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A B S T R A C T

We present recent advances in path-integral formulations designed for unbiased Monte Carlo sensitivity
estimation (in the form of partial derivatives) within a coupled physics model. We establish the theoretical
foundation and illustrate the approach by estimating instantaneous atmospheric radiative forcings. In climate
studies, these quantities amount for the change in top-of-atmosphere (TOA) net radiative flux induced by an
isolated change in surface or atmospheric constitution. Based on a path-integral framework, our approach
results in estimations consistent with well-established radiative forcings in the climate community. We
highlight how physics coupling through path-integral formulations yields unbiased sensitivity estimation of
a radiative quantity (integrated TOA flux) to a spectroscopic parameter (fraction change in gas concentration).
Furthermore, we emphasize the method’s scalability, demonstrating its compatibility with computer science
acceleration techniques. These latter play a key role in rendering the computational time weakly sensitive to
the system’s multidimensional and multiphysics complexity.
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1. Introduction and context

Monte Carlo methods yield unbiased estimates of integral quantities
and their uncertainties, and as such, they have been employed for
decades to provide reference results in atmospheric radiative transfer
studies. Although being extensively used for benchmarking faster 1D
radiative transfer codes to guide improvements in remote sensing,
weather forecast and climate modeling, the high computational cost
of Monte Carlo 3D codes, such as the I3RC community model [1] or
MYSTIC [2], usually prevents their direct employment in operational
contexts. However, recent transfer from computer science accelera-
tion techniques to atmospheric radiative transfer science — to handle
complex surfaces and detailed cloud fields for instance [3–5] — open
new perspectives for using Monte Carlo methods beyond reference
simulations. Indeed, these methods have recently been shown to be key
in addressing multiphysics and multidimensional integrals [6] resulting
in computationally efficient simulations that are insensitive to the size
and complexity of the integration domains [5,7,8].

A recent example in this respect is a novel work that couples a
line-by-line spectroscopic model to a radiative transfer model, resulting
in a spectro-radiative model first described in [9], that has recently
benefited from a close collaboration between multiple communities
(computer science, atmospheric science, spectroscopy and radiative
transfer physics). This collaboration has resulted in a Monte Carlo ra-
diative transfer code specifically designed to estimate integrated radia-
tive fluxes. Developed during the PhD work of Nyffenegger-Péré [10],
it provides reference results for estimating atmospheric radiative fluxes
integrated over any spatial, temporal and wavenumber domain, using
the atmosphere and the surface properties’ description as input data,
typically derived from a global and multi-decadal General Circulation
Model (GCM) simulation. A concrete application of this tool in cli-
mate science is estimating the global broadband flux at TOA, that
is, radiances averaged temporally over a climate period and spatially
over the whole globe, as well as integrated over all frequencies and
outgoing directions, without any compromise on the radiative or the
spectroscopic physics description. Moreover, the approach combines
path-integral Monte Carlo methods — insensitive to the integration
domains — with computer graphics acceleration techniques [11–13]
— that guarantee fast convergence —, resulting in computation times
of just a few seconds that are insensitive to the input data complexity.
Consequently, the computational cost for estimating the radiative flux
integrated over an entire century, the entire globe, and the entire
infrared spectrum is comparable to the cost for one particular time,
location, and wavenumber, for the same precision level [14].

As the partial derivatives of an integral quantity are themselves
integrals, initial developments for constructing path-integral sensitivi-
ties have been available for about 20 years [15], offering the benefit
of providing uncertainties for these estimates. Since then, multiple
studies [16–19] have demonstrated that if we can estimate a quantity
through Monte Carlo methods, then we also know how to estimate
its sensitivities using these methods. However, statistical convergence
issues often arise when estimating sensitivities in a manner specific
to each application, making them at the heart of active fields of re-
search, including computer graphics science [16]. Now, instantaneous
radiative forcing — precisely the quantity we aim to estimate with-
out bias from the perspective of the spectro-radiative model — can
be determined in specific instances through sensitivity estimates, as
illustrated in Section 3 for carbon dioxide concentrations. The instan-
taneous radiative forcing with respect to a parameter is defined as the
variation in the outgoing radiative flux at TOA when this parameter

value is changed while keeping the other physics model parameters
fixed. Indeed, analyzing the physical mechanisms of global warming
requires characterizing its evolution as a function of the climate system
state. A first step is often to evaluate the radiative forcing resulting
from a change in surface or atmospheric constitution (e.g., gas, cloud,
aerosol, or surface properties), which are parameters in the spectro-
radiative model. Instead of computing two estimates based on different
sets of parameter values for a finite differences estimation, sensitivities
can be estimated using the straightforward path-integral Monte Carlo
methods that differentiate the spectro-radiative model. The unbiased
nature of these estimations on both the modeling level (through the
path-integral formulation for physics coupling) and the simulation level
(through Monte Carlo methods) is crucial. Indeed, the presence of
approximations in the treatment of radiative transfer or spectroscopic
processes introduces disparities in the forcings computed by different
climate models [20,21]. Therefore, in the present work, we argue that
in addition to estimating the radiative flux at TOA, we can build upon
the spectro-radiative model framework to yield sensitivity estimates to
any parameters of interest.

Section 2 serves as the theoretical framework of our approach,
structured into three segments. In Section 2.1, which primarily serves
as a recapitulation of previous works [9,10,14], we provide a succinct
examination of the difficulties associated with calculating radiance.
Next, we outline the path-integral foundations of its efficient Monte
Carlo estimation through the null-collision technique [22]. Moving to
Section 2.2, we establish a transport model for sensitivities that forms
the core of our proposition here. This model shares strong physical
similarities with the transport of radiance. As a result, it is shown that
the theoretical advancements presented for estimating radiance can
also be applied to estimate sensitivities and thus radiative forcings. In
Section 2.3, the Monte Carlo simulation algorithm associated with the
resulting sensitivity path-integral is detailed. This lays the groundwork
for an in-depth discussion of the sensitivity results in Section 3.

2. Theory and methods

2.1. Estimating global outgoing radiative flux at TOA

The global outgoing radiative flux at TOA, �̄�, is the monochromatic
radiance 𝐿𝜈 averaged over a time period 𝛥𝑡 (typically 1 to 30 years),
over the entire globe of area 𝑆, and integrated over all frequencies 𝜈
and outgoing directions 𝑢:

�̄� = 1
𝑆𝛥𝑡 ∫𝛥𝑡

𝑑𝑡∫S
𝑑𝑆(�⃗�)∫

+∞

0
𝑑𝜈 ∫2𝜋

𝑑𝑢|𝑢 ⋅ 𝑛|𝐿𝜈 (�⃗�, 𝑢, 𝑡) (1)

That can easily be reformulated as the following multivariate inte-
ral:

̄ = ∫𝛥𝑡
𝑝𝑇 (𝑡)𝑑𝑡∫S

𝑝𝑆 (�⃗�)𝑑𝑆(�⃗�)∫

+∞

0
𝑝𝑁 (𝜈)𝑑𝜈 ∫2𝜋

𝑝𝑈 (𝑢)𝑑𝑢

{

𝜋𝐿𝜈 (�⃗�, 𝑢, 𝑡)
𝑝𝑁 (𝜈)

}

(2)

Provided that functions 𝑝𝑇 (𝑡), 𝑝𝑆 (�⃗�), 𝑝𝑁 (𝜈) and 𝑝𝑈 (𝑢) are normalized
over their respective domains of definition, this multivariate integral
can be formulated as the expectancy of a random variable ℧ of real-
izations noted 𝜔. �̄� can therefore be estimated using a Monte Carlo
algorithm that uses the following probability density functions (PDFs)
for sampling:

• 𝑝𝑇 (𝑡) = 1∕𝛥𝑡 is a uniform probability density function used to
sample values of time 𝑡 over the [𝑡0, 𝑡0 + 𝛥𝑡] range,

• 𝑝𝑆 (�⃗�) = 1∕𝑆 is a uniform probability density function used to
sample positions �⃗� over the surface 𝑆 of a sphere that represents

the Earth’s TOA,



• 𝑝𝑁 (𝜈) is a probability density function used to sample values of 
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frequency 𝜈 over the [0, +∞[ range. Employing importance 
sampling to account for frequencies in proportion to their con-
tributions, we choose a probability density function that follows 
the Planck function, expressed for the maximal temperature en-
countered in the system 𝑇𝑚𝑎𝑥. Since ∫0

+∞ 𝐿𝜈
𝑒𝑞 𝑑𝜈 = 𝜎𝑇 4𝑚𝑎𝑥∕ 𝜋, we 

choose 𝑝𝑁 (𝜈) = (𝜋𝐿𝜈
𝑒𝑞 )∕𝜎𝑇 4𝑚𝑎𝑥,

• 𝑝𝑈 (𝑢) = |𝑢 ⋅ 𝑛|∕𝜋 is the probability density function used to sample an 
outgoing direction 𝑢 over the upper hemisphere following 
Lambertian emission.

