net 𝑆
containing an reversible cut 𝑐 , and given 𝛼∗ a series of cut elimination
of cuts occuring in 𝑆 then the following diagram commutes;

𝑆 𝑆1

𝑆 ′1 𝑆2

𝛼∗

𝑐 𝑐

𝛼∗

Proof. As for the previous proposition it follows from a simple
induction on 𝛼∗. If 𝛼∗ is made of only one cut the proposition
C.3 gets us to conclude. Otherwise we decompose the sequence
of reductions as 𝛼∗ = 𝛽∗ · 𝛽 and by applying the proposition C.3
together with the induction hypothesis we obtain the following
diagram.

𝑆 𝑆1 𝑆2

𝑆 ′1 𝑆2 𝑆3

𝑐

𝛽∗ 𝛽

𝑐 𝑐

𝛽∗ 𝛽

□

Definition C.6 (Simulation). A net 𝑆 simulates a net 𝑇 , if for any
reduction 𝑇 → 𝑅 there exists a reduction 𝑆 →∗ 𝑅. We denote this
by 𝑆 ≻ 𝑇 .

Two nets 𝑆 and 𝑇 are bisimilar whenever 𝑆 ≻ 𝑇 and 𝑇 ≻ 𝑆 .
A matching of two nets 𝑆 and 𝑇 is a pair (𝑝, 𝑞) of a conclusion

of 𝑆 and a conclusion of 𝑇 . A net 𝑆 simulates a net 𝑇 in a matching
(𝑝, 𝑞) for a link 𝑙 = ⟨𝑡1, . . . , 𝑡𝑛 ▷ℓ 𝑞1, . . . , 𝑞𝑘 ⟩ whenever there exists
a conclusion 𝑞𝑖 such that 𝑆 ::𝑝,𝑞𝑖 𝑙 simulates 𝑇 ::𝑝,𝑞𝑖 𝑙 . We denote
𝑆 ≻𝑝,𝑞

ℓ
𝑇 .

Proposition C.7 (Standard Simulation). The following simu-
lations hold;

• ⟨▷✠
−→
𝑝 , 𝑝1, 𝑝2⟩ + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩ ∼𝑝,𝑞⊗,✠ ⟨▷✠

−→
𝑝 , 𝑞⟩.

• ⟨▷✠ 𝑝1, 𝑝1⟩ + ⟨▷✠ 𝑝2, 𝑝2⟩ + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩ ∼𝑝,𝑞
✠
⟨▷✠

−→
𝑝1,
−→
𝑝2, 𝑞⟩.

• ⟨▷✠ 𝑝1, 𝑝1⟩ + ⟨▷✠ 𝑝2, 𝑝2⟩ + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩ ≺𝑝,𝑞` ⟨▷✠
−→
𝑝1,
−→
𝑝2, 𝑞⟩.

C.3 Proofs of section 3.3
Proposition 3.6 (Symmetry of types). For any type A with one

conclusion; (1) there exists a net 𝑆 with a terminal`–link that belongs
to A or A⊥, and (2) there exists a net 𝑆 with a terminal ⊗–link that
belongs to A or A⊥.

Proof. of proposition 3.6. First let us note that there cannot be
only nets with daimon conclusion in A ∪ A⊥.

Assume that it is the case. Then 𝑆 :: 𝑆 ′ reduces to ⟨▷✠⟩. The
redex coresponding to the glueing cut can be made into a multi-
plicative one.

Thus one of the two assertions must hold. To conclude we will
show that they are equivalent.

1. Assume that some net 𝑆 exists in with a terminal ⊗ belongs
to say A without loss of generality. If a net with a terminal `
belongs to A we can conclude. Assume otherwise e.g. only nets
with terminal tensor link or daimon link belong to A.

Assume in order to reach a contradiction, that only net with
terminal daimon link occur in A⊥,

Let 𝑅 be a net of A⊥, e.g. for any net 𝑆 in A the interaction
𝑆 :: 𝑅 reduces to ⟨▷✠⟩. Consider 𝑇 = 𝑅 + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩ where the
position 𝑝 the conclusion of 𝑅, has been dupplicated, and connected
to the same daimon link.

The succesfull 𝑆 :: 𝑅 → ⟨▷✠⟩ reduction needs at some point
to eliminate the reversible cut 𝑐 . But proposition C.3 ensure that
the elimination of reversible cuts commutes on the left; thus the
successfull reduction may be rearranged as 𝑆 :: 𝑅 → 𝑆 ′ :: 𝑅′ →
⟨▷✠⟩. where 𝑆 ′ :: 𝑅′ is the redex obtained after eliminating the
reversible cut 𝑐 in 𝑆 :: 𝑅.

Note that 𝑆 :: 𝑇 also reduces to 𝑆 ′ :: 𝑅′ after eliminating the
reversible cut 𝑐 , hence it reduces to ⟨▷✠⟩. This shows that 𝑆 ⊥ 𝑇

for any A meaning 𝑇 is in A⊥.
2. Assume that some net 𝑆 exists in with a terminal ` belongs

to, say A without loss of generality. Again we assume that in A⊥

only nets with a terminal daimon link exists. Let 𝑅 be some net in
A⊥ then consider 𝑇 = 𝑅 + ⟨▷✠ 𝑝1⟩ + ⟨▷✠ 𝑝2,

−→
𝑝 ⟩ + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩

where 𝑝 the conclusion of 𝑅 has been dupplicated and connected
to disctints daimon links.

For any net 𝑆 belonging to A with a terminal ` link since the
irreversible cuts commute to the right the interaction 𝑆 :: 𝑅 may
reduce to ⟨▷✠⟩ by eliminating the irreversible cut 𝑐 as late as
possible. In particular after eliminating the cuts with the sequence
𝛼∗ it becomes 𝑆 ′+𝑅′+red, where 𝑆 ′ and𝑅′ are cut free and the redex
with the irreversible cut only remain. Hence 𝑆 ′ +𝑅′ + red→ ⟨▷✠⟩.

Furthermore by eliminating the cuts as in the sequence 𝛼∗ the
interaction 𝑆 :: 𝑇 reduces to 𝑆 ′ :: 𝑅′ :: red1. The redexes red1 can
match the reduction of the redex red hence if 𝑆 ′ :: 𝑅′+ red reduce to
⟨▷✠⟩ then so does 𝑆 :: 𝑅 + red1 As a consequence if 𝑆 is orthogonal
to 𝑅 then 𝑆 is also orthogonal to 𝑇 . We conclude that 𝑇 belongs to
A⊥. □

Proposition 3.8 (Duality). Given two types A and B: (A ∥
B)⊥ = A⊥ � B⊥ and (A � B)⊥ = A⊥ ∥ B⊥.

Proof. of proposition 3.8 Consider a net 𝑆 orthogonal to A ∥ B
then for any 𝑎 in A and 𝑏 in B the interaction 𝑆 :: (𝑎 ∥ 𝑏) reduces
to ✠0.

Since 𝑆 :: (𝑎 ∥ 𝑏) is equal to 𝑆 :: 𝑎 :: 𝑏 and that the orthogonality
hold for any pair (𝑎, 𝑏), in particular for any net 𝑏 in B the interac-
tion (𝑆 :: 𝑎) :: 𝑏 reduce to ✠0. This means that 𝑆 :: 𝑎 is orthogonal
to B hence for any 𝑎 in A the interaction 𝑆 :: 𝑎 belongs to B⊥. Since
A = (A⊥)⊥ By definition this means 𝑆 belongs to A⊥ � B⊥.

On the other consider a net 𝑆 in A⊥ � B⊥ is such that for any 𝑎
in A = (A⊥)⊥ the interaction 𝑆 :: 𝑎 belongs to B⊥ e.g. is orthogonal
to B and so for any 𝑏 in B the interaction 𝑆 :: 𝑎 :: 𝑏 reduce to ✠0.

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Since 𝑆 :: 𝑎 :: 𝑏 is equal to 𝑆 :: (𝑎 ∥ 𝑏) this show that 𝑆 is orthogonal
to A ∥ B. Hence we showed (A ∥ B)⊥ is equal to A⊥ � B⊥.

As a consequence (A � B)⊥ which is (A⊥⊥ � B
⊥⊥)⊥ corresponds

to (A⊥ ∥ B⊥)⊥⊥ and since the parallel construction is a type this is
equal to A⊥ ∥ B⊥. □

Proposition 3.11 (Duality). Given A and B two types with one
conclusion, (A ⊗ B)⊥ = A⊥ ` B⊥ and (A` B)⊥ = A⊥ ⊗ B⊥.

Proof. of proposition 3.11. As for the preconstructions one
equality imply the other, say (A ⊗ B)⊥ = A⊥ ` B⊥ hold for any
pait of types. Then A⊥ ⊗ B⊥ which is (A⊥ ⊗ B⊥)⊥⊥ corresponds to
(A⊥⊥ ` B

⊥⊥)⊥ and thus (A` B)⊥.
The inclusion of A⊥ ` B⊥ in (A ⊗ B)⊥ is straightfoward, since

after eliminating the multiplicative cut we obtain an interaction
𝑆 :: 𝑇 where 𝑆 belongs to A⊥ � B⊥ and𝑇 belongs to A ∥ B and that
the construction are orthogonal – proposition 3.8. In other words
we show

{𝑆+⟨𝑆 (1), 𝑆 (2) ▷⊗ 𝑝⟩ | 𝑆 ∈ A ∥ B} ⊆ {𝑇+⟨𝑆 (1), 𝑆 (2) ▷` 𝑝⟩ | 𝑆 ∈ A⊥�B⊥}⊥ .
and so since bi–orthogonality preserves inclusion;

A ⊗ B ⊆ {𝑇 + ⟨𝑆 (1), 𝑆 (2) ▷` 𝑝⟩ | 𝑆 ∈ A⊥ � B⊥}⊥ .
Since tri–orthogonal is has taking the orthogonal this shows;

A ⊗ B ⊆ (A⊥ ` B⊥)⊥ .
Consider𝑇 a net orthogonal to the nets belonging to {𝑆+⟨𝑆 (1), 𝑆 (2) ▷⊗

𝑝⟩ | 𝑆 ∈ A ∥ B}. If 𝑇 = 𝑇0 + 𝑙 has a terminal `–link 𝑙 then after
one step of cut elimination we obtain 𝑇0 :: 𝑆 which must reduce to
⟨▷✠⟩. As a consequence 𝑇0 is orthogonal to A ∥ B e.g. it belongs
to A⊥ � B⊥ and so 𝑇 belongs to A⊥ ` B⊥.

If𝑇 has for terminal link a daimon link; after some reduction of𝑇
we obtain a net𝑇1 which is𝑇 with its output 𝑝 duplicated to interact
with the inputs of the tensor. After reducting the the reversible cut
in the interaction 𝑇 :: 𝑆 we obtain a net 𝑇1 :: 𝑆 and orthogonality
must hold still since the reversible cut commute to the left, hence
𝑇1 is orthogonal to A ∥ B and thus belongs to A⊥ � B⊥.

This implies that 𝑇1 + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩ belongs to A⊥ ` B⊥. Since
daimon links simulate well–formed`–links this lead to𝑇 belonging
to A⊥ ` B⊥.

Hence we have showed the other inclusion – obtained by passing
the following inclusion to the duals;

{𝑆 + ⟨𝑆 (1), 𝑆 (2) ▷⊗ 𝑝⟩ | 𝑆 ∈ A ∥ B}⊥ ⊆ A⊥ ` B⊥ .

Again this can be rewritten as;

(A ⊗ B)⊥ ⊆ A⊥ ` B⊥ .

Passing to the orthogonal this means;

(A⊥ ` B⊥)⊥ ⊆ A ⊗ B

□

D COMPLEMENTS TO SECTION 4
D.1 Proof Nets
We recall here the notion of proof net, e.g. nets that represent a
proof. We give that notion forMLL2 proofs which is easily adapted
to the other fragments considered in our work, namelyMLL and
MLL✠ .

Definition D.1 (Representation of a proof). An untyped multiplica-
tive net 𝑆 represents a proof 𝜋 of MLL2 denoted 𝜋 ≡R 𝑆 or 𝑆 ≡R 𝜋 ,
whenever the relation given by the following induction hold;

ax
𝐴,𝐴⊥

≡R ⟨▷✠ 𝑝1, 𝑝2⟩ 𝑝1 and 𝑝2 is a pair of distinct positions.

𝜋1

⊢ 𝐴, Γ
𝜋2

⊢ 𝐴⊥,Δ
cut

⊢ Γ,Δ

≡R 𝑆1 + 𝑆2 + ⟨𝑆1 (1), 𝑆2 (1) ▷cut⟩ Whenever 𝜋1 ≡R 𝑆1 and 𝜋2 ≡R 𝑆2 and 𝑆1 and 𝑆2 are disjoint nets.

