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Abstract: Heat transfer in multiscale materials is ubiquitous in natural and engineered systems. These materials
are often modeled at a macroscopic scale, where microscopic details are filtered out to reduce numerical and
physical  complexity. Here,  we use the method of volume averaging to upscale heat transfer equations for a
saturated porous medium with non-linear bulk and surface sources. This approach leads to the development of a
variety of macroscopic models, including a two-temperature model with a second order closure that extends
previous results from Quintard and Whitaker [2000]. Effective properties are calculated for model unit-cells (1D,
2D and 3D) and also for a realistic pore-scale geometry obtained using X-ray tomography. The model further
features a distribution coefficient that indicates the distribution of the surface heat between the two phases at the
macroscale.  By  comparing  computational  results  for  the  two-temperature  model  against  direct  numerical
simulations, we show that this effective distribution coefficient captures well the partitioning of heat, even in the
transient regime.

Mots clés : porous media, averaging, heat sources

1. Introduction
We consider heat transfer in the porous medium schematically represented Figure 1 where a fluid phase,

,  flows  in  a  -phase  solid  skeleton.  Homogeneous  heat  sources  may  be  found  in  both  phases,  while  a
heterogeneous heat source may also be considered at the  interface. Such heat sources may be due to various
physical and chemical phenomena: chemical reactions, radioactivity, etc… The pore-scale heat transfer problem
which is considered in this paper is written below as

(1)

(2)

(3)

(4)

This problem has to be solved together with the following total mass and momentum equations

(5)

(6)

(7)

In this paper, the assumption is made that density and viscosity do not vary with temperature. Therefore,
equations 5 through 7 may be solved independently from the heat transfer problem.
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Figure 1 : Titre de la figure

The upscaling of the heat transfer problem has received a lot of attention in the literature. It is emphasized
in [1] that several models may be developed:

 direct numerical simulation and heuristic models [2, ...]
 one-temperature, local equilibrium models [3, 4, ...],
 two-temperature, local non-equilibrium models, with linear driving force [5, 6, ...] or more sophisticated

mathematical expressions involving, for instance, convolution products [7, 8, ...],

 various  one-temperature  representations  of  non-equilibrium  situations  [9,  10,  11,  ...],  such  as  the
asymptotic behavior of two-temperature models, fractional derivatives, wave equations [12], etc...

 hybrid or mixed models coupling macro-scale equations with micro-scale pore-scale submodels.
In this paper, we particularly discuss the way the heat sources appear in the macro-scale models. In the

case of a local equilibrium model, a total source term is introduced in the equation for the mixture temperature,
Tβσ,  under the form

(8)

where av=Aβσ/V  is the specific area of the porous medium. The macro-scale source term is simply the average of
the pore-scale source terms. In the case of local non-equilibrium models, the homogeneous source terms, as far
as non-linearities are not concerned, do not pose a problem and averages appear in the right-hand sides of the
respective phase equations. This is another matter for the heterogeneous source term. In the engineering practice,
for  instance  catalytic  burners  [13],  the  total  produced  heat  flux is  assigned to  the solid  phase.  However,  a
thorough pore-scale analysis or upscaling results do not necessarily support this choice as it is emphasized in this
paper.

The objective of this work is two-fold.  First, following [1,  14],  the theory that leads to a local  non-
equilibrium model incorporating the effect of the heat sources terms is briefly developed. Then some quantitative
applications of the theory that emphasize the applicability of the proposed model are presented.

2. Theory 
Averages are defined classically as [15]



(9)

for any variable ψβ defined in the β-phase. The phase intrinsic average is defined as

(10)

with the β-phase volume fraction, εβ, defined as

(11)

Deviations to the averaged values are also classically defined as

(12)

The mixture temperature, Tβσ, may now be defined precisely as

(13)

with

(14)

2.1. averaged equations and deviation equations

The upscaling theory is not described with all details in this paper, the reader is referred to the cited
literature for an introduction to averaging, thermal dispersion, etc... Since the emphasis here is on heat sources,
the appropriate references are taken from a first development given in [1] with a subsequent improvement in
[14], especially in terms of a second order closure. Only major steps are outlined below.