Eq. (2) unfolds as a linearly nested sequence of integrals over
time, space, frequency, and direction. Consequently, using the dou-
ble randomization principle [23,24], a single Monte Carlo iteration for
his multivariate integral requires only a single sampling over each
f the probability density functions. To break it down, one Monte
arlo realization of �̄� involves sequentially sampling a time 𝑡 over
0, 𝛥𝑡] according to 𝑝𝑇 (𝑡), a position �⃗� over 𝑆 according to 𝑝𝑆 (�⃗�), a
requency 𝜈 over [0,+∞[ according to 𝑝𝑁 (𝜈) and a direction 𝑢 over the
utgoing hemisphere at �⃗� according to 𝑝𝑈 (𝑢). The retained weight of the
ealization is then 𝜔 = 𝜋𝐿𝜈 (�⃗�, 𝑢, 𝑡)∕𝑝𝑁 (𝜈), of variance Var(℧). According
o the Central Limit Theorem, performing a large number of realizations
, their sample mean is a random variable ℧̄, of realizations noted �̄�
hich follows a normal distribution of variance Var(℧̄) = Var(℧)∕𝑁 . As
realization of ℧̄, the sample mean �̄� is an unbiased estimator for �̄�,
or which Var(℧̄)∕(𝑁 − 1) is an unbiased estimator for variance.
In practice, the monochromatic radiance field 𝐿𝜈 (�⃗�, 𝑢, 𝑡) is unknown.

f the expression for 𝐿𝜈 within a heterogeneous and anisothermal
articipating medium can be formulated as a path integral, easily
mplementable using Monte Carlo methods, then the double random-
zation technique can be extended over its integration domains. This
xtension entails sampling a single realization of its corresponding
andom variables. Our aim is the development of such a path-integral
ormulation.
The transport of radiance can be described by the stationary form

f the monochromatic Radiative Transfer Equation (RTE):

∀�⃗� ∈ 𝛺,∀𝑢 ∈ 𝑺2 ∶
𝑢.∇⃗𝐿𝜈(�⃗�, 𝑢) = − 𝑘𝑒𝑥𝑡,𝜈 (�⃗�)𝐿𝜈 (�⃗�, 𝑢) + 𝑘𝑎,𝜈 (�⃗�)𝐿𝑒𝑞

𝜈 (𝑇 (�⃗�))

+ 𝑘𝑠,𝜈 (�⃗�)∫4𝜋
𝑝𝜈

(

𝑢′, 𝑢
)

𝑑𝑢′𝐿𝜈 (�⃗�, 𝑢′)

∀𝑦 ∈ 𝜕𝛺,∀𝑢+ ∈ 𝑺2
+ ∶

𝐿𝜈 (𝑦, 𝑢+) = 𝐿𝜕𝛺
𝜈

(

𝑦, 𝑢+
)

(3)

here 𝑺2 is the unit sphere, 𝛺 is the geometrical domain (the atmo-
phere), and 𝜕𝛺 is its boundary (the TOA and the land or oceanic
urface), where the monochromatic radiance 𝐿𝜕𝛺

𝜈 is known for all
ocations 𝑦 ∈ 𝜕𝛺, and all directions 𝑢+ within the incoming hemisphere
2
+ at position 𝑦. The coefficients 𝑘𝑎,𝜈 (�⃗�), 𝑘𝑠,𝜈(�⃗�), and 𝑘ext,𝜈 (�⃗�) = 𝑘𝑎,𝜈 (�⃗�)+
𝑠,𝜈(�⃗�) are the absorption, scattering, and extinction coefficients, respec-
ively. 𝐿𝑒𝑞

𝜈 (𝑇 (�⃗�)) is the equilibrium blackbody radiance (following the
lanck blackbody radiance function, for temperature 𝑇 (�⃗�) at location
⃗), and 𝑝𝜈

(

𝑢′, 𝑢
)

is the single scattering phase function, i.e., the proba-
ility density that the propagation direction after scattering is 𝑢′ for a
iven incoming direction 𝑢.
The path-integral formulation corresponding to System (3) is :

𝐿𝜈(�⃗�, 𝑢) =

∫

+∞

0
𝑝(𝑙)𝑑𝑙

⎡

⎢

⎢

⎣


(

�⃗�′ ∉ 𝛺
)

𝐿𝜕𝛺
𝜈

(

𝑦, 𝑢
)

+
(

�⃗�′ ∈ 𝛺
)

[

𝑃𝑎𝑏𝑠
(

�⃗�′
)

𝐿𝑒𝑞
𝜈
(

𝑇
(

�⃗�′
))

+𝑃𝑠𝑐𝑎
(

�⃗�′
)

∫4𝜋 𝑝𝜈
(

𝑢′, 𝑢
)

𝑑𝑢′𝐿𝜈
(

�⃗�′, 𝑢′
)

]

⎤

⎥

⎥

⎦

,

(4)

with 𝑝(𝑙) = 𝑘ext,𝜈 (�⃗� − 𝑙𝑢)𝑒− ∫ 𝑙
0 𝑘ext,𝜈 (�⃗�−𝑙′𝑢)𝑑𝑙′ the probability density func-

tion for sampling a free path of length 𝑙, which provides the next
collision position �⃗�′ = �⃗�− 𝑙𝑢. Eq. (4) can be translated into a backward

algorithm that estimates 𝐿 (�⃗�, 𝑢) as a sum of contributions
onte Carlo 𝜈
rom emission sources. Each collision position �⃗�′ is either outside the
edium (

(

�⃗�′ ∉ 𝛺
)

), in which case the retained weight is 𝐿𝜕𝛺
𝜈

(

𝑦, 𝑢
)

the boundary condition radiance in direction 𝑢 and at position 𝑦, 𝑦
eing the position of the first intersection between the

(

�⃗�, 𝑢
)

sightline
nd the boundary 𝜕𝛺), or �⃗�′ is still in the medium (

(

�⃗�′ ∈ 𝛺
)

) (see
ig. 1). In the latter case, two types of collision events can take place
ccording to probabilities Pabs(�⃗�) = 𝑘𝑎,𝜈 (�⃗�)∕𝑘𝑒𝑥𝑡,𝜈(�⃗�) and Psca(�⃗�) =
𝑠,𝜈(�⃗�)∕𝑘𝑒𝑥𝑡,𝜈(�⃗�) for an absorption event or a scattering event, respec-
ively. In the case of an absorption event, the Monte Carlo weight is the
lackbody equilibrium radiance 𝐿𝑒𝑞

𝜈 (𝑇 (�⃗�)) at the �⃗�′ collision position.
ndeed, absorption points in a reverse path correspond to emission
oints in its corresponding forward path, leveraging the reciprocity
f light paths in accordance with the second law of thermodynamics.
n the case of a scattering event, the optical trajectory continues in a
ew propagation direction 𝑢′ sampled according to the phase function
𝜈
(

𝑢′, 𝑢
)

; radiance 𝐿𝜈
(

�⃗�′, 𝑢′
)

for the new position and propagation
irection has to be computed. 𝐿𝜈

(

�⃗�′, 𝑢′
)

has the very same integral
ormulation as 𝐿𝜈 (�⃗�, 𝑢): the path-integral formulation is recursive. The
odel described does not consider boundary reflection, but its inclusion
s straightforward: as a photon reaches the boundary, if it is reflective
e.g., ground reflection), the photon has a probability of being absorbed
r reflected back into the medium according to the given reflection
odel.
The probabilistic model above presents two difficulties. The first

ne is encountered when sampling the extinction length 𝑙, as 𝐿𝜈 (�⃗�, 𝑢)
epends non-linearly (through an exponential function) on the integral
f the heterogeneous extinction coefficient field 𝑘𝑒𝑥𝑡,𝜈(�⃗�). The second
ne is encountered when sampling the collision type; the absorption
oefficient is a sum over millions of molecular transitions: 𝑘𝑎,𝜈 (�⃗�) =
𝑁𝑡
𝑗=1 ℎ𝑎,𝜈,𝑗 (�⃗�) with ℎ𝑎,𝜈,𝑗 (�⃗�) the contribution of transition of index 𝑗 to
he total absorption coefficient of the medium; this is computationally
xpensive to estimate. Approximation methods for the calculation of
he absorption coefficient field exist and are routinely used in atmo-
pheric radiative transfer, but their model errors can be difficult to
uantify. Interestingly, using the null-collision method makes both of
hese limitations vanish. Not only does introducing fictive colliders
omogenize the extinction coefficient field [25] making the sampling
f the extinction length 𝑙 simpler, but it also enables a coupling be-
ween the line-by-line spectroscopic model and the radiative transfer
odel [9,14], where the absorption coefficient is replaced with a tran-
ition sampling over the contributing spectral lines. The resulting model
ow encompasses radiation and spectroscopy in a single path-integral
ormulation. In terms of model resolution, the model is simulated as a
hole in a single Monte Carlo simulation. This particular point becomes
ore obvious through the algorithmic illustration given in Section 2.3,

which is the probabilistic description of the following path-integral
formulation, derived in Appendix:

