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Abstract

What, if any, similarities and differences between music and speech are consistent across
cultures? Both music and language are found in all known human societies and are argued
to share evolutionary roots and cognitive resources, yet no studies have compared
similarities and differences between song, speech, and instrumental music across languages
on a global scale. In this Registered Report, we analyze a novel dataset of 300 high-quality
annotated audio recordings representing matched sets of singing, recitation, conversational
speech, and instrumental music from our 75" coauthors whose 55 1st/heritage languages
span 21 language families to find strong evidence for cross-culturally consistent differences
and similarities between music and language. Of our six pre-registered predictions, five were
strongly supported: relative to speech, songs use 1) higher pitch, 2) slower temporal rate,
and 3) more stable pitches, while both songs and speech used similar 4) pitch interval size,
and 5) timbral brightness. Our 6th prediction that song and speech would show similar pitch
declination was inconclusive, with exploratory analysis suggesting that songs tend to follow
an arched contour while speech contours tend to decline overall but end with a slight rise.
Because our non-representative language sample and unusual design involving coauthors
as participants could affect our results, we also performed robustness analyses - including a
parallel reanalysis of a previously published dataset of 418 song/speech recordings from 209
individuals whose 16 languages span 11 language families (Hilton & Moser et al., 2022,
Nature Human Behaviour) - which confirmed that our conclusions are robust to these
potential biases. Exploratory analyses identified additional features such as phrase length,
intensity, and rhythmic/melodic regularity that also consistently distinguish song from
speech, and suggest that such features also vary along a “musi-linguistic” continuum in a
cross-culturally consistent manner when including instrumental melodies and recited lyrics.
Further exploratory analysis suggests that pitch height is the only consistently sexually
dimorphic feature (female singing/speaking is almost one octave higher than male on
average), and that other factors such as musical training and recording context may also
interact to influence the magnitude of song-speech differences. Our study provides strong
empirical evidence for the existence of cross-cultural regularities in music and speech.

1. Introduction

Language and music are both found universally across cultures, yet in highly diverse forms
(Evans & Levinson, 2009; Jacoby et al., 2020; Mehr et al., 2019; Savage 2019; Sammler,
Under contract), leading many to speculate on their evolutionary functions and possible

'NB: 6 of the original 81 planned coauthors were unable to complete the recording and annotation
process compared to our initially planned sample (compare the new Fig. 3 map with the originally
planned Fig. S1 map). These six collaborators were excluded, following our exclusion criteria
(S.1.2.2). Two collaborators (Thorne and Hereld) submitted recording sets with spoken descriptions in
English instead of the language of their song (Te Reo Maori and Cherokee, respectively), and have
not yet been able to re-record themselves in the correct language as required by the recording
Protocol (Appendix 1). Hereld's recording set is also an uncontrolled amalgam of recordings made for
different settings. We have thus included Thorne and Hereld’s recordings for the exploratory analyses,
but excluded them from the confirmatory analyses. We aim to include their re-recorded sets if they
can submit them in time to finalize the manuscript for publication. Updating these will not change the
results of the Table 3 robustness check, as these collaborators were already not blind to our
hypotheses, so they would be excluded from this analysis anyway. It is also unlikely to change the
p-values in Table 2 calculated based on 73 recording sets. We commit to updating our analyses to
reflect their new recordings if they can be submitted in time, regardless of iffhow it impacts our
conclusions.



coevolution (e.g., Darwin, 1871; Haiduk & Fitch, 2022; Mehr et al., 2021; Patel, 2008;
Savage et al., 2021; Valentova et al., 2019). Yet such speculation still lacks empirical data to
answer the question: what similarities and differences between music and language are
shared cross-culturally? Although comparative research has revealed distinct and shared
neural mechanisms for music and language (Albouy et al., 2020; Doelling et al., 2019; Morrill
et al., 2015; Patel, 2008, 2011; Peretz, 2009; Rogalsky et al., 2011), there has been
relatively less comparative analysis of acoustic attributes of music and language (e.g., Ding
et al., 2017; Patel et al., 2006), and even fewer that directly compare the two most
widespread forms of music and language that use the same production mechanism: vocal
music (song) and spoken language (speech).

Cross-cultural analyses have identified “statistical universals” shared by most of the world’s
musics and/or languages (Bickel, 2011; Brown, 1991; Brown and Jordiana, 2013; Savage et
al., 2015). In music, these include regular rhythms, discrete pitches, small melodic intervals,
and a predominance of songs with words (rather than instrumental music or wordless songs)
(Mehr et al., 2019; Savage et al., 2015). However, non-signed languages also use the voice
to produce words, and other proposed musical universals may also be shared with language
(e.g., discrete pitch in tone languages; regular rhythms in “syllable-timed” / “stress-timed”
languages; use of higher pitch when vocalizing to infants) (Haiduk & Fitch, 2022; Hilton et
al., 2022; Ozaki et al., 2022; Patel, 2008; Tierney et al., 2011). Moreover, vocal parameters
of speech and singing, such as fundamental frequency and vocal tract length as estimated
from formant frequencies, are strongly intercorrelated in both men and women (Valentova et
al., 2019).

Many hypotheses make predictions about cross-cultural similarities and differences between
song and speech. For example, the social bonding hypothesis (Savage et al., 2021) predicts
that song is more predictably regular than speech to facilitate synchronization and social
bonding. In contrast, Tierney et al.’s (2011) motor constraint hypothesis predicts similarities
in pitch interval size and melodic contour due to shared constraints on sung and spoken
vocalization. Similarly, the sexual selection hypothesis (Valentova et al., 2019) predicts
similarities between singing and speaking due to their redundant functions as ‘backup
signals’ indicating similar underlying mate qualities (e.g., body size). Finally, culturally
relativistic hypotheses instead predict neither regular cross-cultural similarities nor
differences between song and speech, but rather predict that relationships between song
and speech are strongly culturally dependent without any universal regularities (List, 1971).

