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Abstract

We present recent advances in path-integral formulations designed for unbiased Monte Carlo sen-
sitivity estimation (in the form of partial derivatives) within a coupled physics model. We establish
the theoretical foundation and illustrate the approach by estimating instantaneous atmospheric radia-
tive forcings. In climate studies, these quantities amount for the change in top-of-atmosphere (TOA)
net radiative flux induced by an isolated change in surface or atmospheric constitution. Based on
a path-integral framework, our approach results in estimations consistent with well-established ra-
diative forcings in the climate community. We highlight how physics coupling through path-integral
formulations yields unbiased sensitivity estimation of a radiative quantity (integrated TOA flux) to
a spectroscopic parameter (fraction change in gas concentration). Furthermore, we emphasize the
method’s scalability, demonstrating its compatibility with computer science acceleration techniques.
These latter play a key role in rendering the computational time weakly sensitive to the system’s
multidimensional and multiphysics complexity.

1 Introduction and context
Monte Carlo methods yield unbiased estimates of integral quantities and their uncertainties, and
as such, they have been employed for decades to provide reference results in atmospheric radiative
transfer studies. Although being extensively used for benchmarking faster 1D radiative transfer
codes to guide improvements in remote sensing, weather forecast and climate modeling, the high
computational cost of Monte Carlo 3D codes, such as the I3RC community model [1] or MYS-
TIC [2], usually prevents their direct employment in operational contexts. However, recent transfer
from computer science acceleration techniques to atmospheric radiative transfer science — to handle
complex surfaces and detailed cloud fields for instance [3, 4, 5] — open new perspectives for using
Monte Carlo methods beyond reference simulations. Indeed, these methods have recently been shown
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to be key in addressing multiphysics and multidimensional integrals [6] resulting in computation-
ally efficient simulations that are insensitive to the size and complexity of the integration domains
[5, 7, 8].

A recent example in this respect is a novel work that couples a line-by-line spectroscopic model
to a radiative transfer model, resulting in a spectro-radiative model first described in [9], that has
recently benefited from a close collaboration between multiple communities (computer science, at-
mospheric science, spectroscopy and radiative transfer physics). This collaboration has resulted in
a Monte Carlo radiative transfer code specifically designed to estimate integrated radiative fluxes.
Developed during the PhD work of Nyffenegger-Péré [16], it provides reference results for estimat-
ing atmospheric radiative fluxes integrated over any spatial, temporal and wavenumber domain, us-
ing the atmosphere and the surface properties’ description as input data, typically derived from a
global and multi-decadal General Circulation Model (GCM) simulation. A concrete application of this
tool in climate science is estimating the global broadband flux at TOA, that is, radiances averaged
temporally over a climate period and spatially over the whole globe, as well as integrated over all
frequencies and outgoing directions, without any compromise on the radiative or the spectroscopic
physics description. Moreover, the approach combines path-integral Monte Carlo methods — insen-
sitive to the integration domains — with computer graphics acceleration techniques [10, 11, 26] —
that guarantee fast convergence —, resulting in computation times of just a few seconds that are
insensitive to the input data complexity. Consequently, the computational cost for estimating the
radiative flux integrated over an entire century, the entire globe, and the entire infrared spectrum is
comparable to the cost for one particular time, location, and wavenumber, for the same precision level
[16].

As the partial derivatives of an integral quantity are themselves integrals, initial developments
for constructing path-integral sensitivities have been available for about 20 years [12], offering the
benefit of providing uncertainties for these estimates. Since then, multiple studies [13, 17, 18, 19]
have demonstrated that if we can estimate a quantity through Monte Carlo methods, then we also
know how to estimate its sensitivities using these methods. However, statistical convergence issues
often arise when estimating sensitivities in a manner specific to each application, making them at
the heart of active fields of research, including computer graphics science [13]. Now, instantaneous
radiative forcing — precisely the quantity we aim to estimate without bias from the perspective of
the spectro-radiative model — can be determined in specific instances through sensitivity estimates,
as illustrated in Section 3 for carbon dioxide concentrations. The instantaneous radiative forcing with
respect to a parameter is defined as the variation in the outgoing radiative flux at TOA when this
parameter value is changed while keeping the other physics model parameters fixed. Indeed, ana-
lyzing the physical mechanisms of global warming requires characterizing its evolution as a function
of the climate system state. A first step is often to evaluate the radiative forcing resulting from a
change in surface or atmospheric constitution (e.g., gas, cloud, aerosol, or surface properties), which
are parameters in the spectro-radiative model. Instead of computing two estimates based on differ-
ent sets of parameter values for a finite differences estimation, sensitivities can be estimated using
the straightforward path-integral Monte Carlo methods that differentiate the spectro-radiative model.
The unbiased nature of these estimations on both the modeling level (through the path-integral for-
mulation for physics coupling) and the simulation level (through Monte Carlo methods) is crucial.
Indeed, the presence of approximations in the treatment of radiative transfer or spectroscopic pro-
cesses introduces disparities in the forcings computed by different climate models [22, 23]. Therefore,
in the present work, we argue that in addition to estimating the radiative flux at TOA, we can build
upon the spectro-radiative model framework to yield sensitivity estimates to any parameters of inter-
est.
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Section 2 serves as the theoretical framework of our approach, structured into three segments. In
Section 2.1, we provide a succinct examination of the difficulties associated with calculating radiance.
Next, we outline the path-integral foundations of its efficient Monte Carlo estimation through the
null-collision technique [14]. Moving to Section 2.2, we establish a transport model for sensitivities
that shares strong physical similarities with the transport of radiance. As a result, it is shown that the
theoretical advancements presented for estimating radiance can also be applied to estimate sensitivities
and thus radiative forcings. In Section 2.3, the Monte Carlo simulation algorithm associated with the
resulting sensitivity path-integral is detailed. This lays the groundwork for an in-depth discussion of
the sensitivity results in Section 3.

2 Theory and methods

2.1 Estimating global outgoing radiative flux at TOA
The global outgoing radiative flux at TOA, φ̄, is the monochromatic radiance Lν averaged over a time
period ∆t (typically 1 to 30 years), over the entire globe of area S, and integrated over all frequencies
ν and outgoing directions ~u:

φ̄ =
1

S∆t

∫
∆t
dt

∫
S
dS(~x)

∫ +∞

0
dν

∫
2π
d~u|~u · ~n|Lν(~x, ~u, t) (1)

That can easily be reformulated as the following path-integral:

φ̄ =

∫
∆t
pT (t)dt

∫
S
pS(~x)dS(~x)

∫ +∞

0
pN (ν)dν

∫
2π
pU (~u)d~u

{
πLν(~x, ~u, t)

pN (ν)

}
(2)

Provided that functions pT (t), pS(~x), pN (ν) and pU (~u) are normalized over their respective domains
of definition, this path-integral can be formulated as the expectancy of a random variable Ω defined
over . φ̄ can therefore be estimated using a Monte Carlo algorithm that uses the following probability
density functions (PDFs) for sampling:

• pT (t) = 1/∆t is a uniform probability density function used to sample values of time t over the
[t0, t0 + ∆t] range,

• pS(~x) = 1/S is a uniform probability density function used to sample positions ~x over the surface
S of a sphere that represents the Earth’s TOA,

• pN (ν) is a probability density function used to sample values of frequency ν over the [0,+∞[
range. Employing importance sampling to account for frequencies in proportion to their contri-
butions, we choose a probability density function that follows the Planck function, expressed for
the maximal temperature encountered in the system Tmax. Since

∫ +∞
0 Leqν dν = σT 4

max/ π, we
choose pN (ν) = (πLeqν )/σT 4

max,

• pU (~u) = |~u · ~n|/π is the probability density function used to sample an outgoing direction ~u over
the upper hemisphere following Lambertian emission.