𝐿𝜈 (�⃗�, 𝑢) = ∫ +∞
0 �̂�(𝑙)𝑑𝑙

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣


(

�⃗�′ ∉ 𝛺
)

𝐿𝜕𝛺
𝜈

(

𝑦, 𝑢
)

+
(

�⃗�′ ∈ 𝛺
)

⎡

⎢

⎢

⎢

⎢

⎣

𝑃𝑠

{

𝑃𝑠
(

�⃗�′
)

∫4𝜋 𝑝𝜈
(

𝑢′, 𝑢
)

𝑑𝑢′𝐿𝜈
(

�⃗�′, 𝑢′
)

+
(

1 − 𝑃𝑠
(

�⃗�′
))

𝐿𝜈
(

�⃗�′, 𝑢
)

}

+
(

1 − 𝑃𝑠
)

(

∑𝑁𝑡
𝑗=1 𝑃𝐽 (𝑗, 𝜈)

{

𝑃𝑎,𝜈,𝑗
(

�⃗�′
)

𝐿𝑒𝑞
𝜈
(

𝑇
(

�⃗�′
))

+
(

1 − 𝑃𝑎,𝜈,𝑗
(

�⃗�′
))

𝐿𝜈
(

�⃗�′, 𝑢
)

})

⎤

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)

where additional terms are introduced to account for null collisions (see
details in Appendix).

This reformulation results in a path-integral where the physics of
radiative transfer is nonlinearly coupled to spectroscopy through the in-
troduction of recursive null events. The requirement of pre-computing
the absorption coefficient field is shifted to the ability to sample just
one transition per each Monte Carlo realization.

Indeed, Eq. (5) can be translated into a Monte Carlo algorithm, for

which the procedure for one realization is presented in Algorithm 1.
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Fig. 1. An example of radiance reverse path starting at �⃗� in direction 𝑢 is shown. It is composed of several scattering events (circle) before finally reaching an absorption event
square) occuring either (a) in the volume 𝛺, or (b) at the system boundary 𝜕𝛺. Absorption points in a reverse path correspond to emission points in its corresponding forward
ath, leveraging the reciprocity of light paths in accordance with the second law of thermodynamics.
𝜕
he optical path associated with each realization can propagate in the
edium without knowing the real extinction coefficient field upfront,
ow needed only locally at each collision location. To sample a collision
ocation, only a number of homogeneous upper bound free parameters
re required to define various probabilities: �̂�𝑎,𝜈 is an upper-bound of
he absorption coefficient field, �̂�𝑠,𝜈 is an upper-bound of the scattering
oefficient field and �̂�𝑒𝑥𝑡,𝜈 = �̂�𝑎,𝜈 + �̂�𝑠,𝜈 is an upper-bound of the
extinction coefficient field. An upper-bound ℎ̂𝑎,𝜈,𝑗 of the contribution
ℎ𝑎,𝜈,𝑗 (�⃗�) of transition of index 𝑗 to the local absorption coefficient must
lso be defined, so that �̂�𝑎,𝜈 =

∑𝑁𝑡
𝑗=1 ℎ̂𝑎,𝜈,𝑗 , where 𝑁𝑡 is the total number

f transitions. As we will see in next section, we obtain a path-integral
f a similar structure for sensitivities, for which we provide a complete
escription in the algorithmic section.
As far as computational cost is concerned, arbitrarily choosing these

niform upper-bound free parameters does not necessarily ensure an
fficient sampling of transitions because absorption spectra are highly
arying in frequencies. This can lead to a significant computational cost
f chosen too large compared to the true absorption spectra: as �̂�ext,𝜈
ncreases relative to 𝑘ext,𝜈 (�⃗�), sampled path-lengths 𝑙 become shorter,
nd the likelihood of encountering null events increases. Consequently,
his necessitates the sampling of a considerable number of consecutive
patial positions to sample a single path. This is where computer scien-
ists’ expertise in structuring and processing data comes into play. For
n efficient sampling of large spectral data sets, the frequency domain
s partitioned inside a hierarchical grid to build a field of upper bounds
dapted to the absorption spectra variations. This data structuring
akes the computational cost weakly sensitive to the size (number
f transitions) and the complexity (shape of absorption spectra) of
he spectroscopic database [14]. Given the significant variability of
bsorption spectra with altitude, mostly due to pressure variations, the
pectral hierarchical grids are tabulated as a function of pressure, and
lgorithmic adjustments are designed such that no alterations are made
o the integral formulation represented by Eq. (5).
The next section details the formal developments for obtaining a

imilar path-integral for sensitivities.

.2. Estimating global radiative flux sensitivities

The previous section establishes the path-integral Monte Carlo ap-
roach for evaluating the global outgoing radiative flux at TOA using
n integral reformulation for radiance. In this section, we show how
o extend this framework to estimate flux sensitivities, paying spe-
ific attention to retaining the benefits associated with the use of the
ull-collision technique.
Sensitivity with respect to parameter �̈� is defined as 𝜕�̈� �̄� the partial

erivative of the flux at TOA. Let 𝑠𝜈 be defined such that 𝑠𝜈 (�⃗�, 𝑢, 𝑡, �̈�) =
𝐿 (�⃗�, 𝑢, 𝑡, �̈�), then the TOA flux sensitivity is:
�̈� 𝜈
�̈� �̄� =∫𝛥𝑡
𝑝𝑇 (𝑡)𝑑𝑡∫S

𝑝𝑆 (�⃗�)𝑑𝑆(�⃗�)∫

+∞

0
𝑝𝑁 (𝜈)𝑑𝜈

× ∫2𝜋
𝑝𝑈 (𝑢)𝑑𝑢

{

𝜋𝑠𝜈 (�⃗�, 𝑢, 𝑡, �̈�)
𝑝𝑁 (𝜈)

}

,
(6)

which requires a path-integral formulation of 𝑠𝜈 , similar to the path-
integral formulation that was required for 𝐿𝜈 in the previous sec-
tion. In addressing the question of sensitivity estimation using Monte
Carlo methods, two different approaches may be considered. The first
one consists in differentiating the path-integral formulation of 𝐿𝜈 (�⃗�, 𝑢)
in Eq. (5), and rewriting the resulting integral in order to preserve
the same random samplings (and thus, the same algorithmic structure)
between the quantity and its derivatives [15]. This is computationally
efficient since only one set of paths has to be sampled to estimate
all the quantities at once. However, when null-collision algorithms
are implemented in combination with acceleration structures to guar-
antee that only a small fraction of fictive colliders is introduced at
any location, [17] has demonstrated that the variance of the sensitiv-
ity estimates might be unbounded. This is because the weights that
are retained for the sensitivity estimates are inversely proportional
to the concentration of fictive colliders, which tends to zero as the
acceleration structure is better optimized. [17] proposed a solution
to bypass this difficulty, but this requires an additional sampling at
each collision event. The second approach, which we choose to explore
in the present work, consists in differentiating the radiative transport
model of 𝐿𝜈 (�⃗�, 𝑢) in System (3) to establish a transport model for
the sensitivity. This method was originally developed for geomet-
ric sensitivities (derivatives with respect to parameters the geometry
depends upon [18,19]) ant it will be used hereafter for parametric (non-
geometric) sensitivities. This framework enables the physical analysis
of sensitivity propagation in the participating medium.

According to the second approach, differentiating System (3) with
respect to �̈� yields a transport model for the sensitivity that can be ex-
pressed using a new transport equation, namely a Sensitivity Transport
Equation (STE):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∀�⃗� ∈ 𝛺,∀𝑢 ∈ 𝑺2 ∶
𝑢.∇⃗𝑋𝑠𝜈 (�⃗�, 𝑢, �̈�) = − 𝑘𝑒𝑥𝑡,𝜈(�⃗�, �̈�)𝑠𝜈 (�⃗�, 𝑢, �̈�)

+ 𝑘𝑎,𝜈 (�⃗�, �̈�)[
𝜕�̈�𝑘𝑎,𝜈 (�⃗�, �̈�)
𝑘𝑎,𝜈 (�⃗�, �̈�)

(𝐿𝑒𝑞
𝜈 (𝑇 (�⃗�)) − 𝐿𝜈 (�⃗�, 𝑢, �̈�))]

+ 𝑘𝑠,𝜈(�⃗�, �̈�)∫4𝜋
𝑝𝜈

(

𝑢′, 𝑢
)

𝑑𝑢′(𝑠𝜈 (�⃗�, 𝑢′, �̈�)

+ [
𝜕�̈�𝑘𝑠,𝜈(�⃗�, �̈�)
𝑘𝑠,𝜈(�⃗�, �̈�)

(𝐿𝜈 (�⃗�, 𝑢′, �̈�) − 𝐿𝜈 (�⃗�, 𝑢, �̈�))])