Culturally relativistic hypotheses appear to be dominant among ethnomusicologists. For
example, in a Jan 13, 2022 email to the International Council for Traditional Music (ICTM)
email list entitled “What is song?”, ICTM Vice-President Don Niles requested definitions for
“song” that might distinguish it from “speech” cross-culturally. Much debate ensued, but the
closest to such a definition that appeared to emerge was the following conclusion published
by Savage et al. (2015) based on a comparative analysis of 304 audio recordings of music
from around the world:
"Although we found many statistical universals, absolute musical universals did not
exist among the candidates we were able to test. The closest thing to an absolute
universal was Lomax and Grauer’s [1968] definition of a song as a vocalization
using “discrete pitches or regular rhythmic patterns or both,” which applied to
almost the entire sample, including instrumental music. However, three musical



examples from Papua New Guinea containing combinations of friction blocks, swung
slats, ribbon reeds, and moaning voices contained neither discrete pitches nor an
isochronous beat. It should be noted that the editors of the Encyclopedia did not
adopt a formal definition of music in choosing their selections. We thus assume that
they followed the common practice in ethnomusicology of defining music as “humanly
organized sound” [Blacking, 1973] other than speech, with the distinction between
speech and music being left to each culture’s emic (insider, subjective) conceptions,
rather than being defined objectively by outsiders. Thus, our analyses suggest that
there is no absolutely universal and objective definition of music, but that
Lomax and Grauer’s definition may offer a useful working definition to
distinguish music from speech.” (emphasis added)

Importantly, however, Savage et al.’s conclusion was based only on an analysis of music,

thus the contrast with speech is speculative and not based on comparative data.

Some studies have identified differences between speech and song in specific languages,
such as song being slower and higher-pitched (Hansen et al., 2020; Merrill &
Larrouy-Maestri, 2017; Sharma et al., 2021; Vanden Bosch der Nederlanden et al., 2022).
However, a lack of annotated cross-cultural recordings of matched speaking and singing has
hampered attempts to establish cross-cultural relationships between speech and song (cf.
Blasi et al., 2022). The available dataset closest to our study is Hilton, Moser, et al.’s (2022)
recordings sampled from 21 societies. Their dataset covers 11 language families and each
participant produced a set of adult-directed and infant-directed song and speech. However,
their dataset was designed to independently compare adult-directed vs. infant-directed
versions of song and of speech, and they did not directly compare singing vs. speaking. We
performed exploratory analyses of their dataset (Ozaki et al., 2022), but found that since
their dataset does not include manual annotations for acoustic units (e.g. note, syllable,
sentence, phrase, etc.), it is challenging to analyze and compare key structural aspects such
as pitch intervals, pitch contour shape, or note/syllable duration. While automatic
segmentation can be effective for segmenting some musical instruments and animal songs
(e.g., percussion instruments [Durojaye et al., 2021]; bird song notes separated by
micro-breaths [Roeske et al. 2020]), we found they did not provide satisfactory segmentation
results compared to human manual annotation for the required task of segmenting
continuous song/speech into discrete acoustic units such as notes or syllables (cf. Fig. S6).
For example, Mertens’ (2022) automated segmentation algorithm used by Hilton et al. (2022)
mis-segmented two out of the first three words “by a lonely” from the English song used in
our pilot analyses (“The Fields of Athenry”), over-segmenting “by” into “b-y”, and
under-segmenting “lonely” by failing to divide it into “lone-ly” (cf. Fig. S6 for systematic
comparison of annotation by automated methods and by humans speaking five different
languages from our pilot data).

Our study overcomes these issues by creating a unique dataset of matched singing and
speaking of diverse languages, with each recording manually segmented into acoustic units
(e.g., syllables, notes, phrases) by the coauthor who recorded it in their own 1st/heritage
language. Furthermore, because singing and speaking exist on a broader “musi-linguistic”
spectrum including forms such as instrumental music and poetry recitation (Brown, 2000;
Leongdmez et al., 2022; Tsur and Gafni, 2022), we collected four types of recordings to
capture variation across this spectrum: 1) singing, 2) recitation of the sung lyrics, 3)
spoken description of the song, and 4) instrumental version of the sung melody (Fig. 1).



The spoken description represents a sample of naturalistic speech. In contrast, the lyrics
recitation allows us to control for potential differences between the words and rhythmic
structures used in song vs. natural speech by comparing the exact same lyrics when sung
vs. spoken, but as a result may be more analogous to poetry than to natural speech. The
instrumental recording is included to capture the full musi-linguistic spectrum from
instrumental music to spoken language, allowing us to determine how similar/different music
and speech are when using the same effector system (speech vs. song) versus a different
system (speech vs. instrument).
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Figure 1. Example excerpts of the four recording types collected in this study, arranged in a
“musi-linguistic continuum” from instrumental music to spoken language. Spectrograms
(x-axis: time [seconds], y-axis: frequency [Hz]) of the four types of recordings are displayed on the
right-hand side (excerpts of author Savage performing/describing “Twinkle Twinkle”, using a piano for
the instrumental version). Blue dashed lines show the schematic illustration of the mapping between
the audio signal and acoustic units (here syllables/notes). For this Registered Report, we focus our
confirmatory hypothesis only on comparisons between singing and spoken description (red
rectangles), with recited and instrumental versions saved for post-hoc exploratory analysis.

1.1. Study aims and hypotheses

Our study aims to determine cross-cultural similarities and differences between speech and
song. Many evolutionary hypotheses result in similar predicted similarities/differences
between speech and song: for example, song may use more stable pitches than speech in



order to signal desirability as a mate and/or to facilitate harmonized singing, and by
association bond groups together or signal their bonds to outside groups (Savage et al.,
2021b). Such similarities and differences between song and speech could arise through a
combination of purely cultural evolution, purely biological evolution, or some combination of
gene-culture coevolution (Patel, 2018; Savage et al., 2021; Hoeschele & Fitch, 2022).
Rather than try to disambiguate such ultimate theories, we focus on testing more proximate
predictions about similarities and differences in the acoustic features of song and speech,
which can then be used to develop more cross-culturally general ultimate theories in future
research. Through literature review and pilot analysis (see Section S1.4), we settled on six
features we believe we can reliably test for predicted similarities/differences: 1) pitch height,
2) temporal rate, 3) pitch stability, 4) timbral brightness, 5) pitch interval size, and 6)
pitch declination (cf. Table 1). Detailed speculation on the possible mechanisms underlying
potential similarities and differences are described in the Supplementary Discussion section
(S2).



Table 1. Registered Report Design Planner. Includes six hypotheses (H1-HG).