Equation 2 unfolds as a linearly nested sequence of integrals over time, space, frequency, and direc-
tion. Consequently, using the double randomization principle [27, 28], a single Monte Carlo iteration
for this multiple path-integral requires only a single sampling over each of the probability density func-
tions. To break it down, one Monte Carlo realization of φ̄ involves sequentially sampling a time t over
[0,∆t] according to pT (t), a position ~x over S according to pS(~x), a frequency ν over [0,+∞[ according
to pN (ν) and a direction ~u over the outgoing hemisphere at ~x according to pU (~u).The retained weight
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of the realization is then ω = πLν(~x, ~u, t)/pN (ν), of variance Var(ω). According to the Central Limit
Theorem, performing a large number of realizations N , their sample mean is a random variable Ω̄
which follows a normal distribution of variance Var(Ω̄) = Var(Ω)/N . As a realization of Ω̄, the sample
mean ω̄ of variance is an unbiased estimator for φ̄, for which Var(ω)/(N − 1) is an unbiased estimor
for variance.

In practice, the monochromatic radiance field Lν(~x, ~u, t) is unknown. If the expression for Lν
within a heterogeneous and anisothermal participating medium can be formulated as as path inte-
gral formulation, easily implementable using Monte Carlo methods, then the double randomization
technique can be extended over its integration domains. This extension entails sampling a single re-
alization of its corresponding random variables. Our aim is the development of such a path-integral
formulation.

The transport of radiance can be described by the stationary form of the monochromatic Radiative
Transfer Equation (RTE):

∀~x ∈ Ω,∀~u ∈ S2 :

~u.~∇Lν(~x, ~u) =− kext,ν(~x)Lν(~x, ~u) + ka,ν(~x)Leqν (T (~x))

+ ks,ν(~x)

∫
4π
pν
(
~u′, ~u

)
d~u′Lν(~x, ~u′)

∀~y ∈ ∂Ω,∀~u+ ∈ S2
+ :

Lν(~y, ~u+) = L∂Ω
ν (~y, ~u+)

(3)

where S2 is the unit sphere, Ω is the geometrical domain (the atmosphere), and ∂Ω is its boundary
(the TOA and the land or oceanic surface), where the monochromatic radiance L∂Ω

ν is known for
all locations ~y ∈ ∂Ω, and all directions ~u+ within the incoming hemisphere S2

+ at position ~y. The
coefficients ka,ν(~x), ks,ν(~x), and kext,ν(~x) = ka,ν(~x)+ks,ν(~x) are the absorption, scattering, and extinc-
tion coefficients, respectively. Leqν (T (~x)) is the equilibrium blackbody radiance (following the Planck
blackbody radiance function, for temperature T (~x) at location ~x), and pν (~u′, ~u) is the single scattering
phase function, i.e., the probability density that the propagation direction after scattering is ~u′ for a
given incoming direction ~u.

The path-integral formulation corresponding to System (3) is :

Lν(~x, ~u) =

∫ +∞

0
pL(l)dl

 H (~x′ /∈ Ω)L∂Ω
ν (~y, ~u)

+H (~x′ ∈ Ω)

[
Pabs (~x′)Leqν (T (~x′))
+Psca (~x′)

∫
4π pν (~u′, ~u) d~u′Lν (~x′, ~u′)

]  , (4)

with pL(l) = kext,ν(~x− l~u)e−
∫ l
0 kext,ν(~x−l′~u)dl′ the probability density function for sampling a free path

of length l, which provides the next collision position ~x′ = ~x− l~u. Equation (4) can be translated into
a backward Monte Carlo algorithm that estimates Lν(~x, ~u) as a sum of contributions from emission
sources. Each collision position ~x′ is either outside the medium (H (~x′ /∈ Ω)), in which case the retained
weight is L∂Ω

ν (~y, ~u) (the boundary condition radiance in direction ~u and at position ~y, ~y being the
position of the first intersection between the

(
~x, ~u

)
sightline and the boundary ∂Ω), or ~x′ is still in the

medium (H (~x′ ∈ Ω)) (see Figure 1). In the latter case, two types of collision events can take place
according to probabilities Pabs(~x) = ka,ν(~x)/kext,ν(~x) and Psca(~x) = ks,ν(~x)/kext,ν(~x) for an absorption
event or a scattering event, respectively. In the case of an absorption event, the Monte Carlo weight is
the blackbody equilibrium radiance Leqν (T (~x)) at the ~x′ collision position. This is because absorption
points in a reverse path correspond to emission points in its corresponding forward path, leveraging
the reciprocity of light paths in accordance with the second law of thermodynamics. In the case of a
scattering event, the optical trajectory continues in a new propagation direction ~u′ sampled according
to the phase function pν (~u′, ~u). Radiance Lν (~x′, ~u′) for the new position and propagation direction
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Figure 1: An example of radiance reverse path starting at ~x in direction ~u is shown. It is composed of
several scattering events (circle) before finally reaching an absorption event (square) occuring either (a)
in the volume Ω, or (b) at the system boundary ∂Ω. Absorption points in a reverse path correspond to
emission points in its corresponding forward path, leveraging the reciprocity of light paths in accordance
with the second law of thermodynamics.

has to be computed. Lν (~x′, ~u′) has the very same integral formulation as Lν(~x, ~u): the path-integral
formulation is recursive.

The probabilitic model above presents two difficulties. The first one is encountered when sampling
the extinction length l, as Lν(~x, ~u) depends non-linearly (through an exponential function) on the
integral of the heterogeneous extinction coefficient field kext,ν(~x). The second one is encountered when
sampling the collision type; the absorption coefficient is a sum over millions of molecular transitions:
ka,ν(~x) =

∑Nt
j=1 ha,ν,j(~x) with ha,ν,j(~x) the contribution of transition of index j to the total absorption

coefficient of the medium; this is computationally expensive to estimate. Approximation methods for
the calculation of the absorption coefficient field exist and are routinely used in atmospheric radia-
tive transfer, but their model errors can be difficult to quantify. Interestingly, using the null-collision
method makes both of these limitations vanish [12]. Not only does introducing fictive colliders homog-
enize the extinction coefficient field [15, 16] making the sampling of the extinction length l simpler,
but it also enables a coupling between the line-by-line spectroscopic model and the radiative transfer
model [6, 14], where the absorption coefficient is replaced with a transition sampling over the spectral
domain. The resulting model now encompasses radiation and spectroscopy in a single path-integral
formulation. In terms of model resolution, the model is simulated as a whole in a single Monte Carlo
simulation [6]. This particular point becomes more obvious through the algorithmic illustration given
in section 2.3, which is the probabilistic description of the following path-integral formulation, derived
in Appendix A:

Lν(~x, ~u) =
∫ +∞

0 p̂L(l)dl
H (~x′ /∈ Ω)L∂Ω

ν (~y, ~u)

+H (~x′ ∈ Ω)

 P̂s

{
Ps (~x′)

∫
4π pν (~u′, ~u) d~u′Lν (~x′, ~u′)

+ (1− Ps (~x′))Lν (~x′, ~u)

}
+
(

1− P̂s
)(∑Nt

j=1 PJ(j, ν)

{
Pa,j (~x′)Leqν (T (~x′))
+ (1− Pa,j (~x′))Lν (~x′, ~u)

})

 (5)

where the different terms P̂� and P� are introduced to account for null collisions (see Appendix
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A).
This reformulation results in a path-integral where the physics of radiative transfer is nonlinearly

coupled to spectroscopy through the introduction of recursive null events. The requirement of pre-
computing the absorption coefficient field is shifted to the ability to sample just one transition per one
Monte Carlo realization.