∀𝑦 ∈ 𝜕𝛺,∀𝑢+ ∈ 𝑺2
+ ∶

𝑠𝜈 (𝑦, 𝑢+) = 0
(7)
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𝑠𝜈 (�⃗�, 𝑢, �̈�) = ∫ +∞
0 �̂�(𝑙)𝑑𝑙

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣


(

�⃗�′ ∉ 𝛺
)

.0
+

(

�⃗�′ ∈ 𝛺
)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑃𝑠(�⃗�′)

{

𝑃𝑠(�⃗�′) ∫4𝜋 𝑝𝜈
(

𝑢′, 𝑢
)

𝑑𝑢′
[

𝑠𝜈 (�⃗�′, 𝑢′, �̈�) +
[ 𝜕�̈�𝑘𝑑,𝜈 (�⃗�,�̈�)

𝑘𝑑,𝜈 (�⃗�,�̈�)

(

𝐿𝜈 (�⃗�′, 𝑢′, �̈�) − 𝐿𝜈
(

�⃗�′, 𝑢, �̈�
))

]]

+
(

1 − 𝑃𝑠
(

�⃗�′
))

[𝑠𝜈
(

�⃗�′, 𝑢, �̈�
)

]

}

+
(

1 − 𝑃𝑠
(

�⃗�′
))

⎛

⎜

⎜

⎜

⎝

∑𝑁𝑡
𝑗=1 𝑃𝐽 (𝑗, 𝜈)

⎧

⎪

⎨

⎪

⎩

𝑃𝑎,𝜈,𝑗
(

�⃗�′
)

[

𝜕�̈�ℎ𝑎,𝜈,𝑗 (�⃗�,�̈�)
ℎ𝑎,𝜈,𝑗 (�⃗�,�̈�)

(

𝐿𝑒𝑞
𝜈 (𝑇 (�⃗�′)) − 𝐿𝜈(�⃗�′, 𝑢, �̈�)

)

]

+
(

1 − 𝑃𝑎,𝜈,𝑗
(

�⃗�′
))

[𝑠𝜈
(

�⃗�′, 𝑢, �̈�
)

]

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8)

Box I.
q
c
s

here the temperature 𝑇 (�⃗�) and the phase function 𝑝𝜈
(

𝑢′, 𝑢
)

are inde-
endent of the parameter �̈�.
Comparing STE (Eq. (7)) with RTE (Eq. (3)), we see that the

tructure for transport of sensitivity is very similar to that of radiance,
hich translates into the same sampling procedure between the two
uantities. The difference only regards the sources via absorption and
cattering.
At this point, the STE can be solved using any model for the

bsorption and scattering coefficients fields 𝑘𝑎,𝜈 (�⃗�, �̈�) and 𝑘𝑠,𝜈(�⃗�, �̈�).
owever, it is possible to establish a sensitivity model that couples
ine-by-line spectroscopy and radiative transfer, following the same
ormal developments (in Appendix) used for the construction of the
ultiphysics model of radiance. Doing so, we obtain a path-integral
ormulation for sensitivity similar to the path-integral formulation for
adiance in Eq. (5) is given as Eq. (8) in Box I.
The resulting path-integral formulation can correspond to multiple
onte Carlo algorithmic interpretations. We will now elaborate on the
pecificities of our simulation choices.

.3. From path-integral formulation to Monte Carlo algorithm

We can read in our sensitivity path-integral formulation (Eq. (8))
coupling to two other path-integrals corresponding to two distinct
hysics. The first coupling is to the line-by-line spectroscopic model
hrough 𝑃𝑎,𝜈,𝑗 , governing real or null transitions. The second coupling
s to the radiance model 𝐿𝜈 , which appears in the weights of sen-
itivity Monte Carlo realizations. We refer to these through coupling
ecause the sensitivity path-integral is designed in a way that a single
onte Carlo iteration walks across different physics by sampling their
ssociated random variables — here, radiance and absorption coeffi-
ient — without requiring their explicit calculation. Instead, only one
ealization of each corresponding random variable is sampled.
This becomes manifest in the statistical procedure for sampling
single Monte Carlo weight presented in Algorithm 2, which is a
trict translation of the sensitivity path-integral formulation presented
n Eq. (8). The complete Monte Carlo for sensitivity estimation entails
averaged realizations, each sampled as follows:

• Initialization: start an optical path at position �⃗�, in direction −𝑢.
• Sampling path length: sample path length 𝑙 according to �̂�(𝑙) =
�̂�𝑒𝑥𝑡,𝜈 exp

(

−�̂�𝑒𝑥𝑡,𝜈 𝑙
)

over [0,+∞).
• Update position : �⃗�′ = �⃗� − 𝑙𝑢.
• Boundary check: check whether �⃗�′ is outside or inside 𝛺.

– If outside, the weight is the boundary condition (here it is
null because the boundary conditions in the model of 𝐿 was
set independent of the parameter), and the realization stops.

– If inside, proceed to collision branch determination at �⃗�′.

• Collision branch determination: determine the collision type by
sampling between the scattering branch and the absorption branch
with probabilities 𝑃 (�⃗�′) and 𝑃 (�⃗�′) = 1 − 𝑃 (�⃗�′), respectively.
𝑠 𝑎 𝑠
• If the ‘‘scattering branch’’ is selected: determine whether it is
a real or a null scattering event with probabilities 𝑃𝑠(�⃗�′) and
1 − 𝑃𝑠(�⃗�′), respectively.

– If real scattering event: the new propagation direction 𝑢′

has to be sampled over 4𝜋 sr according to the 𝑝(𝑢′, 𝑢) prob-
ability density function. Then we evaluate 𝑠𝜈 (�⃗�′, 𝑢′, �̈�) by
recursing on Algorithm 2; we also evaluate 𝐿𝜈 (�⃗�′, 𝑢′, �̈�) and
𝐿𝜈

(

�⃗�′, 𝑢, �̈�
)

using Algorithm 1 via double randomization,
meaning we estimate one Monte Carlo realization of Al-
gorithm 1 at position �⃗�′ and direction 𝑢′ and at �⃗�′ and
direction 𝑢, respectively. The Monte Carlo weight we retain
is then 𝑠𝜈 (�⃗�′, 𝑢′, �̈�) +

[ 𝜕�̈�𝑘𝑑,𝜈 (�⃗�,�̈�)
𝑘𝑑,𝜈 (�⃗�,�̈�)

(

𝐿𝜈 (�⃗�′, 𝑢′, �̈�) − 𝐿𝜈
(

�⃗�′, 𝑢, �̈�
))

]

,
and additional data has to be known at this point: the value
of 𝜕�̈�𝑘𝑑,𝜈 (�⃗�, �̈�).

– If null scattering event: recurse on Algorithm 2 at the new
position �⃗�′ but in the same direction 𝑢.

• If the ‘‘absorption branch’’ is selected: sample a transition ac-
cording to the 𝑃𝐽 (𝑗, 𝜈) = ℎ̂𝑎,𝜈,𝑗

�̂�𝑎,𝜈
, 𝑗 ∈ [1, 𝑁𝑡] probability set. Then

determine whether it is a real or a null transition event with
probabilities 𝑃𝑎,𝜈,𝑗 (�⃗�′) = ℎ𝑎,𝜈,𝑗 (�⃗�)

ℎ̂𝑎,𝜈,𝑗
and 1 − 𝑃𝑎,𝜈,𝑗 (�⃗�′) = ℎ̂𝑎,𝜈,𝑗−ℎ𝑎,𝜈,𝑗 (�⃗�)

ℎ̂𝑎,𝜈,𝑗
,

respectively.

– If real transition event: the weight 𝜕�̈�ℎ𝑎,𝜈,𝑗 (�⃗�,�̈�)
ℎ𝑎,𝜈,𝑗 (�⃗�,�̈�)

(

𝐿𝑒𝑞
𝜈 (𝑇 (�⃗�′)) −

𝐿𝜈(�⃗�′, 𝑢, �̈�)
)

is retained and the realization stops. Two addi-
tional quantities need to be evaluated: the value of
𝜕�̈�ℎ𝑎,𝜈,𝑗 (�⃗�, �̈�) and 𝐿𝜈 (�⃗�′, 𝑢, �̈�). The latter is evaluated by a
single realization of the corresponding radiance random
variable, relying on double randomization.

– If null transition event: recurse on Algorithm 2 at the new
position �⃗�′ but in the same direction 𝑢.

This algorithmic translation is facilitated by leveraging a mathemat-
ical statistical property encapsulated in Box 1, initially introduced in
the work [26]. In our model, this property is particularly relevant, as
sensitivity, akin to radiance, shares a structural similarity with 𝑔 in Box
1, which arises from specific formal development choices made during
the construction of Eq. (8) for sensitivity (and Eq. (5) for radiance).
To draw a parallel, sampling a single realization of 𝑋 to determine
the Bernoulli parameter 𝑃 = 𝑋

�̂� in the Box — instead of computing its
expectation —, is the theoretical justification in our model for sampling
a single transition to determine the absorption probability — instead
of pre-computing the absorption coefficient — [14]. Subsequently, a
Bernoulli trial follows to determine whether it corresponds to a real or
null absorption, thus retaining the corresponding sensitivity weight (or
radiance weight).

