
HAL Id: hal-04432711
https://hal.science/hal-04432711

Submitted on 12 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Replay with Feedback: How does the performance of
HPC system impact user submission behavior?

Maël Madon, Georges da Costa, Jean-Marc Pierson

To cite this version:
Maël Madon, Georges da Costa, Jean-Marc Pierson. Replay with Feedback: How does the performance
of HPC system impact user submission behavior?. Future Generation Computer Systems, 2024, 155,
pp.66-79. �10.1016/j.future.2024.01.024�. �hal-04432711�

https://hal.science/hal-04432711
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Future Generation Computer Systems 155 (2024) 66–79

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Replay with Feedback: How does the performance of HPC system impact user
submission behavior?
Maël Madon ∗, Georges Da Costa, Jean-Marc Pierson
IRIT, University of Toulouse, CNRS, Toulouse INP, UT3, 118 route de Narbonne, Toulouse, 31062, France

A R T I C L E I N F O

Keywords:
HPC simulation
User behavior
Parallel workload
Scheduling
Performance evaluation
Reproducibility

A B S T R A C T

High Performance Computing (HPC) is a key infrastructure to solve large scale scientific problems, from
weather to quantum simulations. Scheduling jobs in HPC infrastructures is complex due to their scale,
the different behaviors of their users, and the multiple objectives, from performance to ecological impact.
Schedulers are evaluated on data center simulations, due to the complexity and cost of evaluating them in-situ.
One key element for this evaluation is the behavioral model of users. Most studies are limited to replaying
past workload of existing data centers. This reduces the realism of performance evaluation in cases where the
scheduler and the hardware infrastructure are not exactly the same. Any such change would potentially impact
the behavior of the users.

In this article we introduce a novel model ‘‘Replay with Feedback’’ accounting for the impact of HPC
system performances on user submission behavior in simulations. Instead of keeping the original timestamps
of job submissions, we exhibit and use the relationships between each user jobs. We propose an open-source
implementation of this model along with an extensive and reproducible set of experiments to assess the impact
of the scheduler and infrastructure changes. We also provide new metrics adapted to the flexibility of user
submission behaviors. Results show that using this model, we advance towards more realistic simulations of
schedulers in HPC systems.
1. Introduction

When there is a need for intensive computations (e.g. machine
learning training or fluid mechanics calculations), companies and re-
searchers use big computer farms called High Performance Computing
(HPC) infrastructures. Even if there exist many types, the principle
remain the same: users submit computing jobs to the infrastructure
through an interface and wait for the results. On the infrastructure side,
a scheduler takes care of collecting the requests and selects when and
where (on which machines) they will be executed. HPC infrastructures
have greatly evolved in the past decades, thanks to progress in hard-
ware and software. Simulations of these infrastructures have developed
in parallel, e.g. SimGrid [1] or Gridsim [2], with the aim to reproduce
their behavior as precisely as possible and provide tools to compare
different schedulers or infrastructure designs.

An HPC simulation needs at least two kinds of inputs: a description
of the simulated infrastructure and a workload, i.e. which jobs are
submitted and when. Its purpose is to simulate how the workload would
be scheduled in the infrastructure. By experimenting with different
infrastructures, workloads or scheduling strategies, the researcher gain
knowledge on which one is the best to optimize for certain objectives

∗ Corresponding author.
E-mail addresses: mael.madon@irit.fr (M. Madon), georges.da-dosta@irit.fr (G. Da Costa), jean-marc.pierson@irit.fr (J.-M. Pierson).

like throughput (quantity of jobs per unit of time), waiting time for the
users or energy consumed.

This paper focuses on the workload. How do we accurately model
the arrival of jobs in the infrastructure? Traditionally, we encounter
two main approaches: (i) using records from real infrastructures to
replay the jobs submissions (a collection of such records is available for
example in the Parallel Workload Archive) or (ii) generating synthetic
workloads (e.g., following probability laws [3]). In both methods,
the workload is fully determined before the simulation. It means in
particular that the jobs submission times are known in advance. Only
rarely do the simulations include a feedback loop, allowing the job
arrivals to adapt to what happens in the simulated system.

While this makes the workload model simple and the results easy
to compare, we argue that this is too strong a hypothesis leading to
unreliable results. In fact, in reality, HPC users adapt their submission
behavior to the feedback they get from the infrastructure. For example,
imagine a real infrastructure that suddenly becomes twice slower due
to a breakdown. The jobs will start accumulating in the queues and the
users, seeing that their previous submissions are still pending, will slow
down their rate of submission. On the contrary, if the infrastructure gets
vailable online 29 January 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2024.01.024
Received 22 September 2023; Received in revised form 10 January 2024; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

20 January 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:mael.madon@irit.fr
mailto:georges.da-dosta@irit.fr
mailto:jean-marc.pierson@irit.fr
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://doi.org/10.1016/j.future.2024.01.024
https://doi.org/10.1016/j.future.2024.01.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.01.024&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.

i
t

2

i
f
l
d

d
b
A

faster due to a more efficient scheduling or the addition of new nodes,
the users will tend to submit more and bigger jobs, a phenomenon
known as ‘‘rebound effect’’. The pattern of job arrival is in fact tightly
linked to the specific infrastructure in which it is observed and is the
fruit of interaction between its users and the scheduling algorithm.
Consequently, the results obtained by replaying a historical record in
a simulation in which a change in the infrastructure or scheduler is
introduced will not reflect the reality.

This problem was identified by Dror Feitelson in the first half of the
2010s. He proposed with Netanel Zakay some methods of ‘‘replay with
feedback’’ that account for user reaction to system performance [4].
This paper builds upon their work and addresses the following question:

Is replay with feedback satisfying to simulate a change in the infrastruc-
ture or scheduler?

The main contributions are:

• a definition of ‘‘replay with feedback’’, a way of accounting for the
impact of HPC system performances on user submission behavior
in simulations,

• a novel model of replay with feedback based on dependencies and
‘‘think times’’ between jobs,

• two open-source and easily customizable software to implement
replay with feedback: batmen, a C++ plugin for the data cen-
ter simulator Batsim, and swf2userSessions, a Python script to
handle input logs,

• a reproducible experimental campaign comparing traditional re-
play and replay with feedback, and

• three original metrics for the analysis of the results: mean lateness,
relative lateness and additional lateness.

The remaining of this paper is organized as follows. First, we
discuss the related works in Section 2. Then, we introduce in detail our
model for replay with feedback in Sections 3 and 4. The experimental
campaign is described in Section 5, along with preliminary results.
After that, we introduce new metrics in Section 6 that we use for further
analysis. Finally, we provide a discussion of our approach in Section 7
before concluding and providing ideas for future work.

2. Related works

The method of traditional replay, where the job arrivals are fixed
in advance, is still the most widely used simulation method for perfor-
mance evaluation in HPC-like system. It is used for example in diverse
recent works like Vasconcelos et al. using a synthetic workload to
study distributed cloud federation [5], Wiesner et al. using a recorded
workload from a production system to evaluate their renewable-aware
scheduler [6] or de Nardin et al. using logs from an academic data
center [7].

However, this model has been criticized in the literature [4,8],
because it does not take into account how users react to the perfor-
mances of the system. They recommend doing closed-loop simulation
nstead [9], also called ‘dynamic’ or ‘feedback-aware’ simulations. For
his, some modeling of user submission behavior is needed.

.1. Modeling HPC user behavior

Interesting insights on the ways to model user submission behav-
or can be found in the rich literature on workload analysis and
orecasting [10,11]. For example, Dinh et al. propose a method of
oad prediction based on passed submissions and inter-arrival time
istribution [12].

Some works provide extensive analysis of HPC logs in order to get a
eep understanding of user characteristics, such as waiting time, num-
er of cores requested, inter-arrival time, walltime accuracy etc. [13].
67

n interesting article [14] also mixes these analyses with methods from
social sciences: an analysis of help tickets, a survey and interviews with
users.

However, in these works, the angle is fundamentally different: what
one tries to model or predict is the load submitted, and not the way users
react to the termination (or non-termination) of their jobs.

In the remaining of this section, we will focus on literature on
closed-loop simulation for HPC systems.

2.2. Replay with feedback

As mentioned in the Introduction, introducing a feedback loop
inside data center simulations was first suggested by Zakay and Fei-
telson. They follow a two-step approach: (i) extracting the relevant
patterns of user submission behavior from recorded workloads [15],
and (ii) using this information to replay users reaction to feedback
inside the simulations [4]. Step (i) provides them with a list of sessions
of submission for each user, with precedence relations between them.
They compare several methods, based on think time (time elapsed
between the termination of a job and the submission of another) or
inter-arrival time between jobs (see 3.1). They propose for step (ii)
three different ways to use the sessions and their precedence relations
for replay: ‘adjusted’, ‘distribution-based’ or ‘fluid’ user model. We will
come back in detail on these methods in Section 7.5. Regrettably, we
could find no code available to reproduce their results, nor detail on
the simulation software used. This paper is based on inter-arrival for
step (i) and the ‘adjusted’ approach for step (ii). Differences with their
model will be pointed out along the way.

To the best of our knowledge, replay with feedback is only used
once more in the literature, by Klusáček et al. They implemented
Zakay and Feitelson’s ‘adjusted’ model inside the open source simulator
Alea [16]. The feature is called ‘‘dynamic workload adaptation’’ and
was notably used to test different schedulers before their deployment
in a production system [17]. However, the model in their work is only
used as a tool, and they provide no evaluation nor in-depth discussion
on its effect on the simulation outcome.