𝜋1

⊢ 𝐴, Γ
𝜋2

⊢ 𝐵,Δ
⊗

⊢ Γ,Δ, 𝐴 ⊗ 𝐵

≡R 𝑆1 + 𝑆2 + ⟨𝑆1 (1), 𝑆2 (1) ▷⊗ 𝑝⟩ whenever 𝜋1 ≡R 𝑆1 and 𝜋2 ≡R 𝑆2 and 𝑆1 is disjoint with 𝑆2, and 𝑝 is a fresh
position.

𝜋

⊢ 𝐴, 𝐵, Γ `
⊢ 𝐴` 𝐵, Γ

≡R 𝑆0 + ⟨𝑆 (1), 𝑆 (2) ▷` 𝑝⟩ whenever 𝜋 ≡R 𝑆 and 𝑝 is a fresh position.

𝜋

⊢ 𝐴, Γ
∀

⊢ ∀𝑋𝐴, Γ

≡R 𝑆 + ⟨𝑆 (1) ▷∀ 𝑝⟩ whenever 𝜋 ≡R 𝑆 and 𝑝 is a fresh position.

𝜋

⊢ 𝐴, Γ
∃

⊢ ∃𝑋𝐴, Γ

≡R 𝑆 + ⟨𝑆 (1) ▷∃ 𝑝⟩ whenever 𝜋 ≡R 𝑆 and 𝑝 is a fresh position.

𝜋

⊢ Γ, 𝐵, 𝐴,Δ
ex

⊢ Γ, 𝐴, 𝐵,Δ

≡R (𝑆, 𝑎) where 𝜋 ≡R (𝑆, 𝑎′) and 𝑎(𝑖) = 𝑎′ (𝑖) whenever 𝑖 ≤| Γ | or | Γ | +2 < 𝑖 . On the
other hand, 𝑎′ (| Γ |) = 𝑎(| Γ | +1) and 𝑎′ (| Γ | +1) = 𝑎(| Γ |).

Remark 44. The previous definition naturally adapts to proofs of
MLL and to proofs ofMLL✠ by considering the following base case
in the induction;

ax
𝐴1, . . . , 𝐴𝑛

≡R ⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩ whenever 𝑝1, . . . , 𝑝𝑛 are

distinct positions.

D.2 The Merge Operator
Definition D.2 (Merge of two nets). The merge of two daimon

links 𝑑 = ⟨▷✠ 𝑝⟩ and 𝑑′ = ⟨▷✠ 𝑞⟩ is the daimon link 𝑑 ⊲⊳ 𝑑′ =
⟨▷✠ 𝑝, 𝑞⟩.

The merge of two disjoint sums of daimon links
∑
𝑖∈𝐼 𝑑𝑖 +

∑
𝑖∈𝐼 𝑑 𝑗

is a sum 𝑑𝑘 ⊲⊳ 𝑑′
𝑘 ′
+ ∑

𝑖∈𝐼 ,𝑖≠𝑘 𝑑𝑖 +
∑

𝑗∈ 𝐽 , 𝑗≠𝑘 ′ 𝑑
′
𝑗
for any 𝑘 ∈ 𝐼 and

𝑘′ ∈ 𝐽 .
Given two disjoint nets 𝑆 and 𝑇 with daimon links D𝑆 and D𝑇 .

A merge of 𝑆 and 𝑇 is a net 𝑅 which corresponds to B𝑆 + B𝑇 + D𝑅

where D𝑅 is D𝑆 + D𝑇 where one of the daimon link of 𝑆 has been
merged with a daimon link of 𝑇 .

Notation 19. Given two sets of nets 𝐴 and 𝐵 we will let 𝐴 ⊲⊳ 𝐵

denote the set of nets 𝑆 which are merges of a net of 𝐴 with a net
of 𝐵.

Furthermore given two nets 𝑆 and 𝑇 their merge 𝑆 ⊲⊳ 𝑇 is not
unique.Wewill sometimes use the notation 𝑆 ⊲⊳ 𝑇 abusively treating
as a net but one should keep in mind that in practice we consider
one of the possible merge of the two nets.

19

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

Proposition D.3. Given 𝑆 and 𝑇 two orthogonal nets then 𝑆 ⊲⊳

✠1 :: 𝑇 reduces to ✠1.

Proof. By induction on the pair (𝑐, 𝑖) where 𝑐 is the number of
connectives in 𝑆 +𝑇 which are above conclusions of 𝑆 or of 𝑇 ; and
𝑖 is the number of initial positions in 𝑆 +𝑇 .

• The cases (0, 𝑖) are straightfoward. Only glueing cuts occur
and these cuts commute to the left. Furthermore, eliminat-
ing a glueing cut decreases the size of the net.

• For the cases (𝑐, 𝑖) make the number of connectives de-
crease by performing a step of cut elimination, in particular
three cases occurs corresponding to the possible cut elim-
inated, (`/⊗), (`/✠) or (⊗/✠). We will treat only the
cases where the connective occurs in 𝑆 ; it is easy to adapt
the following proof for the case when the connectives oc-
curs in 𝑇 .
– Say that 𝑆 :: 𝑇 occurs a multiplicative cut thus the

two nets may be written as 𝑆0 + 𝛼 :: 𝑇0 + 𝛽 where 𝛼 is
the ` link and 𝛽 the ⊗ link. Since multiplicatibe cut
commutes to the left and since 𝑆 :: 𝑇 reduces to ⟨▷✠⟩
we can ensure that the multiplicative redex 𝑆0 :: 𝑇0
reduces also to ⟨▷✠⟩ e.g. 𝑆0 and 𝑇0 are orthogonal.
Furthermore note that 𝑆0+𝛼 ⊲⊳ ✠1 :: 𝑇0+𝛽 corresponds
to 𝑆0 ⊲⊳ ✠1 + 𝛼 :: 𝑇0 + 𝛽 and so after a step of cut
elimination reduces to 𝑆0 ⊲⊳ ✠1 :: 𝑇0. Since 𝑆0 ⊥ 𝑇0
and that the number of connectives as decreased, we
can apply the induction hypothesis and ensure that
𝑆0 ⊲⊳ ✠1 :: 𝑇0 reduces to ✠1 hence it is also true for
𝑆 ⊲⊳ ✠1 :: 𝑇 .

– Say that a non–homogeneous cut (✠/⊗) occurs in the
interaction of 𝑆 :: 𝑇 and assume the tensor link occurs
in 𝑆 . Then the interaction can be written as 𝑆0 + 𝛼 :: 𝑇
after eliminating that reversible cut we obtain the ent
𝑆0 :: 𝑇 ′ where𝑇 ′ is𝑇 with a duplicated output, and we
have 𝑆0 ⊥ 𝑇 ′. Furthermore 𝑆0 + 𝛼 ⊲⊳ ✠1 :: 𝑇 reduces
to 𝑆0 ⊲⊳ ✠1 :: 𝑇 ′ applying the induction hypothesis
this reduces to ✠1.

– Say that only cuts (✠/`) occurs in the interaction of
𝑆 :: 𝑇 (if not we can fall back onto one of the previous
cases) and assume the `–links occurs in 𝑆 . Further-
more let us denote 𝑆𝑟 the redex of 𝑆 in which all all
reversible cuts have been eliminated, similarly 𝑇𝑟 de-
notes such a redex for 𝑇 . Then 𝑆 ⊥ 𝑇 if and only if
𝑆𝑟 ⊥ 𝑇𝑟 , 𝑆𝑟 may be written as 𝑆∗𝑟 + 𝛼 where 𝛼 is one of
its terminal `–link. Then eliminating the cut involv-
ing 𝛼 the net 𝑆𝑟 :: 𝑇𝑟 reduces to 𝑆∗𝑟 :: 𝑇 ′𝑟 where 𝑇 ′𝑟 is 𝑇𝑟
in which one of its daimon as been splitted. Since in
𝑆𝑟 :: 𝑇𝑟 there are only irreversible cuts it follows that
𝑆𝑟 ⊥ 𝑇𝑟 imples 𝑆∗𝑟 ⊥ 𝑇 ′𝑟 .
Then note that the reversible form of 𝑆 ⊲⊳ ✠1 cor-
responds to 𝑆𝑟 ⊲⊳ ✠1 thus, 𝑆 ⊲⊳ ✠1 :: 𝑇 reduces to
𝑆𝑟 ⊲⊳ ✠1 :: 𝑇𝑟 / Furthermore 𝑆𝑟 ⊲⊳ ✠1 :: 𝑇𝑟 reduces to
𝑆∗𝑟 ⊲⊳ ✠1 :: 𝑇 ′𝑟 and so by induction to ✠1, and so we
conclude.

□

Proposition D.4 (Merges belongs to the compositional con-
struction). Given A and B two types;

(A ⊲⊳ B)⊥⊥ ⊆ A · B.

Proof. Consider 𝑆 a net in 𝐴 ⊲⊳ 𝐵. 𝑆 may therefore be written
as 𝑎 ⊲⊳ 𝑏 for two elements 𝑎 ∈ A and 𝑏 ∈ B. The net 𝑎 ⊲⊳ ⟨▷✠
𝑝⟩ + ⟨𝑝, 𝑞 ▷cut⟩⟨▷✠ 𝑞⟩ ⊲⊳ 𝑏 reduces to 𝑎 ⊲⊳ 𝑏 by a glueing cut, since
the glueing cut can always be perfomed first, an orthogonal net to
𝑎 ⊲⊳ ⟨▷✠ 𝑝⟩ + ⟨𝑝, 𝑞 ▷cut⟩⟨▷✠ 𝑞⟩ ⊲⊳ 𝑏 is a net orthogonal to 𝑎 ⊲⊳ 𝑏.

Now consider 𝑎 some net in A⊥. Since 𝑎 :: 𝑎 reduces to ⟨▷✠⟩,
by proposition D.3 𝑎 ⊲⊳ ⟨▷✠ 𝑝⟩ :: 𝑎 reduces to ⟨▷✠ 𝑝⟩. Similarly
𝑏 ⊲⊳ ⟨▷✠ 𝑞⟩ :: 𝑏 reduces to ⟨▷✠ 𝑞⟩. Since cut elimination is local;

𝑎 ⊲⊳ ⟨▷✠ 𝑝⟩ + ⟨𝑝, 𝑞 ▷cut⟩⟨▷✠ 𝑞⟩ ⊲⊳ 𝑏 :: (𝑎 ∥ 𝑏)

= (𝑎 ⊲⊳ ⟨▷✠ 𝑝⟩ :: 𝑎) + ⟨𝑝, 𝑞 ▷cut⟩(⟨▷✠ 𝑞⟩ ⊲⊳ 𝑏 :: 𝑏)
→ ⟨▷✠ 𝑝⟩ + ⟨𝑝, 𝑞 ▷cut⟩ + ⟨▷✠ 𝑞⟩
→ ⟨▷✠⟩

This shows that 𝑎 ⊲⊳ ⟨▷✠ 𝑝⟩ + ⟨𝑝, 𝑞 ▷cut⟩⟨▷✠ 𝑞⟩ ⊲⊳ 𝑏 :: (𝑎 ∥ 𝑏)
reduces to ✠0 and thus so does 𝑎 ⊲⊳ 𝑏 :: (𝑎 ∥ 𝑏) since the last
glueing cut of the reduction may as been performed as first due
to the commutation results. This shows that 𝑎 ⊲⊳ 𝑏 is orthogonal
to A⊥ ∥ B⊥ and so belongs to A � B. Hence we have shown the
inclusionA ⊲⊳ B ⊆ A�B and therefore (A ⊲⊳ B)⊥⊥ ⊆ A�B since the
rigth member of the inclusion is closed under bi–orthogonal. □

Proposition D.5. For any integer 𝑛 the daimon link ✠𝑛 belongs
to {✠1}

⊥⊥
� . . . � {✠1}

⊥⊥
(composition of 𝑛 components).

Proof. By induction. For the base case note that ✠1 belongs to
{✠1}

⊥⊥
for any net. Now if we assume ✠𝑛 belongs to the compo-

sition of size 𝑛 that is {✠1}
⊥⊥

� . . . � {✠1}
⊥⊥

since ✠1 belongs to
{✠1}

⊥⊥
the previous proposition ensure that ✠𝑛 ⊲⊳ ✠1 belongs

to the composition of size 𝑛 + 1 of {✠1}
⊥⊥

� . . . � {✠1}
⊥⊥
. But

✠𝑛 ⊲⊳ ✠1 is exactly ✠𝑛+1 which allows us to conclude. □

D.3 Proofs of section 4
Notation 20. We denote by ✠2 a daimon with two outputs e.g.
⟨▷✠ 𝑝1, 𝑝2⟩. Given an integer𝑛 we denote 𝐼𝑛

✠
the sum

∑
1≤𝑖≤𝑛 ⟨▷✠

𝑝𝑖 , 𝑞𝑖 ⟩ with the order (𝑝1 < · · · < 𝑝𝑛 < 𝑞1 < · · · < 𝑞𝑛) on the
conclusions. In particular 𝐼1

✠
corresponds to ✠2.