Indeed, Equation 5 can be translated into a Monte Carlo algorithm, for which the procedure for
one realization is presented in Algorithm 1. The optical path associated with each realization can
propagate in the medium without knowing the real extinction coefficient field upfront, because it
is needed only locally at each collision location. To sample a collision location, only a number of
homogeneous upper bound free parameters are required to define various probabilities: k̂a,ν is an
upper-bound of the absorption coefficient field, k̂s,ν is an upper-bound of the scattering coefficient field
and k̂ext,ν = k̂a,ν + k̂s,ν is an upper-bound of the extinction coefficient field. An upper-bound ĥa,ν,j
of the contribution ha,ν,j(~x) of transition of index j to the local absorption coefficient must also be
defined, so that k̂a,ν =

∑Nt
j=1 ĥa,ν,j , where Nt is the total number of transitions. As we will see in

next section, we obtain a path-integral of a similar structure for sensitivities, for which we provide a
complete description in the algorithmic section.

As far as computational cost is concerned, arbitrarily choosing these uniform upper-bound free
parameters does not necessarily ensure an efficient sampling of transitions because absorption spec-
tra are highly varying in frequencies. This can lead to a significant computational cost if chosen
too large compared to the true absorption spectra: as k̂ext,ν increases relative to kext,ν(~x), sampled
path-lengths l become shorter, and the likelihood of encountering null events increases. Consequently,
this necessitates the sampling of a considerable number of consecutive spatial positions to sample a
single path. This is where computer scientists’ expertise in structuring and processing data comes
into play. For an efficient sampling of large spectral data sets, the frequency domain is partitioned
inside a hierarchical grid to build a field of upper bounds adapted to the absorption spectra varia-
tions. This data structuring makes the computational cost weakly sensitive to the size [5, 16] (num-
ber of transitions) and the complexity (shape of absorption spectra) of the spectroscopic database.
Given the significant variability of absorption spectra with altitude, mostly due to pressure variations,
the spectral hierarchical grids are tabulated as a function of pressure, and algorithmic adjustments
are designed such that no alterations are made to the integral formulation represented by Equation
5.

The next section details the formal developments for obtaining a similar path-integral for sensitiv-
ities.

2.2 Estimating global radiative flux sensitivities
The previous section establishes the path-integral Monte Carlo approach for evaluating the global
outgoing radiative flux at TOA using an integral reformulation for radiance. In this section, we show
how to extend this framework to estimate flux sensitivities, paying specific attention to retaining the
benefits associated with the use of the null-collision technique.

Sensitivity with respect to parameter π̈ is defined as ∂π̈φ̄ the partial derivative of the flux at
TOA. Let sν be defined such that sν(~x, ~u, t, π̈) = ∂π̈Lν(~x, ~u, t, π̈), then the TOA flux sensitivity
is:

∂π̈φ̄ =

∫
∆t
pT (t)dt

∫
S
pS(~x)dS(~x)

∫ +∞

0
pN (ν)dν

∫
2π
pU (~u)d~u

{
πsν(~x, ~u, t, π̈)

pN (ν)

}
, (6)

which requires a path-integral formulation of sν , similar to the path-integral formulation that was
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required for Lν in the previous section. In addressing the question of sensitivity estimation using
Monte Carlo methods, two different approaches may be considered. The first one consists in dif-
ferentiating the path-integral formulation of Lν(~x, ~u) in Equation (5), and rewriting the resulting
integral in order to preserve the same random samplings (and thus, the same algorithmic structure)
between the quantity and its derivatives [10]. This is computationally efficient since only one set of
paths has to be sampled to estimate all the quantities at once. However, when null-collision algo-
rithms are implemented in combination with acceleration structures to guarantee that only a small
fraction of fictive colliders is introduced at any location, [17] has demonstrated that the variance of
the sensitivity estimates might be unbounded. This is because the weights that are retained for the
sensitivity estimates are inversely proportional to the concentration of fictive colliders, which tends
to zero as the acceleration structure is better optimized. [17] proposed a solution to bypass this
difficulty, but this requires an additional sampling at each collision event. The second approach,
which we choose to explore in the present work, consists in differentiating the radiative transport
model of Lν(~x, ~u) in System (3) to establish a transport model for the sensitivity. This method
was originally developed for geometric sensitivities (derivatives with respect to parameters the ge-
ometry depends upon [18, 19]) ant it will be used hereafter for parametric (non-geometric) sensitiv-
ities. This framework enables the physical analysis of sensitivity propagation in the participating
medium.

According to the second approach, differentiating System (3) with respect to π̈ yields a transport
model for the sensitivity that can be expressed using a new transport equation, namely a Sensitivity
Transport Equation (STE):



∀~x ∈ Ω,∀~u ∈ S2 :

~u.~∇Xsν(~x, ~u, π̈) =− kext,ν(~x, π̈)sν(~x, ~u, π̈) + ka,ν(~x, π̈)[
∂π̈ka,ν(~x, π̈)

ka,ν(~x, π̈)
(Leqν (T (~x))− Lν(~x, ~u, π̈))]

+ ks,ν(~x, π̈)

∫
4π

pν (~u′, ~u) d~u′(sν(~x, ~u′, π̈) + [
∂π̈ks,ν(~x, π̈)

ks,ν(~x, π̈)
(Lν(~x, ~u′, π̈)− Lν(~x, ~u, π̈))])

∀~y ∈ ∂Ω,∀~u+ ∈ S2
+ :

sν(~y, ~u+) = 0
(7)

Comparing STE (Equation 7) with RTE (Equation 3), we see that the structure for transport
of sensitivity is very similar to that of radiance, which translates into the same sampling proce-
dure between the two quantities. The difference only regards the sources via absorption and scat-
tering.

At this point, the STE can be solved using any model for the absorption and scattering coefficients
fields ka,ν(~x, π̈) and ks,ν(~x, π̈). However, it is possible to establish a sensitivity model that couples
line-by-line spectroscopy and radiative transfer, following the same formal developments (in Appendix
A) used for the construction of the multiphysics model of radiance. Doing so, we obtain a path-
integral formulation for sensitivity similar to the path-integral formulation for radiance in Equation
5:
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sν(~x, ~u, π̈) =
∫ +∞

0 p̂L(l)dl

H (~x′ /∈ Ω) .0
+H

(
~x′ ∈ Ω

)
P̂s(~x

′)

{
Ps(~x

′)
∫

4π pν (~u′, ~u) d~u′
[
sν(~x′, ~u′, π̈) +

[
∂π̈kd,ν(~x,π̈)
kd,ν(~x,π̈) (Lν(~x′, ~u′, π̈)− Lν (~x′, ~u, π̈))

]]
+ (1− Ps (~x′)) [sν (~x′, ~u, π̈)]

}

+
(

1− P̂s (~x′)
)(∑Nt

j=1 PJ(j, ν)

{
Pa,j (~x′)

[
∂π̈ha,ν,j(~x,π̈)
ha,ν,j(~x,π̈) (Leqν (T (~x′))− Lν(~x′, ~u, π̈))

]
+ (1− Pa,j (~x′)) [sν (~x′, ~u, π̈)]

})



(8)

The resulting path-integral formulation can correspond to multiple Monte Carlo algorithmic inter-
pretations. We will now elaborate on the specificities of our simulation choices.