2.3. Generative simulation

Going one step further from replay with feedback, we can find a few
works proposing ‘‘generative simulation’’ as a method for closed-loop
simulation. Generative simulation consists in a statistical analysis of
the input workload in order to retrieve some patterns and probabilistic
laws. This knowledge is then used dynamically during the simulation,
to generate incoming workload.

Zakay and Feitelson propose a method of ‘‘resampling with feed-
back’’ [18], featuring a model of population of users, whose arrivals and
departures depend on user satisfaction. Workload of individual users
are sampled from the original workload, and replayed with feedback,
as described before [4]. Similarly, Schlagkamp proposes a parametric
user model, with weekly and daily activity windows for users, fitted to
the observations from the input log [8]. The replay is based on think
times, that are calculated as a linear function of the response time of
the previously terminated job.

These models can be powerful, but they are complex and largely
understudied. Once again, we are not aware of any available imple-
mentation allowing for comparison and incremental improvement. We
try to fill this gap with the open-source tools released with this paper.

3. Workload model

This section and the next one provide a formal definition of our

model.

https://batsim.org/


Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.

S
s

𝑎

s
t
s

D
(

O

c
T

3.1. Recorded workload trace and session partitioning

A recorded workload trace on an infrastructure is the log of all
the jobs that were submitted by users and executed in this infrastruc-
ture during a certain time window. To simplify the notations, all the
definitions below are given for a certain user 𝑢.

The smallest record in the trace is the job. It is completely defined
by

– an execution time 𝑑 (for ‘duration’),
– a number 𝑟 ∈ N+∗ of requested resources,
– a submission time 𝑎 (for ‘arrival’), which is the time at which the

user submitted the job in the infrastructure,
– a finish time 𝑓 , and
– a walltime 𝑤, which is an upper bound on execution time given

by the user.

The time at which the job started in the infrastructure can be
obtained by 𝑓 − 𝑑.

Definition 1. A recorded job 𝑗𝑖 is defined by the tuple
(𝑑𝑖, 𝑟𝑖, 𝑎𝑖, 𝑓𝑖, 𝑤𝑖).

Definition 2. A recorded trace is a list (𝑗1,… , 𝑗𝑛) of recorded jobs,
ordered by submission time.

In previous work, Zakay and Feitelson argue that meaningful com-
ponents of a recorded trace are user sessions, which they define concep-
tually as ‘‘periods of continuous work by a user’’ [15]. In other words, a
user has sessions of work in which she interacts with the infrastructure
– mainly by submitting new jobs – and periods of absence. With our
notation:

Definition 3. A user session in the recorded trace  is a list
(𝑗𝑛, 𝑗𝑛+1..., 𝑗𝑚) ⊂  of consecutive recorded jobs, with (𝑛, 𝑚) ∈ N2 and
𝑛 ≤ 𝑚.

Unfortunately, we rarely have metadata on user activity associated
to the recorded trace to help us to detect the session boundaries. Hence,
we will infer them from the information contained in the recorded
trace. We call this operation session partitioning :

Definition 4. A session partition of the recorded trace  is a set
{𝑠1,… , 𝑠𝑚} of sessions such that ∀(𝑖, 𝑘), 𝑠𝑖 ∩ 𝑠𝑘 = ∅ and 𝑠1 ∪⋯∪ 𝑠𝑚 =  .

There are many possible ways to do this partitioning based on the
information at hand in the recorded trace. The simplest is to consider
that each job is a session. Another way is to cut into sessions based on
thresholds on inter-arrival time between jobs, like in Fig. 1. We refer
to the original paper of Zakay and Feitelson [15] for the proposition
and comparison of three such methods, and our open source tool
swf2userSessions1 in which they are implemented.

3.2. Session graph

We suppose that we have a session partitioning of a recorded trace
 . We define between sessions the partial order depends on:

Definition 5. For two sessions 𝑠 = (𝑗𝑛,… , 𝑗𝑚) ⊂  and 𝑠′ =
(𝑗𝑛′ ,… , 𝑗𝑚′ ) ⊂  , we say that 𝑠′ depends on 𝑠 if all the recorded jobs
of 𝑠 finished their execution before the first job of 𝑠′ was submitted,
i.e., if 𝑚𝑎𝑥𝑛≤𝑖≤𝑚(𝑓𝑖) ≤ 𝑎𝑛′

1 Python script performing the session partitioning of a recorded trace in the
tandard Workload Archive format, available at gitlab.irit.fr/sepia-pub/mael/
wf2userSessions. (the specific version tagged replay_feedback2023 is

used in this article).
68
Fig. 1. Illustration of a session graph with six jobs and four sessions. Here, an inter-
arrival time greater than 60 min between two jobs delimits a new session: j1 and j2
are in the same session since 𝑎2 − 𝑎1 < 60 mn, while j3 is in a different session since
3 − 𝑎2 ≥ 60 mn.

From this definition follows our definition of think time between
essions. Conceptually, it corresponds to the time that a user had to
hink between the termination of all the jobs in a session and the
ubmission of the first job of another:

efinition 6. For two sessions 𝑠 = (𝑗𝑛,… , 𝑗𝑚) ⊂  and 𝑠′ =
𝑗𝑛′ ,… , 𝑗𝑚′ ) ⊂  , we call think time the quantity 𝑎𝑛′ − 𝑚𝑎𝑥𝑛≤𝑖≤𝑚(𝑓𝑖)

bservation 1. By definition of the relation depends on, the think time
between two depending sessions is always ≥ 0

As a result, the set of sessions for a user forms a weighted directed
acyclic graph, where the nodes are the sessions and the edges represent
the relation depends on, weighted by the corresponding think time. See
Fig. 1 for illustration.

In this representation, some sessions have no predecessor: some-
times only the first session and sometimes more (like session1 and
session2 in the illustration). We make the graph connected by adding
a fictive session at the root of the graph and making all the sessions
that do not have a predecessor dependent on it. For each edge added
that way, we choose the recorded starting time of the session as think
time, i.e., the submission time of the first recorded job of this session.
The resulting session graph contains all the information needed for the
replay.

4. Replay with feedback

In this section, we provide a definition of replay with feedback,
then describe our method of replay using the session graphs previously
described.

4.1. Feedback and rigid: two paradigms of replay

Replay with feedback is a new paradigm of using recorded workload
data in simulations:

Definition 7. Replay with feedback is a way of using a recorded
workload in simulations to mimic the platform activity while account-
ing for user reactions to simulated system performance.

In practice, users adapt to feedback in many ways. They change
their dates of submission, submit bigger or smaller jobs, modify their
software to fit the infrastructure or even leave the infrastructure to
submit somewhere else. Taking into account all these behaviors in
the replay is a very challenging task, and can potentially modify the
workload significantly. For this reason, we consider in this work only one
type of user response, namely changes in submission times.

To make a distinction between the recorded jobs and their simulated
opy, we call the latter replay jobs and denote them 𝑗𝑖 = (𝑑𝑖, 𝑟𝑖, 𝑎𝑖, 𝑓𝑖, 𝑤̂𝑖).
he type of replay with feedback performed here preserves the jobs

https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://gitlab.irit.fr/sepia-pub/mael/swf2userSessions
http://gitlab.irit.fr/sepia-pub/mael/swf2userSessions


Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.

w

p
r

D
c

4

t
t
i
f
s
s
t
f
u

A
W
t

∀

t

D
s

i

D
a
{

I
f

f

4

T
o
s
t

‘
d

v

j

characteristics: mass of computation to perform, number of resources
and walltime. With the notation:

∀1 ≤ 𝑖 ≤ 𝑛,

⎧

⎪

⎨

⎪

⎩

𝑑𝑖 ∗ 𝑟𝑖 ∗ 𝑃 = 𝑑𝑖 ∗ 𝑟𝑖 ∗ 𝑃
𝑟𝑖 = 𝑟𝑖
𝑤̂𝑖 = 𝑤𝑖

here 𝑃 (resp. 𝑃 ) is the performance of the node in the original (resp.
simulated) infrastructure, in floating-point operations per second.

The traditional way of replaying jobs in simulations would also
reserve the submission times, i.e., 𝑎𝑖 = 𝑎𝑖. We will denote it ‘‘rigid
eplay’’:

efinition 8. Rigid replay simulates the arrival of jobs with the same
haracteristics and same submission time as in the recorded workload.

.2. Replay based on think times

The main idea behind our replay method is that it preserves the
hink time between sessions rather than the exact submission times of
he jobs, thus reacting to the feedback provided by the (simulated)
nfrastructure. For example, if a job inside a session takes longer to
inish in the simulation compared to the recorded trace, the following
essions in the session graph will be delayed accordingly. Jobs within a
ession, however, are neither delayed nor brought forward in reaction
o feedback in our algorithm.2 Consequently, all the information needed
or the replay with feedback are embedded in the session graph of each
ser.