Lemma D.6. For any orthogonal nets 𝑆1 and 𝑆2 with 𝑛 output
(𝐼𝑛
✠

:: 𝑆1) :: 𝑆2 →∗ ⟨▷⟩.

Proof. We do so by induction on the size of the nets. If the nets
are made only of daimon this is trivial. □

Proposition 4.2. For any types with one output A ⊆ B⊥; ✠2
belongs to A⊥ � B⊥.

Proof. This is a special case of the previous lemma when 𝑛 = 2
the interface 𝐼2

✠
is ✠.

Given two types such that A ⊆ B⊥ note that any pair of net
𝑆 ∈ A and𝑇 ∈ Bwill satisfies 𝑆 ⊥ 𝑇 and thus✠2 will be orthogonal
to A ∥ B and so belong to A⊥ � B⊥. □

Remark 45. In particular for any type A, ✠2 belongs to A � A⊥.
20

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

Corollary D.7. For any interpretation basis B, if B is standard
in 𝑋 , ✠2 belongs to J𝑋,𝑋⊥KB .

Proof. If the basis B is standard in 𝑋 we have the inclusion
J𝑋 K⊥B ⊆ J𝑋⊥KB , which implies by the previous proposition, that
✠2 belongs to J𝑋 K

⊥⊥
B � J𝑋⊥KB and so since we deal with types to

J𝑋 KB � J𝑋⊥KB . □

Definition D.8 (Constraint). A constraint is a set of sequents of
multiplicative formulas. A sequent satisfies a constraint C if it
belongs to C.

Remark 46. For instance the axiom rule of MLL only introduces
sequents which belong to the constraint {𝐴,𝐴⊥ | 𝐴 ∈ FMLL}. On
the other hand the constraint forMLL✠ corresponds to the set of
all sequents.

Notation 21. Given a constraint C we denote 𝑆 ⊢C Γ whenever
𝑆 represents a proof of Γ in MLL✠ such that the daimon rules
introduces only sequents in C.

Definition D.9 (Adequate interpretation basis). An interpretation
basis B is adequate with a constraint C onMLL sequents whenever
for any sequent Γ = 𝐴1, . . . , 𝐴𝑛 satisfying the constraint C the
daimon with 𝑛 outputs realizes Γ.

Proposition D.10 (Soundness). Given an adequate interpreta-
tion basis B with respect to a constraint C, for any multiplicative net
𝑆 and a sequent Γ,

𝑆 ⊢C Γ ⇒ 𝑆 ⊩B Γ.

Proof. of Proposition D.10. We proceed by induction on the
size of the proof that 𝑆 represents.

base If the proof is of size one then 𝑆 is made only of one
daimon link. Furthermore by assumption 𝑆 ⊢C Γ, since
the basis B is sound with respect to the constraint this
implies that 𝑆 ⊩B Γ.

ind·1 Assume that the last rule in the represented proof is a
`–rule. Thus the sequent is of the form Γ, 𝐴` 𝐵, and by
assumption 𝑆 ⊢C Γ, 𝐴` 𝐵.
Assume without loss of generality that the active formula
in the last rule is𝐴`𝐵. Say the conclusion of 𝑆 are ordered
as 𝑞1, . . . , 𝑞𝑛, 𝑝 then since 𝑝 is given the type 𝐴` 𝐵 and
that this formula is active; it must be that 𝑆 is of the form
𝑆 ′ + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩ such that 𝑆 ′ ⊢C Γ, 𝐴, 𝐵.
Calling the induction hypothesis we can deduce 𝑆 ′ ⊩B
Γ, 𝐴, 𝐵. By definition, this is equivalent that for any 𝛾 in
JΓK⊥B , we have 𝑆 ′ :: 𝛾 ⊩B 𝐴, 𝐵, indeed it follows that
𝑆 ′ :: 𝛾 + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩ ⊩B 𝐴` 𝐵.
Furthermore interaction and sum commute hence, 𝑆 ′ ::
𝛾 + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩ = 𝑆 ′ + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩ :: 𝛾 and so
corresponds to 𝑆 :: 𝛾 . Since this hold for any 𝛾 ∈ JΓK⊥B
this allows us to conclude that 𝑆 ⊩B Γ, 𝐴` 𝐵.

ind·2 Assume that the represented proof by 𝑆 as for last rule
the introduction of a tensor. The proved sequent is of the
form Γ, 𝐴 ⊗ 𝐵,Δ where 𝐴 ⊗ 𝐵 is the active formula in the
last rule.
Thus 𝑆 is of the form 𝑆1 ⊗ 𝑆2 where 𝑆1 ⊢C Γ, 𝐴 and 𝑆2 ⊢C
Δ, 𝐵.

Calling the induction hypothesis we obtain 𝑆1 ⊩B Γ, 𝐴
and 𝑆2 ⊩B Δ, 𝐵. Thus for any𝛾 ∈ JΓKB and 𝛿 ∈ JΔKB 𝑆1 ::
𝛾 ⊩B 𝐴 and 𝑆2 :: 𝛿 ⊩B 𝐵. In particular this means that the
tensor union of the two nets 𝑆1 :: 𝛾+𝑆2 :: 𝛿+⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩
is in J𝐴KB ⊗ J𝐵KB and thus in J𝐴 ⊗ 𝐵KB .
Note that 𝑆1 :: 𝛾 + 𝑆2 :: 𝛿 + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩ corresponds to
𝑆1 + 𝑆2 + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩ :: 𝛾 ∥ 𝛿 . Thus 𝑆1 + 𝑆2 + ⟨𝑝1, 𝑝2 ▷⊗
𝑝⟩ :: 𝛾 ∥ 𝛿 ⊩B 𝐴 ⊗ 𝐵. Since this hold for any 𝛾 and 𝛿 we
conclude that 𝑆1 + 𝑆2 + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩ ⊩B Γ,Δ, 𝐴 ⊗ 𝐵 e.g.
𝑆 ⊩B Γ,Δ, 𝐴 ⊗ 𝐵.

□

Proposition D.11. Given B an approximable basis for any for-
mula 𝐴 ofMLL the type J𝐴KB is approximable.

Proof. By induction on 𝐴. In the case where 𝐴 is atomic this
follows from the definition.

• For a formula 𝐴 ⊗ 𝐵. Let us show ✠1 is orthogonal to
J𝐴 ⊗ 𝐵K⊥B . The interpretation J𝐴 ⊗ 𝐵K⊥B corresponds to
(J𝐴KB ⊗ J𝐵KB)⊥ and so J𝐴K⊥B ` J𝐵K⊥B . By induction J𝐴KB
and J𝐵KB are both approximable. In other words, J𝐴K⊥B ⊂
{✠1}⊥ and J𝐵K⊥B ⊂ {✠1}⊥.
To be orthogonal to J𝐴K⊥B` J𝐵K⊥B is to be orthogonal to the
nets 𝑆 + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩ where 𝑆 belongs to J𝐴K⊥B � J𝐵K⊥B .
After one step of cut elimination ✠1 :: 𝑆 + ⟨𝑝1, 𝑝2 ▷`
𝑝⟩ reduces to ✠2 :: 𝑆 which is ✠1 ∥ ✠1 :: 𝑆 . Since, by
induction, ✠1 belongs to J𝐴K⊥⊥B 𝑆 :: ✠1 belongs to J𝐵⊥KB .
By induction, J𝐵⊥KB is orthogonal to ✠1 hence 𝑆 :: ✠1 ::
✠1 reduces to ⟨▷✠⟩.

• Now consider a formula of the form 𝐴 ` 𝐵. Again let us
show that✠1 is orthogonal to J𝐴`𝐵K⊥B e.g. to J𝐴K⊥B⊗J𝐵K⊥B .
To be orthogonal to that type is to be orthogonal to the nets
𝑎 ∥ 𝑏 + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩. After one step of cut elimination
✠1 :: 𝑎 ∥ 𝑏 + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩ reduces to ✠2 :: 𝑎 ∥ 𝑏. But
✠2 is ✠1 ⊲⊳ ✠1 and by induction both J𝐴KB and J𝐴KB
contains ✠1 thus J𝐴KB � J𝐵KB contains ✠2. Equivalently
this means that ✠2 is orthogonal to J𝐴K⊥B ∥ J𝐵K⊥B , hence
✠2 ⊥ 𝑎 ∥ 𝑏. This concludes to show that ✠1 belongs to
J𝐴` 𝐵KB .

□

Theorem 4.3. Let 𝑆 be a multiplicative net, B an interpretation
basis, and Γ a sequent:

• if B is regular, then 𝑆 ⊢MLL Γ ⇒ 𝑆 ⊩B Γ,
• if B is approximable, then 𝑆 ⊢MLL✠ Γ ⇒ 𝑆 ⊩B Γ.

Proof. of Theorem 4.3. We must treat two cases namely that of
MLL and ofMLL✠ . The proposition D.10 ensure that to conclude
it is enough to show the base case of the induction.

• ForMLL✠ , note that if B is approximable then any inter-
pretation J𝐴KB is approximable e.g. contains✠1. We can re-
formulate this as {✠1}

⊥⊥ ⊆ J𝐴KB . As a consequence since
the construction on types preserve inclusion {✠1}

⊥⊥
� . . .�

{✠1}
⊥⊥

is included in J𝐴1KB � . . .�J𝐴𝑛KB for any sequent
𝐴1, . . . , 𝐴𝑛 . Using proposition D.5 this implies that ✠𝑛 is
contained in that type e.g. in J𝐴1, . . . , 𝐴𝑛KB .

21

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

• In the case of MLL by the corollary D.7 ✠2 belongs to
J𝑋,𝑋⊥KB for any basis.

□

E COMPLEMENTS TO SECTION 5
E.1 Proof of Theorem 5.8 – Reformulating

Danos Regnier
Definition E.1 (Switching graph). Given a multiplicative which

does not contain `–links, we can associate a undirected graph
denoted G(𝑆) as follow;

• A vertex ofG(𝑆) is either a position of the net 𝑆 , or a daimon
or a cut link.

• There is an edge between two vertices whenever;
– The two vertex 𝑢 and 𝑣 are positions of 𝑆 and belong

to the same tensor link.
– 𝑢 is a cut link and 𝑣 is an input of 𝑢 (or vice versa).
– 𝑢 is a daimon link and 𝑣 is an output of𝑢 (or vice versa).

Definition E.2. Given 𝐸 a set and 𝑋 and 𝑌 two partitions of 𝐸.
The graph induced by𝑋 and 𝑌 is the graph G(𝑋,𝑌) = (𝑉 , 𝐸, 𝑏) such
that;

• The vertex of G(𝑋,𝑌) are the classes of 𝑋 and 𝑌 .
• The edges of the graph are exactly the elements of 𝐸.
• The border of an edge 𝑒 ∈ 𝐸 is the pair {𝑐, 𝑐′} of the class 𝑐

in 𝑋 containing 𝑒 and the class 𝑐′ in 𝑌 containing 𝑒 .
Two partitions 𝑋 and 𝑌 of a set 𝐸 are orthogonal whenever their

induced graph is acyclic and connected.

Then the classical results of Danos Regnier [3] can be stated
as follow, either mentioning the acyclic and connected switching
graphs, or the orthogonality of the induced partitions.

Theorem E.3. Given a multiplicative net 𝑆 the propositions are
equivalent;

• 𝑆 is correct.
• For any switching 𝜎𝑆 of 𝑆 the graph G(𝜎𝑆) is acyclic and

connected.
• For any switching 𝜎𝑆 the partitions s𝑆✠ and ↑ 𝜎𝑆 are orthog-

onal.

Definition E.4 (image of a partition). Given a partition 𝑃 = {𝐶1, . . . ,𝐶𝑛}
of a set 𝑋 and a function 𝑓 : 𝑋 → 𝑌 the image of 𝑃 by 𝑓 is the set
{𝑓 (𝐶1), . . . , 𝑓 (𝐶𝑛)}, it is denoted 𝑓 (𝑃).

Proposition E.5 (Bijections preserve partitions). Given 𝑓 :
𝑋 → 𝑌 a bijection between two sets. For any partition 𝑃 of 𝑋 the
image 𝑓 (𝑃) is still a parition.

Definition E.6 (Image of a partition). An image of a set {𝑝1, . . . , 𝑝𝑛}
of positions is denoted 𝑋✠ and is a a daimon ⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩. The
image of a partition 𝑃 = 𝑋1, . . . , 𝑋𝑘 of a set of positions𝑋 , is denoted
𝑃✠ , and corresponds to the sum 𝑋✠1 + · · · + 𝑋

✠
𝑘
.

Remark 47. The image of a set of position is not unique since the
order of the output of the daimon link may be reordered. As a
consequence the image of a partition is also not unique.

Proposition E.7. Given two partitions 𝑃 and𝑄 of a set of positions
𝑋 . The two assertions are equivalent;

• The partitions 𝑃 and 𝑄 are orthogonal.
• Given a set 𝑌 disjoint from 𝑋 , and 𝜎 : 𝑋 → 𝑌 a bijection,

The interaction 𝑃✠ ::𝜎 𝑄✠ reduces to ⟨▷✠⟩. In particular,
𝑃✠ and 𝑄✠ are orthogonal.