2.3 From path-integral formulation to Monte Carlo algorithm
We can read in our sensitivity path-integral formulation (Equation 8) a coupling to two other path-
integrals corresponding to two distinct physics. The first coupling is to the line-by-line spectroscopic
model through Pa,j , governing real or null transitions. The second coupling is to the radiance model
Lν , which appears in the weights of sensitivity Monte Carlo realizations. We refer to these through
coupling because the sensitivity path-integral is designed in a way that a single Monte Carlo iteration
walks across different physics by sampling their associated random variables — here, radiance and
absorption coefficient — without requiring their explicit resolution. Instead, only one realization of
each corresponding random variable is sampled.

This becomes manifest in the statistical procedure for sampling a single Monte Carlo weight pre-
sented in Algorithm 2, which is a strict translation of the sensitivity path-integral formulation presented
in Equation 8. The complete Monte Carlo for sensitivity estimation entails N averaged realizations,
each sampled as follows:

• Initialization: start an optical path at position ~x, in direction −~u.
• Sampling path length: sample path length l according to p̂L(l) = k̂ext,νexp

(
−k̂ext,ν l

)
over

[0,+∞).

• Update position : ~x′ = ~x− l~u.
• Boundary check: check whether ~x′ is outside or inside Ω.

– If outside, the weight is the boundary condition (here it is null because the boundary
conditions in the model of L was set independent of the parameter), and the realization
stops.

– If inside, proceed to collision branch determination at ~x′.

• Collision branch determination: determine the collision type by sampling between the scattering
branch and the absorption branch with probabilities P̂s(~x′) and P̂a(~x

′) = 1 − P̂s(~x
′), respec-

tively.

• If the "scattering branch" is selected: determine whether it is a real or a null scattering event
with probabilities Ps(~x′) and 1− Ps(~x′), respectively.
– If real scattering event: the new propagation direction ~u′ has to be sampled over 4π sr ac-

cording to the p(~u′, ~u) probability density. Then we evaluate sν(~x′, ~u′, π̈) by recursing on
Algorithm 2; we also evaluate Lν(~x′, ~u′, π̈) and Lν (~x′, ~u, π̈) using Algorithm 1 via double
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randomization, meaning we estimate one Monte Carlo realization of Algorithm 1 at position
~x′ and direction ~u′ and at ~x′ and direction ~u, respectively. The Monte Carlo weight we retain
is then sν(~x′, ~u′, π̈)+

[
∂π̈kd,ν(~x,π̈)
kd,ν(~x,π̈) (Lν(~x′, ~u′, π̈)− Lν (~x′, ~u, π̈))

]
, and additional data has to be

known at this point: the value of ∂π̈kd,ν(~x, π̈).
– If null scattering event: recurse on Algorithm 2 at the new position ~x′ but in the same

direction ~u.

• If the "absorption branch" is selected: sample a transition according to the PJ(j, ν) =
ĥa,j,ν

k̂a,ν
,

j ∈ [1, Nt] probability set. Then determine whether it is a real or a null transition event with
probabilities Pa,j(~x′) =

ha,j(~x)

ĥa,j,ν
and 1− Pa,j(~x′) =

ĥa,j−ha,j(~x)

ĥa,j,ν
, respectively.

– If real transition event: the weight ∂π̈ha,ν,j(~x,π̈)
ha,ν,j(~x,π̈) (Leqν (T (~x′))− Lν(~x′, ~u, π̈)) is retained and the

realization stops. Two additional quantities need to be evaluated: the value of ∂π̈ha,ν,j(~x, π̈)
and Lν(~x′, ~u, π̈). The latter is evaluated by a single realization of the corresponding radiance
random variable, relying on double randomization.

– If null transition event: recurse on Algorithm 2 at the new position ~x′ but in the same
direction ~u.

Algorithm 1 Radiance realization Lν(~x, ~u, π̈)
Input: a position ~x, a direction ~u, a parameter π̈
Output: a Monte Carlo radiance weight ω

function RadianceRealization(~x, ~u, π̈)
Sample a length to the next collision position l according to p̂L(l)
Compute the next collision position ~x′ ← ~x− l~u
if ~x′ /∈ Ω then

Compute position ~y of intersection between (~x,−~u) ray and boundary ∂Ω
ω ← L∂Ω

ν (~y, ~u)
else

Sample a uniform random variable r ∈ [0, 1]

if r < P̂s (~x′) then /* scattering */
Sample a uniform random variable r ∈ [0, 1]
if r < Ps (~x′) then /* real-scattering event */

Sample scattering direction ~u′ according to phase function p (~u′, ~u)
ω ← RadianceRealization(~x′, ~u′, π̈) . Recurse Algo. 1

else /* null-scattering event */
ω ← RadianceRealization(~x′, ~u, π̈) . Recurse Algo. 1

end if
else /* absorption */

Sample a transition j according to PJ (j, ν)
Sample a uniform random variable r ∈ [0, 1]
if r < Pa,j (~x′) then /* real-transition event */

ω ← Leqν (T (~x′))
else /* null-transition event */

ω ← RadianceRealization(~x′, ~u, π̈) . Recurse Algo. 1
end if

end if
end if
return ω

end function
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Algorithm 2 Sensitivity realization sν(~x, ~u, π̈)
Input: a position ~x, a direction ~u, a parameter π̈
Output: a Monte Carlo sensitivity weight ω

function SensitivityRealization(~x, ~u, π̈)
Sample a length to the next collision position l according to p̂L(l)
Compute the next collision position ~x′ ← ~x− l~u
if ~x′ /∈ Ω then

ω ← 0
else

Sample a uniform random variable r ∈ [0, 1]

if r < P̂s (~x′) then /* scattering */
Sample a uniform random variable r ∈ [0, 1]
if r < Ps (~x′) then /* real-scattering event */

Sample scattering direction ~u′ according to phase function p (~u′, ~u)
Lν(~x′, ~u′, π̈)← RadianceRealization(~x′, ~u′, π̈) . Algo. 1
Lν(~x′, ~u, π̈)← RadianceRealization(~x′, ~u, π̈) . Algo. 1
sν(~x′, ~u′, π̈)← SensitivityRealization(~x′, ~u′, π̈) . Recurse Algo. 2
ω ← sν(~x′, ~u′, π̈) +

∂π̈kd,ν(~x,π̈)

kd,ν(~x,π̈)
(Lν(~x′, ~u′, π̈)− Lν(~x′, ~u, π̈))

else /* null-scattering event */
ω ← SensitivityRealization(~x′, ~u, π̈) . Recurse Algo. 2

end if
else /* absorption */

Sample a transition j according to PJ (j, ν)
Sample a uniform random variable r ∈ [0, 1]
if r < Pa,j (~x′) then /* real-transition event */

Compute equilibrium blackbody radiance Leqν (T (~x′))
Lν(~x′, ~u, π̈)← RadianceRealization(~x′, ~u, π̈) . Algo. 1
ω ← ∂π̈ha,ν,j(~x,π̈)

ha,ν,j(~x,π̈)
(Leqν (T (~x′))− Lν(~x′, ~u, π̈))

else /* null-transition event */
ω ← SensitivityRealization(~x′, ~u, π̈) . Recurse Algo. 2

end if
end if

end if
return ω

end function

This algorithmic efficiency is facilitated by leveraging a mathematical statistical property encap-
sulated in Box 2.3, initially introduced in the work [30]. In our model, this property is particularly
relevant, as sensitivity, akin to radiance, shares a structural similarity with g in Box 2.3. This arises
from specific formal development choices made during the construction of Equation 8 for sensitivity
(and Equation 5 for radiance). To draw a parallel, sampling a single realization of X to determine the
Bernoulli parameter P = X

x̂ in the Box — instead of computing its expectation —, is the theoretical
justification in our model for sampling a single transition to determine the absorption probability —
instead of pre-computing the absorption coefficient — [16]. Subsequently, a Bernoulli trial follows
to determine whether it corresponds to a real or null absorption, thus retaining the corresponding
sensitivity weight (or radiance weight).