The first step starts with the averaging of the pore-scale equations. Making use of the averaging theorems
such as

(15)

(16)

the averaging of Eq. 1 leads to

(17)

A similar equation may be written for the σ-phase, i.e.,

(18)



The temperature deviations are solutions of the pore-scale problem transformed using the decomposition
Eq.  12 and subtracting the averaged equations. After some algebra, the governing equations for the deviations
may be written as

(19)

(20)

(21)

(22)

There are several source terms in these equations that will produce deviations of the temperature fields
from the averaged values. A closure of the coupled macro-scale and micro-scale equations will require to find an
approximate expression linking the deviations to the averaged values through the source terms. The source term
in Eq.  20 and the first two ones in Eq.  21 will lead to classical thermal dispersion, tortuosity and interphase
exchange effects, which have been dealt with at length in many papers (see for instance discussion in [1,  14,
15]). In this work, we focus on the impact of the heat source terms.

If the heat source terms are constant, as is the case for instance in nuclear safety problems where they are
produced by radioactivity, the homogeneous source terms in the bulk equations for the deviations disappear and
do not play longer a role in the closure problem while the heterogeneous term in BC2 remains. Developing the
source term by a Taylor's expansion around the averaged temperature, one obtains

(23)

In this work, we will assume that the deviation part in Eq.  23 is small compared to  . The
validity of such an assumption will depend on the process under consideration. An example can be found in [16]
in the case of source terms produced by an Arrhenius reaction rate. In this reference, it is shown that the above
assumption works relatively well as soon as some Damköhler number remains small. Significant discrepancies
arise otherwise. Neglecting higher order terms in Eq. 23 leads to the following approximation

(24)

which is used in the further developments.

As a consequence, the only remaining source term in the closure problem due to the heat sources is the
one associated to the heterogeneous source term.



2.2. closure and macro-scale equations
It is beyond the scope of this paper to discuss the various models (transient closure, hybrid models, quasi-

steady closure, asymptotic models, etc...) that can be developed from the averaged and deviation equations as
discussed in [14]. Following [1, 14], a quasi-steady closure (closure is intended here as an approximate solution
of the coupled macro and micro-scale equations), can be developed under the following form

(25)

(26)

where second order terms have been kept. The mapping variables, i.e., , , etc..., obey governing equations
which realize an approximate solution of the coupled macro micro-scale system of equation. The first three terms
in Eqs. 25 and 26 corresponds to the classical theory for the first order two-temperature model and will not be
discussed  here.  The reader  can  refer  to  [6]  for  resolution of  the three  corresponding  closure  problems and
calculations of the related effective properties, i.e., thermal dispersion tensors, heat exchange coefficient, etc...
The other terms are not “traditional” and represent the contribution of the heterogeneous source, which will be
discussed later, and of second order terms. 

The resulting macro-scale equations are obtained by substituting Eqs. 25 and 26 into Eqs. 17 and 18. One
obtains

(27)

(28)

In these macro-scale equations, the effective parameters are calculated from the mapping variables. For
instance, the exchange coefficient is expressed as

(29)

The  macro-scale  terms  associated  to  the  homogeneous  heat  source  terms  are  simply  the  pore-scale
function calculated at the average temperature weighted by the phase volume fraction. This is a consequence of
neglecting high non-linearities as shown in Eq. 23. On the contrary, the heterogeneous heat source term is not
entirely affected to a particular phase equation but, instead, has to be distributed between the two phase macro-
scale equations. This is achieved through the introduction of a distribution coefficient which can be calculated
from the pore-scale properties by solving the following closure problem:

(30)

(31)

(32)

(33)

(34)

(35)



where the distribution coefficient ξ is given by

(36)

In the next section, some properties of this distribution coefficient are discussed.

3. Applications: the distribution coefficient

In this section, the closure problem for the heterogeneous heat source term is solved for various pore-
scale geometry and physical parameters. Then, a 0D macro-scale problem is solved to emphasize some peculiar
features of this heat distribution problem.

3.1. Results for the distribution coefficient
The closure problem expressed by Eqs. 30 through 36 has been solved analytically for stratified unit cells

and 2D ou 3D simple unit cells[14]. In this paper, results are presented for a more realistic porous medium
obtained from x-ray tomography [1].