Fig. 2 illustrates a sensitivity path in pink, consisting of a se-
uence of consecutive collision events. The physics coupling is visually
onveyed through path branches, with the rainbow representing the
pectroscopy and yellow representing the radiance model. The distinct
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Algorithm 1 Radiance realization 𝐿𝜈(�⃗�, 𝑢, �̈�)
Input: a position �⃗�, a direction 𝑢, a parameter �̈�
utput: a Monte Carlo radiance weight 𝜔
function RadianceRealization(�⃗�, 𝑢, �̈�)

Sample a length to the next collision position 𝑙 according to �̂�(𝑙)
Compute the next collision position �⃗�′ ← �⃗� − 𝑙𝑢
if �⃗�′ ∉ 𝛺 then

Compute position 𝑦 of intersection between (�⃗�,−𝑢) ray and boundary 𝜕𝛺
𝜔 ← 𝐿𝜕𝛺

𝜈 (𝑦, 𝑢)
else

Sample a uniform random variable 𝑟 ∈ [0, 1]
if 𝑟 < 𝑃𝑠

(

�⃗�′
)

then /* scattering */
Sample a uniform random variable 𝑟 ∈ [0, 1]
if 𝑟 < 𝑃𝑠

(

�⃗�′
)

then /* real-scattering event */
Sample scattering direction 𝑢′ according to phase function 𝑝

(

𝑢′ , 𝑢
)

𝜔 ← RadianceRealization(�⃗�′, 𝑢′, �̈�) ⊳ Recurse Algo. 1
else /* null-scattering event */

𝜔 ← RadianceRealization(�⃗�′, 𝑢, �̈�) ⊳ Recurse Algo. 1
end if

else /* absorption */
Sample a transition 𝑗 according to 𝑃𝐽 (𝑗, 𝜈)
Sample a uniform random variable 𝑟 ∈ [0, 1]
if 𝑟 < 𝑃𝑎,𝑗

(

�⃗�′
)

then /* real-transition event */
𝜔 ← 𝐿𝑒𝑞

𝜈 (𝑇 (�⃗�′))
else /* null-transition event */

𝜔 ← RadianceRealization(�⃗�′, 𝑢, �̈�) ⊳ Recurse Algo. 1
end if

end if
end if
return 𝜔

end function

Algorithm 2 Sensitivity realization 𝑠𝜈 (�⃗�, 𝑢, �̈�)
Input: a position �⃗�, a direction 𝑢, a parameter �̈�
utput: a Monte Carlo sensitivity weight 𝜔
function SensitivityRealization(�⃗�, 𝑢, �̈�)

Sample a length to the next collision position 𝑙 according to �̂�(𝑙)
Compute the next collision position �⃗�′ ← �⃗� − 𝑙𝑢
if �⃗�′ ∉ 𝛺 then

𝜔 ← 0
else

Sample a uniform random variable 𝑟 ∈ [0, 1]
if 𝑟 < 𝑃𝑠

(

�⃗�′
)

then /* scattering */
Sample a uniform random variable 𝑟 ∈ [0, 1]
if 𝑟 < 𝑃𝑠

(

�⃗�′
)

then /* real-scattering event */
Sample scattering direction 𝑢′ according to phase function 𝑝

(

𝑢′ , 𝑢
)

𝐿𝜈 (�⃗�′ , 𝑢′ , �̈�) ← RadianceRealization(�⃗�′, 𝑢′, �̈�) ⊳ Algo. 1
𝐿𝜈 (�⃗�′ , 𝑢, �̈�) ← RadianceRealization(�⃗�′, 𝑢, �̈�) ⊳ Algo. 1
𝑠𝜈 (�⃗�′ , 𝑢′ , �̈�) ← SensitivityRealization(�⃗�′, 𝑢′, �̈�) ⊳ Recurse Algo. 2

𝜔 ← 𝑠𝜈 (�⃗�′ , 𝑢′ , �̈�) +
𝜕�̈� 𝑘𝑑,𝜈 (�⃗�,�̈�)
𝑘𝑑,𝜈 (�⃗�,�̈�)

(𝐿𝜈 (�⃗�′ , 𝑢′ , �̈�) − 𝐿𝜈 (�⃗�′ , 𝑢, �̈�))

else /* null-scattering event */
𝜔 ← SensitivityRealization(�⃗�′, 𝑢, �̈�) ⊳ Recurse Algo. 2

end if
else /* absorption */

Sample a transition 𝑗 according to 𝑃𝐽 (𝑗, 𝜈)
Sample a uniform random variable 𝑟 ∈ [0, 1]
if 𝑟 < 𝑃𝑎,𝑗

(

�⃗�′
)

then /* real-transition event */
Compute equilibrium blackbody radiance 𝐿𝑒𝑞

𝜈 (𝑇 (�⃗�′))
𝐿𝜈 (�⃗�′ , 𝑢, �̈�) ← RadianceRealization(�⃗�′, 𝑢, �̈�) ⊳ Algo. 1

𝜔 ←
𝜕�̈� ℎ𝑎,𝜈,𝑗 (�⃗�,�̈�)
ℎ𝑎,𝜈,𝑗 (�⃗�,�̈�)

(𝐿𝑒𝑞
𝜈 (𝑇 (�⃗�′)) − 𝐿𝜈 (�⃗�′ , 𝑢, �̈�))

else /* null-transition event */
𝜔 ← SensitivityRealization(�⃗�′, 𝑢, �̈�) ⊳ Recurse Algo. 2

end if
end if

end if
return 𝜔

end function

nature of these two physics branches is particularly noteworthy. The
spectroscopic rainbow branch contributes to constructing the sensitivity
path, determining whether it continues beyond a collision site in the
absorption branch. In contrast, each yellow radiance branch samples
information that will contribute to the sensitivity Monte Carlo weight
but not to the construction of the sensitivity path. This difference in the
two coupling statuses is grounded in the differential form of the STE.
On the one hand, the sensitivity transport model exhibits a non-linear
dependency on the absorption coefficient through Beer’s exponential,
which is bypassed using null collisions. On the other hand, the radiance
appears as a volumetric source term in the STE, hence the linearity of
the radiance-sensitivity coupling.

1- A mathematical property for our statistical framework

This box demonstrates that if 𝑔 is the expectation of a Bernoulli
random variable (with possible outcomes E(𝑌 ) and E(𝑍))
where the probability is itself the expectation of a random
variable 𝑋

�̂� whose domain is the interval [0, 1], then the ex-
pectation of 𝑊 is an unbiased estimator for 𝑔, where a single
realization of 𝑋

�̂� is sampled for each realization of 𝑊 .

Property: Let 𝑔 be a function of the expectancy of random
variables 𝑋, 𝑌 , and 𝑍, defined by the following structure:

𝑔 =
E(𝑋)
�̂�

⋅ E(𝑌 ) +
[

1 −
E(𝑋)
�̂�

]

⋅ E(𝑍)

where �̂� is an upper bound for all realizations 𝑥 of 𝑋,
and the pairs of variables (𝑋, 𝑌 ) and (𝑋,𝑍) are statistically
independent.
Then 𝑔 is the expectation of random variable 𝑊 :

𝑔 = E(𝑊 )

such that:

𝑊 = 𝐵
(𝑋
�̂�

)

⋅ 𝑌 +
[

1 − 𝐵
(𝑋
�̂�

)]

⋅𝑍

where 𝐵
(

𝑋
�̂�

)

is the Bernoulli variable of parameter the

random variable 𝑃 = 𝑋
�̂� .