Rationale for deciding the

Interpretation given different

Theory that could be shown

Question [Hypothesis Sampling plan Analysis plan test sensitivity outcomes wrong by the outcomes Actual outcome
1) Song uses higher |n=81 pairs of audio Meta-analysis Power analysis estimate of The null hypothesis of no difference in f; | Our design cannot falsify specific All three hypothesized
pitch than speech recordings of song/speech, |framework (Fig. 2) minimum n=60 pairs was based |between sung and spoken pitch height is |ultimate theories (e.g., social bonding |differences between
Are any with each pair sung/spoken by | calculates a paired on converting Brysbaert's (2019) |rejected if the population effect size is hypothesis, motor constraint song and speech (pitch
acoustic the same person (Fig. 3). effect size for pitch  [suggested Smallest Effect Size Of |significantly larger than p,.= 0.5. hypothesis), but can falsify cultural height, temporal rate,
features Recruitment was opportunistic | height (f,) for each Interest (SESOI) of Cohen’s d=0.4 | Otherwise, we neither reject nor accept |relativistic theories that argue and pitch stability) were
reliably based on collaborator song/ speech pair to the corresponding p,, = 0.61. the hypothesis. against general cross-cultural confirmed
different networks aiming to maximize |and tests whether the |We control for multiple regularities in song-speech
between global diversity and achieve population effect size |comparisons using false relationships.
song and greater than 95% a priori (relative effect p,) is |discovery rate
speech power even if some data has |significantly larger (Benjamini-Hochberg step-up
across to be excluded (see Sec. $1.2 |than 0.5. method; family-wise a = .05; B =
cultures? for inclusion/ exclusion .95).
criteria).
2) Song is slower Same as H1, but for temporal rate (inter-onset interval (10l) rate) instead of pitch height (f;)
than speech
3) Song uses more |Same as H1, but for pitch stability (-|Af,|) instead of pitch height
stable pitches than
speech
4) Song and speech [Same as H1. Same as H1, except |Same as H1. The null hypothesis of spectral centroid | Same as H1. The hypothesized
use similar timbral test whether the of singing being meaningfully lower or similarities in timbral
brightness effect size for timbral higher than speech is rejected if the brightness and pitch
Are any brightness is population effect size is significantly interval size were
acoustic significantly smaller within the SESOI (0.39<p, <0.61, confirmed
features than the SESOI. corresponding to +0.4 of Cohen’s d.
reliably Otherwise, we neither reject nor accept
shared the hypothesis.
between . . . . .
song and 5) Sopg .and s.peech Same as H4, but for pitch interval size (f, ratio) instead of timbral brightness.
use similar sized
speech . .
pitch intervals
across
cultures? |6) Song and speech |Same as H4, but for pitch declination (sign of f, slope) instead of timbral brightness. The hypothesized

use similar pitch
contours

similarity in pitch
contour was neither
rejected nor confirmed.




1.2. Analysis plan

We test two types of hypotheses, corresponding to the hypothesis of difference and the
hypothesis of similarity, respectively. Formally, one type of null hypothesis is whether the
effect size of the difference between song and speech for a given feature is null. This
hypothesis will be applied to the prediction of the statistical difference. Another type of null
hypothesis is whether the effect size of the feature exceeds the smallest effect size of
interest (SESOI) (Lakens, 2017). This hypothesis will be applied to the prediction of
statistical similarity. In this study, we particularly rely on the SESOI of 0.4 suggested by the
review of psychological research (Brysbaert, 2019). There are various ways to quantify the
statistical difference or similarity (e.g. Kullbak-Leibler divergence, Jensen-Shannon
divergence, Earth mover’s distance, energy distance, L, norm, Kolmogorov-Smirnov
statistic). Here we focus on effect sizes to facilitate interpretation of the magnitudes of
differences.

Since our main interest lies in the identification of which features demonstrate differences or
similarities between song and speech, we will perform the within-participant comparison of
the six features between the pairs of singing and speech, using the spoken description
rather than the lyric recitation as the proxy for speech (cf. red boxes in Fig. 1; the
comparisons with lyrics recitation and with instrumental versions will be saved for exploratory
analyses). In addition, terms in the computed difference scores will be arranged so that for
our predicted differences (H1-H3), a positive value indicates a difference in the predicted
direction (cf. Fig. S3).

Evaluation of difference in the magnitude of each feature is performed with nonparametric
relative effects (Brunner et al., 2018) which is also known as stochastic superiority (Vargha &
Delaney, 1998) or probability-based measure of effect size (Ruscio, 2008). This measure is a
nonparametric two-sample statistics and allows us to investigate the statistical properties of
a wide variety of data in a unified way.

We apply the meta-analysis framework to synthesize the effect size across recordings to
make statistical inference for each hypothesis (Fig. 2). In this case, the study sample size
corresponds to the number of data points of the feature in a recording and the number of
studies corresponds to the number of language varieties. We use Gaussian random-effects
models (Brockwell & Gordon, 2001; Liu et al., 2018), and we frame our hypotheses as the
inference of the mean parameter of Gaussian random-effects models which indicates the
population effect size.
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Figure 2. Schematic overview of the analysis pipeline from raw audio recordings to the paired
comparisons shown in Figure S2. Recording sets 1 and 2 represent pilot data of singing and
speaking in Yoruba and Farsi by coauthors Nweke and Hadavi, respectively. From each pair of
song/spoken audio recordings by a given person, we quantify the difference using the effect size for
each feature. Pre is the relative effect (converted to Cohen’s d for ease of interpretability). In both
cases, the distributions of sung and spoken pitch overlap slightly but song is substantially higher on
average (Cohen’s d > 2). In order to synthesize the effect sizes collected from each recording pair to
test our hypotheses, we apply meta-analyses by treating each recording pair as a study. This
approach allows us to make an inference about the population effect size of features in song and
speech samples. This example focuses on just one feature (pitch height) applied to just two recording
sets, but the same framework is applied to the other five features and other recording sets to create
the processed data for hypothesis testing shown in Figure S2, Different types of hypothesis testing
are applied depending on the feature (i.e. hypothesis of difference and hypothesis of similarity).

Our null hypotheses for the features predicted showing difference is that the true effect size
is zero (i.e. relative effects of 0.5). On the other hand, the null hypotheses for the feature
predicted showing similarity is that the true effect size is lower or larger than smallest effect
sizes of interest in psychology studies (i.e. relative effects of 0.39 and 0.61 corresponding to
+0.4 of Cohen’s d) (Brysbaert, 2019). We test six features, and thus test six null hypotheses.

Since we test multiple hypotheses, we will use the false discovery rate method with the
Benjamini-Hochberg step-up procedure (Benjamini & Hochberg, 1995) to decide on the
rejection of the null hypotheses. We define the alpha level as 0.05.