Proof. By induction on the size of the set 𝑋 . □

Proposition E.8. Given two cut free nets 𝑆 and 𝑇 witnessing re-
spectively 𝐴1, . . . , 𝐴𝑛 and 𝐴⊥1 , . . . , 𝐴

⊥
𝑛 . The assertions are equivalent;

• 𝑆 and 𝑇 are orthogonal.
• 𝑆✠ and 𝑇✠ are orthogonal.

Proof. The multiplicative cuts get eliminated and can always
be performed first due to the commuation results. Furthermore
since the nets witness dual formulas no non homogeneous cut will
occur. □

Corollary E.9. Given 𝑆 a net witnessing 𝐴. For a switching 𝜎𝑆
of 𝑆 , the assertions are equivalent;

• The partitions s(𝑆✠) and 𝜎𝑆 are orthogonal.
• 𝑆 is orthogonal to any net 𝑇 witnessing 𝐴⊥ and such that
𝑇✠ = (𝜎𝑆)✠ .

Using this corollary and the established result of Danos Regnier
we obtain the following;

Proposition E.10. Given 𝑆 a multiplicative net with one conclu-
sion witnessing 𝐴. The assertions are equivalent;

• 𝑆 is correct.
• 𝑆 is orthogonal to tests(𝐴).

We can indeed generalize this result the case where 𝑆 has mul-
tiple conclusions, as usual we do this by transformin the net with
multiple conclusions in a net with one conclusion by adding a bunch
of `–links.

Definition E.11 (General connectives). A generalized `–link on
the positions 𝑝1, . . . , 𝑝𝑛 is a module denoted ⟨𝑝0, . . . , 𝑝𝑛 ▷`𝑛 𝑝⟩
and defined by the following induction;

• ⟨𝑝0, 𝑝1 ▷`1 𝑝⟩ = ⟨𝑝0, 𝑝1 ▷` 𝑝1⟩.
• For any𝑛 > 0we defined ⟨𝑝1, . . . , 𝑝𝑛+2 ▷`𝑛+1 𝑝⟩ = ⟨𝑝𝑛−1, 𝑝𝑛 ▷`𝑛

𝑝⟩ + ⟨𝑝𝑛, 𝑝𝑛+1 ▷` 𝑝𝑛+1⟩.
Similarlywe defined the generalized tensor links ⟨𝑝0, . . . , 𝑝𝑛 ▷⊗𝑛

𝑝⟩.
Proposition E.12. Let 𝑆 be a net with conclusions𝑝0, . . . , 𝑝𝑛, 𝑞1, . . . , 𝑞𝑘 .

Let 𝑆1, . . . , 𝑆𝑛,𝑇1, . . . ,𝑇𝑘 be 𝑛 nets with one conclusion the assertions
are equivalent;

(1) 𝑆 ⊥ 𝑆1 ∥ · · · ∥ 𝑆𝑛 ∥ 𝑇1 ∥ · · · ∥ 𝑇𝑘 .
(2) 𝑆+⟨𝑝0, . . . , 𝑝𝑛 ▷`𝑛 𝑝⟩ ⊥ 𝑆1+· · ·+𝑆𝑛+⟨𝑆1 (1) . . . , 𝑆𝑛 (1) ▷⊗𝑛

𝑞⟩ ∥ 𝑇1 ∥ · · · ∥ 𝑇𝑘
Proof. By a simple induction of the size of the generalized `

connective. □

This easily leads to a proof of the Danos Regnier theorem as
stated in section 5.

Theorem 5.8 (Danos Regnier Tests, [3]). Given a cut–free net
𝑆 |∼𝐴1, . . . , 𝐴𝑛 , the two following assertions are equivalent:

• 𝑆 ⊢MLL✠ 𝐴1, . . . , 𝐴𝑛 ;
• 𝑆 is orthogonal to tests(𝐴1) ∥ · · · ∥ tests(𝐴𝑛).

22

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

E.2 Correctness of Tests
Definition E.13. Given a net 𝑆 and 𝜎𝑆 one of its switching, the

node measure of 𝑆 in 𝜎 is the number of nodes of the graph G(𝜎𝑆)
respectively the edge measure of 𝑆 in 𝜎 is the number of egdes of
the graph G(𝜎𝑆). We respectively denotes them 𝑁 (𝜎𝑆) and 𝐸 (𝜎𝑆).

Proposition E.14. Given a net 𝑆 for any switching 𝜎𝑆 and 𝜎𝑆 ′;
𝑁 (𝜎𝑆) = 𝑁 (𝜎′𝑆) and 𝐸 (𝜎𝑆) = 𝐸 (𝜎′𝑆)

Remark 48. As a consequence we can defined the node measure
and edge measure of a net 𝑆 as the node measure and edge measure
of one of its switching. We denote it by 𝑁 (𝑆) and 𝐸 (𝑆).

Proposition E.15. Given a graph𝐺 = (𝑉 , 𝐸) such that 𝑐𝑎𝑟𝑑 (𝑉)−
𝑐𝑎𝑟𝑑 (𝐸) = 1 the assertions are equivalent;

• 𝐺 is acyclic.
• 𝐺 is connected.

Proposition E.16. Whenever a graph 𝐺 = (𝑉 , 𝐸) is acyclic and
connected we have 𝑐𝑎𝑟𝑑 (𝑉) − 𝑐𝑎𝑟𝑑 (𝐸) = 1.

Theorem E.17. Cut–elimination preserves correctness.

Proof. Note that the step of cut elimination preserve connect-
edness of the switching graphs, and furthermore that they preserve
the measure 𝑁 (𝑆) − 𝐸 (𝑆) thus the proposition E.15 allows us to
conclude. □

Proposition E.18. The switching rewriting→` preserves cor-
rectness.

Proof. Indeed since whenever 𝑆 →` 𝑆 ′ the switching of 𝑆 ′
are include in the switching of 𝑆 . Thus if all the switching of 𝑆 are
acyclic and connected it is also true in particular for those of 𝑆 ′ □

Proposition E.19. Eta–expansion preserves correctness.

Proof. Note that the obtained net preserve connection, further-
more the measure 𝑁 (𝑆) − 𝐸 (𝑆) is preserved. □

Proposition E.20. For any two correct nets 𝑆 and 𝑇 if 𝑇 has one
output, the interaction 𝑆 :: 𝑇 remains correct.

Proof. Indeed in the interaction 𝑆 :: 𝑇 the connectivity is pre-
served. Furthermore 𝑁 (𝑆) + 𝑁 (𝑇) + 1 − (𝐸 (𝑆) + 𝐸 (𝑇) + 2) is equal
to 3 − 2 and so is equal to 1. □

Definition E.21 (Syntax tree). A net N is a representation of an
MLL formula 𝐹 , when it satisfies the inductive condition:

• Whenever 𝐹 is an atomic formula, N is an hypergraph
consisting of only one position 𝑝 .

• Given that □ = ⊗ or □ = `; whenever 𝐹 = 𝐹1□𝐹2, for any
nets N1 and N2 the net N1 + N2 + ⟨𝑝1, 𝑝2 ▷𝑙 𝑝⟩ is a repre-
sentation of 𝐹 if N1 represents 𝐹1 and has for conclusion
𝑝1, N2 representing 𝐹2 and has for conclusion 𝑝2, and the
label 𝑙 corresponds to □, while 𝑝 is a fresh position.

A syntax tree is the representation of a formula. Given a formula
𝐴 we denote syn(𝐴) the set of representations of 𝐴.

Proposition E.22. Given a net 𝑟 with 𝑛 conclusions that is the
sum of the syntactical representation of formulas containing only
tensors. 𝑟 ::

∑
1≤𝑖≤𝑛 ✠1 reduces to ↑ 𝑟✠ +

∑
1≤𝑖≤𝑛 ⟨𝑝𝑖 , 𝑞𝑖 ▷cut⟩.

Theorem 5.7 (Correctness of tests). Any test of a formula 𝐴
is a proof inMLL✠ of the negation 𝐴⊥.

Proof. of Theorem 5.7. Consider a formula 𝐴 ofMLL. Consider
the correct net ✠2 = ⟨▷✠ 𝑝1, 𝑝2⟩ and perform a bunch of eta ex-
pansion to obtain a correct net 𝑆 witness 𝐴⊥, 𝐴. In that case 𝑆 is of
the form 𝑟 + 𝑟 ′ +∑

1≤𝑖≤𝑚 ⟨▷✠ 𝑟𝑖 , 𝑟
′
𝑖
⟩ where 𝑟 is a representation of

𝐴 and 𝑟 ′ is a representation of 𝐴⊥ and the 𝑟𝑖 ’s are the initial posi-
tions of 𝑟 and similarly for the 𝑟 ′

𝑖
’s. Perform a bunch of switching

rewriting witnessing 𝐴 e.g. on the connectives above 𝑝2. we obtain
a net 𝑆 ′ which remains correct with conclusion 𝑝1, 𝑞1, . . . , 𝑞𝑘 . Now
make 𝑆 ′ interact with unary daimons on its conclusion 𝑞1, . . . , 𝑞𝑘 ,
e.g. consider

𝑇 = 𝑆 ′ ::{𝑞𝑖 ↦→𝑡𝑖 ,1≤𝑖≤𝑛}
∑︁

1≤𝑖≤𝑘
⟨▷✠ 𝑡𝑖 ⟩.

Again this transformation preserve correctness, thus𝑇 is correct.
Now since cut elimination preserve correctness any redex of 𝑇
will be correct. In particular these cuts reduces to the partitions of
↑ (𝜎𝐴), e.g. we obtain,

𝑟 +
∑︁

1≤𝑖≤𝑚
⟨▷✠ 𝑟𝑖 , 𝑟

′
𝑖 ⟩ +

∑︁
1≤𝑖≤𝑛

⟨𝑟 ′𝑖 , 𝑞𝑖 ▷cut⟩(↑ 𝑟 ′)✠ .

After reducing the glueing we obtain a net of the form 𝑟 +(↑ 𝑟 ′)✠
where 𝑟 and 𝑟 ′ are representations of dual formulas. This net is
correct again since cut elimination preserve correctness. This net
is a test of 𝐴⊥ hence we have showed that any test of 𝐴⊥ is correct
and we can conclude. □

E.3 Decomposition
Proposition E.23. Given two sets of nets 𝐴 and 𝐵;

• 𝐴 ∥ 𝐵 = 𝐴
⊥⊥ ∥ 𝐵⊥⊥ .

• 𝐴 � 𝐵 = 𝐴
⊥⊥

� 𝐵
⊥⊥
.

• 𝐴` 𝐵 = 𝐴
⊥⊥ ` 𝐵

⊥⊥
.

• 𝐴 ⊗ 𝐵 = 𝐴
⊥⊥ ⊗ 𝐵⊥⊥ .

Proof. We treat each cases independently.
• By duality, (𝐴 ∥ 𝐵)⊥ = 𝐴⊥ � 𝐵⊥ While (𝐴⊥⊥ ∥ 𝐵⊥⊥)⊥ =

𝐴⊥⊥⊥�𝐵⊥⊥⊥ e.g. tri–orthogonality corresponds to orthog-
onality [8] this is 𝐴⊥ � 𝐵⊥ and so (𝐴 ∥ 𝐵)⊥.
The two orthogonal of the two types are equal thus they
are equal 𝐴 ∥ 𝐵 = 𝐴

⊥⊥ ∥ 𝐵⊥⊥ .
• Say a net belongs to 𝐴 � 𝐵 equivalently it belongs to (𝐴⊥ ∥

𝐵⊥)⊥ which since tri–orthogonal is orthogonality is (𝐴⊥⊥⊥ ∥
𝐵⊥⊥⊥)⊥ which is 𝐴

⊥⊥
� 𝐵

⊥⊥
.

• Note that𝐴`𝐵 is equal to (𝐴⊥⊗𝐵⊥)⊥ and thus to (𝐴⊥⊥⊥⊗
𝐵⊥⊥⊥)⊥ which is exactly 𝐴

⊥⊥ ` 𝐵
⊥⊥
.

• Similarly to the previous case.
□

Proposition E.24 (Decomposition). Let B be an interpretation
basis, H be an hypersequent, 𝐴, 𝐵 two formulas and 𝑆 be a multi-
plicative net.