10



Box : A mathematical property for our statistical framework

This box demonstrates that if g is the expectation of a Bernoulli random variable (with possible
outcomes E(Y ) and E(Z)) where the probability is itself the expectation of a random variable
X
x̂ whose domain is the interval [0, 1], then the expectation of W is an unbiased estimator for
g, where a single realization of Xx̂ is sampled for each realization of W .

Property: Let g be a function of the expectancy of random variables X, Y , and Z, defined by
the following structure:

g =
E(X)

x̂
· E(Y ) +

[
1− E(X)

x̂

]
· E(Z)

where x̂ is an upper bound for all realizations x of X.
Then g is the expectation of random variable W :

g = E(W )

such that:
W = B

(
X

x̂

)
· Y +

[
1−B

(
X

x̂

)]
· Z

where B
(
X
x̂

)
is the Bernoulli variable of parameter the random variable P = X

x̂ .
Demonstration: By definition of g, we have:

g =

∫
DX

xpX(x) dx

x̂
·
∫
DY

ypY (y) dy +

[
1−

∫
DX

xpX(x) dx

x̂

]
·
∫
DZ

zpZ(z) dz

with pX , pY and pZ the probability density functions associated to random variables X, Y and
Z, respectively.
It can be reformulated as:

g =

∫
DX

pX(x) dx

(
x

x̂
·
∫
Y
ypY (y) dy +

[
1− x

x̂

]
·
∫
Z
zpZ(z) dz

)

Figure 2 illustrates a sensitivity path in pink, consisting of a sequence of consecutive collision
events. The physics coupling is visually conveyed through path branches, with the rainbow repre-
senting the spectroscopy and yellow representing the radiance model. The distinct nature of these
two physics branches is particularly noteworthy. The spectroscopic rainbow branch contributes to
constructing the sensitivity path, determining whether it continues beyond a collision site in the ab-
sorption branch. In contrast, each yellow radiance branch samples information that will contribute
to the sensitivity Monte Carlo weight but not to the construction of the sensitivity path. This dif-
ference in the two coupling statuses is grounded in the differential form of the STE. On the one
hand, the sensitivity transport model exhibits a non-linear dependency on the absorption coefficient
through Beer’s exponential, which is bypassed using null collisions. On the other hand, the radi-
ance appears as a volumetric source term in the STE, hence the linearity of the radiance-sensitivity
coupling.
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~x

~u

(1)

(2)

(3) (4)

(5)

(2)

(a) Sensitivity path (b) Sub-paths initiated at event (2)

sensitivity path
radiance branching

radiance path
spectroscopic branching null absorption

real absorption
null scattering
real scattering

Figure 2: On the left side, we depict an instance of the sensitivity reverse path in pink, starting at point
~x in direction ~u. The nodes along the path represent real (filled) or null (empty) events of two distinct
types: scattering (circle) or absorption (square). Along the sensitivity path, branching sub-paths emerge
at these nodes based on their type, invoking either spectroscopic sub-paths in rainbow, radiance sub-paths
in yellow, or both. This specific sensitivity path consists of five events. (1) is an absorption event that was
randomly determined as being null after sampling a transition where a rainbow spectroscopic sub-path
was launched to determine the event type; (2) is a real scattering event; in this case, two yellow radiance
sub-paths were launched as a contribution to the path weight; (3) is a similar real scattering event; (4)
is a null scattering event without sub-path branchings and (5) is an absorption event that was randomly
determined as being real after sampling a transition where a rainbow spectroscopic sub-path was launched
to determine the event type, and in this case, a yellow radiance sub-path was launched as a contribution
to the path weight. The right panel displays a zoom on scattering event (2): radiance paths are similar to
those of sensitivity but only contain rainbow spectroscopic branchings for path construction.
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3 Results and discussions

3.1 Results
In the following, we will use as the inputs of our spectro-radiative model atmospheric state outputs
from a simulation performed with the IPSL General Circulation Model 3.1. The IPSL climate model
simulation was performed on a 144 x 143 longitude-latitude grid using 79 vertical levels. We use 3-
hourly outputs of a 10-year simulation, which amounts to a total of 144x143x10x365x8 6̃00 million
columns [21]. The computations are performed in clear sky conditions considering four greenhouse
gases (H2O, CO2, O3, and CH4), and using a line-by-line spectroscopic model with parameters sourced
from the HITRAN database [19]. The Lorentz function describes the profile lineshapes, truncated at
25 cm−1 for H2O, O3, CH4, and 50 cm−1 for CO2. Analytical Lorentz profiles are used here, but the
methodology extends to Voigt profiles with no further conceptual challenges. Also, the water vapor
continuum is not accounted for in the present simulations, and its inclusion would similarly present no
further conceptual difficulties.

The theoretical developments are applicable to any parameter of interest in the spectro-radiative
model. Here, we focus on the radiative forcings resulting from a fractional change in greenhouse gas
concentration. Therefore, we define a sensitivity parameter π̈ that acts on the concentration fields and
consequently on radiative fluxes through molecular transitions ha,ν,j(~x, π̈) as a multiplier factor of the
reference molar fraction of gas, i.e., xgas = π̈ × xgas, ref. The initial concentration of carbon dioxide is
set to the pre-industrial era value xCO2,ref = 280 ppm. Each spectral line of index j is modelled as the
product of molecular density n, line intensity Sj , and line profile fν,j . The dependence on parameter
π̈ intervenes in molecular density n(~x, π̈) and line profile fν,j(~x, t, π̈). The derivative of a spectral line
ha,ν,j(~x, π̈) with respect to π̈ is then given by:

∂π̈ha,ν,j(~x, π̈) = Sj(~x, t)∂π̈ [n(~x, π̈)fν,j(~x, t, π̈)] (9)

Using Algorithm 1, we obtain the integrated TOA mean flux φ̄ depicted in Fig. 3a, Fig. 3c, and
Fig. 3e. Using Algorithm 2, we obtain the integrated TOA mean flux sensitivity ∂π̈φ̄ shown in Fig. 3b,
Fig. 3d, and Fig. 3f, with respect to parameter values π̈ affecting CO2, H2O, and CH4. The figures il-
lustrate these quantities as a function of parameter values π̈. Each point corresponds to an independent
estimation, conducted globally over a month and spanning the thermal infrared range [100; 2500] cm−1

with N = 640 000 Monte Carlo realizations each.
Fig. 4 represents the dependence of computational time required for achieving a 1% relative error

on sensitivity estimates (on a personal computer with 12 CPUs), as a function of the widening in the
spectral, spatial and temporal integration domains.

3.2 Discussions
In discussing the results, we focus on three key aspects: (i) in Section 3.2.1, we address the ad-
vantages of estimating sensitivity through path-integral Monte Carlo simulations compared to finite
differences methods; (ii) in Section 3.2.2, we analyze the computation times as the integration domains
are widened; and (iii) in Section 3.2.3, we validate our methods by comparing our results to a well-
established functional dependency of the global TOA radiative flux upon fraction change in carbon
dioxide concentrations.
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3.2.1 On sensitivity estimation

For a given gas and across all values of π̈, the perturbation of π̈ we considered in the results corre-
sponds to injecting the same infinitesimal amount dxgas = xgas, ref × dπ̈ of gas into the atmosphere.
The resulting sensitivity is ∂π̈φ̄, the variation in the global outgoing flux at TOA. As anticipated,
the negative sensitivities reflect the expected decrease in outgoing flux with an increase in greenhouse
gas concentration, in line with the greenhouse effect. Comparing forcings due to different gases, a
higher forcing from a gas corresponds to a greater expected impact when increasing its concentration,
consistent with the obtained sensitivities; water vapor exhibits larger sensitivities than carbon dioxide
and methane, given its greater abundance (see Fig. 3d and Fig. 3f).