For the hypothesis testing of null effect size (H1-H3), we test whether the endpoints of the
confidence interval of the mean parameter of the Gaussian random-effects model are larger
than 0.5. We use the exact confidence interval proposed by Liu et al. (2018) and Wang &
Tian (2018) to construct the confidence interval. For the hypothesis testing of equivalence
(H4-H6), we first estimate the mean parameter (i.e. overall treatment effect) with the exact
confidence interval (Liu et al., 2018; Wang & Tian, 2018) and the between-study variance
with the DerSimonian-Laird estimator (DerSimonian & Laird, 1986). Since Gaussian
random-effects models can be considered Gaussian mixture models having the same mean
parameter, the overall variance parameter can be obtained by averaging the sum of the
estimated between-study variance and the within-study variance. Then, we plug the mean
parameter and overall variance into Romano’s (2005) shrinking alternative parameter space
method to test whether the population mean is within the SESOI as specified above.



Our choice of an SESOI of d = 0.4 based on Brysbaert's (2019) recommendation after
reviewing psychological studies is admittedly somewhat arbitrary. Future studies might be
able to choose a different SESOI on a more principled basis based on the data and analyses
we provide here, and the value of our database for such hypothesis generation and
exploration is an important benefit beyond the specific confirmatory analyses proposed.
However, we currently are faced with a chicken-and-egg problem in that it is difficult to justify
an a priori SESOI for analysis until we have undertaken the analysis. The same argument
may hold for Bayesian approaches (e.g., highest density regions, region of practical
equivalence, model selection based on Bayes factors) independent of the choice of prior
distributions. We thus chose to rely on Brysbaert's recommended SESOI of d = 0.4 (and its
equivalent relative effect of p, = 0.61) in the absence of better alternatives.

Visual and aural inspection of the distribution of pilot data (Figs. S2 and S9; audio recordings
can be heard at https://osf.io/mzxc8/) also suggest that it is a reasonable (albeit arbitrary)
threshold given the variance observed across a range of different features and languages.
To enable the reader/listener to assess what an SESOI might sound like, we have created
versions of the pilot data artificially raising/lowering the temporal rate and pitch height of
sung/spoken examples so one can hear what our proposed SESOI would sound like for a
range of languages and features (Section S7 and Table S1; audio files also at
https://osf.io/mzxc8/.

2. Methods [NB: The current manuscript is structured as a completed Stage 2
Registered Report, but this format can be modified if required based on
additional reviewer feedback]

All details are written in the S1 Supplementary methods section. Here, we briefly introduce
two key aspects: language sample and acoustic features.

We have recruited 75 collaborators from around the world, spanning the speakers of 21
language families (Fig. 3). All audio recordings analyzed are made by our group of 75
coauthors recording ourselves singing/speaking in our 1st/heritage languages. Collaborators
were chosen by opportunistic sampling beginning from co-corresponding author Savage’s
network of researchers (cf. S1.2. for details).
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Figure 3. Map of the linguistic varieties spoken by our 75 coauthors as 1st/heritage languages
(A). (NB: 6 of the original 81 planned coauthors were unable to complete the recording and annotation
process compared to our initially planned sample; cf. Fig. S1 for the original map of 81 linguistic
varieties). Each circle represents a coauthor singing and speaking in their 1st (L1) or heritage
language. The geographic coordinates represent their hometown where they learned that language.
In cases when the language name preferred by that coauthor (ethnonym) differs from the L1 language
name in the standardized classification in the Glottolog (Hammarstrém et al., 2022), the ethnonym is
listed first followed by the Glottolog name in round brackets. Language family classifications (in bold)
are based on Glottolog. Square brackets indicate geographic locations for languages represented by
more than one coauthor. Atlantic-Congo, Indo-European and Sino-Tibetan languages are further
grouped by genus defined by the World Atlas of Language Structures (Dryer et al., 2013;
https://wals.info/languoid). The word clouds outline the most common textual content of English
translations of the song lyrics (B) and spoken descriptions (C) provided by our 75 coauthors (larger
text indicates words that appear more frequently).
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We compared the following six acoustic features between song and speech for our main
confirmatory analyses:


https://wals.info/languoid

1) Pitch height (fundamental frequency (fy)) [Hz],
2) Temporal rate (inter-onset interval (I0I) rate) [Hz],

- The unit of IOl is seconds and IOl rate is the reciprocal of IOl. Onset
represents the perceptual center (P-center) of an acoustic unit (e.g., syllables,
mora, note), which represents the subjective moment when the sound is
perceived to begin. The P-center can be interpreted to reflect the onset of
linguistic units (e.g., syllable, mora) and musical units (e.g., note), with the
segmentation of acoustic units determined by the person who made the
recording. This measure includes the interval between a break and the onset
immediately preceding the break. Breaks were defined as relatively long
pauses between sounds. For vocal recordings, that would typically constitute
when the participant would inhale.

3) Pitch stability (-|f|) [cent/sec.],
4) Timbral brightness (spectral centroid) [HZ],
5) Pitch interval size (f, ratio) [cent],
- Absolute value of pitch ratio converted to the cent scale.
6) Pitch declination (sign of f, slope) [dimensionless]

- Sign of the coefficient of robust linear regression fitted to the phrase-wise f,
contour.

For each feature, we compared its distribution in the song recording with its distribution in
the spoken description by the same singer/speaker, converting their overall combined
distributions into a single scalar measure of nonparametric standardized difference (cf. Fig.
2). Details can be found in S1.3. and S3.
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Figure 4. Schematic illustration of the six features analyzed for confirmatory analysis, using a
recording of author Savage singing the first two phrases of “Twinkle Twinkle Little Star” as an
example. Onset and breathing annotations are based on the segmented texts displayed on the top of
the spectrogram. The y-axis is adjusted to emphasize the f, contour, so note that the spectral centroid
information is not fully captured (e.g. high spectral centroid due to the consonant). The bottom figure
shows pitch stability (rate of change of f,, or derivative of the f, contour equivalently) of the sung .



3. Changes to Stage 1 Registered Report protocol (Introduction and Method sections
1-2 plus Supplementary Materials)

We have left the content of Introduction and Method (Sections 1-2) and Supplementary
Materials unchanged from the version granted In Principle Acceptance (accessible at
https://osf.io/download/6387919ba98e5f286310370d/?version=4),  following  Registered
Report procedures to avoid any possibility of adjusting hypotheses or analyses after knowing
the results. However, we have moved the majority of the Method section to Supplementary
Materials to make the main result and discussion easier to read. At the time we submitted
the Stage 1 manuscript, we mainly reported our pilot data results included in the Method
section, but now those results have been moved to Supplementary Information.