• If 𝑆 = 𝑆0 + 𝑙 has a terminal ` link 𝑙 above its last conclusion
and 𝑆 ∈ JH , 𝐴` 𝐵KB ; then 𝑆0 belongs to JH , 𝐴, 𝐵KB

• If 𝑆 = 𝑆0 + 𝑙 has a terminal ` link 𝑙 above its last conclusion
and 𝑆 ∈ JH ∥ 𝐴` 𝐵KB ; then 𝑆0 belongs to JH ∥ (𝐴, 𝐵)KB

23

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

• If 𝑆 = 𝑆0 + 𝑙 has a terminal ⊗ link 𝑙 above its last conclusion
and 𝑆 ∈ JH , 𝐴 ⊗ 𝐵KB ; then 𝑆0 belongs to JH , (𝐴 ∥ 𝐵)KB

• If 𝑆 = 𝑆0 + 𝑙 has a terminal ⊗ link 𝑙 above its last conclusion
and 𝑆 ∈ JH ∥ 𝐴 ⊗ 𝐵KB ; then 𝑆0 belongs to JH ∥ 𝐴 ∥ 𝐵KB

Proof. • Consider 𝑆 a net with a terminal `–link 𝑙 de-
composing 𝑆 = 𝑆0 + 𝑙 such that 𝑙 outputs the only con-
clusion of 𝑆 . Say 𝑆 belongs to J𝐴 ` 𝐵KB equivalently 𝑆 is
orthogonal to J𝐴K⊥B ⊗ J𝐵K⊥B , since a multiplicative cut can
always be performed first this implies that 𝑆0 is orthogo-
nal to J𝐴K⊥B ∥ J𝐵K⊥B thus 𝑆0 belongs to J𝐴KB , J𝐵KB . This
reasoning easily adapts to JH , 𝐴, 𝐵KB .

• The reasonment for a net in J𝐴 ⊗ 𝐵KB is similar and also
easily adapts to the case JH , 𝐴 ⊗ 𝐵KB .

• Consider on the other hand a net 𝑆 in JH ∥ 𝐴 ⊗ 𝐵KB , such
that 𝑆 = 𝑆0 + 𝑙 where 𝑙 is a tensor link and outputs the
last conclusion of 𝑆 . Equivalently 𝑆 is a net orthogonal to
JHK⊥B , J𝐴 ⊗ 𝐵K⊥B e.g. JHK⊥B , J𝐴K⊥B ⊗ J𝐵K⊥B Since the mul-
tiplicative cut commute to the left and using proposition
E.23 it follows that 𝑆0 is orthogonal to JHK⊥B , J𝐴K⊥B , J𝐵K⊥B .
Equivalently 𝑆0 belongs to JHKB ∥ J𝐴KB ∥ J𝐵KB .

• Similarly we treat the case JH ∥ 𝐴` 𝐵KB .
□

E.4 Contracted, open and self dual Types
Definition E.25 (Contracted type). A type A is contracted when-

ever for any 𝑆 in A, there exists a sequent Γ made only of atomic
formulas such that 𝑆 ≺ Γ.

Remark 49. A type A is contracted equivalently whenever any net
in A cannot have connectives has terminal link.

Definition E.26 (type interface). A type interface is a sequence
(𝑠1, . . . , 𝑠𝑛) of symbols 𝑠𝑖 which belong to {✠,`, ⊗}. The type in-
terface of a net 𝑆 with conclusions (𝑝1, . . . , 𝑝𝑛) is the sequence
(𝑠1, . . . , 𝑠𝑛) where each 𝑠𝑖 is the label of the link which outputs 𝑝𝑖 .

A type interface 𝑠 is coherent with a typeAwhenever there exists
a net 𝑆 in A with interface 𝑠 . A sequence (𝑋1, . . . , 𝑋𝑛) of subsets
𝑋𝑖 of {✠,`, ⊗} is coherent with a type A whenever any interface
(𝑠1, . . . , 𝑠𝑛) with 𝑠𝑖 ∈ 𝑋𝑖 is coherent with A.

Definition E.27 (Open type). A type is open whenever it is coher-
ent with ({`, ⊗}, . . . , {`, ⊗}).

Proposition E.28. Given two open types A and B;
• Their functional composition A � B is still open.
• Their parallel composition A ∥ B is still open.

Proof. Indeed the parallel A ∥ B remains open since it contains
in particular the nets of the form 𝑎 ∥ 𝑏 with 𝑎 ∈ A and 𝑏 ∈ B.
Similarly this remains true for A � B since it contains the merge
A ⊲⊳ B (see the appendix D.2). □

Proposition E.29. Whenever a type A is open its dual is con-
tracted.

Proof. Since a net 𝑆 in A⊥ is orthogonal to any net in A in
order to avoid clashing cuts the outputs of 𝑆 cannot be the outputs
of connectives. □

Proposition E.30. A self dual type has only nets with no connec-
tives has conclusions.

Proof. A net 𝑆 in a self dual type A must verify 𝑆 ⊥ 𝑆 . If 𝑆 has
a terminal connective then the interaction 𝑆 :: 𝑆 gives rise to a
clashing cut and cut elimination fails. □

Proposition E.31. The orthogonal of a self dual type A with one
output is an open type.

Proof. Since A is self dual it contains no net which have a
terminal connective. By the proposition 3.6 this means that A⊥
must contain nets with ` link and ⊗ link as conclusions. Thus A⊥
is an open type. □

Remark 50. The previous proposition E.30 together with proposi-
tion 3.6 implies in particular that there cannot be any type A that is
invariant under orthogonality, e.g. such that A = A⊥. In particular
this means that the inclusion A ⊆ A⊥ of a self dual type is always
strict.

Proposition E.32. Given a self dual interpretation basis B for
any atomic hypersequentH the type JHKB is open.

Proof. This follows from proposition E.28 and proposition E.31
by induction on the size of the hypersequent. □

E.5 Truncation Lemma
Recall that a substitution is a map 𝜃 which maps propositional vari-
ables to formulas. Naturally substitutions can be lifted by induction
to formulas and to sequents; 𝜃 (𝐴□𝐵) ≜ 𝜃𝐴□𝜃𝐵 and 𝜃 (Γ, 𝐴) =
𝜃 (Γ), 𝜃𝐴. A sequent Γ is an instance of a sequent Δ whenever there
exists a substitution 𝜃 such that 𝜃Δ = Γ. In that case we denote
Δ ≤ Γ.

Definition E.33 (Approximation of a sequent). A net 𝑆 is an (sub)–
approximation of a sequent Γ, denoted 𝑆 ≺ Γ, if it witnesses a
sequent Δ ≤ Γ.

There is a simple inductive process to associate a sequent ↓ H
to an hypersequentH ; ↓ 𝐴 ≜ 𝐴 while ↓ H1,H2 ≜↓ H1, ↓ H2 and
↓ H1 ∥ H2 ≜↓ H1, ↓ H2.

Remark 51. A sequent that is the truncation of a sequent of 𝑛
formulas must also contain 𝑛 formulas.

Furthermore, if two representation of sequents Γ = 𝐴1, . . . , 𝐴𝑛

and Δ = 𝐵1, . . . , 𝐵𝑛 are such that Δ ≤ Γ this implies that for each in-
dex 1 ≤ 𝑖 ≤ 𝑛 we have 𝐵𝑖 ≤ 𝐴𝑖 specifically 𝐴𝑖 [𝑋1 ↦→ 𝐹1, . . . , 𝑋𝑘 ↦→
𝐹𝑘] = 𝐵𝑖 .

Lemma E.34 (Truncation). Let B be a self dual basis. For any
net 𝑆 ; 𝑆 ∈ JHKB ⇒ 𝑆 ≺↓ H .

Proof. of lemma E.34. By induction on the hypersequent using
the measure (𝑐, 𝑛) where 𝑐 is the number of connectives in the
hypersequent and 𝑛 is the size of the hypersequent.

• If the hypersequent is made of one atomic formula 𝑋 then
𝑆 ∈ J𝑋 KB implies that 𝑆 belongs to a contracted type, e.g.
the outputs of 𝑆 are outputs of a daimon. This by definition
means 𝑆 ≺ 𝑋 .

24

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

• Say the hypersequent is made only of atomic formulas. The
hypersequentmay be of the formH1,H2 then JH1,H2KB =

(JH1K⊥B ∥ JH2K⊥B)
⊥ since, JH1K⊥B and JH2K⊥B are open

types their parallel composition remains an open type.
JH1,H2KB is the orthogonal of an open type hence it is a
contracted type. Thus any sequent in that type as outputs
which comes from a daimon link and thus is the approxi-
mation of any sequent of size 𝑛 in particular 𝑆 ≺↓ H . We
do a similar reasonment whenH = H1 ∥ H2.

• Case of non–atomic hypersequent with a virgula as main
connective. Assume that 𝑆 has a terminal connective link,
say the hypersequent is of the form H , 𝐴 ` 𝐵 such that
𝑆 = 𝑆0 + 𝑙 where 𝑙 is a`–link and is the last conclusion of 𝑆 .
By proposition E.24 it follows that 𝑆0 belongs to JH , 𝐴, 𝐵KB
the measure of that hypersequent as decreased and so we
apply the induction hypothesis; 𝑆0 ≺↓ (H , 𝐴, 𝐵) indeed it
follows that 𝑆 ≺↓ (H , 𝐴 ` 𝐵). A similar argument works
for an hypersequent of the formH , 𝐴 ⊗ 𝐵.

• Case of non–atomic hypersequent with a parallel as main
connective. On the other hand say 𝑆 belongs to the interpre-
tation JH ∥ 𝐴`𝐵KB then it is orthogonal to JHK⊥B �J𝐴`
𝐵K⊥B and thus 𝑆0 is orthogonal to JHK⊥B � J𝐴, 𝐵K⊥B . Equiv-
alently using proposition E.24 𝑆0 belongs to JH ∥ 𝐴, 𝐵KB
the size of the hypersequent as decreased and so we can
apply the induction hypothesis; 𝑆0 ≺↓ (H , 𝐴, 𝐵) and thus
𝑆 ≺↓ (H , 𝐴` 𝐵). A similar argument works for an hyper-
sequent of the formH ∥ 𝐴 ⊗ 𝐵. Similarly we treat the case
ofH , 𝐴 ⊗ 𝐵.

□

E.6 Proofs of section 5.2
Proposition E.35. Let 𝑆 a multiplicative net and Δ and Γ two

sequents such that Δ ≤ Γ;

𝑆 ⊢MLL✠ Δ⇒ 𝑆 ⊢MLL✠ Γ.

Proof. This is done by induction on the represented proof by 𝑆 ,
specifically by looking at the last rule of the proof. The inductions
steps are trivial. The base case hold since the daimon rule may
introduce any sequents whenever it introduces Δ it may as well
introduce a sequent of the same size, say Γ. □

Proposition E.36. Given a net 𝑆 and a sequent Γ. If 𝑆 ≺ Γ then
there exists a truncation Δ of 𝑆 such that 𝑆 |∼ Δ.

Notation 22. Given a proof systemS (whichwould be eitherMLL,MLL✠

or MLL2 here), for a sequent Γ in MLL2 we denote by ⦃Γ : S⦄ the
set of nets which represent a proof in S of the sequent Γ.

Remark 52. Proposition E.35 implies that whenever 𝐴 ≤ 𝐵 the set
⦃𝐴 : MLL✠⦄ is contained in ⦃𝐵 : MLL✠⦄.

Theorem 5.10 (MLL✠ completeness). Let 𝑆 be a cut–free net
and Γ be a sequent. For any self dual and approximable interpretation
basis B, if 𝑆 belongs to JΓKB then 𝑆 represents a proof of Γ inMLL✠ .

Proof. of Theorem 5.10. Since the basis is self dual any net 𝑆
in JΓKB is an approximation of ↓ Γ by the lemma E.34, since Γ is a
simple sequent, this means 𝑆 is an approximation of Γ. This means

using proposition E.36 that 𝑆 is the witness of a sequent Δ such
that Δ ≤ Γ. Denote Γ = 𝐴1, . . . , 𝐴𝑛 and Δ = 𝐵1, . . . , 𝐵𝑛 .

Furhtermore 𝑆 belongs to JΓKB which equivalently means that,

𝑆 ⊥ J𝐴⊥1 KB ∥ · · · ∥ J𝐴⊥𝑛 KB .

Since adequacy is true for MLL✠ (theorem 4.3), for any index 𝑖
the interpretation J𝐴⊥

𝑖
KB contains the proofs of 𝐴⊥

𝑖
therefore,

For any index 𝑖 using the remark 52 since 𝐵𝑖 ≤ 𝐴𝑖 it follows that
𝐵⊥
𝑖
≤ 𝐴⊥

𝑖
and thus ⦃𝐵⊥

𝑖
: MLL✠⦄ ⊆ ⦃𝐴⊥

𝑖
: MLL✠⦄.

𝑆 ⊥ ⦃𝐵⊥1 : MLL✠⦄ ∥ · · · ∥ ⦃𝐵⊥𝑛 : MLL✠⦄.