Demonstration: By definition of 𝑔, we have:

𝑔 =
∫𝐷𝑋

𝑥𝑝𝑋 (𝑥) 𝑑𝑥

�̂�
⋅∫𝐷𝑌

𝑦𝑝𝑌 (𝑦) 𝑑𝑦+

[

1 −
∫𝐷𝑋

𝑥𝑝𝑋 (𝑥) 𝑑𝑥

�̂�

]

⋅∫𝐷𝑍
𝑧𝑝𝑍 (𝑧) 𝑑𝑧

with 𝑝𝑋 , 𝑝𝑌 and 𝑝𝑍 the probability density functions associated
to random variables 𝑋, 𝑌 and 𝑍, respectively.
It can be reformulated as:

𝑔 = ∫𝐷𝑋

𝑝𝑋 (𝑥) 𝑑𝑥
(

𝑥
�̂�
⋅ ∫𝐷𝑌

𝑦𝑝𝑌 (𝑦) 𝑑𝑦 +
[

1 − 𝑥
�̂�

]

⋅ ∫𝐷𝑍

𝑧𝑝𝑍 (𝑧) 𝑑𝑧
)

3. Results and discussions

3.1. Results

In the following, we use as the inputs of our spectro-radiative
model, atmospheric state outputs from a simulation performed with the
IPSL General Circulation Model 3.1. [27] (vertical profiles of pressure,
temperature, and molecular species concentration). The IPSL climate
model simulation was performed on a 144 × 143 longitude-latitude
grid using 79 vertical levels. We use 3-hourly outputs of a 10-year
simulation, which amounts to a total of 144 × 143 × 10 × 365 × 8 ≈
600 million columns. The computations are performed in clear sky
conditions considering four greenhouse gases (H2O, CO2, O3, and CH4),
and using a line-by-line spectroscopic model with parameters sourced
from the HITRAN database [28]. The Lorentz function describes the
profile lineshapes, truncated at 25 cm−1 for H2O, O3, CH4, and 50 cm−1

for CO2. Analytical Lorentz profiles are used here, but the methodology
extends to Voigt profiles with no further conceptual challenges, where
the only additional requirement is data on the corresponding numerical
derivatives of the profiles. Also, the water vapor continuum is not
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Fig. 2. On the left side, we depict an instance of the sensitivity reverse path in pink, starting at point �⃗� in direction 𝑢. The nodes along the path represent real (filled) or null
empty) events of two distinct types: scattering (circle) or absorption (square). Along the sensitivity path, branching sub-paths emerge at these nodes based on their type, invoking
ither spectroscopic sub-paths in rainbow, radiance sub-paths in yellow, or both. This specific sensitivity path consists of five events. (1) is an absorption event that was randomly
etermined as being null after sampling a transition where a rainbow spectroscopic sub-path was launched to determine the event type; (2) is a real scattering event; in this case,
wo yellow radiance sub-paths were launched as a contribution to the path weight; (3) is a similar real scattering event; (4) is a null scattering event without sub-path branchings
nd (5) is an absorption event that was randomly determined as being real after sampling a transition where a rainbow spectroscopic sub-path was launched to determine the
vent type, and in this case, a yellow radiance sub-path was launched as a contribution to the path weight. The right panel displays a zoom on scattering event (2): radiance
aths are similar to those of sensitivity but only contain rainbow spectroscopic branchings for path construction.
𝜎

ccounted for in the present simulations, and its inclusion would simi-
arly present no further conceptual difficulties.
The theoretical developments are applicable to any parameter of

nterest in the spectro-radiative model. Here, we focus on the radiative
orcings resulting from a fractional change in greenhouse gas concen-
ration. Therefore, we define a sensitivity parameter �̈� that acts on
he concentration fields and consequently on radiative fluxes through
olecular transitions ℎ𝑎,𝜈,𝑗 (�⃗�, �̈�) as a multiplier factor of the reference
olar fraction of gas, i.e., 𝑥gas = �̈�×𝑥gas, ref. The initial concentration of
arbon dioxide is set to the pre-industrial era value 𝑥CO2 ,ref = 280 ppm.
ach spectral line of index 𝑗 is modeled as the product of molecular
ensity 𝑛, line intensity 𝑆𝑗 , and line profile 𝑓𝜈,𝑗 . The dependence on
arameter �̈� intervenes in molecular density 𝑛(�⃗�, �̈�) and line profile
𝜈,𝑗 (�⃗�, 𝑡, �̈�). The derivative of a spectral line ℎ𝑎,𝜈,𝑗 (�⃗�, �̈�) with respect to

�̈� is then given by:

�̈�ℎ𝑎,𝜈,𝑗 (�⃗�, �̈�) = 𝜕�̈�

[

�̈�𝑛(�⃗�)𝑆𝑗 (�⃗�)
�̈�𝛾𝑗

(�̈�𝛾𝑗 )2 + (𝜈 − 𝜈0,𝑗 )2

]

(9)

where 𝛾𝑗 and 𝜈0,𝑗 represent, respectively, the linewidth and the central
frequency associated with spectral line 𝑗.

Using Algorithm 1, we obtain the integrated TOA mean flux �̄�
depicted in Fig. 3(a), 3(c), and 3(e). Using Algorithm 2, we obtain
the integrated TOA mean flux sensitivity 𝜕�̈� �̄� shown in Fig. 3(b), 3(d),
and 3(f), with respect to parameter values �̈� affecting CO2, H2O, and
CH4. The figures illustrate these quantities as a function of parameter
values �̈�. Each point corresponds to an independent estimation, con-
ducted globally over a month and spanning the thermal infrared range
[100; 2500] cm−1 with 𝑁 = 640 000 Monte Carlo realizations each.

Fig. 4 represents the dependence of computational time required for
achieving a 1% relative error on sensitivity estimates (on a personal
computer with 12 CPUs), as a function of the widening in the spectral,
spatial and temporal integration domains.

3.2. Discussions

In discussing the results, we focus on three key aspects: (i) in Sec-
tion 3.2.1, we address the advantages of estimating sensitivity through
path-integral Monte Carlo simulations compared to finite differences
methods; (ii) in Section 3.2.2, we analyze the computation times as the
integration domains are widened; and (iii) in Section 3.2.3, we validate
our methods by comparing our results to a well-established functional
dependency of the global TOA radiative flux upon fraction change in
carbon dioxide concentrations.

3.2.1. On sensitivity estimation
For a given gas and across all values of �̈�, the perturbation of �̈� we

considered in the results corresponds to injecting the same infinitesimal
amount d𝑥gas = 𝑥gas, ref × d�̈� of gas into the atmosphere. The resulting
sensitivity 𝜕�̈� �̄� is the variation in the global outgoing flux at TOA. As
anticipated, the negative sensitivities reflect the expected decrease in
outgoing flux with an increase in greenhouse gas concentration, in line
with the greenhouse effect. Comparing forcings due to different gases,
a higher forcing from a gas corresponds to a greater expected impact
when increasing its concentration, consistent with the obtained sensi-
tivities; water vapor exhibits larger sensitivities than carbon dioxide
and methane, given its greater abundance (see Fig. 3(d) and 3(f)).

For water vapor and carbon dioxide, the finite differences result-
ing from two distinct Monte Carlo estimations of the flux provide
reasonably accurate approximations of the estimated path-integral sen-
sitivities. However, for methane, where variations in mean flux are
small (see Fig. 3(e)), finite differences exhibit large fluctuations, con-
trasting with the more stable path-integral sensitivity estimates (see
Fig. 3(f)). Moreover, Monte Carlo estimation provides unbiased sensi-
tivities along with their statistical uncertainty, whereas the uncertainty
of finite differences comes from the uncertainties of flux estimation
mixed with the uncertainty due to the discretization choice, the latter
being impossible to quantify in practice. Moreover, if we keep the
same number of realizations, the finer the discretization parameter
ℎ, the more relevant the finite differences approximation becomes,
but the larger the associated Monte Carlo variance, which increase
proportionally to 1∕ℎ2:

𝜕�̈� �̄�(�̈�) ≈
�̄�(�̈� + ℎ) − �̄�(�̈� − ℎ)

2ℎ
2 [𝜕�̈� �̄�(�̈�)

]

≈ 1
4ℎ2

{

𝜎2[�̄�(�̈� + ℎ)] + 𝜎2[�̄�(�̈� − ℎ)]
}

(10)

The advantage of the approach becomes clear: instead of sub-
stantially increasing the number of Monte Carlo realizations on flux
estimates in order to obtain reliable estimations through finite differ-
ences, we propose to use unbiased path-integral formulations for direct
sensitivity estimations.
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Fig. 3. Mean flux �̄� and its sensitivities 𝜕�̈� �̄� associated to a change in the fraction of gas concentration �̈� are displayed for three gases: CO2 (Fig. 3(a) and 3(b)), H2O (Fig. 3(c)
nd 3(d)), and CH4 (Fig. 3(e) and 3(f)). Sensitivity estimates are obtained using Algorithm 2, whereas finite difference estimates are based on the difference between two standard
onte Carlo flux estimates obtained for different values of �̈� using Algorithm 1. Error bars: 68% CI (using 1𝜎).
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.2.2. On the computation time and Monte Carlo standard deviation
Fig. 4 illustrates how 𝑡1%, the computational time required to

chieve a 1% error on 𝜕�̈� �̄� estimates for carbon dioxide, depends on the
idening of the respective integration domains, on a personal computer
ith 12 CPUs. In the first plot, we consider a single atmospheric column
nd a specific date, for which the quantity 𝑡1% is represented as a
unction of spectral integration over a band of increasing width, ranging
rom 10 cm−1 (marked by the first red dot) to 2 400 cm−1 (the entire
nfrared range shown in the last red dot). Moving to the middle and the
ast plots, 𝜕�̈� �̄� is additionally integrated over spatial and time domains
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Fig. 4. Computation time required to estimate sensitivity of an outgoing radiative flux with respect to fraction change in CO2 concentration field, estimated at a 1% relative error
sing 1𝜎, showing only a slight dependency to the frequency bandwidth (first plot), spatial (second plot) and temporal (third plot) domains widening.
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f increasing size, from 1 to 20 592 atmospheric columns and over a
ime period ranging from one day up to ten years, respectively.
First of all, on spectral integration, we observe from the first plot

hat computation time slightly increases with domain widening. Look-
ng at the sensitivity path-integral in Eq. (8), during the Monte Carlo
ampling of carbon dioxide sensitivity, the retained weight values
epend on the derivative of the spectral line for a given parameter