We say that a session starts when its first (replay) job is submitted.
session finishes when the last of its jobs finishes its execution.
ithout loss of information, we represent the submission times 𝑎𝑖 of

he replay jobs relatively to the start time of their session, i.e.,

𝑠 = (𝑗𝑛,… , 𝑗𝑚) ⊂  ,∀𝑖 ∈ {𝑛, 𝑛 + 1,… , 𝑚}, 𝑎𝑖 = 𝑎𝑖 − 𝑎𝑛

Before going on with the description of the replay method, we need
o introduce two additional definitions:

efinition 9. A session 𝑠̂ = (𝑗𝑛,… , ̂𝑗𝑚) is active, at time 𝑡, if 𝑠̂ has
tarted and 𝑡𝑠̂ ≤ 𝑡 < 𝑡𝑠̂ + 𝑎𝑚, with 𝑡𝑠̂ the starting time of 𝑠̂.

Conceptually, 𝑠̂ is active when the user is currently submitting from
t.

efinition 10. A session 𝑠̂ is free, at time 𝑡, if it has not started and
ll the sessions it depends on have finished, i.e.,

𝑡 < 𝑡𝑠̂
∀𝑠′ = (𝑗𝑛,… , ̂𝑗𝑚), 𝑠̂𝑑𝑒𝑝𝑒𝑛𝑑𝑠𝑜𝑛𝑠′ ⟹ 𝑚𝑎𝑥𝑛≤𝑖≤𝑚(𝑓𝑖) ≤ 𝑡

f 𝑠̂ has not started but at least one session it depends on has not
inished, we say that 𝑠̂ is dependent.

The usual lifecycle of a session is then to be first dependent, then
ree, then active.

.3. Replay method

We can now proceed to the explanation of the replay method.
he method is combined with a discrete event simulation, in charge
f simulating the platform and job scheduler. In the course of the
imulation, we will traverse the session graph for each user, by keeping
rack of

1. the list  of active sessions

2 This is different from Zakay and Feitelson, who introduce the notion of
batches’ within a session, which are groups of overlapping jobs. The relation
epends on and the shifts during replay are defined for the batches.
69

w

2. the list  of free sessions

At the beginning of the simulation (𝑡 = 0),  is empty and 
contains the successors of the fictive root session. The replay method
consists of two functions called in reaction to two different events:
wake_on_feedback, when a job terminates, and job_to_submit,
when it’s time to submit a job. These functions are given as pseudocode
in Algorithm 1.

Note that our replay method does not necessarily preserve the
original submission order of jobs. For example in Fig. 1, if j2 finishes
earlier in the replay, j4 might be submitted before j3.

5. Experimental comparison of feedback and rigid replay

In this section, we compare experimentally the results obtained with
replay with feedback (Definition 7) and rigid replay (Definition 8).

5.1. Simulation inputs

As inputs for the simulations, we use two historical logs retrieved
from the Parallel Workload Archive:

• KTH-SP2 (file KTH-SP2-1996-2.1-cln.swf): 11-month log
from a 100-node IBM SP2

• SDSCSP2 (file SDSC-SP2-1998-4.swf): 24-month log from a
128-node IBM SP2

KTH and SDSC logs contain respectively 28 475 and 67 667 jobs, for
214 (resp. 428) users. The submission log for each user was converted
to session graphs, as explained in Section 3. We made the session
partitioning based on a threshold on inter-arrival time. We tried two
values for this threshold: 0 min (‘arrival 0’, in short ‘a0’) and 60 min
(‘a60’). a0 gives sessions of only one job. Doing a replay with this
delimitation is equivalent to preserve the think time between jobs only. We
chose the other threshold of 60 min because it is the value used in the
original paper [15]. The influence of this parameter will be discussed
in Section 7.2.

5.2. Experimental setup

The simulations are run with Batsim,3 an open-source infrastructure
and resource management system simulator based on SimGrid4 [19].

The replay with feedback model described in Section 4 is imple-
mented in our C++ plugin Batmen5 (classes FeedbackUser and
FBUserThinkTimeOnly) and available for download and evalua-
tion. The scheduler is also implemented in Batmen. From the infor-
mation we could find online [20], IBM SP2 systems seem to be using
some version of EASY-backfilling algorithm6 for scheduling. For this
reason and unless specified otherwise, we use such a scheduler in our
experiments (class EasyBackfillingFast), called ‘EASY’ in the
remaining of this paper.

We design an experimental campaign to answer the question raised
in Introduction (Section 1): is replay with feedback satisfying to simulate
a change in the infrastructure or scheduler? A change in the infrastructure
can be a change in the number of nodes, node performance, intercon-
nection, bandwidth etc. Whichever the change, the outcome will be that

3 Batsim v4.2: batsim.org.
4 SimGrid v3.32: simgrid.org, with ptask_L07 model.
5 Batmen repository: gitlab.irit.fr/sepia-pub/mael/batmen (the specific

ersion tagged replay_feedback2023 is used in this article).
6 EASY-backfilling: sort the jobs by submission time in the queue of waiting

obs. When the first job in the queue cannot be immediately executed, backfill

ith jobs that have a walltime lower than the expected start time of that job.

https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/l_kth_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
http://batsim.org/
http://simgrid.org/
http://gitlab.irit.fr/sepia-pub/mael/batmen


Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.

T
S
M
i
t

j
u
s
n
s
B

E
s

w

Algorithm 1 Replay method
function wake_on_feedback ⊳ in reaction to the termination of a job

for all 𝑗 ∈ {jobs finished recently} do
𝑠 ← 𝑠𝑒𝑠𝑠𝑖𝑜𝑛(𝑗)
if 𝑗 was the last job of 𝑠 to finish then

for all 𝑠′ ∈ {successors of 𝑠} do
dependencies(𝑠′).pop(𝑠)
if dependencies(𝑠′) is empty then

 .add(𝑠′) ⊳ definition of free session
function jobs_to_submit ⊳ when it’s time to submit one job (or more)

for all 𝑠 ∈  do
if 𝑠 starts now then

.add(𝑠) ⊳ definition of active session
 .pop(𝑠)

for all 𝑠 ∈  do
submit all the jobs in job_list(𝑠) with submission_time = now
if job_list(𝑠) is empty then

.pop(𝑠) ⊳ definition of active session
R
t
b
g
t

5

𝑑
j
m

D
s

m

D
b
i

w

i
s

r
t
o
a
w
f
w
c
t
r
t
p
w
r
o

able 1
cheduling metrics calculated on the recorded log and for all the experiments.
akespan and waiting times are expressed in days, with 2 decimal places. For KTH

nfra ∗ 2, we read mean waiting times of 0.00 day. This is because of rounding, and
hese values are actually between 162 and 229 s.
Exp. name Replay KTH SDSC

Makespan Waiting time Makespan Waiting time

Mean Max Mean Max

Recorded log / 332.93 0.18 11.34 736.12 0.26 62.48

EASY Rigid 332.91 0.07 4.07 731.36 0.19 5.73
a0 366.14 0.06 5.06 808.88 0.14 5.90
a60 366.67 0.07 6.11 789.77 0.18 5.16

FCFS Rigid 333.10 4.51 11.79 794.26 14.82 63.96
a0 457.89 0.29 4.95 1200.10 0.58 6.26
a60 454.41 0.47 4.47 1065.66 0.88 5.51

perf ∗ 2 Rigid 332.91 0.01 1.34 731.32 0.01 1.84
a0 332.57 0.01 1.82 730.31 0.01 1.58
a60 332.61 0.01 1.44 729.82 0.02 1.13

perf/2 Rigid 471.85 31.84 141.34 1239.37 64.62 508.38
a0 635.97 0.46 10.70 1506.26 0.92 15.54
a60 630.28 0.62 10.26 1492.67 1.61 14.17

infra ∗ 2 Rigid 332.91 0.00 0.54 731.36 0.01 1.28
a0 332.63 0.00 0.81 729.81 0.01 1.04
a60 332.65 0.00 0.56 730.02 0.01 1.35

infra/2 Rigid 386.70 4.15 58.87 1167.94 37.43 437.28
a0 472.93 0.27 7.43 1452.31 0.80 14.82
a60 472.45 0.35 7.31 1446.13 1.20 15.93

obs execute faster or slower. Since the only feedback that matters to
sers in our replay method is the finish time of their jobs, we consider
ufficient in this study to focus on two types of infrastructure change:
umber of nodes and node performance. Consequently, jobs in the
imulation are represented as compute-only (parallel_homogeneous in
atsim), without communication.

xperimental campaign. We run the workload several times, varying the
cheduler and hardware infrastructure (6 different cases):

• easy: the baseline experiment, with EASY scheduler and a simu-
lated platform representing the original infrastructure

• perf ∗ 2, perf/2: multiplying or dividing by two the performances
of the nodes, in terms of floating-point operations per second,
i.e., the jobs are executed twice (resp. half) as fast

• infra ∗ 2, infra/2: multiplying or dividing by two the number of
nodes, e.g., for KTH log we tried with 200 (resp. 50) nodes

• FCFS: changing the scheduling algorithm to First Come First Serve

Each instance is run with the feedback model (a0 and a60), and
ithout (rigid). In total, 6 ∗ 3 = 18 simulations are run for each log.
70

f

eproducibility. All the experimental details and material to reproduce
he graphs presented in this paper are provided in forms of two note-
ooks.7 Running the two notebooks on a recent laptop (Intel i5 11th
en) takes less than one hour, including downloading and processing
he inputs, running the simulations and plotting the graphs.