In particular we have shown that the tests of a formula 𝐹 are proofs
of 𝐹⊥ thus tests(𝐵𝑖) ⊆ ⦃𝐵⊥

𝑖
: MLL✠⦄ for any index 𝑖 . Hence,

𝑆 ⊥ tests(𝐵1) ∥ · · · ∥ tests(𝐵𝑛) .
Since 𝑆 is a witness of Δ we conclude using proposition ?? that
𝑆 ⊢✠MLL Δ. In particular using the proposition E.35 it follows that
𝑆 ⊢✠MLL Γ. □

Proof. of Theorem 5.13 Since the basis is self dual and approx-
imable the theorem 5.10 ensure that 𝑆 is a proof in MLL✠ of Γ. To
conclude it remains to show that the binary daimons realise only
sequents of the form 𝑋,𝑋⊥.

Indeed consider a binary daimon ✠2 from the proposition 4.2 it
belongs toA�A⊥ for any type𝐴. Thus it belongs to J

⋂
𝑋 ∈Ω 𝑋,𝑋⊥KB .

But indeed 𝑆 does not belongs to J
⋂

𝑌 ∈Ω
⋂

𝑋 ∈Ω 𝑋,𝑌 KB since then
𝑆 belongs to A � A for any type. Chosing A with the right mea-
sure ✠2 cannot belong to A � A and thus 𝑆 does not belong
J
⋂

𝑌 ∈Ω
⋂

𝑋 ∈Ω 𝑋,𝑌 KB . This show that the binary daimons of 𝑆 re-
alise only sequents of the form 𝑋,𝑋⊥ hence ✠2 is a proof of MLL,
this indeed is preserved by induction. □

F COMPLEMENTS TO SECTION 6
Proposition F.1. LetH be an hyper–sequent and 𝑋 be a propo-

sitional variable. If 𝑋 does not occur free inH then for any type with
one conclusion 𝑅; JHKB = JHKB{𝑋 ↦→𝑅} .

Proof. of proposition F.1. By induction on the couple (𝑐, 𝑛)
where 𝑐 is the number of connectives inH and 𝑛 is the size of the
hypersequent. Consider 𝑅 some type with one output.

• Base case (0, 1) e.g. hypersequent made of one formula.
Note that J𝑌 KB{𝑋 ↦→𝑅} is equal to J𝑌 KB by definition.

• We show that whenever the property hold for (𝑐, 𝑛) and
(𝑐′, 𝑛′) it holds for (𝑐 + 𝑐′, 𝑛 + 𝑛′). To do so we show the
parallel operator and virgula’s of hypersequent preserve
the property.
Say H = H1 ∥ H1 then JH1 ∥ H2KB{𝑋 ↦→𝑅} corresponds
to JH1KB{𝑋 ↦→𝑅} ∥ JH2KB{𝑋 ↦→𝑅} by induction hypothesis
on H1 and H2 this is equal to JH1KB ∥ JH2KB which is
JH1 ∥ H2KB . Similarly we treat the caseH = H1,H2

• Show that connectives can be decomposed, increasing the
size of the hypersequent but decreasing 𝑐 . We show that if
the property hold for the cases (𝑐, 1) and (𝑐′, 1) it holds for
the cases (𝑐 + 𝑐′ + 1, 1).
Say the hypersequent is J𝐴 ` 𝐵KB{𝑋 ↦→𝑅} ; if a net 𝑆 =

𝑆0 + 𝑙 where 𝑙 denotes the `–link which outputs the only
conclusion belongs to J𝐴 ` 𝐵KB{𝑋 ↦→𝑅} then 𝑆0 belongs

25

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

J𝐴, 𝐵KB{𝑋 ↦→𝑅} applying induction hypothesis this is equal
to J𝐴, 𝐵KB and thus 𝑆 belongs to J𝐴` 𝐵KB .
If 𝑆 has for its last conclusion 𝑝 the output of a daimon link
then we can add a`–link to 𝑆 and duplicate the conclusion
𝑝 obtaining 𝑆 + 𝑙 and ensure that 𝑆 + 𝑙 belongs to J𝐴` 𝐵KB .
Then since a daimon link can simulate a well–formed `–
link below a daimon this implies that 𝑆 belongs to J𝐴`𝐵KB .
For the case of J𝐴 ⊗ 𝐵KB{𝑋 ↦→𝑅} the argument is similar.

• The base together with the third case allow us to show the
property hold for any hypersequent of measure (𝑐, 1). This
together with the first and second case allows us to show it
hold for any hypersequent of measure (𝑐, 𝑛).

□

Theorem 6.2 (Adeqacy forMLL2). Given 𝑆 a proof inMLL2
of a sequent Γ. For any regular interpretation basis B, 𝑆 ∈ JΓKB .

Proof. of Theorem 6.2. Assume 𝑆 represents a proof 𝜋 of Γ. We
proceed by induction on 𝜋 looking at the last rule of 𝜋 .

• If 𝜋 is an axiom rule then 𝜋 is a proof of a sequent𝐴,𝐴⊥ for
some formula 𝐴. On the other hand 𝑆 is of the form ⟨▷✠
𝑝, 𝑞⟩ e.g. corresponds to ✠2. The proposition 4.2 ensures
that ✠2 belongs to A �A⊥ for any type A hence it belongs
to J𝑋,𝑋⊥KB for any basis B.

• If the last rule of 𝜋 is the introduction of a ` connective
or a tensor connective we reason as in the proof of MLL
adequacy.

• If the last rule of 𝜋 is an existential quantifier, then 𝑆 can be
decomposed as 𝑆0 + 𝑙 where 𝑙 is the existential link corre-
sponding to the last rule of 𝜋 . Then 𝑆 is a proof of Γ, ∃𝑋𝐴
and 𝑆0 is a proof of Γ, 𝐴.
𝑆0 is a representation of a smaller proof than 𝑆 , thus we
can apply the induction hypothesis on 𝑆0 and claim that
𝑆0 belongs to JΓ, 𝐴KB for any basis B. This means that
for any 𝛾 in JΓK⊥B the interaction 𝑆0 :: 𝛾 belongs to J𝐴KB .
Therefore 𝑆0 :: 𝛾 belongs to

⋃
𝑅∈ΩJ𝐴KB{𝑋 ↦→𝑅} and so to(⋃

𝑅∈ΩJ𝐴KB{𝑋 ↦→𝑅}
)⊥⊥

. As a consequence 𝑆0 :: 𝛾 + 𝑙 e.g.
𝑆0 + 𝑙 :: 𝛾 which is 𝑆 :: 𝛾 , belongs to J∃𝑋𝐴KB .
Since 𝛾 range in JΓK⊥B we can conclude that 𝑆 belongs
JΓ, ∃𝑋𝐴KB . Indeed this hold for any interpretation basis B.

• If the last rule of 𝜋 is the introduction of a universal quan-
tifer. Then 𝑆 can be decomposed as 𝑆0 + 𝑙 where 𝑙 is the link
corresponding to the universal quantification. 𝑆0 is a proof
of Γ, 𝐴 and furthermore since we can apply a universal
quantification, 𝑋 does not occur free in Γ.
Applying the induction hypothesis 𝑆0 belongs to JΓ, 𝐴KB for
any basis B. In particular for any type 𝑅, the net 𝑆0 belongs
to JΓ, 𝐴KB{𝑋 ↦→𝑅} . This means that 𝑆0 belongs to the inter-
section

⋂
𝑅∈ΩJΓ, 𝐴KB{𝑋 ↦→𝑅} which is

⋂
𝑅∈ΩJΓKB{𝑋 ↦→𝑅} �

J𝐴KB{𝑋 ↦→𝑅} .
As a consequence, for any type𝑅, for any net𝛾 in JΓK⊥B{𝑋 ↦→𝑅}
the interaction 𝑆0 :: 𝛾 belongs to J𝐴KB{𝑋 ↦→𝑅} . Since the uni-
versal quantification can be applied𝑋 does not occur free in
the sequent Γ and thus calling proposition F.1 JΓK⊥B{𝑋 ↦→𝑅}
is equal to JΓK⊥B . Thus we have showed that 𝑆0 belongs to
JΓKB � J𝐴KB{𝑋 ↦→𝑅} for any type 𝑅. Hence 𝑆0 belongs to

JΓKB �
⋂

𝑅∈ΩJ𝐴KB{𝑋 ↦→𝑅} which is JΓ,
⋂

𝑋 ∈Ω 𝐴KB . We can
therefore conclude that 𝑆 belongs to JΓ,∀𝑋𝐴KB .

□

G COMPLEMENTS TO SECTION 7
G.1 Measures of Types

Definition G.1. The size of an interface 𝜎 ⊆ out(𝑆) × out(𝑇) is
its cardinal.

Definition G.2. A measure is a map 𝜇 : Mod → R which is
invariant under cut elimination. The weight of a measure is the
value of 𝜇 (✠0), we denote it w(𝜇). The measure of an interface 𝜎 is
the measure of the module

∑
(𝑝,𝑞) ∈𝜎 ⟨𝑝, 𝑞 ▷cut⟩, it is denoted 𝜇 (𝜎).

A measure is;
• linear whenever 𝜇 (𝑆 ∥ 𝑇) = 𝜇 (𝑆) + 𝜇 (𝑇), for any modules

𝑆 and 𝑇 .
• stable whenever two interface 𝜎 and 𝜎′ of the same size

have the same measure 𝜇 (𝜎) = 𝜇 (𝜎′).

Proposition G.3. Given a linear and stable measure 𝜇, for any
two nets 𝑆 and 𝑇 with 𝑛 outputs;

𝑆 ⊥ 𝑇 ⇒ 𝜇 (𝑆) + 𝜇 (𝑇) + 𝜇 (id𝑛) = w(𝜇) .

Proposition G.4. Given a linear and stable measure 𝜇, and a type
A such that A and A⊥ are both non empty;

• All the nets in A have the same measure.
• All the nets in A⊥ have the same measure.

Proof. For any pair of nets 𝑆 and 𝑇 which belongs respectively
to A and A⊥ the equality hold 𝜇 (𝑆) + 𝜇 (𝑇) + 𝜇 (id𝑛) = w(𝜇). Thus
𝜇 (𝑆) = w(𝜇) − (𝜇 (𝑇) + 𝜇 (id𝑛)) and this must hold for any net in
A, thus the measure is invariant on A.

Similarly any net in A⊥ must verify 𝜇 (𝑇) = w(𝜇) − (𝜇 (𝑆) +
𝜇 (id𝑛)). This means that 𝜇 is also invariant on A⊥. □

Definition G.5 (compatible measures). Two nets 𝑆 and 𝑇 with 𝑛

outputs have compatible measures whenever;

𝜇 (𝑆) + 𝜇 (𝑇) + 𝜇 (id𝑛) = w(𝜇)

The analogue notion is also defined for types.

Definition G.6 (balanced type). A type A is balanced when A and
A⊥ are both non empty. The measure 𝜇 (A) of a balanced type is
the (unique) measure of the nets it contains. A balanced type is
symmetrical whenever 𝜇 (𝐴) = 𝜇 (𝐴⊥).

Remark 53. A symmetrical type A with 𝑛 outputs must have the
measure 1/2 × (w(𝜇) − 𝜇 (id𝑛))

Definition G.7 (Separator). A set of types {B,B⊥} is a separator
for a measure 𝜇, whenever B is an asymmetrical balanced type.

Proposition G.8. Let 𝜔 be a separator, and Γ = Δ, 𝑋𝑘 , 𝑋⊥𝑘
′
a

sequent where 𝑋 does not occur free in Δ.
Given a daimon link ✠𝑛 = ⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩ if ✠𝑛 belongs to

J
⋂

𝑋 ∈𝜔 ΓKB then Γ contains the same number of atomic variable 𝑋
and 𝑋⊥.

26

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

Proof. Say 𝜔 = {B,B⊥}. We denote 𝑘 (resp. 𝑘′) the number
of occurence of 𝑋 (resp. 𝑋⊥) in Γ. By assumption ✠𝑛 belongs
to JΓKB{𝑋 ↦→B} and so it is orthogonal to J𝐴1KB{𝑋 ↦→B} ∥ · · · ∥
J𝐴𝑛KB{𝑋 ↦→B} . Themeasure of that set is the sum

∑
1≤𝑖≤𝑛 𝜇 (J𝐴𝑖KB{𝑋 ↦→B})

indeed this writting Γ as 𝐵1, . . . , 𝐵𝑚, , 𝑋𝑘 , 𝑋⊥𝑘
′
where each 𝐵𝑖 is

a formula that does not contain free occurences of 𝑋 or 𝑋⊥, the
previous sum is equal to,∑︁
1≤𝑖≤𝑚

𝜇 (J𝐵𝑖KB{𝑋 ↦→B})+𝑘×𝜇 (J𝑋 KB{𝑋 ↦→B})+𝑘′×𝜇 (J𝑋⊥KB{𝑋 ↦→B})

Which indeed is∑︁
1≤𝑖≤𝑚

𝜇 (J𝐵𝑖KB{𝑋 ↦→B}) + 𝑘 × 𝜇 (B) + 𝑘′ × 𝜇 (B⊥)

Since 𝑋 does not occur free in 𝐵1, . . . , 𝐵𝑛 calling proposition F.1, in
particular this is equal to∑︁

1≤𝑖≤𝑚
𝜇 (J𝐵𝑖KB) + 𝑘 × 𝜇 (B) + 𝑘′ × 𝜇 (B⊥)

Furhtermore ✠𝑛 also belongs to JΓKB{𝑋 ↦→B⊥ } , applying the
same argument this means that its measure is also equal to;∑︁

1≤𝑖≤𝑚
𝜇 (J𝐵𝑖KB) + 𝑘 × 𝜇 (B⊥) + 𝑘′ × 𝜇 (B) .