�̈�, and thus on which concentration field it acts upon. The initial
ed dot on the graph corresponds to frequency integration within the
5 μm CO2 band (approximately from 600 cm−1 to 700 cm−1 on Fig. 5).
ubsequent red points, up to an integration width of 100 cm−1, remain
ithin the same band. Consequently, computational time remains in-
ensitive in this band. This comes as no surprise as CO2 contribution
elative to other molecules is dominant in this band. However, as the
ntegration domain is enlarged, within spectral intervals devoid of CO2
ontribution, the sensitivity weight consistently tends to zero, due to
ontributions from other molecular species, such as H2O,O3, and CH4,
hat become dominant. Consequently, higher proportions of sensitivity
eights yield null values as absorption becomes frequently attributed
o these alternative molecules. This introduces a source of greater
ariance, necessitating additional Monte Carlo realizations to mitigate
t, resulting in the observed increase in 𝑡1%. While Monte Carlo variance
eduction techniques, such as importance sampling — in our case, to
inimize the sampling of absorptions by H2O,O3, and CH4— offer a
rospective avenue for strategically sampling sensitivity weights, it falls
eyond the scope of the present work.
Concerning the second and third plots, we note that expanding both

he spatial and temporal integration domains has a negligible impact
n computational time, maintaining consistent performance within a
ange of a few tens of seconds. Now, upon closer examination, the
ransition from the second to the third plot, corresponding to the
ntroduction of the additional integration domain over time, leads to a
5% reduction in computational cost (from ∼ 40 s to ∼ 30 s), which can
e surprising. As a matter of fact, among the time points considered,
here might be more or less favorable cases in terms of variance, and
ence, convergence. If the expansion of a certain integration dimension
s anticipated to decrease the proportion of cases with the highest
ariance, then maintaining the same level of statistical precision would
equire reduced computational costs as the expansion takes place.
herefore, an additional integration domain in Monte Carlo simulations
ay sometimes reduce computational costs, e.g. [29], as it seems to be
he case here. This aspect remains open for further analysis in future
esearch.
We observe that in a general sense, for the same level of data resolu-

ion, estimating sensitivity for a given date and position on the entire
requency domain (last red point) is nearly as costly as integrating over
he entire thermal infrared band, over the entire Earth, and over ten
ears (last green point).

.2.3. From carbon dioxide sensitivity to its radiative forcing estimation
The central focus of this paper has revolved around developing

pectro-radiative path-integrals for sensitivities, designed for unbiased
onte Carlo simulations. The approach avoids approximation schemes
t both levels of physics modeling and simulation, thereby providing,
or the first time, a method for reference estimations for sensitivities
f radiative integrated fluxes to spectroscopic parameters. As a final
rospect, we use the approach in the context of radiative forcings, on
ur simplified configuration.
It is well-known in climate science that the radiative forcing from

arbon dioxide is approximately logarithmic in its concentration [30], a
roperty further explained in recent studies [31]. Indeed, the sensitivity
o a logarithmic change in its fraction concentration field can be
pproximated by a constant 𝑎:

d�̄�

d ln
(

𝑥gas
𝑥gas,ref

) = 𝑎 (11)

This translates in our model as a functional form independent of the
initial concentration field 𝑥gas,ref, as it can be reformulated solely as a
function of the parameter �̈�, representing the fractional change:

d�̄�

d ln
(

𝑥gas
) =

d�̄�
d ln (�̈�)

=
d�̄�
d�̈�

⋅ �̈� (12)
𝑥gas,ref
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Fig. 5. Spectra across the thermal infrared range [100 cm−1; 2500 cm−1] for the most absorbing molecules in this frequency domain [28].
Fig. 6. Evolution of 𝜕�̈� �̄� (CO2 sensitivity) multiplied by parameter �̈� as a function of �̈�. Error bars: 99% CI (using 3𝜎).
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This functional dependence property of CO2 can now be illustrated
sing our Monte Carlo simulations by plotting the estimated sensitivity
�̈� �̄�, multiplied by �̈�, against �̈�. As illustrated in Fig. 6, this results
ndeed in a constant value. Our path-integral sensitivity approach thus
rovides an independent simulation of this logarithmic dependence.
As a matter of fact, we can also note that a single value of our

ensitivity estimations — let us choose 𝑎 = −3.86 ± 0.06 found for
�̈� = 1, taken as a reference case — enables the estimation of carbon
ioxide radiative forcing for any fractional change in its concentration,
iven its functional dependency property. For instance, the radiative
orcing for a doubling of the carbon dioxide concentration field yields
�̄� = a ln(2) = −2.68 ± 0.06 W/m2, consistent with recent literature
stimates [20].
 i
. Conclusions

The intention of the present work was to develop a Monte Carlo
pproach that provides unbiased and efficient spectro-radiative sensi-
ivity estimates. Notably, the approach is employed in the context of
stimating atmospheric radiative forcings within a clear-sky simplified
limate framework.
By applying Monte Carlo within this framework, we illustrate a

ell-known property in climate science—the logarithmic tendency of
adiative forcing from carbon dioxide in relation to its concentration.
The methodology is constructed to remain unbiased at both levels

f physics modeling and simulation. On the theoretical level, sensitivity
s regarded as a transported quantity with its own propagation physics,
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for which a path-integral solution is constructed. In this regard, we 
uild upon recent advances in coupling the radiative transfer model 
to the spectroscopic model in a non-linear manner through the absorp-
tion coefficient, which disappears from the resulting model. After the 
formal developments are elaborated, the corresponding probabilistic 
description is provided in algorithmic form.

The simulation results presented in the preceding section illustrate
the practicality of the approach within high-dimensional configura-
tions, such as a climate one. In this context, the estimated quantity 
s integrated across the entire thermal infrared band, over the whole
lobe, and over a climate period of ten years. Thanks to advanced 
computer graphics techniques, achieving a precision of 1 percent on 
sensitivity estimates required only a few tens of seconds of computation 
time on a personal computer with 12 CPUs. The high-performance 
computing times make possible the extensive use of this calculation 
code for conducting various analyses on the mechanisms of radiative 
orcings, where it can otherwise be considered too resource-intensive.
Scalability is demonstrated, and while minor convergence vari-

abilities arise depending on the widening of integration domains to 
maintain the same confidence interval, standard optimization avenues 
in Monte Carlo practice exist and can be considered based on specific 
needs. However, these optimizations were deliberately excluded from 
the present work.

5. Data, materials, and software

Code data is available at (https://gitlab.com/yanissnp/RadForcE).
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Appendix. Spectro-radiative path-integral construction as a solu-
tion to the Radiative Transfer Equation

Starting from the monochromatic radiative transfer equation given
by Eq. (3), expressed over the sightline (�⃗�, 𝑢) parameterized by distance
, we have:
𝜕𝐿(�⃗�, 𝑢)

𝜕𝑙
= −𝑘𝑒𝑥𝑡(�⃗�)𝐿(�⃗�, 𝑢) + 𝑘𝑎(�⃗�)𝐿𝑒𝑞(�⃗�) + 𝑘𝑠(�⃗�)∫4𝜋

𝑝(𝑢′, 𝑢)𝑑𝑢′𝐿(�⃗�, 𝑢) (13)

here the frequency-related subscript 𝜈 is removed for simplicity (all
uantities are monochromatic).
Now, we introduce an upper-bound parameter �̂�𝑒𝑥𝑡 of the extinction

oefficient field 𝑘𝑒𝑥𝑡, uniform over the whole domain 𝛺. Eq. (13) can
e reformulated as:
𝜕𝐿(�⃗�, 𝑢)

𝜕𝑙
= −�̂�𝑒𝑥𝑡𝐿(�⃗�, 𝑢) + �̂�𝑒𝑥𝑡𝑆(�⃗�, 𝑢) (14)

ith the following source term:

(�⃗�, 𝑢) = 𝐿(�⃗�, 𝑢)

+ 1
�̂�𝑒𝑥𝑡

[

−𝑘𝑒𝑥𝑡(�⃗�)𝐿(�⃗�, 𝑢) + 𝑘𝑎(�⃗�)𝐿𝑒𝑞(�⃗�) + 𝑘𝑠(�⃗�)∫4𝜋
𝑝(𝑢′, 𝑢)𝑑𝑢′𝐿(�⃗�, 𝑢)

]

(15)