.3. Results

The results of the simulations consist in a complete record (𝑎𝑖, 𝑓𝑖 −
𝑖, 𝑓𝑖) of the timestamps of submission, start and finish time for each
ob 𝑗𝑖. From these records, we compute several scheduling metrics like
akespan or waiting times, as defined below.

efinition 11. The makespan is the time that elapses between the
ubmission of the first job and the completion of the last:

akespan = 𝑚𝑎𝑥(𝑓𝑖) − 𝑚𝑖𝑛(𝑎𝑖) (1)

efinition 12. The waiting time of a job is the time that elapsed
etween the submission of the job and the beginning of its execution
n the infrastructure.

aiting time(𝑗𝑖) = 𝑓𝑖 − 𝑑𝑖 − 𝑎𝑖 (2)

Makespan, mean waiting time and max waiting time are given
n Table 1. Other usual scheduling metrics like turnaround time or
lowdown can be found in the notebooks.

These results confirm what was said in introduction: the traditional
eplay model is not satisfactory to simulate a change in the infrastruc-
ure or in the scheduler. In the recorded log, the waiting times were
f 0.18 days on average, and 11.34 days maximum for KTH (resp. 0.26
nd 62.48 for SDSC). With the feedback model and whichever the change
e make in the infrastructure, the mean waiting times are under 0.62 day

or KTH (perf/2 a60) and 1.61 for SDSC (perf/2 a60). All the max
aiting times remain lower than the original max waiting times. In the

ase of rigid replay however, the picture looks different. We get waiting
imes of up to 141 days (perf/2 rigid KTH), resp. 508 days (perf/2
igid SDSC). The mean waiting times are also significantly higher than
he original in infra/2 and perf/2 experiments (up to two months for
erf/2 rigid SDSC). It is unrealistic to think that the users would have
aited on average all this time if the change actually occurred in the

eal infrastructure. Instead, they would have slowed down their pace
f submission, which our model successfully accounts for.

7 Experiment repository: gitlab.irit.fr/sepia-pub/open-science/expe-replay-
eedback. The outputs are directly visible in the GitLab interface.

https://batsim.readthedocs.io/en/latest/input-workload.html#homogeneous-parallel-task
https://gitlab.irit.fr/sepia-pub/open-science/expe-replay-feedback
https://gitlab.irit.fr/sepia-pub/open-science/expe-replay-feedback


Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.
Fig. 2. Distribution of submission times with rigid (blue) and feedback (orange) replay models. Here we only plot feedback a60, but the picture with a0 is sensibly the same.
Fig. 3. Cumulative number of jobs submitted (top) and finished (bottom).
Since the pace of submission slows down in reaction to a slower
infrastructure (FCFS, perf/2 and infra/2) with the feedback model,
it should take more time for the same workload to be fully executed.
This effect is clearly visible in the results: the makespan in experiments
FCFS, perf/2 and infra/2 increases significantly more with feedback
replay than with rigid replay, compared to the original makespan.
However, we would also expect to see the opposite effect when the
infrastructure is faster (perf ∗ 2 and infra ∗ 2), which is not the case
here. The makespans in these experiments with rigid, a0 and a60 replay
models are very similar, close to the original makespan. This is due to
the relative rigidity remaining in the feedback model, which we discuss
in Section 7.3.3 to give hints for improvement.

Note that the results also show that the scheduler in the real infras-
tructure and our implementation of EASY backfilling are not exactly
the same. For example, the mean waiting times are significantly lower
with our implementation (experiment EASY rigid). All the same, EASY
seems closer to the original scheduler than FCFS, with which the mean
71
waiting time explode (FCFS rigid). Interestingly, FCFS produces a max
waiting time close to the original in both logs, suggesting that some jobs
are probably submitted in pure FCFS order in the original scheduler. A
detailed description of the scheduler originally used would be necessary
to understand better, which we could not find for these logs.

In the end, the usual scheduling metrics discussed in this section
give us useful insights, but they show their limits to fully explain the
effect of changing the replay model. For example, they do not capture
to what extent the submission times are shifted compared to rigid
replay. To that end, we introduce in the following section a new way
of making the analysis, including new metrics.

6. New metrics for analysis

This section starts by analyzing the distribution of submission times,
before introducing our three new metrics mean lateness, relative lateness
and additional lateness.



Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.

t
c
s
l
l
a
p
s
j
s
l

o
t
g
r
u
m
s

t
t
l
j
r
p
s
o
o
s

r
b
s
o
h
e
o
p
t
f
i
p
t

t
t
s

6

6

w

𝓁

6.1. Submission time distribution

The replay with feedback model primarily impacts the submission
times of jobs. Its effect is thus visible on the temporal distribution of job
arrivals, plotted in Fig. 2 and in cumulative values in Fig. 3. The blue
curve, corresponding to the rigid replay model, remains identical for all
experiments: it corresponds to the original timestamps of submission in
the recorded logs. With the feedback model, however, we observe that
the submission distribution spreads with the specific infrastructure or
scheduler used.

In experiments perf/2, infra/2 and FCFS, we get confirmation that
he simulated users submitted fewer jobs per day on average (orange
urve under the blue curve in Fig. 3). In return, the length of the
ubmission period has increased (horizontal span of the orange curve
onger than the blue). On Fig. 2 we observe that, passed the original
ength of submission, the rate of submission decreases in trend. This is
lso visible in the cumulative graphs: the orange curve starts to slowly
lateau where the blue graph ends. These are in fact end-of-simulation
ide effects: users finish submitting their backlog of jobs, without new
obs and users arriving. These effects are not relevant, and the analysis
hould instead focus on what happens in the simulations within the
ength of the original workload.

Experiments perf ∗ 2 and infra ∗ 2 need a closer look, as the effect
f the infrastructure change is less visible in this case. We can observe
hat the orange curve is slightly above the blue in the cumulative
raphs, meaning that the rate of submission increased slightly. In
eturn, the length of submission is not shorter, but we can notice that
sers submit fewer jobs per day at the very end, for example in the last
onth of KTH log. They are reaching the end of their pool of jobs to

ubmit.
Regarding the schedulers, the graphs confirm that our implementa-

ion of EASY is closer to the scheduler used in the real infrastructures
han FCFS is. Indeed, the rate of submission with rigid and feedback
ooks fairly similar in experiment EASY. This is an indication that the
obs get executed and finished around the same time (we remind that
igid replay preserves the original timestamps while feedback replay
reserves the think times). With the scheduler FCFS, the patterns of
ubmission in Fig. 2 look more disrupted. This is due to the absence
f backfilling: big jobs are blocking the queue, delaying the execution
f small jobs, and the users have to wait for their termination before
ubmitting the next jobs that depend on them.

Finally, Fig. 3 also displays in its bottom graphs information about
ate of job terminations. This time, the distributions with rigid replay (in
rown) vary between the experiments, because contrary to the submis-
ion times, the finish times of jobs do get affected by the infrastructure
r scheduler used. The makespans given in Table 1 are reflected in the
orizontal spans of these plots. We get to see that if the makespans in
xperiment EASY were larger with feedback compared to rigid, it is
nly due to a few jobs that got delayed. Indeed, the right part of the
ink curve after the brown curve ends is essentially flat. Also, we note
hat the cumulative distributions of job terminations look fairly similar
or all experiments, if we disregard the side effects in the end. This is an
ndication that throughput (defined as average number of jobs finished
er week) is relatively independent of the replay model. We come back
o that in the Discussion (Section 7.3.3)

If we were able to better characterize the effect of the replay model
hanks to the distributions of submission times, we lack reliable metrics
o measure it quantitatively. We attempt to fill this gap in the next
ection, by defining three new metrics.

.2. Mean lateness, relative lateness and additional lateness

.2.1. Mean lateness
First, we define the lateness of a job, a fundamental quantity that

ill allow us to define the three metrics:
72
Table 2
New metrics calculated for all the experiments. Units: mean lateness in days, additional
lateness in seconds and relative lateness without unit. Please note that lateness in a
quantity that tends to accumulate for long chain of jobs. Taking the mean hides this
distribution.

Expe Replay KTH SDSC

Mean Relative Additional Mean Relative Additional
lateness lateness lateness lateness lateness lateness

EASY a0 −3.36 0.99 −20.39 2.35 1.00 6.00
a60 −4.47 0.99 −27.12 1.04 1.00 2.65

FCFS a0 32.66 1.10 198.18 76.90 1.11 196.38
a60 26.31 1.08 159.64 36.00 1.05 91.92

perf ∗ 2 a0 −12.40 0.96 −75.27 −11.04 0.98 −28.18
a60 −13.31 0.96 −80.79 −11.55 0.98 −29.49

perf/2 a0 46.10 1.14 279.75 106.58 1.15 272.17
a60 43.54 1.13 264.24 95.34 1.13 243.47

infra ∗ 2 a0 −8.65 0.97 −52.48 −8.58 0.99 −21.92
a60 −9.32 0.97 −56.57 −9.23 0.99 −23.56

infra/2 a0 16.48 1.05 99.99 89.82 1.12 229.37
a60 14.91 1.04 90.48 81.50 1.11 208.12

Definition 13. The lateness 𝓁(𝑖) of job 𝑗𝑖 is the difference between its
submission time in the replay and in the original record: 𝓁(𝑖) = 𝑎𝑖 − 𝑎𝑖.

Consequently, for a set of jobs (𝑗0,… , 𝑗𝑛−1), we can compute our first
metric, the mean lateness, denoted 𝓁:

̄ = 1
𝑛

𝑛−1
∑

𝑖=0
𝓁(𝑖) = 1

𝑛

𝑛−1
∑

𝑖=0
(𝑎𝑖 − 𝑎𝑖) (3)

Mean lateness can be calculated per user or on the whole simulation.
It measures how many days difference there are on average between the
original submission times and those in the simulation.