As a result, we have renumbered Section and Figure numbers and have updated
cross-references to them. In addition, we have added a subsection title to the paragraph
explaining exploratory features in the supplementary materials which should have been
there. Minor typos have also been corrected accordingly.

Note that the map in the Methods section (Fig. 3) reflects the final 75 collaborators who
provided audio recording data, not the original 81 collaborators shown in the original map
(Fig. S1), as 6 collaborators were unable to provide recording data. We have also added a
word cloud visualization of the translated content of the sung/spoken audio recordings to
accompany this map.

4, Results

4.1. Confirmatory analysis

The results of the confirmatory hypothesis testing with 73 recording sets confirm 5 of our 6
predictions (Fig. 5 and Table 2; all p < 1x10%). Specifically, relative to spoken descriptions,
songs used significantly higher pitch (translated Cohen’s D = 1.6), slower temporal rate (D =
1.6), and more stable pitches (D = 0.7), while both spoken descriptions and songs used
significantly equivalent timbral brightness and pitch interval size (both D < 0.15). The one
exception was pitch declination, which was not significantly equivalent between speech and
song (p=.57), with an estimated effect size of D = 0.42 slightly greater than our pre-specified
“Smallest Effect Size of Interest” (SESOI) of D = 0.4. In section 4.2.7 we perform alternative
exploratory analyses to understand possible reasons for this failed prediction.
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Figure 5. Plot of effect sizes showing differences of each feature between singing and spoken
description of the 73 recording sets for the confirmatory analysis and 75 recording sets for the
exploratory analysis. The plot includes 7 additional exploratory features, and the 6 features
corresponding to the main confirmatory hypotheses are enclosed by the red rectangle. Confidence
intervals are created using the same criteria in the confirmatory analysis (i.e., a = 0.05/6). Each circle
represents the effect size from each recording pair of singing and spoken description, and the set of
effect sizes are measured per recording pair. Readers can find further information on how to interpret
the figure in the caption of Figure S2 and Figure S9. Note that the colors of data points indicate
language families, which are coded the same as in Figure 3, and violin plots are added to this figure
compared to Figure S2.



Hypothesis Feature Test Combined ES | Cl (a = 0.05/6) p-value

1) Song uses higher pitch fy One-tailed | 1.61 1.41, n/a *<1.0x10°8
than speech confidence

interval of
2) Song is slower than Ol rate | the 1.60 1.40, n/a *<1.0x108
speech combined

effect size
3) Song uses more stable -|Af)| 0.65 0.56, n/a *< 1.0x108
pitches than speech
4) Song and speech use Spectral | Equivalen | 0.13 -0.0046, 0.27 | *5.2x10°®
similar timbral brightness centroid | ce test for

the
5) Song and speech use fy ratio combined | 0.082 -0.044, 0.21 *<1.0x10°8
similar sized pitch intervals effect size
6) Song and speech use Sign of 0.42 0.13, 0.69 57
similar pitch contours f, slope

Table 2. Results of the confirmatory analysis. The effect sizes reported in the table are Cohen’s d
transformed from relative effects for ease of interpretation, but the hypothesis tests were conducted
with relative effects. The Cls are either one-tailed or two-tailed, depending on the aim of the test. Note
the equivalence test uses statistics different from the above meta-analysis Cls to verify equivalence
hypotheses. Asterisks in p-values indicate that the null hypothesis is rejected.

Our robustness checks confirmed that the tests with the recordings excluding collaborators
who knew the hypotheses when generating data lead to the same decisions regarding the
rejection of the null hypotheses (Table 3). This result suggests our unusual “participants as
coauthors” model did not influence our confirmatory analyses. In addition, the other
robustness check suggests that the measured effect sizes do not have language
family-specific variance (Table 4), which supports the appropriateness of the use of simple
random-effect models in the analyses.



Hypothesis Feature Test Combined ES | Cl (a = 0.05/6) | p-value

1) Song uses higher pitch fy One-tailed | 1.73 1.46, n/a *<1.0x10°8
than speech confidence

interval of
2) Song is slower than Ol rate | the 1.64 1.40, n/a *<1.0x108
speech combined

effect size
3) Song uses more stable | -|Afy| 0.64 0.51, n/a *< 1.0x108
pitches than speech
4) Song and speech use Spectral | Equivalen | 0.14 -0.028, 0.31 *3.3x10*
similar timbral brightness centroid | ce test for

the
5) Song and speech use fy ratio combined | 0.10 -0.067, 0.27 *3.5x10°
similar sized pitch intervals effect size
6) Song and speech use Sign of 0.23 -0.11, 0.60 A2
similar pitch contours f, slope

Table 3. Results of the robustness check, which used data only from the collaborators who had not
known the hypotheses when generating data (47 pairs of singing and spoken description recordings).

Hypothesis AlC AlC Log Log Variance of the
(standard) | (multi-level) | likelihood likelihood effects at
(standard) (multi-level) language family
1) Song uses higher pitch -87.08 -85.08 45.54 45.54 <1.0x10®
than speech
2) Song is slower than -111.64 -109.73 57.82 57.86 1.86x107
speech
3) Song uses more stable | -153.53 -151.53 78.76 78.76 <1.0x10®
pitches than speech
4) Song and speech use -86.32 -84.90 45.16 45.45 2.07x10°
similar timbral brightness
5) Song and speech use -95.90 -93.90 49.95 49.95 <1.0x108
similar sized pitch intervals
6) Song and speech use -7.24 -5.48 5.62 5.74 2.29x107
similar pitch contours

Table 4. Results of the robustness check comparing models taking into account dependency by
language families. Superior AIC scores are highlighted in bold. Maximum likelihood estimation is used
to fit the models. “standard” refers to standard random-effects models used in the confirmatory
analyses, and “multi-level” refers to two-level random-effects models grouping data by language
families. The right-most column shows the maximum likelihood estimate of the variance parameters
appearing in the multi-level models. The log-likelihoods are almost identical between the two models,
and multi-level models degenerate to standard random effects models (i.e. variance due to language
family is negligible), which means grouping data by language family is redundant and simple random
effects models are enough to model data.