If we further assume that �̂�𝑒𝑥𝑡 is the sum of �̂�𝑎 and �̂�𝑠, upper-bound
arameters for, respectively, the absorption coefficient field and the
cattering coefficient field (these quantities are also uniform in 𝛺), the
source term can be expressed as follows:

𝑆(�⃗�, 𝑢) =
�̂�𝑎
�̂�𝑒𝑥𝑡

[𝑘𝑎(�⃗�)
�̂�𝑎

𝐿𝑒𝑞(�⃗�) +
(

1 −
𝑘𝑎(�⃗�)
�̂�𝑎

)

𝐿(�⃗�, 𝑢)
]

+
�̂�𝑠
�̂�𝑒𝑥𝑡

[𝑘𝑠(�⃗�)
�̂�𝑠 ∫4𝜋

𝑝(𝑢′, 𝑢)𝑑𝑢′𝐿(�⃗�, 𝑢) +
(

1 −
𝑘𝑠(�⃗�)
�̂�𝑠

)

𝐿(�⃗�, 𝑢)
]

(16)

Given that �̂�𝑒𝑥𝑡 is uniform over 𝛺, Eq. (14) has a well known
solution:

𝐿(�⃗�, 𝑢) = 𝐿𝜕𝛺(𝑦, 𝑢) exp
(

−�̂�𝑒𝑥𝑡𝑙0
)

+ ∫

𝑙0

0
�̂�𝑒𝑥𝑡 exp

(

−�̂�𝑒𝑥𝑡𝑙
)

𝑑𝑙
{

𝑆(�⃗� − 𝑙𝑢, 𝑢)
}

(17)

with 𝑙0 the distance between position �⃗� and the boundary, in direction
𝑢. Firstly, the attenuation term between �⃗� and the boundary is replaced
by ∫ +∞

𝑙0
�̂�𝑒𝑥𝑡 exp

(

−�̂�𝑒𝑥𝑡𝑙
)

𝑑𝑙. Secondly, making use of the Heaviside nota-
tion  and �⃗�′ = �⃗�− 𝑙𝑢, the previous solution consisting of two separate
integral terms is reformulated using a single integral:

𝐿(�⃗�, 𝑢) =∫

+∞

0
�̂�𝑒𝑥𝑡 exp

(

−�̂�𝑒𝑥𝑡𝑙
)

𝑑𝑙

×
{

𝑆(�⃗� − 𝑙𝑢, 𝑢)(�⃗�′ ∈ 𝛺) + 𝐿𝜕𝛺(𝑦, 𝑢)(�⃗�′ ∉ 𝛺)
}

(18)

Introducing the source term from expression (16) into this integral
form, we obtain:

𝐿(�⃗�, 𝑢) =∫

+∞

0
�̂�𝑒𝑥𝑡 exp

(

−�̂�𝑒𝑥𝑡𝑙
)

𝑑𝑙

{

𝐿𝜕𝛺(𝑦, 𝑢)(�⃗�′ ∉ 𝛺)

+

[

�̂�𝑎
�̂�𝑒𝑥𝑡

[𝑘𝑎(�⃗�′)
�̂�𝑎

𝐿𝑒𝑞(�⃗�′) +
(

1 −
𝑘𝑎(�⃗�′)
�̂�𝑎

)

𝐿(�⃗�′, 𝑢)
]

+
�̂�𝑠
�̂�𝑒𝑥𝑡

[𝑘𝑠(�⃗�′)
�̂�𝑠 ∫4𝜋

𝑝(𝑢′, 𝑢)𝑑𝑢′𝐿(�⃗�′, 𝑢′) +
(

1 −
𝑘𝑠(�⃗�′)
�̂�𝑠

)

𝐿(�⃗�′, 𝑢)
]

]

× (�⃗�′ ∈ 𝛺)

}

(19)

Moreover, according to a line-by-line approach, the absorption co-
fficient at a given frequency 𝜈 is formalized as the sum of the contri-
utions of 𝑁 transitions, for the same frequency: 𝑘 (�⃗�) =

∑𝑁𝑡 ℎ .
𝑡 𝑎 𝑗=1 𝑎,𝑗

https://gitlab.com/yanissnp/RadForcE
https://mcg-rad.ipsl.fr/
https://mcg-rad.ipsl.fr/
https://mcg-rad.ipsl.fr/
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We further introduce an upper-bound parameter, noted ℎ̂𝑎,𝑗 , to the
ontribution of each transition 𝑗 to the total absorption coefficient (this
pper-bound value is also uniform within 𝛺), which makes possible to
eformulate 𝑘𝑎(�⃗�)

�̂�𝑎
as ∑𝑁𝑡

𝑗=1
ℎ̂𝑎,𝑗
�̂�𝑎

ℎ𝑎,𝑗 (�⃗�)
ℎ̂𝑎,𝑗

and 1− 𝑘𝑎(�⃗�)
�̂�𝑎

as ∑𝑁𝑡
𝑗=1

ℎ̂𝑎,𝑗
�̂�𝑎

(

1− ℎ𝑎,𝑗 (�⃗�)
ℎ̂𝑎,𝑗

)

;
the integral solution thus reads:

𝐿(�⃗�, 𝑢) =∫

+∞

0
�̂�𝑒𝑥𝑡 exp

(

−�̂�𝑒𝑥𝑡𝑙
)

𝑑𝑙

{

𝐿𝜕𝛺(𝑦, 𝑢)(�⃗�′ ∉ 𝛺)

+

[

�̂�𝑠
�̂�𝑒𝑥𝑡

[𝑘𝑠(�⃗�′)
�̂�𝑠 ∫4𝜋

𝑝(𝑢′, 𝑢)𝑑𝑢′𝐿(�⃗�′, 𝑢′) +
(

1 −
𝑘𝑠(�⃗�′)
�̂�𝑠

)

𝐿(�⃗�′, 𝑢)
]

+
�̂�𝑎
�̂�𝑒𝑥𝑡

[

𝑁𝑡
∑

𝑗=1

ℎ̂𝑎,𝑗
�̂�𝑎

[
ℎ𝑎,𝑗 (�⃗�′)

ℎ̂𝑎,𝑗
𝐿𝑒𝑞(�⃗�′) +

(

1 −
ℎ𝑎,𝑗 (�⃗�′)

ℎ̂𝑎,𝑗

)

𝐿(�⃗�′, 𝑢)
]

]

]

× (�⃗�′ ∈ 𝛺)

}

(20)

In terms of the Monte Carlo algorithm associated to this path-
ntegral formulation, we define the following quantities:

• 𝑃𝑠 = �̂�𝑠
�̂�𝑒𝑥𝑡

is the probability to retain the ‘‘scattering’’ branch of
the algorithm;

• �̂�𝑎
�̂�𝑒𝑥𝑡

is the complementary probability, noted 1 − 𝑃𝑠, is the proba-
bility to retain the ‘‘absorption’’ branch of the algorithm;

• 𝑃𝑠(�⃗�) = 𝑘𝑠(�⃗�)
�̂�𝑠

is the probability a scattering event is retained.

The complementary probability 1− 𝑘𝑠(�⃗�)
�̂�𝑠

is the probability a ‘‘null
scattering’’ event is sampled;

• 𝑃𝐽 (𝑗) = ℎ̂𝑎,𝑗
�̂�𝑎

is the probability to sample transition of index 𝑗
among 𝑁𝑡 transitions, for current frequency 𝜈;

• 𝑃𝑎,𝑗 (�⃗�) = ℎ𝑎,𝑗 (�⃗�)
ℎ̂𝑎,𝑗

is the probability a real absorption event is

sampled, and the complementary probability 1 − ℎ𝑎,𝑗 (�⃗�)
ℎ̂𝑎,𝑗

is the
probability a ‘‘null absorption’’ event is sampled.

With these notations, the integral formulation of the general solu-
ion to the radiative transfer equation finally reads:

(�⃗�, 𝑢) =∫

+∞

0
�̂�𝑒𝑥𝑡 exp

(

−�̂�𝑒𝑥𝑡𝑙
)

𝑑𝑙

{

𝐿𝜕𝛺(𝑦, 𝑢)(�⃗�′ ∉ 𝛺)

+

[

𝑃𝑠

[

𝑃𝑠(�⃗�)∫4𝜋
𝑝(𝑢′, 𝑢)𝑑𝑢′𝐿(�⃗�′, 𝑢′) +

(

1 − 𝑃𝑠(�⃗�)
)

𝐿(�⃗�′, 𝑢)
]

+
(

1 − 𝑃𝑠
)

[

𝑁𝑡
∑

𝑗=1
𝑃𝐽 (𝑗)

[

𝑃𝑎,𝑗 (�⃗�)𝐿𝑒𝑞(�⃗�′) +
(

1 − 𝑃𝑎,𝑗 (�⃗�)
)

𝐿(�⃗�′, 𝑢)
]

]

]

× (�⃗�′ ∈ 𝛺)

}

(21)

hich is identical to Eq. (5).
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