Calculated on all the jobs in the simulation, mean lateness charac-
terizes ‘‘the extent to which the orange curve is shifted to the right’’
in Fig. 2. Values of mean lateness for each experiment are given in
Table 2. We can read for example that jobs in experiment perf/2 a60
are submitted 44 days later on average with KTH log, and 13 days
earlier in experiment perf ∗ 2 a60. We also notice that values are
positive for experiments FCFS, perf/2 and infra/2, indicating that jobs
are submitted later on average, and negative for experiments perf ∗ 2
and infra ∗ 2, a sign that jobs are submitted earlier. Mean lateness
for experiment EASY are close to zero. This confirms our previous
observations.

Mean lateness per user is plotted in Fig. 4. First, we see that values
are very scattered. Depending on the user, mean lateness can be several
orders of magnitude different. We can nevertheless make the same
distinction between the experiments that have a positive lateness, and
experiments with a negative lateness. More interestingly, we observe
a drift to high values as the number of jobs submitted by the user
gets higher. In other words, users that submit more jobs tend to have
a greater (positive or negative) mean lateness. This makes sense as
the more the users submit jobs, the more they get to experience the
feedback given by the infrastructure, hence the more they accumulate
lateness. An implication of this drift is that mean lateness does not
scale with the size of the workload. This makes the metric mean lateness
unpractical to compare different workloads. That is why we introduce
the two next metrics built to be independent on the number of jobs:
relative lateness and additional lateness.

6.2.2. Relative lateness
The metric relative lateness is the expression of mean lateness

relatively to the length of the original workload. We want to see
how significant the shifts in submission times in the replay are. Con-
sequently, we define the length of the workload as the inter-arrival
time between the first and the last job. It gives for relative lateness
a dimensionless quantity:

relative lateness = 1 + 𝓁 (4)

𝑎𝑛−1 − 𝑎0



Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.

t

s
e
t
t
1

6

i
r

𝓁

b
u
o
n
w
t
i
i

i
b

𝓁

Fig. 4. Mean lateness per user, for all experiments, with replay a60 (logarithmic scale). Each dot corresponds to one simulated user. A positive (resp. negative) value indicates
hat the user submitted later (resp. earlier) on average in the replay with feedback compared to the recorded log.
Values for this metric are given in Table 2. A relative lateness > 1
corresponds to a mean lateness > 0, so a simulation where the submis-
ion times spread out over time. The maximum relative lateness in our
xperiments is reached by perf/2 a0 SDSC, with a value of 1.15. A way
o interpret it is: ‘‘dividing the performances of the nodes by two lead
he users to accumulate a delay in their submissions, corresponding to
5% of the length of the workload’’.

.2.3. Additional lateness
Another way to make the metric independent on the number of jobs

s to look at the ‘‘additional lateness’’ 𝛿𝑖 that accumulates with each new
eplay job 𝑗𝑖:

(𝑖) = 𝓁(𝑖 − 1) + 𝛿𝑖 (5)

Once again, the 𝛿𝑖 can be defined per user (the successive 𝑗𝑖 would
e the successive jobs submitted by one user) or on the whole sim-
lation (the 𝑗𝑖 would be all the jobs of the simulation, ordered by
riginal submission time). 𝛿𝑖 is a duration, that can take positive or
egative values. Similarly to common scheduling metrics such as the
aiting times, they fluctuate a lot with 𝑖. To understand the overall

rend, one should look at their distribution. However, taking the mean
s not meaningful as the 𝓁(𝑖) would cancel out when we take the sum
n Eq. (5): ∑ 𝛿𝑖 = 𝓁(𝑛 − 1) − 𝓁(0).

Instead, to build a simple yet aggregated metric, we suppose that 𝛿𝑖
s constant equal to 𝛿. Since 𝓁(0) = 0 with our replay model, we have
y recurrence on 𝑖: 𝓁(𝑖) = 𝑖𝛿.

Injecting this in the definition of mean lateness gives:

̄ = 1
𝑛

𝑛−1
∑

𝑖=0
𝓁(𝑖) = 𝛿

𝑛

𝑛−1
∑

𝑖=0
𝑖 = 𝛿

𝑛
(𝑛 − 1)𝑛

2
=

𝛿(𝑛 − 1)
2

Thus, we propose the metric additional lateness, denoted 𝛿, de-
fined through the formula below:

𝛿 = 2𝓁
𝑛 − 1

= 2
𝑛(𝑛 − 1)

𝑛−1
∑

𝑖=0
(𝑎𝑖 − 𝑎𝑖) (6)

We interpret this metric as the additional delay that the users ac-
cumulate at each submission, in response to the feedback provided by the
infrastructure. Values of additional lateness on our simulations are given
in Table 2. For example, halving the node performances makes the
users accumulate 280 s of extra delay at each job submitted with KTH
log, and 272 s with SDSC (replay a0). On the contrary, doubling the
performances makes the users submit an extra 75 s earlier on average
73

at each job for KTH, and 28 s for SDSC. ‘
6.2.4. Analysis of relative lateness and additional lateness results
Preliminary remark: Looking at the definitions of the two metrics

in Eqs. (4) and (6), we note that 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠 − 1 and 𝛿 are roughly
proportional to 𝓁∕𝑛, assuming that there is an affine relationship be-
tween the length of the simulation and the number of jobs. This implies
that relative lateness and additional lateness are linearly correlated, which
we were able to confirm experimentally with our data. Consequently,
the analyses that can be made for one metric also apply to the other,
and we will only present in the following the analyses for the metric
additional lateness.

Which parameter influences the additional lateness? In our re-
sults (Table 2), the parameter influencing the most the additional late-
ness is the infrastructure/scheduler. For a fixed log and replay method,
we get very different values of additional lateness depending on the
performances or number of nodes or the type of scheduler. For instance
in log KTH and replay method a60, additional lateness ranges from
−80.79 to 264.24 days. In second comes the specific log used for the
replay. In our case, except for experiments perf/2 a0, perf/2 a60 and
FCFS a0 where they are relatively similar, we observe a significant
variability in additional lateness between the logs. The overall trends
remain the same in both logs. Finally, the change of replay method (a0
or a60) has the lowest influence on additional lateness in our results. A
notable exception is experiment SDSC FCFS, where using a60 instead
of a0 makes the additional lateness decrease significantly. A possible
explanation is the presence of several flurries of very high activity by
individual users in this log,8 that get grouped in the same few sessions
with a60, so submitted concomitantly. With a0, every job is a separate
session that waits for its dependencies to finish, which might lead to
the increased delay with FCFS.

Additional lateness per user. Additional lateness per user are plotted
in Fig. 5. Unlike for mean lateness, the values are independent on the
number of jobs submitted by the user: there is no drift compared to
Fig. 4. However, they still depend on the specific user, with great vari-
ability. In fact, there are differences in additional lateness of more than
10’000 s between the 10th and 90th percentiles in all the experiments
(Fig. 5(c)). We also note that the median additional lateness per user
are in the order of hours while they are in the order of minutes when
aggregated at the level of the whole simulation (Table 2). This means
that despite the overall additional lateness being relatively low, the
additional lateness experienced by most users is much more significant.

8 Up to 11 740 jobs submitted by the same user in less than 25 days, see
‘Usage Notes’’ in the page describing the log.

https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html


Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.

T
a
i

h
d
p
d
b
i
w
t
r

Fig. 5. Additional lateness per user, for all experiments, with replay a60.
7. Discussion

In this section, we start by discussing the results. We see how
our approach can enlighten us on the influence of a change in the
infrastructure 7.1 and how the session delimitation method impacts
the results 7.2. Then, we come back on our feedback model and
highlight some of its limits 7.3, as well as the limits of our experimental
campaign 7.4. We also point out the differences of our model with
related approaches 7.5. Finally, we focus on the generalization of the
new metrics by studying their scalability with regard to workload size
7.6.

7.1. Influence of the change in infrastructure

Thanks to the replay model and new metrics, we are able to charac-
terize the effect that a change in the infrastructure might have on user
submission behavior. It will impact the submission times, shifting them
forward or backward. Below is a ranking of the impact of the studied
infrastructure change, from the earliest to the latest submission times
in relation to the original times, based on Table 2:

1. perf ∗ 2 (earlier than original)
2. infra ∗ 2 (earlier)
3. no change (EASY)
4. infra/2 (later)
5. perf/2 (later)

his ranking is verified by both logs, no matter the replay method (a0 or
60). For KTH log, the change to scheduler FCFS would rank between
tems 4 and 5 while for SDSC it would come between 3 and 4.

Importantly, we see that doubling/halving the node performance
as a more significant effect in shifting the submission times than
oubling/halving the number of nodes (in absolute value). This effect is
articularly visible with KTH log. In fact, changing the performance
irectly affects the execution time of every job. Changing the num-
er of nodes, however, has no effect on the execution times, but only
mpacts indirectly the waiting times. If the original infrastructure
as already oversized, this change will have little effect. Note also

hat decreasing the number of nodes below the maximum number of
74

equested resources will cause some jobs to be rejected.
7.2. Influence of the delimitation method

At the root of the feedback model is the partitioning of jobs into
sessions (see Definition 4). In the experiments presented in this paper,
we used two methods: a delimitation on inter-arrival of 0 min and
60 min. The characteristics of the resulting session graphs are shown
in Fig. 6.