For water vapor and carbon dioxide, the finite differences resulting from two distinct Monte
Carlo estimations of the flux provide reasonably accurate approximations of the estimated path-
integral sensitivities. However, for methane, where variations in mean flux are small (see Fig. 3e),
finite differences exhibit large fluctuations, contrasting with the more stable path-integral sensitiv-
ity estimates (see Fig. 3f). Moreover, Monte Carlo estimation provides unbiased sensitivities along
with their statistical uncertainty, whereas the uncertainty of finite differences comes from the un-
certainties of flux estimation mixed with the uncertainty due to the discretization choice, the lat-
ter being impossible to quantify in practice. Moreover, if we keep the same number of realiza-
tions, the finer the discretization parameter h, the more relevant the finite differences approxima-
tion becomes, but the larger the associated Monte Carlo variance, which increase proportionally to
1/h2:

∂π̈φ̄(π̈) ≈ φ̄(π̈ + h)− φ̄(π̈ − h)

2h

σ2
[
∂π̈φ̄(π̈)

]
≈ 1

4h2

{
σ2[φ̄(π̈ + h)] + σ2[φ̄(π̈ − h)]

} (10)

The advantage of the approach becomes clear: instead of substantially increasing the number
of Monte Carlo realizations on flux estimates in order to obtain reliable estimations through fi-
nite differences, we propose to use unbiased path-integral formulations for direct sensitivity estima-
tions.

3.2.2 On the computation time and Monte Carlo standard deviation

Figure 4 illustrates how t1%, the computational time required to achieve a 1% error on ∂π̈φ̄ estimates
for carbon dioxide, depends on the widening of the respective integration domains, on a personal com-
puter with 12 CPUs. In the first plot, we consider a single atmospheric column and a specific date, for
which the quantity t1% is represented as a function of spectral integration over a band of increasing
width, ranging from 10 cm−1 (marked by the first red dot) to 2 400 cm−1 (the entire infrared range
shown in the last red dot). Moving to the middle and the last plots, ∂π̈φ̄ is additionally integrated
over spatial and time domains of increasing size, from 1 to 20 592 atmospheric columns and over a
time period ranging from one day up to ten years, respectively.

First of all, on spectral integration, we observe from the first plot that computation time slightly
increases with domain widening. Looking at the sensitivity path-integral in Equation 8, during the
Monte Carlo sampling of carbon dioxide sensitivity, the retained weight values depend on the deriva-
tive of the spectral line for a given parameter π̈, and thus on which concentration field it acts upon.
The initial red dot on the graph corresponds to frequency integration within the 15 µm CO2 band.
Subsequent red points, up to an integration width of 100 cm−1, remain within same band. Con-
sequently, computational time remains insensitive in this band. This comes as no surprise as CO2

contribution relative to other molecules is dominant in this band. However, as the integration domain
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is enlarged, within spectral intervals devoid of CO2 contribution, the sensitivity weight consistently
tends to zero, due to contributions from other molecular species, such as H2O,O3, and CH4, that
become dominant. Consequently, higher proportions of sensitivity weights yield null values as absorp-
tion becomes frequently attributed to these alternative molecules. This introduces a source of greater
variance, necessitating additional Monte Carlo realizations to mitigate it, resulting in the observed
increase in t1%. While Monte Carlo variance reduction techniques, such as importance sampling
— in our case, to minimize the sampling of absorptions by H2O,O3, and CH4— offer a prospec-
tive avenue for strategically sampling sensitivity weights, it falls beyond the scope of the present
work.

Concerning the second and third plots, we note that expanding both the spatial and temporal
integration domains has a negligible impact on computational time, maintaining consistent perfor-
mance within a range of a few tens of seconds. Now, upon closer examination, the transition from
the second to the third plot, corresponding to the introduction of the additional integration domain
over time, leads to a 25% reduction in computational cost (from ∼ 40 seconds to ∼ 30 seconds),
which can be surprising. As a matter of fact, among the 2920 time points that are now consid-
ered, there might be more or less favourable cases in terms of variance, and hence convergence. If
the expansion of a certain integration dimension is anticipated to decrease the proportion of cases
with the highest variance, then the same level of statistical precision would require reduced computa-
tional costs. Therefore, an additional integration domain in Monte Carlo simulations may sometimes
reduce computational costs, e.g. [29], as it seems to be the case here. This point remains under
scrutiny.

We observe that in a general sense, for the same level of data resolution, estimating sensitivity
for a given date and position on the entire frequency domain (last red point) is nearly as costly as
estimating the result when integrating over the entire thermal infrared band, over the entire Earth,
and over ten years (last green point).

3.2.3 From carbon dioxide sensitivity to its radiative forcing estimation

The central focus of this paper has revolved around developing spectro-radiative path-integrals for
sensitivities, designed for unbiased Monte Carlo simulations. The approach avoids approximation
schemes at both levels of physics modeling and simulation, thereby providing, for the first time, a
method for reference estimations for sensitivities of radiative integrated fluxes to spectroscopic param-
eters. As a final prospect, we use the approach in the context of radiative forcings, on our simplified
configuration.

It is well-known in climate science that the radiative forcing from carbon dioxide is approximately
logarithmic in its concentration [24], a property further explained in recent studies [25]. Indeed, the
sensitivity to a logarithmic change in its fraction concentration field can be approximated by a constant
a:

dφ̄

d ln
(

xgas
xgas,ref

) = a (11)

This translates in our model as a functional form independent of the initial concentration field
xgas,ref, as it can be reformulated solely as a function of the parameter π̈, representing the fractional
change:

dφ̄

d ln
(

xgas
xgas,ref

) =
dφ̄

d ln (π̈)
=

dφ̄

dπ̈
· π̈ (12)
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This functional dependence property of CO2 can now be illustrated using our Monte Carlo simula-
tions by plotting the estimated sensitivity ∂π̈φ̄, multiplied by π̈, against π̈. As illustrated in Fig. 5, this
results indeed in a constant value. Our path-integral sensitivity approach thus provides an independent
simulation of this logarithmic dependence.

As a matter of fact, we can also note that a single value of our sensitivity estimations — let’s
choose a = −3.86 ± 0.06 found for π̈ = 1, taken as a reference case — enables the estimation of
carbon dioxide radiative forcing for any fractional change in its concentration, given its functional
dependency property. For instance, the radiative forcing for a doubling of the carbon dioxide con-
centration field yields ∆φ̄ = a ln(2) = −2.68± 0.06W/m², consistent with recent literature estimates
[22].

4 Conclusions
The intention of the present work was to develop a Monte Carlo approach that provides unbiased and
efficient spectro-radiative sensitivity estimates. Notably, the approach is employed in the context of
estimating atmospheric radiative forcings within a clear-sky simplified climate framework.

By applying Monte Carlo within this framework, we illustrate a well-known property in climate
science—the logarithmic tendency of radiative forcing from carbon dioxide in relation to its concen-
tration.

The methodology is constructed to remain unbiased at both levels of physics modeling and simu-
lation. On the theoretical level, sensitivity is regarded as a transported quantity with its own propa-
gation physics, for which a path-integral solution is constructed. In this regard, we build upon recent
advances in coupling the radiative transfer model to the spectroscopic model in a non-linear man-
ner through the absorption coefficient, which disappears from the resulting model. After the formal
developments are elaborated, the corresponding probabilistic description is provided in algorithmic
form.