Since the two sums must be equal it follows that

𝑘 × 𝜇 (B⊥) + 𝑘′ × 𝜇 (B) = 𝑘 × 𝜇 (B) + 𝑘′ × 𝜇 (B⊥)
and thus

𝑘′ × 𝜇 (B) − 𝑘′ × 𝜇 (B⊥) = 𝑘 × 𝜇 (B) − 𝑘 × 𝜇 (B⊥)
Indeed we can rewrite this

𝑘 × (𝜇 (B) − 𝜇 (B⊥)) = 𝑘′ × (𝜇 (B) − 𝜇 (B⊥))
Since the type B is asymmetrical the difference of the measure is not
null it follows that we can divide both sides by the differences of the
measure and conclude 𝑘 = 𝑘′. In other words in Γ the propositional
variable 𝑋 occurs as many times as 𝑋⊥ occurs.

□

Remark 54. The previous proposition in particular applies to any
sequent constitued only of propositional variable. In fact this gen-
eralizes to any atomic hypersequent of the form Γ1 ∥ · · · ∥ Γ𝑛 .
This is because J

⋂
𝑋 ∈𝜔 H1 ∥ H2KB is equal to J

⋂
𝑋 ∈𝜔 H1KB ∥

J
⋂

𝑋 ∈𝜔 H2KB so a simple induction can be performed.

Definition G.9. The switching measure of a net 𝑆 corresponds
to the integer 𝑁 (𝑆) − 𝐸 (𝑆) where 𝑁 (𝑆) is the number of nodes of
the switching graphs of 𝑆 and 𝐸 (𝑆) is the number of edges of the
switching graphs of 𝑆 .

Proposition G.10. The switching measure is a linear and stable
measure of weight 1.

G.2 Properties of Intersection and Union
Proposition G.11. Given (A𝑖)𝑖∈𝐼 a family of types;
• The intersection

⋂
𝑖∈𝐼 A𝑖 is still a type.

• (⋃𝑖∈𝐼 A𝑖)⊥ is equal to
⋂

𝑖∈𝐼 A⊥𝑖 .

• (⋂𝑖∈𝐼 A𝑖)⊥ is equal to
(⋃

𝑖∈𝐼 A⊥𝑖
)⊥⊥

Proof. We treat each point independently;

• For any index 𝑖 the intersection
⋂

𝑖∈𝐼 A𝑖 is included in the
type A𝑖 . Since orthogonality invert the inclusion of sets this
implies A⊥

𝑖
is contained in (⋂𝑖∈𝐼 A𝑖)⊥.

Therefore a net 𝑆 which is orthogonal to (⋂𝑖∈𝐼 A𝑖)⊥, is also
orthogonal to A⊥

𝑖
for any index 𝑖 ∈ 𝐼 . This means that 𝑆

belongs to A
⊥⊥
𝑖

which since we consider a family of types
is exactly A𝑖 .
Thus we showed that (⋂𝑖∈𝐼 A𝑖)

⊥⊥
is included in

⋂
𝑖∈𝐼 A𝑖 .

Since the other inclusion always hold we conclude.
• Let 𝑆 be a net in

⋂
𝑖∈𝐼 A⊥𝑖 . For any index 𝑖 and any net 𝑎 in

A𝑖 the net 𝑆 is orthogonal to 𝑎. This shows that 𝑆 belongs
to (⋃𝑖∈𝐼 A𝑖)⊥ and thus the first inclusion hold.
On the other hand let 𝑆 be a net orthogonal to

⋃
𝑖∈𝐼 A𝑖 then

in particular for any type A𝑖 the net 𝑆 is orthogonal to A𝑖

and so belong to A⊥
𝑖
. This means that 𝑆 belongs to

⋂
𝑖∈𝐼 A⊥𝑖 .

• This is a direct consequence of the previous point. (⋂A𝑖)⊥

corresponds to
(⋂

A
⊥⊥
𝑖

)⊥
and thus to

(⋃
A⊥
𝑖

)⊥⊥
.

□

Proposition G.12. Given (𝐴𝑖)𝑖∈𝐼 a family of sets of nets with the
same number of outputs;

• (⋂𝑖∈𝐼 𝐴𝑖)⊥ is equal to
(⋂

𝑖∈𝐼 𝐴
⊥⊥
𝑖

)⊥
.

• (⋃𝑖∈𝐼 𝐴𝑖)⊥ is equal to
(⋃

𝑖∈𝐼 𝐴
⊥⊥
𝑖

)⊥
.

Proof. We treat both cases independently;
• The inclusions𝐴𝑖 ⊆ 𝐴

⊥⊥
𝑖

always hold thus the intersections
are included

⋂
𝑖∈𝐼 𝐴𝑖 ⊆

⋂
𝑖∈𝐼 𝐴

⊥⊥
𝑖
. Since orthogonality in-

verts inclusion it follows that
(⋂

𝑖∈𝐼 𝐴
⊥⊥
𝑖

)⊥
⊆ (⋂𝑖∈𝐼 𝐴𝑖)⊥.

On the other hand, consider 𝑆 a net orthogonal to (⋂𝑖∈𝐼 𝐴𝑖)
e.g. belonging to

⋃
𝑖∈𝐼 𝐴

⊥
𝑖
. Hence, for any index 𝑖 , 𝑆 is or-

thogonal to𝐴𝑖 , in particular then 𝑆 is orthogonal to any net
which belong to

⋂
𝑖∈𝐼 𝐴𝑖 .

Thus any net orthogonal to (⋂𝑖∈𝐼 𝐴𝑖)⊥ is orthogonal to
𝑆 . Hence we have showed the inclusion

(⋃
𝑖∈𝐼 𝐴

⊥
𝑖

)⊥ ⊆
(⋂𝑖∈𝐼 𝐴𝑖)

⊥⊥
. Since orthogonality inverts inclusion this yields

the inclusion (⋂𝑖∈𝐼 𝐴𝑖)⊥ ⊆
(⋃

𝑖∈𝐼 𝐴
⊥
𝑖

)⊥⊥
.

Hence using the previous point we obtained,(⋂
𝑖∈𝐼

𝐴𝑖

)⊥
=

(⋃
𝑖∈𝐼

𝐴⊥𝑖

)⊥⊥
=

(⋂
𝑖∈𝐼

𝐴
⊥⊥
𝑖

)⊥
• One of the inclusion is trivial namely (⋃𝑖∈𝐼 𝐴𝑖)⊥ contains(⋃

𝑖∈𝐼 𝐴
⊥⊥
𝑖

)⊥
.

On the other hand say a net 𝑆 belongs to (⋃𝑖∈𝐼 𝐴𝑖)⊥, then
for any index 𝑖 the net 𝑆 is orthogonal to𝐴𝑖 , and so belongs
to 𝐴⊥

𝑖
. Since this is true for any index 𝑖 this means that

𝑆 belongs to
⋂

𝑖∈𝐼 𝐴
⊥
𝑖
which corresponds to

(⋂
𝑖∈𝐼 𝐴

⊥
𝑖

)⊥⊥
and thus to

(⋃
𝑖∈𝐼 𝐴

⊥⊥
𝑖

)⊥
. Thus we have shown:(⋃

𝑖∈𝐼
𝐴𝑖

)⊥
=

(⋃
𝑖∈𝐼

𝐴
⊥⊥
𝑖

)⊥
.

□

27

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

Remark 55. A consequence of proposition G.11 is that the intersec-
tions of types are still types. Thus this set–theoretic operation is
a valid construction on types. Later on, intersections (and unions)
will appear in order to define the realizers of quantified formulas.

Remark 56. The (finite) union of types on the contrary is not guar-
anteed to still be a type. For instance in the case of two types A
and B that don’t cover the whole set of nets, and such that their
orthogonals don’t intersects.

The inclusion ofA∪B in (A∪B)⊥⊥ is always guaranteed. On the
other hand, using proposition G.11 the opposite inclusion would
mean in particular that (A⊥ ∩B⊥)⊥ is included in A∪B. Using our
assumption that would mean that ∅⊥ is included in the union of A
and B. Since ∅⊥ is the whole set of nets this would mean that A∪B
covers the whole set of nets, this goes against our assumption.

As a consequence we cannot have a ’De Morgan’ law for set–
constructions e.g. the equality of (A ∩ B)⊥ and A⊥ ∪ B⊥. Since on
one hand (A ∩ B)⊥ is guaranteed to be a type while A⊥ ∪ B⊥ can
fail to be a type.

Remark 57. Finally we point out that the proposition G.11 affirms
that for two types (A⊥ ∪ B⊥)⊥ corresponds to A⊥⊥ ∩ B⊥⊥ and
thus to A ∩ B. Applying orthogonality this yields that (A ∩ B)⊥
corresponds to (A⊥ ∪ B⊥)⊥⊥.

G.3 Proofs of Section 7
Definition G.13 (computable type). A type is computable when-

ever there exists a finite set 𝐵 such that A = 𝐵⊥.

Proposition 7.2. The functional composition A � B and the par-
allel composition A ∥ B of two syntactically computable types are
syntactically computable.

Of the first statement. Consider two types A and B which
are finitely testable, this means there exists two finite sets of nets
𝑋𝐴 and 𝑋𝐵 such that A = 𝑋⊥

𝐴
and B = 𝑋⊥

𝐵
. The following set of

nets is still finite and of cardinality 𝑐𝑎𝑟𝑑 (𝑋𝐴) × 𝑐𝑎𝑟𝑑 (𝑋𝐵);
𝑋 = {𝑎 ∥ 𝑏 | 𝑎 ∈ 𝑋𝐴, 𝑏 ∈ 𝑋𝐵}

Furthermore 𝑋⊥ corresponds to the orthogonal (𝑋𝐴 ∥ 𝑋𝐵)⊥.
By duality this type is equal to 𝑋⊥

𝐴
� 𝑋⊥

𝐵
identifying A and B this

corresponds to A � B. □

Notation 23. Given a sequent Γ = 𝐴1, . . . , 𝐴𝑛 we denote Γ the
sequent 𝐴1, . . . , 𝐴𝑛 .

Proposition 7.2. The functional composition A � B and the par-
allel composition A ∥ B of two syntactically computable types are
syntactically computable.

Of the second statement. Consider 𝑆 with conclusion 𝑝1, . . . , 𝑝𝑛, 𝑞1 . . . , 𝑞𝑚some
net in A ∥ B witnessing Γ,Δ such that the 𝑛 first conclusions corre-
spond to Γ and the remaining conclusions correspond to Δ.

Consider the set A(Γ) ⊲⊳ B(Δ). for any net 𝑇 in that merge the
interaction 𝑆 :: 𝑇 is made only of glueing and multiplicative cuts.
If 𝑆 is orthogonal to A(Γ) ⊲⊳ B(Δ), the conclusions 𝑝𝑖 and 𝑞𝑖 of 𝑆
are not related by a daimon link. Otherwise a cycle can be created
while interacting with a well chosen merge. Hence 𝑆 can be written
as 𝑎(𝑝1, . . . , 𝑝𝑛) ∥ 𝑏 (𝑞1, . . . , 𝑞𝑚). Given some merge 𝑎′ ⊲⊳ 𝑏′ then
𝑎′ ⊲⊳ 𝑏′ :: (𝑎 ∥ 𝑏) can be rewritten as 𝑎′ :: 𝑎 ⊲⊳ 𝑏′ :: 𝑏.

Since the cuts involved in that interaction are all reversible we
can ensure that 𝑎 is orthogonal to A(Γ) and 𝑏 is orthogonal to
B(Δ). □

Proposition G.14. Given (𝐴𝑖)𝑖∈𝐼 a family of sets of nets with the
same number of outputs;

• (⋂𝑖∈𝐼 𝐴𝑖)⊥ is equal to
(⋂

𝑖∈𝐼 𝐴
⊥⊥
𝑖

)⊥
.

• (⋃𝑖∈𝐼 𝐴𝑖)⊥ is equal to
(⋃

𝑖∈𝐼 𝐴
⊥⊥
𝑖

)⊥
.

Proof. We treat both cases independently;

• The inclusions𝐴𝑖 ⊆ 𝐴
⊥⊥
𝑖

always hold thus the intersections
are included

⋂
𝑖∈𝐼 𝐴𝑖 ⊆

⋂
𝑖∈𝐼 𝐴

⊥⊥
𝑖
. Since orthogonality in-

verts inclusion it follows that
(⋂

𝑖∈𝐼 𝐴
⊥⊥
𝑖

)⊥
⊆ (⋂𝑖∈𝐼 𝐴𝑖)⊥.