Session graph structure. We observe a large diversity in the size
of the session graphs for the different users: some contain only one
session, while others have thousands of sessions with the longest path
inside the graph of several hundred sessions. These reflect the intrinsic
differences between HPC users that use the platform for various motives
and with different level of activity. Unsurprisingly, the use of delimi-
tation a60 reduces significantly the number of sessions in the graphs,
hence the longest paths. More notably, we observe that a60 reduces
greatly the arity of the graphs: there is no graph with an arity greater
than 11 with this delimitation method. In other words, there are less
‘‘sessions in parallel’’ with a60. Also, an analysis on the think times
reveals that 75% of edges have a think time <10 h and 35% are <1 h
for delimitation a0, while 50% of think times are <10 h and around
13% are <1 h with a60. In short, the session graphs produced by
the two delimitations methods have very different structure.

In the experiments. All the same, and as we already mentioned in
the previous sections, the two delimitations studied have little influence
on the results. Scheduling metrics and our new metrics are roughly
the same (Tables 1 and 2) and submission time distributions look very
similar. However, if we look more carefully, we note that mean lateness
(and hence relative lateness and additional lateness) are always lower
with a60. To see that more in detail, we plotted the distribution of the
difference in submission times between the different methods in Fig. 7.

As we can see, the difference between the submission time in a0 and
a60 is positive for almost all jobs. Delimitation a0 lead to slightly (a
few days) later submission times than a60. This effect is explained
by the greater complexity of session graphs obtained with a0 that we
explained above. Having more sessions and more dependencies results
in less flexibility during the replay. If one job gets delayed in its
execution, it will have more impact because it has more successors.



Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.
Fig. 6. Longest path and arity distribution of user session graphs.
7

w
p
t
a
p

Fig. 7. Distribution of the difference in submission timestamps between rigid and
a60 replay methods (top) and a60 and a0 (bottom), KTH log. Note: the top graph
corresponds to the definition of lateness, and it confirms the ranking made in 7.1.

7.3. Limits of our feedback model

The model of replay with feedback used in this article allows
accounting for effects that are invisible in traditional simulations.
However, we point out in this section several limitations that would
need to be addressed to reach further realism.

7.3.1. Only one type of user response
First, let us recall that our method of replay with feedback focuses

only on submission times. In reality, user response to feedback goes
well beyond (see Section 4.1). However, we chose to stick to it for the
three following reasons:

1. Even for feedback on submission time, we cruelly lack related
literature and methods of validation (see 7.3.4). We found no
literature on the other types of user response.
75

‘

Fig. 8. Number of submissions per hour, aggregated by week, KTH log.

2. Multiplying the parameters that we change compared to rigid re-
play makes it harder to deeply analyze the effect of the proposed
feature. We preferred to proceed by incremental steps.

3. Allowing for more types of user response might alter the input
workload even further, to the point where it is not easy to know
if it kept its fundamental structure.

.3.2. Day/night variability
In real infrastructures, we observe a day/night and weekday/

eekend variability in the user submissions. This variability is also
resent in our input data (see top graph Fig. 8). Unfortunately, with
he replay method used in this article, the submission times get shifted
round, and this variability is lost. This could be fixed for exam-
le by adding assumptions on activity times for users (like in the

distribution-based’ user model [4]).



Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.

i

Fig. 9. Throughput (average number of job terminations per day) and mean utilization
(average number of computing nodes), KTH log. The metrics are calculated on a time
window starting two weeks after the beginning of the simulation and with length 4, 6
and 8 months, to leave away beginning- and end-of-simulation edge effects.

7.3.3. Remaining rigidity in the feedback model
Our method, although better than rigid replay in this regard, is un-

satisfying to fully capture user response to feedback from the
infrastructure. In fact, as already mentioned, doubling the perfor-
mances of nodes only stretches the length of the submission period
by 0.99 or 0.98 (see relative lateness in Table 2). A more significant
rebound effect would have been expected as a consequence of such
a performance gain. An analysis of throughput and utilization in the
different experiments, plotted below in Fig. 9, enlightens us on the
reasons behind this limited rebound.

Doubling the performances or number of nodes has no effect on
throughput with the rigid replay model. The throughput in this case
of oversized infrastructure (mean utilization <40%) is dictated by the
fixed job arrivals. With the feedback model, the infrastructure change
does lead to a higher throughput, but only 5 to 11% greater compared
to rigid. The rebound in mean utilization is only from 36%–37% (rigid
nfra ∗ 2 and perf ∗ 2) to 40%–47% (feedback infra ∗ 2 and perf ∗ 2),

far from approaching its original level of above 70%. Similar effects can
be observed with the experiments perf/2 and infra/2, with, this time,
a saturation of the platform (utilization >90%).

The limited ability of our model to fully respond to feedback is
due to its remaining ‘‘rigidity’’, coming from at least two factors.
On the one hand, the think times are constant in the model. Even
with the best performances from the infrastructure, they can never be
reduced (for illustration, see Fig. 1: better performance can reduce the
turnaround time of jobs, i.e. the length of the session boxes, but the
brown arrow will keep the same length). On the other hand, the first
job submitted by a user is always replayed at its original timestamp.
In both KTH and SDSC logs, new users arrive in the platform up to a
few days before the end of the record (Fig. 10). This explains why the
length of the submission period is never significantly reduced when the
performances are better. Finally, feedback only affects the submission
times in our model. In reality, the performances of the system influence
a wider variety of parameters: number and size of submitted jobs,
number of user arrival or departure, etc., which our model do not
account for.

7.3.4. On the validation of the model
The model is perfectible, and this paper to not pretend to give

a scientific validation of it. In fact, validating such a model is a
challenging task, as already mentioned by Zakay and Feitelson [4], and
we are not aware of any work attempting to do so.

We see at least two ways such a validation could be carried out:
76
Fig. 10. User arrivals in the platform. Each vertical blue bar represents the first time
one user submits in the platform. The red vertical bars are the start and end time of
the original log.

• making a survey with users of grid/HPC infrastructures to under-
stand what their behavior is in reaction to feedback (see Wolter
et al. for an example of HPC user survey [14]),

• collecting data on a real infrastructure that underwent a major
change and check if the model is able to predict the way the
users adapted to this change (see Klusáček et al. for the analysis of
Metacentrum log that underwent a major reconfiguration [17]).

We leave these avenues of research for future work.

7.4. Limits of the experimental campaign

Generalizability. The experimental campaign proposed in this pa-
per only includes two workloads, which are both quite old (recorded
before the year 2000). They were carefully selected because they
disclosed information on their scheduling policy and featured simple
platforms (homogeneous with monocore machines). Similarly, we stud-
ied only two monocore schedulers (EASY and FCFS). These were chosen
as they are the most commonly used in the literature and correspond
to the workloads. Since our work focus on the model of replay and not
specific scheduling results, we argue that our campaign is sufficient to
reach our conclusions, which would extend other workloads and other
schedulers. Furthermore, we remind that we took particular attention
to make the experiments reproducible. Hence, it should be easy to re-
run the campaign with any workload available in the Parallel Workload
Archive.

7.5. Comparison with related works

In this part, we come back to the differences between our model
and Zakay and Feitelson’s [4]. Like them, we do a replay with feed-
back on submission times only. The method is based on think times,
and on a session partitioning of the original workload. Compared to
them, we only preserve the think times between sessions. Zakay and
Feitelson introduce an additional notion of ‘‘batch’’, which are groups
of overlapping jobs within a session. From there, they propose three
methods:

1. ‘adjusted’: preserves the think time between batches
2. ‘distribution-based’: when a batch becomes free, submit it if the

current time is in a period of activity of the user (working day,
working hours). Otherwise, shift it to the next period of activity.
This method requires assumptions on periods of activity, that
they manage through a probabilistic model.

3. ‘fluid’: preserve the session start and end times for users, they
will be the ‘‘periods of activity’’. The batches are submitted only
during these periods, if they are free.



Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.

e
b
e
d
w

b
a
F
j

r
a
a
s
s
b
l
r
t
i
m
m
b
s
c
n
t
a
t
d
l
s

y
t
i
a
u
f
n

9

a

Fig. 11. Scalability of the additional lateness metric. For each point, a new simulation
has been run with a subset of the workload as input: the subset contains only the 𝑛 first
jobs (ordered by submission time) of the original workload. Then, additional lateness is
calculated on the output using Eq. (6).

In this paper, we did not reproduce their methods to compare our
results to theirs. The reasons are twofold:

Firstly, in absence of a validation method, such a comparison would
be inconclusive. For example, we expect their ‘adjusted’ method to
show similar results than ours but we would have no way to conclude
which one is the most realistic. Similarly, ‘distribution-based’ artifi-
cially restores the seasonality (see 7.3.2) to the cost of an additional
set of assumptions on periods of activity for users, making it difficult
to know if it kept the fundamental features of the original log.

Secondly, we disagree with the assumptions behind the ‘fluid’
model. We think that the sessions that are deducted from the recorded
workload and the periods of activity are two separate notions. If a user
does not submit any job one day, it does not necessarily mean that she
was not working that day, but rather that she did not have anything to
submit. If the performances of the platform were different, she might
have had something ready to submit that day.