In the case of a stratified unit cell such as the one represented Figure 2a, the distribution coefficient can
be obtained analytically. Its value does not depend on the velocity and is given by

(37)

An example  of  calculation  of  the  distribution  coefficient  in  the  case  of  more  complex  unit  cells  is
provided below. The pore-scale geometry is taken from an X-ray microtomograph and the solid phase indicator
is represented Figure 2b.
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Figure 2. Unit Cells (UC)

The evolution of the distribution coefficient as a function of the thermal conductivity ratio is provided
Figure 3 for three different unit cells (UC). They all have the same general trend:

(38)

In  other  words,  the  heterogeneous  heat  source  has  the  tendency  to  be  distributed  towards  the  most
conductive phase. If the practical problem under consideration involves a highly conductive solid phase, which is
the case for instance in metallic catalytic porous burners, the heat source is affected to the σ-phase equation,
which is the  common engineering practice. In between these two limits, the detailed variation depends on the
pore-scale  geometry. The results  emphasize  the  fact  that  the  resulting  distribution  coefficient  value  is  very
sensitive to the pore-scale geometry and cannot be predicted accurately from results for simple unit cells.

The impact of the velocity field has been studied in [14]. Results for simple 2D unit cells are provided
Figure 4. The Péclet number is defined as

(39)



where  lc is the array unit vector length (very close here to the grain diameter). The results show a transition
regime for Pe between 1 and 100 in between two constants for Pe → 0 and Pe → ∞. In the range of explored
values, the distribution coefficient varies between 10 to 20%, which is less significant than the influence of the
thermal conductivity ratio.
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Figure 3. Distribution coefficient as a function of  (Strat.=stratified UC; FVM=Cubic Centered; Image=X-
ray tomography)
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Figure 4. Distribution coefficient as a function of the Péclet number for two types of arrays of cylinders and
various values of the thermal conductivity ratio.

3.2. Influence of the distribution coefficient on the temperature difference



Another common sense view of the problem is that the hottest phase, macroscopically speaking, is the one with
the larger diffusivity. Let us explore that notion by looking at the following macro-scale 0D problem.

(40)

(41)

(42)

Solving  analytically  this  problem,  it  can  be  shown  that,  after  a  transient  behavior,  the  two  macro-scale
temperatures increase with time but the temperature difference is constant and given by

(43)

and the condition for obtaining a zero difference is

(44)

In order to better understand the implications, let us consider the case of the stratified material represented
Figure 2. Solving analytically the closure problem in that case gives

(45)

and

(46)

The condition Eq. 44 gives

(47)

We see that, if the volume fractions are the same, the change in the sign of the temperature difference
occurs indeed when the diffusivities are equal. However, this is no longer true for different volume fractions. In
fact, the material with the lowest diffusivity can have a higher averaged temperature if it is thin enough to catch
up with the thicker phase! This is another feature, apparently counter intuitive, of this heterogeneous heat source
problem.

Conclusion
The introduction of  heat  source  terms in macro-scale  equations in  the case  of  local  non-equilibrium

models requires the resolution of more complex closures. An example is provided in this paper in the case of a
quasi-steady closure which generally leads to the classical two-temperature model. This model is modified here
with the introduction of a distribution coefficient which insert a portion of the heterogeneous heat source into the
each macro-scale phase equation. This coefficient varies rapidly for thermal conductivity ratios between 0.01 and
100, and the value is relatively sensitive to the pore-scale geometry as emphasized by the calculations on simple
unit cells and also on a tomographic image.

This  concept  has  already  been  used  in  various  contexts:  for  instance  for  heat  sources  coming from
Arrhenius reactions [16], for a local non-equilibrium heat transfer model including radiative heat transfer [17]. It
proved very useful, which suggests that improvements should be sought in various different directions: higher
order closures for non-linear systems, multi-physic coupling, etc...



Nomenclature 

Symbol Name, unit
cp heat capacity, J/kg.K
g gravitational acceleration, m/s2

k thermal conductivity, W/m.K
K effective thermal dispersion, W/m.K
T temperature, K
av specific area, m-1

v velocity, m/s
V averaging volume, m3

R homogeneous heat source, J/m3.s

Greek Symbols

 refers to -phase

ε volume fraction
μ dynamic viscosity, N.s/m2

ξ distribution coefficient
ρ density, kg/m3

Ω heterogeneous heat source, , J/m2.s

Indices
eq equilibrium
βσ mixture variable
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