On the other hand, consider 𝑆 a net orthogonal to
⋃

𝑖∈𝐼 𝐴
⊥
𝑖

hence for any index 𝑖 , 𝑆 is orthogonal to 𝐴𝑖 , in particular
then 𝑆 is orthogonal to any net which belong to

⋂
𝑖∈𝐼 𝐴𝑖 .

Thus any net orthogonal to (⋂𝑖∈𝐼 𝐴𝑖)⊥ is orthogonal to
𝑆 . Hence we have showed the inclusion

(⋃
𝑖∈𝐼 𝐴

⊥
𝑖

)⊥ ⊆
(⋂𝑖∈𝐼 𝐴𝑖)

⊥⊥
. Since orthogonality inverts inclusion this yields

the inclusion (⋂𝑖∈𝐼 𝐴𝑖)⊥ ⊆
(⋃

𝑖∈𝐼 𝐴
⊥
𝑖

)⊥⊥
.

Hence using the previous point we obtained,

(⋂
𝑖∈𝐼

𝐴𝑖

)⊥
=

(⋃
𝑖∈𝐼

𝐴⊥𝑖

)⊥⊥
=

(⋂
𝑖∈𝐼

𝐴
⊥⊥
𝑖

)⊥
• One of the inclusion is trivial namely (⋃𝑖∈𝐼 𝐴𝑖)⊥ contains(⋃

𝑖∈𝐼 𝐴
⊥⊥
𝑖

)⊥
.

On the other hand say a net 𝑆 belongs to (⋃𝑖∈𝐼 𝐴𝑖)⊥, then
for any index 𝑖 the net 𝑆 is orthogonal to𝐴𝑖 , and so belongs
to 𝐴⊥

𝑖
. Since this is true for any index 𝑖 this means that

𝑆 belongs to
⋂

𝑖∈𝐼 𝐴
⊥
𝑖
which corresponds to

(⋂
𝑖∈𝐼 𝐴

⊥
𝑖

)⊥⊥
and thus to

(⋃
𝑖∈𝐼 𝐴

⊥⊥
𝑖

)⊥
. Thus we have shown:

(⋃
𝑖∈𝐼

𝐴𝑖

)⊥
=

(⋃
𝑖∈𝐼

𝐴
⊥⊥
𝑖

)⊥
.

□

Proposition 7.3. The union (⋃𝑖∈𝐼 A𝑖)
⊥⊥

of a family of com-
putable types is computable. The intersection

⋂
𝑖∈𝐼 A𝑖 of a finite

family of computable types is computable.

Proof. of proposition 7.3. We treat both cases independently.
28

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

Linear realisability on untyped nets Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

• By equational reasoning with the previous propositions;⋂
𝑖∈𝐼

A𝑖 =

(⋂
𝑖∈𝐼

A𝑖

)⊥⊥
=

(⋃
𝑖∈𝐼

A⊥𝑖

)⊥⊥⊥
=

(⋃
𝑖∈𝐼

A⊥𝑖

)⊥
=

(⋃
𝑖∈𝐼

𝑡
⊥⊥
𝑖

)⊥
=

(⋃
𝑖∈𝐼

𝑡𝑖

)⊥
.

The cardinal of the union
⋃

𝑖∈𝐼 𝑡𝑖 is bounded by
∑
𝑖∈𝐼 𝑐𝑎𝑟𝑑 (𝑡𝑖),

hence since each 𝑡𝑖 is finite and since the set of indexes 𝐼 is
finite that sum is finite and thus the cardinal of

⋃
𝑖∈𝐼 𝑡𝑖 is

also finite. The intersection
⋂

𝑖∈𝐼 A𝑖 is the orthogonal of a
finite set thus it is a computable type.

• Using the previous proposition we can obtain the following
series of equalities;(⋃

𝑖∈𝐼
A𝑖

)⊥⊥
=

(⋂
𝑖∈𝐼

A⊥𝑖

)⊥
=

(⋂
𝑖∈𝐼

𝑡
⊥⊥
𝑖

)⊥
=

(⋂
𝑖∈𝐼

𝑡𝑖

)⊥
.

The cardinal of the intersection
⋂

𝑖∈𝐼 𝑡𝑖 is bounded bymin𝑖∈𝐼 𝑐𝑎𝑟𝑑 (𝑡𝑖),
since for any 𝑖 the cardinal of 𝑡𝑖 is finite then the mini-
mum of the cardinals must also be finite. As a consequence⋂

𝑖∈𝐼 𝑡𝑖 has a finite cardinality. The union (
⋃

𝑖∈𝐼 A𝑖)
⊥⊥

is
the orthogonal of a finite set, hence it is a computable type.

□

Notation 24. Let A be a type we denote 𝑐 𝑓 (𝐴) the set of cut free
nets in A.

Definition G.15. A type A is effective whenever A⊥ is equal to
𝑐 𝑓 (𝐴)⊥.

An interpretation basis is effective whenever it maps atomic
formulas to effective types.

Remark 58. Equivalently a type A is effective whenever A
⊥⊥

=

𝑐 𝑓 (𝐴)⊥⊥ .

Proposition G.16. For any two effective types A and B the types
A` B, A ⊗ B, A � B and A ∥ B are still effective.

Proof. This is a direct consequence from proposition E.23, not-
ing that an effective type A satisfies A = 𝑐 𝑓 (𝐴)⊥⊥ . □

Proposition G.17. Given an effective interpretation basis B and
Γ some sequent the interpretation JΓKB is effective.

Proof. This is easily obtained by induction on the size of the
sequent, using the proposition G.16. □

Remark 59. A consequence of the previous theorem is that if a the
set of cut free nets of two types JΓKB and JΓKB are equal then these
types are equal.

Proposition G.18. Given (A𝑖)𝑖∈𝐼 a family of effective types, then⋃
𝑖∈𝐼 A𝑖 and

⋂
𝑖∈𝐼 A𝑖 are effective types.

Proof. This is a direct consequence of remark 58 and proposi-
tion G.14. □

Notation 25. Given a formula𝐴we define by induction the notation
𝐴𝑛 whenever 𝑛 is an integer;

• 𝐴0 denotes the empty sequent.
• 𝐴𝑛+1 denotes 𝐴𝑛, 𝐴.

Notation 26. Let 𝑋 be a propositional variable, we denote by C𝑋

the set of sequents ofMLL of the form Γ, 𝑋𝑛, 𝑋⊥𝑛 for some integer
𝑛 and such that Γ does not contain an occurence of 𝑋 .

Proposition G.19. For any propositional variable 𝑋 any approx-
imable basis B, and any net 𝑆

𝑆 ⊢C𝑋
Γ ⇒ 𝑆 ∈ JΓKB .

Proof. As for soundness in the case ofMLL andMLL✠ we only
need to prove the base case. Thus we need to prove that for any
sequent Γ, 𝑋𝑛, 𝑋⊥𝑛 a daimon link✠𝑘+2𝑛 belongs to JΓ, 𝑋𝑛, 𝑋⊥𝑛KB

□

Remark 60. In particular this ensure that any net representing
a proof of MLL✠ that introduce only sequents of C𝑋 belongs to
J
⋂

𝑋 ∈Ω ΓKB , whenever B is an approximable basis.

Notation 27. Recall that a multiplicative net 𝑆 is an ordered hyper-
graphs hence it is equipped with an order on its conclusion. When-
ever the conclusions of 𝑆 are {𝑝1, . . . , 𝑝𝑛} and (𝑝𝜎 (𝑛) , . . . , 𝑝𝜎 (𝑛)) is
an ordering of that set we denote 𝑆 [(𝑝𝜎 (𝑛) , . . . , 𝑝𝜎 (𝑛))] to explicitly
refer to the order of the conclusion of 𝑆 as (𝑝𝜎 (𝑛) , . . . , 𝑝𝜎 (𝑛)).

Remark 61. Given an hypersequentH the size of the hypersequent
H is equal to the number of conclusions the net in JHKB contains
– this can be showed by a simple inclusion onH .

PropositionG.20. Given 𝑆 [𝑝1, 𝑝2, 𝑝3] a net made of daimon links
only. H1,H2 and H3 three hypersequents such that for each index
1 ≤ 𝑖 ≤ 𝑛 the size ofH𝑖 is the size of the sequence 𝑝𝑖 .

If 𝑆 [𝑝1, 𝑝2, 𝑝3] belongs to JH1, (H2 ∥ H3)KB then 𝑆 [𝑝1, 𝑝2, 𝑝3]
belongs to J(H1,H2) ∥ H3KB or 𝑆 [𝑝1, 𝑝3, 𝑝2] ∈ J(H1,H3) ∥ H2KB .

Remark 62. The previous proposition ensure that a net made of
daimon links only belongs to some hypersequentH only if it be-
longs to an hypersequent of the form Γ1 ∥ · · · ∥ Γ𝑛 where each Γ𝑖
are sequents. This can be obtained by performing an induction on
the number of non external parallel links inH . This together with
the remark 54 provides a proof of the following proposition.

Proposition G.21. Let 𝜔 be a separator (see appendix G.1). Given
Γ some sequent and B an approximable, self dual, and effective basis,
denote B𝑋 = {J𝑋 KB , J𝑋⊥KB}.

29

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

For any cut free net 𝑆 ;

𝑆 ∈ J
⋂

𝑋 ∈𝜔∪B𝑋
ΓKB ⇒ 𝑆 ⊢C𝑋

Γ.

Proof. The net 𝑆 belongs to J
⋂

𝑋 ∈𝜔∪B𝑋 ΓKB thus in particular
𝑆 ∈ JΓKB . B is an approximable and self dual basis therefore by
theorem 5.10, 𝑆 represents a proof of Γ inMLL✠ .

To conclude we must ensure the daimons of 𝑆 only introduces
sequents Δ which belongs to C𝑋 , Any of the daimons of 𝑆 must
belongs to a type J

⋂
𝑋 ∈𝜔∪B𝑋 ΔKB and so in particular J

⋂
𝑋 ∈𝜔 ΔKB

where Δ is a sequent. We can apply therefore proposition G.8. □

Remark 63. Proposition G.19 ensure that any cut–free proof in
MLL✠ introducing only sequents following the constraint C𝑋 is
included in J

⋂
𝑋 ∈Ω ΓKB , when Ω denote the set of all types.

Furthermore J
⋂

𝑋 ∈Ω ΓKB is necessarily included in J
⋂

𝑋 ∈𝜔 ΓKB
since 𝜔 ⊂ Ω. On the other hand the completeness result show
that any cut free net in J

⋂
𝑋 ∈𝜔 ΓKB is in fact a proof in MLL✠

introducing only sequents following the constraint C𝑋 .
This shows that the intersections J

⋂
𝑋 ∈Ω ΓKB and J

⋂
𝑋 ∈𝜔 ΓKB

contain the same cut free nets. As a consequence since these types
are effective, they are equal.

Proposition 7.4. Let𝜔 be the set of types {⊗✠,`✠,✠,✠⊥} and
B be a basis which maps any 𝑋 to ✠. For any hyper–sequentH :

J
⋂
𝑋 ∈𝜔
HKB = J

⋂
𝑋 ∈Ω
HKB .

Proof. Using the previous remark. □

30

	Abstract
	1 Introduction
	2 Untyped nets
	2.1 Directed hypergraph
	2.2 Sum of hypergraphs
	2.3 Ordered Hypergraphs
	2.4 Properties of hypergraphs
	2.5 Multiplicative nets
	2.6 Homogeneous cut elimination
	2.7 Non homogeneous cut elimination

	3 Realisability model
	3.1 Interaction of nets
	3.2 Orthogonality
	3.3 Construction on Types
	3.4 Interpretation of formulas

	4 Adequacy
	5 Completeness
	5.1 Test of a formula
	5.2 Intersection Types and Completeness

	6 Adequacy at (pre–)second order
	7 Computability of Types
	8 Second order nets
	8.1 Trees, pointers, and approximations
	8.2 Contractibility criterion

	References
	Contents
	A Second order multiplicative linear logic
	A.1 Formulas
	A.2 Sequents and Hypersequents
	A.3 Proofs

	B Complements to section 2
	B.1 Complements to section 2.1
	B.2 Complements to section 2.2

	C Complements to section 3
	C.1 Proofs of section 3.1
	C.2 Rewriting properties of nets
	C.3 Proofs of section 3.3

	D Complements to section 4
	D.1 Proof Nets
	D.2 The Merge Operator
	D.3 Proofs of section 4

	E Complements to section 5
	E.1 Proof of Theorem 5.8 – Reformulating Danos Regnier
	E.2 Correctness of Tests
	E.3 Decomposition
	E.4 Contracted, open and self dual Types
	E.5 Truncation Lemma
	E.6 Proofs of section 5.2

	F Complements to section 6
	G Complements to section 7
	G.1 Measures of Types
	G.2 Properties of Intersection and Union
	G.3 Proofs of Section 7