Instead of proposing a comparison based on hypotheses and be-
liefs, we preferred to implement the simplest model of replay with
feedback, and provide a solid theoretical and software base for future
contributions in the domain.

7.6. Scalability of relative lateness and additional lateness

In Section 6, we introduced new metrics for analysis. The metrics
relative lateness and additional lateness depend on the simulated plat-
form, the scheduling algorithm, the workload and the user sessions
delimitation method. Ideally, and unlike the metric mean lateness
(remember the drift in Fig. 4),we would like them to be independent
on the length of the workload. Fig. 5 is quite convincing in that
regard as it does not show the drift mentioned above. To be sure, we
tested in Fig. 11 that additional lateness remains the same if we run the
simulation on any (sufficiently large) subset of the original workload.

The results are mixed. When only the infrastructure is modified,
additional lateness seems to stabilize with the number of jobs as input.
For experiments easy (no change in infrastructure) and perf ∗ 2 for
xample, additional lateness increases at first with the number of jobs,
ut seems to plateau after 20 000 jobs with both logs. The case of
xperiment perf/2 is more problematic as additional lateness starts by
ecreasing until 20 000 jobs but increases again thereafter, especially
ith SDSC log. This means that the delay caused by halving the
77
performances does not only add up with time (𝓁(𝑖) increases), but the
additional delay for each new submission also increases (𝛿𝑖 = 𝓁(𝑖) −
𝓁(𝑖−1) increases). However, additional lateness is not scalable when the
scheduler is modified (experiment fcfs). In this case, the metric does not
seem to stabilize and behaves in the opposite way in both logs (decreas-
ing for KTH and increasing for SDSC). It is hard to say what is intrinsic
to the metric and what is due to heterogeneity in the input workloads.

To conclude, in our experiments, additional lateness scales rather
well with the size of the workload for a change in infrastructure, but
not for a change in scheduler. We recommend anyone using this metric
to do this simple sensitivity analysis.

8. Conclusion

In this paper, we challenge the traditional way to simulate dis-
tributed systems by introducing a feedback loop in the workload model.
Compared to using a pre-determined workload (historical record or
generated) in the simulation, we let the workload adapt to the sim-
ulated performance of the system, in the same way that real users
would adapt their pace of submission to the response they get from
the infrastructure. This novel way of doing simulation, that we call
‘‘replay with feedback’’, was first proposed by Zakay and Feitelson [4].
It consists in using a historical workload as input and partitioning it into
‘‘sessions of work’’ for each user. During the simulation, we no longer
preserve the original timestamps of submission, but rather the think time
etween sessions, i.e. the time that elapsed between the termination of
ll jobs in a session and the submission of the next one. Zakay and
eitelson introduce a notion of batch within session that are the sets of
obs whose execution overlap.

We complement their approach by providing a slightly different
eplay model, leaving aside the notion of batch to keep the model
s simple as possible. Our model is implemented with a state-of-the-
rt simulator of distributed systems. The software developed are open
ource and customizable, to be easily reusable for implementing and
tudying other replay models. We apply our model and implementation
y running a reproducible experimental campaign with two historical
ogs, with which we obtain similar results. The experiments show how
eplay with feedback can be used to predict the impact of a change in
he infrastructure (computing performances, number of nodes, schedul-
ng algorithm) on user submission behavior and scheduling perfor-
ance. In our case, decreasing the performances or number of nodes
ake the users accumulate a delay at each submission compared to the

aseline. On the other hand, increasing them instead made the users
ubmit earlier on average. A change in performances has a more signifi-
ant effect than a change in number of nodes. Lastly, we introduce three
ovel metrics, independent of the specific replay model, to describe
he effect of feedback on user submission. Mean lateness measures the
verage time difference between the original submission times and
hose in the simulation. Relative lateness gives an expression of this time
ifference, relative to the length of the simulation. Finally, additional
ateness expresses the additional delay that the users accumulate at each
ubmission, in response to the feedback provided by the infrastructure.

This work contributes to what is in our opinion a fundamental
et much under-researched topic within the field of distributed sys-
em simulation. It requires to rethink the way we do simulation and
nterpret the results. Performance of computer systems are not only
bout bandwidth or number of operations per second, but rather the
tility that they bring to the humans using them. Not taking the human
actor into account leads to large overestimates of potential gains, as it
eglects the rebound effect inherent to efficiency.

. Future works

We are aware that this work opens more doors than it provides
nswers to the question of how best to simulate users of distributed



Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.
systems. We hope that it will spark interest for future research in this
area. Relevant directions for future work could be:

• proposing a scientific validation protocol for the feedback model
(see ideas in Section 7.3.4) and making it a standard for perfor-
mance evaluation using simulation;

• studying other replay models that would account for day/night
variability of submission or arrival/departure of user, and com-
paring them to existing models;

• studying other user response to feedback, like change in requested
resources;

• extending the user model to also capture other types of feedback,
like carbon intensity of electricity (as in [21]);

For all these directions, the open source tools and metrics provided
in this article can prove useful.

CRediT authorship contribution statement

Maël Madon: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Software, Writing – original draft, Writ-
ing – review & editing. Georges Da Costa: Conceptualization, Super-
vision, Validation, Writing – review & editing. Jean-Marc Pierson:
Conceptualization, Funding acquisition, Supervision, Writing – review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Links to all code/data repositories are in the manuscript.

Acknowledgments

This article would not have been possible without previous and high
quality work of a few people that we want to mention here. First and
foremost, we express our gratitude to Dror Feitelson for inspiring this
research and maintaining the Parallel Workload Archive from which
we could download our input data. Thanks also to Lars Malinowsky for
providing the KTH workload log and Victor Hazlewood for SDSC. We
also want to thank Millian Poquet, main developer and maintainer of
Batsim, for his willingness to help with his simulator and Nix.

References

[1] H. Casanova, A. Giersch, A. Legrand, M. Quinson, F. Suter, Versatile, scalable,
and accurate simulation of distributed applications and platforms, J. Parallel
Distrib. Comput. 74 (10) (2014) 2899, http://dx.doi.org/10.1016/j.jpdc.2014.
06.008.

[2] R. Buyya, M. Murshed, Gridsim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing, Concurr.
Comput.: Pract. Exp. 14 (13–15) (2002) 1175–1220, http://dx.doi.org/10.1002/
cpe.710.

[3] G. Da Costa, L. Grange, I. de Courchelle, Modeling, classifying and generating
large-scale Google-like workload, Sustain. Comput.: Inform. Syst. 19 (2018)
305–314, http://dx.doi.org/10.1016/j.suscom.2017.12.004.

[4] N. Zakay, D.G. Feitelson, Preserving user behavior characteristics in trace-
based simulation of parallel job scheduling, in: Proceedings of the 8th ACM
International Systems and Storage Conference, ACM, Haifa Israel, 2015, p. 1,
http://dx.doi.org/10.1145/2757667.2778191.

[5] M. Vasconcelos, D. Cordeiro, G. Da Costa, F. Dufossé, J.-M. Nicod, V. Rehn-
Sonigo, Optimal sizing of a globally distributed low carbon cloud federation,
in: 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and
Internet Computing (CCGrid), IEEE, 2023, pp. 203–215, http://dx.doi.org/10.
1109/CCGrid57682.2023.00028.
78
[6] P. Wiesner, D. Scheinert, T. Wittkopp, L. Thamsen, O. Kao, Cucumber:
Renewable-aware admission control for delay-tolerant cloud and edge workloads,
in: J. Cano, P. Trinder (Eds.), Euro-Par 2022: Parallel Processing, in: Lecture
Notes in Computer Science, Springer International Publishing, Cham, 2022, pp.
218–232, http://dx.doi.org/10.1007/978-3-031-12597-3_14.

[7] I.F. de Nardin, P. Stolf, S. Caux, Analyzing power decisions in data center
powered by renewable sources, in: 2022 IEEE 34th International Symposium
on Computer Architecture and High Performance Computing, SBAC-PAD, 2022,
pp. 305–314, http://dx.doi.org/10.1109/SBAC-PAD55451.2022.00041.

[8] S. Schlagkamp, Influence of dynamic think times on parallel job scheduler
performances in generative simulations, in: N. Desai, W. Cirne (Eds.), Job
Scheduling Strategies for Parallel Processing, in: Lecture Notes in Computer
Science, Springer International Publishing, Cham, 2017, pp. 123–137, http:
//dx.doi.org/10.1007/978-3-319-61756-5_7.

[9] B. Schroeder, A. Wierman, M. Harchol-Balter, Open versus closed: A cautionary
tale, in: Symposium on Networked Systems Design and Implementation, Carnegie
Mellon University, San Jose, CA, USA, 2006, URL https://www.usenix.org/
legacy/event/nsdi06/tech/full_papers/schroeder/schroeder_html/.

[10] J. Panneerselvam, L. Liu, N. Antonopoulos, Y. Bo, Workload analysis for the
scope of user demand prediction model evaluations in cloud environments, in:
2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing,
2014, pp. 883–889, http://dx.doi.org/10.1109/UCC.2014.144.

[11] P. Kar, Workload Prediction in Cloud Datacenters Based on User Behavior
Modeling (Undergraduate Thesis), Birla Institute of Technology and Science,
Pilani, 2016, URL http://pratyushkar.com/files/WPRED.pdf.