The simulation results presented in the preceding section illustrate the practicality of the ap-
proach within high-dimensional configurations, such as a climate one. In this latter, the estimated
quantity is integrated across the entire thermal infrared band, over the whole globe, and along a
climate period of ten years. Thanks to advanced computer graphics techniques, achieving a preci-
sion of 1 percent on sensitivity estimates required only a few tens of seconds of computation time
on a personal computer with 12 CPUs. Scalability is demonstrated, and while minor convergence
variabilities arise depending on the widening of integration domains to maintain the same confi-
dence interval, standard optimization avenues in Monte Carlo practice exist and can be considered
based on specific needs. However, these optimizations were deliberately excluded from this arti-
cle.
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A Spectro-radiative path-integral construction as a solu-
tion to the Radiative Transfer Equation
Starting from the monochromatic radiative transfer equation given in Equation 3, but written over a
single sightline (~x, ~u) parameterized by distance l:

∂L(~x, ~u)

∂l
= −kext(~x)L(~x, ~u) + ka(~x)Leq(~x) + ks(~x)

∫
4π
p(~u′, ~u)d~u′L(~x, ~u) (13)

The frequency-related subscript ν has been removed for simplicity (all quantities are monochro-
matic); we now introduce an upper-bound value k̂ext of the extinction coefficient field kext. This
quantity is uniform over the whole Ω domain. Equation 13 can be reformulated as:

∂L(~x, ~u)

∂l
= −k̂extL(~x, ~u) + k̂extS(~x, ~u) (14)

with the following source term:

S(~x, ~u) = L(~x, ~u) +
1

k̂ext

[
−kext(~x)L(~x, ~u) + ka(~x)Leq(~x) + ks(~x)

∫
4π
p(~u′, ~u)d~u′L(~x, ~u)

]
(15)

If we futher assume that k̂ext is the sum of k̂a and k̂s, upper-bound values for, respectively, the
absorption coefficient field and the scattering coefficient field (these quantities are also uniform among
Ω), this source term can be reformulated as:

S(~x, ~u) =
k̂a

k̂ext

[ka(~x)

k̂a
Leq(~x)+

(
1−ka(~x)

k̂a

)
L(~x, ~u)

]
+
k̂s

k̂ext

[ks(~x)

k̂s

∫
4π
p(~u′, ~u)d~u′L(~x, ~u)+

(
1−ks(~x)

k̂s

)
L(~x, ~u)

]
(16)

Since k̂ext is uniform in Ω, equation 14 has a well known solution:

L(~x, ~u) = L∂Ω(~y, ~u)exp
(
−k̂extl0

)
+

∫ l0

0
k̂extexp

(
−k̂extl

)
dl
{
S(~x− l~u, ~u)

}
(17)

with l0 the distance between position ~x and the boundary, in direction ~u; first, we can first replace
the attenuation term between ~x and the boundary by

∫ +∞
l0

k̂extexp
(
−k̂extl

)
dl; then we make use of the

Heaviside notation:
∫ l0

0 dl =
∫ +∞

0 H(~x′ = ~x − l~u ∈ Ω), and
∫ +∞
l0

dl =
∫ +∞

0 H(~x′ = ~x − l~u /∈ Ω). The
previous solution can then be reformulated under a single integral:

L(~x, ~u) =

∫ +∞

0
k̂extexp

(
−k̂extl

)
dl
{
S(~x− l~u, ~u)H(~x′ ∈ Ω) + L∂Ω(~y, ~u)H(~x′ /∈ Ω)

}
(18)

Introducing the source term from relation 16 into this integral form, we obtain:

L(~x, ~u) =

∫ +∞

0
k̂extexp

(
−k̂extl

)
dl

{
L∂Ω(~y, ~u)H(~x′ /∈ Ω)

+

[
k̂a

k̂ext

[ka(~x′)
k̂a

Leq(~x′) +
(
1− ka(~x

′)

k̂a

)
L(~x′, ~u)

]
+

k̂s

k̂ext

[ks(~x′)
k̂s

∫
4π
p(~u′, ~u)d~u′L(~x′, ~u′) +

(
1− ks(~x

′)

k̂s

)
L(~x′, ~u)

]]
H(~x′ ∈ Ω)

} (19)
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Now, the absorption coefficient at a given frequency ν is formalized as the sum of the contributions
of Nt transitions, for the same frequency: ka(~x) =

∑Nt
j=1 ha,j ; we further introduce an upper-bound

ĥa,j to the contribution of each transition j to the total absorption coefficient (this upper-bound value

is also uniform within Ω), which makes possible to reformulate ka(~x)

k̂a
as
∑Nt

j=1
ĥa,j

k̂a

ha,j(~x)

ĥa,j
and 1− ka(~x)

k̂a

can be reformulated as
∑Nt

j=1
ĥa,j

k̂a

(
1− ha,j(~x)

ĥa,j

)
; the integral solution now reads:

L(~x, ~u) =

∫ +∞

0
k̂extexp

(
−k̂extl

)
dl

{
L∂Ω(~y, ~u)H(~x′ /∈ Ω)

+

[
k̂s

k̂ext

[ks(~x′)
k̂s

∫
4π
p(~u′, ~u)d~u′L(~x′, ~u′) +

(
1− ks(~x

′)

k̂s

)
L(~x′, ~u)

]
+

k̂a

k̂ext

[ Nt∑
j=1

ĥa,j

k̂a

[ha,j(~x′)
ĥa,j

Leq(~x′) +
(
1− ha,j(~x

′)

ĥa,j

)
L(~x′, ~u)

]]]
H(~x′ ∈ Ω)

} (20)

In terms of the Monte Carlo algorithm associated to this integral formulation, we define the fol-
lowing quantities:

• P̂s = k̂s
k̂ext

is the probability to retain the “scattering” branch of the algorithm;

• k̂a
k̂ext

is the complementary probability, noted 1− P̂s, is the probability to retain the “absorption”
branch of the algorithm;

• Ps(~x) = ks(~x)

k̂s
is the probability a scattering event is retained. The complementary probability

1− ks(~x)

k̂s
is the probability a “null scattering” event is sampled;

• PJ(j, ν) =
ĥa,j

k̂a
is the probability to sample transition of index j among Nt transitions, for current

frequency ν;

• Pa(~x) =
ha,j(~x)

ĥa,j
is the probability a absorption event is sampled, and the complementary proba-

bility 1− ha,j(~x)

ĥa,j
is the probability a “null absorption” event is sampled.

With these notations, the integral formulation of the general solution to the radiative transfer
equation finally reads:

L(~x, ~u) =

∫ +∞

0
k̂extexp

(
−k̂extl

)
dl

{
L∂Ω(~y, ~u)H(~x′ /∈ Ω)

+

[
P̂s

[
Ps(~x)

∫
4π
p(~u′, ~u)d~u′L(~x′, ~u′) +

(
1− Ps(~x)

)
L(~x′, ~u)

]
+
(
1− P̂s

)[ Nt∑
j=1

PJ(j, ν)
[
Pa(~x)Leq(~x′) +

(
1− Pa(~x)

)
L(~x′, ~u)

]]]
H(~x′ ∈ Ω)

} (21)

that is identical to equation 5.

References
[1] Pincus, R. et al., "Computational cost and accuracy in scalculating three-

dimensional radiative transfer : Results for new implementations of monte

18



carlo and SHDOM," Journal of the Atmospheric Sciences, 66(10) :3131–3146,
2009.