4.2. Exploratory analysis
4.2.1. More acoustic features

We specified six features for our confirmatory analyses, but human music and speech can
be characterized by additional acoustic features. We include seven additional features to
probe further similar and different aspects of music and speech, namely rhythmic regularity,
phrase length (duration between two breaths/breaks), pitch interval regularity, pitch range,
intensity, pulse clarity, and timbral noisiness (cf. section S6). Although we do not formally
construct and test hypotheses for this analysis, Figure 5 suggests that phrase length,
intensity, and timbral noisiness may also inform differences between song and speech, and
pitch range can be another candidate for demonstrating similarities between song and
speech. Specifically, songs appear to have longer intervals between breathing, higher sound
pressure, and have less vocal noise than speech. Note that as described in 1.2, the order of
comparison is arranged so that difference is expressed as a positive value, so that
difference in timbral noisiness is calculated as noisiness of spoken description relative to
song.
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Figure 6. Alternative visualization of Figure 5 showing mean values of each feature rather than paired
differences but with all recording types. Note that the colors of data points indicate language families,
which are coded the same as in Figure 3. The horizontal lines in the violin plots indicate the median.



4.2.2. Music-language continuum: including instrumental/recited lyrics

Exploratory analyses that include comparisons with lyrics recitation and instrumental
recordings (cf. Fig. S13 and Fig. 6) suggest that 1) comparing singing vs. lyrics recitation
shows qualitatively the same results as for singing vs. spoken description in terms of how
confidence intervals intersect with the null point and the equivalence region; 2) comparing
instrumental vs. speech (both spoken description/lyrics recitation) reveals larger differences
in pitch height, temporal rate, and pitch stability than found with song vs. speech; 3) features
shown to be similar between song vs. speech (e.g., timbral brightness and pitch interval
size) show differences when comparing instrumental vs. speech; 4) few major differences
are observed between lyrics recitation and spoken description, except that recitation tends
be slower and use shorter phrases; 5) the instrumental generally has a more extreme
(larger/smaller) magnitude than singing for each feature except for temporal rate; and 6)
pitch height, temporal rate, and pitch stability display a noticeable constantly increasing (or
decreasing) continuum from spoken description to instrumental.

A similar trend is also found in additional differentiating features discussed in 4.2.1 (i.e.,
phrase length, timbral noisiness, and loudness). We also performed a nonparametric trend
test (cf., Table S2) to quantitatively assess the existence of trends, and the result suggests
that features other than pitch interval size and pitch range display increasing/decreasing
trends. These results tell us how acoustic characteristics are manipulated through the range
of acoustic communication from spoken language to instrumental music.

4.2.3. Demographic factors: Sex differences in features

Because we had a similar balance of female (n=34) and male (n=41) coauthors, we were
able to perform exploratory analysis comparing male and female vocalizations (Fig. S14).
These analyses suggest that, while there is some overlap in their distribution (e.g., some
male speaking/singing was higher than some female speaking/singing), on average female
vocalizations were consistently higher-pitched than male vocalizations regardless of the
language sung/spoken (by ~1,000 cents [almost one octave] consistently for song, spoken
description, and recited lyrics). However, there is no apparent sexual dimorphism in vocal
features other than pitch height (e.g., temporal rate, pitch stability, timbral brightness, etc.).
Although this analysis is exploratory, this result is consistent with past research that often
focuses on vocal pitch as a likely target of sexual selection (Chen et al., 2022; Feinberg et
al., 2018; Puts et al., 2006; 2016; Valentova et al., 2019).

4.2.4. Analysis by linguistic factors: nPVI

We employed nPVI (Patel & Daniele, 2003) to examine the degree of variation in inter-onset
intervals and onset-break intervals (cf. S3.2. & S8.) of our song and speech recordings. nPVI
provides large values if adjacent intervals differ in duration on average and vice versa. Thus,
nPVI can capture durational contrasts between successive elements. It was originally
developed to characterize vowel duration of stress-timed and syllable-timed languages (Ling
et al., 2000), although our duration is defined by the sequence of onset (cf. S1.1.) and break
annotations (cf. S8.) which are neither the same as vowel duration nor vocalic intervals. In
this exploratory analysis, we mapped nPVIs of song and spoken description recordings of
each collaborator on a two-dimensional space to explore potential patterns and also
visualized the density of nPVIs per recording type (cf. Fig. S20). However, we observed that



(1) nPVIs of song and spoken description do not seem to create distinct clusters among our
recordings (whether into “syllable-timed”, “stress-timed”, or any other categories), (2) nPVIs
of song and spoken description do not have a clear correlation (Pearson’s r = 0.087) while
nPVIs of song and instrumental recording do show a substantial correlation (Pearson’s r =
0.52), and (3) nPVIs of spoken description tend to be slightly larger than song and
instrumental. The third result suggests durational contrast of speech is more variable
compared to singing and instrumental, which is consistent with past work showing that music
tends to have limited durational variability worldwide (Savage et al., 2015). In addition,
though linguists use various features (Grabe & Low, 2002) to carefully characterize the
rhythm of speech, the first two observations suggest that song rhythm is potentially
independent of speech rhythm even when produced by the same speaker in the same
language, which suggests that temporal control of song and speech may obey different
communicative principles.

4.2.5. Reliability of annotation process: Inter-rater reliability of onset annotations

We analyzed the inter-rater reliability of onset annotations to check how large individual
varieties are in the annotation. As stipulated in S$1.7.7, Savage created onset annotations to
the first 10 seconds of randomly chosen 8 pairs of song and spoken description recordings.
In this 10-second annotation, Savage created onset annotations using the same segmented
text as Ozaki (the text provided by the coauthor who made the recording) but was blinded
from the actual annotation created by YO and confirmed by the coauthor who made the
recording. Therefore, the annotation by PES follows the same segmentation as the
annotation by YO, but can differ in the exact timing for which each segmentation is judged to
begin. We measured intra-class correlations (ICCs) of onset times with two-way
random-effects models measuring absolute agreement. As a result, all annotations show
strong ICCs (> .99), which indicates who performs the annotation may not matter as long as
they strictly follow the segmentation indicated in segmented texts. Alternative exploratory
analysis inspecting the distribution of differences in onset times is also conducted (cf., Fig.
S21). In the case of singing, 90% of onset time differences are within 0.083 seconds.
Similarly, in the case of spoken description, 90% of onset time differences are within 0.055
seconds. In other words, Ozaki’s manual onset annotations that form a core part of our
dataset have been confirmed by the coauthor who produced each recording and by
Savage’s independent blind codings to be highly accurate and reliable.