[12] T.V. Dinh, L.L.H. Andrew, P. Branch, Exploiting per user information for
supercomputing workload prediction requires care, in: 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing, IEEE, Delft,
2013, pp. 2–9, http://dx.doi.org/10.1109/CCGrid.2013.68.

[13] G.P. Rodrigo, P.-O. Östberg, E. Elmroth, K. Antypas, R. Gerber, L. Ramakrishnan,
Towards understanding HPC users and systems: A NERSC case study, J. Parallel
Distrib. Comput. 111 (2018) 206–221, http://dx.doi.org/10.1016/j.jpdc.2017.09.
002, URL https://linkinghub.elsevier.com/retrieve/pii/S0743731517302563.

[14] N. Wolter, M.O. McCracken, A. Snavely, L. Hochstein, T. Nakamura, V. Basili,
What’s working in HPC: Investigating HPC user behavior and productivity, 2006,
p. 14.

[15] N. Zakay, D.G. Feitelson, On identifying user session boundaries in parallel
workload logs, in: W. Cirne, N. Desai, E. Frachtenberg, U. Schwiegelshohn (Eds.),
Job Scheduling Strategies for Parallel Processing, in: Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2013, pp. 216–234, http://dx.doi.org/10.
1007/978-3-642-35867-8_12.

[16] D. Klusáček, Š. Tóth, G. Podolníková, Complex job scheduling simulations with
alea 4, in: Proceedings of the 9th EAI International Conference on Simulation
Tools and Techniques, in: SIMUTOOLS’16, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), Brussels, BEL, 2016,
pp. 124–129, http://dx.doi.org/10.5555/3021426.3021446.

[17] D. Klusáček, Š. Tóth, G. Podolníková, Real-life experience with major reconfig-
uration of job scheduling system, in: N. Desai, W. Cirne (Eds.), Job Scheduling
Strategies for Parallel Processing, in: Lecture Notes in Computer Science, Springer
International Publishing, Cham, 2017, pp. 83–101, http://dx.doi.org/10.1007/
978-3-319-61756-5_5.

[18] N. Zakay, D.G. Feitelson, Semi-open trace based simulation for reliable evaluation
of job throughput and user productivity, in: Proceedings of the 9th ACM
International on Systems and Storage Conference, ACM, Haifa Israel, 2016, p. 1,
http://dx.doi.org/10.1145/2928275.2933280.

[19] P.-F. Dutot, M. Mercier, M. Poquet, O. Richard, Batsim: A realistic language-
independent resources and jobs management systems simulator, in: 20th
Workshop on Job Scheduling Strategies for Parallel Processing, Chicago, United
States, 2016, http://dx.doi.org/10.1007/978-3-319-61756-5_10.

[20] D.A. Lifka, The ANL/IBM SP scheduling system, in: G. Goos, J. Hartmanis, J.
Leeuwen, D.G. Feitelson, L. Rudolph (Eds.), in: Job Scheduling Strategies for
Parallel Processing, vol. 949, Springer Berlin Heidelberg, Berlin, Heidelberg,
1995, pp. 295–303, http://dx.doi.org/10.1007/3-540-60153-8_35.

[21] M. Madon, G. Da Costa, J.-M. Pierson, Characterization of different user
behaviors for demand response in data centers, in: J. Cano, P. Trinder (Eds.),
Euro-Par 2022: Parallel Processing, in: Lecture Notes in Computer Science,
Springer International Publishing, Cham, 2022, pp. 53–68, http://dx.doi.org/10.
1007/978-3-031-12597-3_4.

Maël Madon received in 2021 a double engineering degree
from Ecole Polytechnique, France and KTH Royal Institute
of Technology, Sweden. He is currently a Ph.D. student in
Computer Science at IRIT, University of Toulouse, France.
His personal concerns about the climate crisis pushed him
to seek a strong ‘‘sustainability’’ coloration in his studies
and research. His research interests include green IT, digital
sufficiency, modeling and simulation of distributed systems
and energy- and user-aware scheduling.

https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://batsim.org/
https://nixos.org/
http://dx.doi.org/10.1016/j.jpdc.2014.06.008
http://dx.doi.org/10.1016/j.jpdc.2014.06.008
http://dx.doi.org/10.1016/j.jpdc.2014.06.008
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1016/j.suscom.2017.12.004
http://dx.doi.org/10.1145/2757667.2778191
http://dx.doi.org/10.1109/CCGrid57682.2023.00028
http://dx.doi.org/10.1109/CCGrid57682.2023.00028
http://dx.doi.org/10.1109/CCGrid57682.2023.00028
http://dx.doi.org/10.1007/978-3-031-12597-3_14
http://dx.doi.org/10.1109/SBAC-PAD55451.2022.00041
http://dx.doi.org/10.1007/978-3-319-61756-5_7
http://dx.doi.org/10.1007/978-3-319-61756-5_7
http://dx.doi.org/10.1007/978-3-319-61756-5_7
https://www.usenix.org/legacy/event/nsdi06/tech/full_papers/schroeder/schroeder_html/
https://www.usenix.org/legacy/event/nsdi06/tech/full_papers/schroeder/schroeder_html/
https://www.usenix.org/legacy/event/nsdi06/tech/full_papers/schroeder/schroeder_html/
http://dx.doi.org/10.1109/UCC.2014.144
http://pratyushkar.com/files/WPRED.pdf
http://dx.doi.org/10.1109/CCGrid.2013.68
http://dx.doi.org/10.1016/j.jpdc.2017.09.002
http://dx.doi.org/10.1016/j.jpdc.2017.09.002
http://dx.doi.org/10.1016/j.jpdc.2017.09.002
https://linkinghub.elsevier.com/retrieve/pii/S0743731517302563
http://refhub.elsevier.com/S0167-739X(24)00021-9/sb14
http://refhub.elsevier.com/S0167-739X(24)00021-9/sb14
http://refhub.elsevier.com/S0167-739X(24)00021-9/sb14
http://refhub.elsevier.com/S0167-739X(24)00021-9/sb14
http://refhub.elsevier.com/S0167-739X(24)00021-9/sb14
http://dx.doi.org/10.1007/978-3-642-35867-8_12
http://dx.doi.org/10.1007/978-3-642-35867-8_12
http://dx.doi.org/10.1007/978-3-642-35867-8_12
http://dx.doi.org/10.5555/3021426.3021446
http://dx.doi.org/10.1007/978-3-319-61756-5_5
http://dx.doi.org/10.1007/978-3-319-61756-5_5
http://dx.doi.org/10.1007/978-3-319-61756-5_5
http://dx.doi.org/10.1145/2928275.2933280
http://dx.doi.org/10.1007/978-3-319-61756-5_10
http://dx.doi.org/10.1007/3-540-60153-8_35
http://dx.doi.org/10.1007/978-3-031-12597-3_4
http://dx.doi.org/10.1007/978-3-031-12597-3_4
http://dx.doi.org/10.1007/978-3-031-12597-3_4


Future Generation Computer Systems 155 (2024) 66–79M. Madon et al.
Georges Da Costa is Professor in Computer Science at
the University of Toulouse. He received his Ph.D. from
LIG (Grenoble, France) in 2005 and his Habilitation from
University Paul Sabatier (Toulouse, France) in 2015. He is
a member of the IRIT Laboratory. His research currently
focus on energy aware distributed systems. His research
highlights are HPC & cloud computing, large scale energy
aware distributed systems, performance evaluation, ambient
systems.
79
Jean-Marc Pierson serves as a Full Professor in Computer
Science at the University of Toulouse (France) since 2006.
He received his Ph.D. from the ENS-Lyon, France in 1996.
He was an Associate Professor at the University Littoral
Cote-d’Opale (1997–2001) in Calais, then at INSA-Lyon
(2001–2006).

He is a member of the IRIT Laboratory and member of
the SEPIA Team on distributed systems. His main interests
are related to large-scale distributed systems, Cloud, HPC,
IoT. He served on several PCs and editorial boards in the
Cloud and Energy-aware computing area. His researches
focus on energy aware distributed systems, in particular
monitoring, job placement and scheduling, virtualization,
networking, autonomic computing, mathematical modeling,
renewable energies in datacenters, and the usage of machine
learning in these environments. He was chairing the EU
funded COST IC804 Action on ‘‘Energy Efficiency in Large
Scale Distributed Systems’’ and participates in several na-
tional and european projects on energy efficiency in large
scale distributed systems. He is currently chairing the French
National ANR DATAZERO 2 Project.


	Replay with Feedback: How does the performance of HPC system impact user submission behavior?
	Introduction
	Related works
	Modeling HPC user behavior
	Replay with feedback
	Generative simulation

	Workload model
	Recorded workload trace and session partitioning
	Session graph

	Replay with feedback
	Feedback and rigid: two paradigms of replay
	Replay based on think times
	Replay method

	Experimental comparison of feedback and rigid replay
	Simulation inputs
	Experimental setup
	Results

	New metrics for analysis
	Submission time distribution
	Mean lateness, relative lateness and additional lateness
	Mean lateness
	Relative lateness
	Additional lateness
	Analysis of relative lateness and additional lateness results


	Discussion
	Influence of the change in infrastructure
	Influence of the delimitation method
	Limits of our feedback model
	Only one type of user response
	Day/night variability
	Remaining rigidity in the feedback model
	On the validation of the model

	Limits of the experimental campaign
	Comparison with related works
	Scalability of relative lateness and additional lateness

	Conclusion
	Future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