[2] Mayer, B., "Radiative transfer in the cloudy atmosphere," The European Physical Journal
Conferences, 1 :75–99, 2009.

[3] Niro, F. et al., "European Space Agency (ESA) Calibration/Validation Strategy for Optical
Land-Imaging Satellites and Pathway towards Interoperability," Remote Sensing, 13(15) :3003,
2021.

[4] Schwaerzel, M. et al., "Impact of 3d radiative transfer on airborne N O 2 imaging remote
sensing over cities with buildings," Atmospheric Measurement Techniques, 14(10) :6469–6482,
2021.

[5] Villefranque, N. et al., "A path-tracing monte carlo library for 3-
d radiative transfer in highly resolved cloudy atmospheres," Jour-
nal of Advances in Modeling Earth Systems, 11(8) :2449–2473,
2019.

[6] Tregan, J.-M. et al., "Coupling radiative, conductive and convec-
tive heat-transfers in a single Monte Carlo algorithm: A general the-
oretical framework for linear situations," PLoS ONE, 18(4): e0283681,
2023.

[7] Ibarrart, L. et al., "Advection, diffusion and linear transport in a sin-
gle path-sampling Monte Carlo algorithm : getting insensitive to geo-
metrical refinement," working paper or preprint : https://hal.science/hal-
03818899v2/file/main%20%281%29.pdf.

[8] Villefranque, N. et al., "The “teapot in a city” : A paradigm
shift in urban climate modeling," Science Advances, 8(27),
2022.

[9] Galtier, M. et al., "Radiative transfer and spectroscopic databases : A line-sampling monte
carlo approach," Journal of Quantitative Spectroscopy and Radiative Transfer, 172 :83–97,
2016.

[10] Novák, J. et al., "Monte Carlo methods for volumetric light transport simulation,"
Computer Graphics Forum (Proceedings of Eurographics - State of the Art Reports),
2018.

[11] Miller, B. et al., ACM Transactions on Graphics (Proceedings of SIGGRAPH),
2019.

[12] de Lataillade, A. et al., "Monte carlo method and sensitivity estimations,"
Journal of Quantitative Spectroscopy and Radiative Transfer, 75(5) :529–538.,
2002.

[13] Zeltner, T. et al., "Monte carlo estimators for differential
light transport," ACM Transactions on Graphics, 40(4) :1–16,
2021.

[14] El Hafi, M. et al., "Three viewpoints on null-collision monte carlo algo-
rithms," Journal of Quantitative Spectroscopy and Radiative Transfer, 260 :107402,
2021.

19



[15] Galtier, M. et al., "Integral formulation of null-collision monte carlo algo-
rithms," Journal of Quantitative Spectroscopy and Radiative Transfer, 125 :57–68,
2013.

[16] Nyffenegger-Péré, Y., "Coupler le rayonnement et la spectroscopie raie par raie
dans un même algorithme de Monte Carlo : permettre le calcul de référence
des forçages radiatifs", PhD thesis, Paul Sabatier University submitted for publica-
tion.

[17] Tregan, J.-M. et al., "Convergence issues in derivatives of monte carlo null- colli-
sion integral formulations : A solution," Journal of Computational Physics, 413:109463,
2020.

[18] Lapeyre, P. et al., "Monte carlo and sensitivity transport models for domain de-
formation," Journal of Quantitative Spectroscopy and Radiative Transfer, 251 :107022,
2020.

[19] Lapeyre, P. et al., "A physical model and a monte carlo es-
timate for the specific intensity spatial derivative, angular deriva-
tive and geometric sensitivity," working paper or preprint :
https://arxiv.org/abs/2206.05167.

[20] Gordon, Iouli E., et al. "The HITRAN2020 molecular spectroscopic database."
Journal of quantitative spectroscopy and radiative transfer , 277:107949,
2022.

[21] Boucher, Olivier, et al. "Presentation and evaluation of the IPSL-CM6A-LR cli-
mate model." Journal of Advances in Modeling Earth Systems, 12.7:e2019MS002010,
2020.

[22] Pincus, R. et al., "Benchmark Calculations of Radiative Forcing by Greenhouse
Gases," Journal of Geophysical Research: Atmospheres, 125, 23:e2020JD033483,
2020.

[23] Ogura, T. et al., "Importance of instantaneous radiative forc-
ing for rapid tropospheric adjustment," Climate Dynamics, 43,
2013.

[24] IPCC, Climate Change: The IPCC Scientific Assessment, Pages 365, Published by Cam-
bridge University Press, Year 1980, Editors: Houghton, J. T., Jenkins, G.J., Ephraums,
J.J.

[25] Jeevanjee, N. et al., "An Analytical Model for Spatially Varying Clear-
Sky CO2 Forcing," Journal of Climate (J. Clim.), Volume 34, Number 23,
2021.

[26] McCool, M.D. et al., "Probability trees," Proceedings of the conference on Graphics interface,
1997.

[27] Maire, S. et al., "Stochastic finite differences for elliptic diffusion equations
in stratified domains," Mathematics and Computers in Simulation, 121:146–165,
2016.

[28] Bossy, M. et al, "Monte Carlo methods for linear and non-linear
Poisson-Boltzmann equation," ESAIM: Proceedings and Surveys, 48:420–446,
2015.

20



[29] Farges, O. et al., "Life-time integration using Monte Carlo Methods when op-
timizing the design of concentrated solar power plants", Solar Energy, 113,
2015.

[30] Terrée, G. et al., “Addressing the Gas Kinetics Boltzmann Equa-
tion with Branching-Path Statistics,” Physical Review E, 105(2):025305,
2022.

21



251

252

253

254

255

256

257

258

259

260

261

262

0 0.5 1 1.5 2 2.5 3 3.5 4

C
O

2
m

ea
n

fl
u
x

π̈

MC

(a) Variation of φ̄ as a function of fraction change in xCO2 .

−12

−10

−8

−6

−4

−2

0

0 0.5 1 1.5 2 2.5 3 3.5 4

C
O

2
m

ea
n

fl
u
x

se
n
si

ti
v
it

y

π̈

Sensitivity
Finites differences

(b) Variation of ∂π̈φ̄ as a function of fraction change in xCO2 .
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(d) Variation of ∂π̈φ̄ as a function of fraction change in xH2O.

254

254.5

255

255.5

256

256.5

0 0.5 1 1.5 2 2.5 3 3.5 4

C
H

4
m

ea
n

fl
u
x

π̈

MC

(e) Variation of φ̄ as a function of fraction change in xCH4 .

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
H

4
m

ea
n

fl
u
x

se
n
si

ti
v
it

y

π̈

Sensitivity
Finites differences

(f) Variation of ∂π̈φ̄ as a function of fraction change in xCH4 .

Figure 3: Mean flux and sensitivities associated to a change in the fraction of gas concentration π̈ are displayed for three
gases: CO2 (Fig. 3a and Fig. 3b), H2O (Fig. 3c and Fig. 3d), and CH4 (Fig. 3e and Fig. 3f). Sensitivity estimates are
obtained using Algorithm 2, whereas finite difference estimates are based on the difference between two standard Monte
Carlo flux estimates obtained for different values of π̈ using Algorithm 1. Error bars: 68% CI (using 1σ).
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Figure 4: Computation time required to estimate sensitivity of an outgoing radiative flux with respect to fraction change
in CO2 concentration field, estimated at a 1% relative error using 1σ, showing only a slight dependency to the frequency
bandwidth (first plot), spatial (second plot) and temporal (third plot) domains widening.
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Figure 5: Evolution of ∂π̈φ̄ (CO2 sensitivity) multiplied by parameter π̈ as a function of π̈. Error bars: 99% CI (using 3σ).
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