4.2.6. Exploring recording representativeness and automated scalability: Comparison
with alternative speech-song dataset (Hilton et al., 2022)

As stated in $1.7.8, we performed two exploratory analyses using automated methods to
investigate (1) the reproducibility of our findings with another corpus and (2) the applicability
of automated methods to substitute data extraction processes involving manual work. We
analyzed the recordings of adult-directed singing and speech of Hilton et al.’s (2022)
dataset. We especially analyzed both the full set of their data and the subset of their data
representing languages also present in our own dataset - English, Spanish, Mandarin,
Kannada, and Polish - to perform a matched comparison with our language varieties.
However, in their dataset, not all individuals made a complete set of recordings
(infant/adult-directed song/speech), and we analyzed recording sets containing matching
adult-directed song and adult-directed speech recordings, which resulted in 209 individuals



for the full data (i.e., individuals from full 21 societies/16 languages) and 122 individuals for
the above subset of 5 languages.

Our data extraction processes involving manual work are fundamental frequency extraction,
sound onset annotation, and sound break annotation, and we automated fundamental
frequency extraction since reliable fundamental frequency estimators applicable to both song
and speech signals are readily available. On the other hand, reliable automated onset and
break annotation for both song and speech is still challenging. For example, we observed
that a widely used syllable nuclei segmentation method by de Jong & Wempe (2009) failed
to capture the major differences in temporal rate that we identified using manual
segmentation in Fig. 5. Instead, if we had used this automated method, we would have
mistakenly concluded that there is no meaningful difference in IOl rates of singing and
speech (Fig. S15). Therefore, as described in our Stage 1 protocol, we only focused on the
automation of f, extraction that could provide reliable results even using purely automated
methods without requiring manual annotations.

We chose the pYIN (Mauch & Dixon, 2014) f, extraction algorithm for this analysis. In
addition, we analyzed full-length recordings by taking advantage of the efficiency of
automated methods. Note that our timbral brightness analysis is already fully automated, so
we use the same analysis procedure for this feature. The result suggests that (1) the same
statistical significance can be obtained from Hilton et al.’s data though overall effect sizes
tend to be weakened, and (2) combined effect sizes based on pYIN with full-length duration
only show negligible differences from the original analysis involving manual work despite the
drastic difference in the measurement of some effect sizes (i.e., no effect sizes larger than
3.5 in the automated analysis of the pitch height of our data). Note that the differences in
pitch stability in Hilton et al.’s sample (translated Cohen’s d=0.30) are small enough to be
within our defined equivalence region (|d|<0.4) if we had predicted it to be equivalent, but it is
also significantly greater than the null hypothesis of no difference (translated Cohen’s d=0
corresponding to relative effect of 0.5), as we predicted (p < .005). Similar to Fig. 6, mean
values of each feature per recording can be found in the supplementary information (Fig.
S17-S19).
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Figure 7. Re-running the analyses on four different samples using different fundamental frequency
extraction methods: 1) our full sample (matched song and speech recordings from our 75 coauthors);
2) Hilton et al.’s (2022) full sample (matched song and speech recordings from 209 individuals); 3) a
sub—sample of our 14 coauthors singing/speaking in English, Spanish, Mandarin, Kannada, and
Polish), and 4) a sub-sample of Hilton et al.’s 122 participants also singing/speaking in English,
Spanish, Mandarin, Kannada, and Polish). “SA” means that f,s are extracted in a semi-automated
manner (cf. S3.1), while “FA” means they were exactly in a fully automated manner (using the pYIN
algorithm). Semi-automated analyses could only be performed on 20s excerpts of our recordings
annotated by the coauthor who recorded them, while automated analyses could be applied to the full
samples. In order to make the comparison with our results more interpretable, we have also added
the analysis of Hilton's data using the same number of song-speech recording pairs with us (i.e.,
randomly selected 74 pairs of recordings), extracting features from the first 20 seconds. Since
temporal rate, pitch interval size, and pitch declination analyses require onset and break annotations,
we focused on pitch height, pitch stability, and timbral brightness. The visualization follows the same
convention as in Figure 5 and Figure 8. However, Hilton et al.’s (2022) dataset contains languages
that are not in our dataset. Therefore, slightly different color mapping was applied (cf. Fig. S16). Note
that some large effect sizes (D > 3.5) in the pitch height of our original analysis (i.e., full-SA-20 sec.)
are not observed in the automated analysis (i.e., full-FA-full length). This is due to estimation errors in
the automated analyses. When erroneous f,s of pYIN are very high in spoken description or very low
in singing, relative effects become smaller than semi-automated methods that remove such errors.

4.2.7. Alternative analysis approaches for pitch declination (hypothesis 6)

The only one of our 6 predictions that was not confirmed was our prediction that song and
speech would display similar pitch declination. However, we would like to point out that only
3 to 4 f, slopes (equal to the number of “phrases” or intervals from the first onset after a
break and to the next break, cf. Fig. 4) are, on average, included in the 20s length recording
of singing and spoken description, respectively, and so it is possible that this failed prediction
could be due to the relatively more limited amount of data available for this feature.
Therefore, we additionally checked the validity of the result of this hypothesis test using a
longer duration to extract more signs of f, slopes to evaluate effect sizes. Although we
performed exploratory reanalysis using 30s recordings which contain 5 to 7 f, slopes for
singing and spoken description on average, still the p-value was not small enough to reject
the null hypothesis (p = .48, CI [.17, .60]).

Note that we are judging the declination in an f, contour by looking at the sign of the slope of
linear regression (i.e., the sign is negative means declination). Therefore, even if the f
contour is an arch shape, which means it has a descending contour at the end part, it can be
judged as no declination if the linear regression shows a positive slope. Therefore, the



declination here means if the f, contour has a descending trend overall and not necessarily if
the phrase is ending in a downward direction.

We report here an additional analysis based on a different approach for handling the case
when signs of f, slopes are not directly analyzable. Some singing and spoken description
recording pairs only contained negative signs (i.e. descending trend prosody). This is
undesirable for inverse variance-weighted based meta-analysis methods which we use (e.g.
DerSimonian-Laird estimator) since the standard deviations of effect sizes become zero,
leading to computation undefined. We employed the same procedure used in our power
analysis for such cases (cf. S4.2), but a more widely known practice would be zero-cell
corrections used in binary outcome data analysis (Weber et al., 2020). Signs of f, slopes are
dichotomous outcomes (i.e. positive or negative), and drawing upon zero-cell corrections, we
artificially appended a plus and minus sign to each of the signs of f, slopes from singing and
spoken description recordings when estimating standard errors of relative effects if needed
(e.g. [-1, -1, -1] — [1, -1, -1, 1, -1] for the case of 3 f, slopes). In zero-cell corrections, 0.5 is
added to all cells of the 2x2 table. Our analysis is not based on count data, so we cannot
exactly follow this correction. However, adding plus and minus signs to the outcome of both
singing and spoken description recordings has a similar effect. In other words, our additional
procedure is similar to zero-cell corrections but adding 1 instead of 0.5 to all cells. This
additional analysis provided virtually identical results with the main analysis reported in 3.1
(p = .66, CI [.15, .71]), suggesting that the way to handle zero frequency f, slope sign data is
not crucial.

Lastly, we also checked the average trend of f, contours segmented by onset and break
annotations (cf. Figure 8). The averaged f, contour of spoken description recordings clearly
exhibits a predominantly descending trend, albeit with a slight rise at the end. In contrast, the
averaged f, contour of songs is close to an arch shape, so that even though the second half
of songs tend to descend as predicted, the first half of songs tend to rise, in contrast to
speech which tends to mostly descend throughout the course of a breath. Thus, on average
spoken pitch contours tend to descend more than sung pitch contours, explaining our failure
to confirm our prediction that their contours would display similar pitch declination (cf. Fig. 5).
We also noticed that vocalizers sometimes end their utterance by raising pitch in their
spoken description recordings (and lyrics recitation as well), causing a slight rise at the end
of the averaged f, contour of spoken description (and lyrics recitation, cf. Figure 8).
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Figure 8. Averaged f, contours. f, contours extracted by the segments between onset and break
were averaged to visualize the overall trend. The extracted f, contours were normalized to the length
of 512 samples using interpolation by Fourier transform and resampling (Fraser, 1989; Schafer &
Rabiner, 1973). The implementation by the MATLAB function interpft is used. Besides, the
frequencies of extracted f, contours were standardized. Missing data from unvoiced segments of fO
contours were excluded. The blue lines represent averaged f, contours, and the black lines indicate
95% confidence intervals assuming the frequencies at each normalized sampling point were
distributed normally. The average widths of confidence intervals of each category are .14 for
instrumental, .097 for song, .060 for lyrics recitation, and .065 for spoken description.

Furthermore, the width of standard errors around the mean contour (cf. Figure. 8) suggests
that spoken description and lyrics recitation have more homogeneous variations of contours
than song and instrumental. This difference may corroborate that music actually makes more
use of the manipulation of the pitch in communication. Indeed, musical melodies are
considered to have multiple typical shapes (Adams, 1976), so the overall average contour is
not necessarily representative of all samples.

4.2.8. Explanatory power of the features in song-speech classification

In order to probe the explanatory power of features on classifying acoustic signals into song
and speech, we evaluated feature importance using permutation importance (Breiman,
2001) with three simple machine learning models. Permutation importance informs the
influence on the machine learning model by a particular variable by randomly shuffling the
data of the variable (e.g., imagine a data matrix that row corresponds to observations and
column corresponds to variables, and the data in a particular column are shuffled). Here we
use the permutation importance, which is the version implemented in Python's eli5 package
(Permutation Importance, n.d.). Since how the feature contributes to solving the given task



differs in machine learning models, we employed three binary classification models to
mitigate the bias from particular models: logistic regression with L2 regularization, SVM with
RBF kernel, and naive Bayes with Laplace smoothing.

We computed permutation importance by randomly splitting 75 recording sets into the
training set (n = 67) and test set (n = 8, 10% held-out) to fit the model and to evaluate the
importance of features in the classification task, and repeated the same process 1024 times.
The mean values of the feature, which are plotted in Figure 6, were used as data after
normalization. The average of 1024 realizations of permutation importance values was
reported here as the final output.

The result suggests at least temporal rate, pitch stability, and pitch declination are constantly
weighed among these three models (cf. Fig. S22). All classifiers achieved average accuracy
and F1 score higher than 90 (cf. Table S3). The importance of the other features depends on
the models. For example, logistic regression gave the highest importance to pitch interval
regularity as their 3rd most important feature. Naive Bayes chose rhythmic regularity as the
2nd most important feature, but this feature did not have a noticeable impact on SVM. On
the other hand, it is consistent with the confirmatory analysis that pitch interval size and
timbral brightness are evaluated as unimportant in discriminating between song and speech.

Interestingly, there are several cases that some features showing a strong difference within
subjects were not evaluated as important in this analysis, including pitch height and intensity
(cf. Fig. 5 and Fig. S22). Two reasons can be considered. One reason is relative largeness
within the individual is not as informative in classifying acoustic signals collected from
multiple individuals. In this case, between-subjects consistent differences would be more
informative. Another scenario is that there is an overlap in information among features.
Correlation matrices of the features within song and speech (cf. Fig. S23-S24) show several
features have medium to large size correlation (e.g., increase in pitch interval regularity with
a decrease in temporal rate in singing with r = -.53). Therefore, there is a possibility that
some features are evaluated as unimportant not because that feature is irrelevant to classify
song and speech but because the information in that feature overlaps with other features.
This comes from the limitation of permutation importance that this measurement does not
take into account correlation among features.

Inspection of the correlation matrices suggests complex interactions exist among features.
Although what is captured in correlation matrices is a linear dependency between two
variables, nonlinear dependency among features or dependency among more than two
variables can also happen in vocal sound production. However, correlation is considered
acting in the underestimation of permutation importance (Pereira et al., 2022). Therefore, at
least the two features that consistently scored high among the three between-participant
models and that confirmed our predicted within-participant differences - namely, temporal
rate and pitch stability - capture important factors differentiating song and speech across
cultures.



5. Discussion

5.1. Main confirmatory predictions and their robustness

Our analyses strongly support five out of our six predictions across an unprecedentedly
diverse global sample of music/speech recordings: 1) song uses higher pitch than speech, 2)
song is slower than speech, 3) song uses more stable pitches than speech, 4) song and
speech use similar timbral brightness, and 5) song and speech use similar sized pitch
intervals (Fig. 5). Furthermore, the first three features display a shift of distribution along the
musi-linguistic continuum, with instrumental melodies tending to use even higher and more
stable pitches than song, and lyric recitation tending to fall in between conversational speech
and song (Fig. 6).

While some of our findings were already expected from previous studies mainly focused on
English and other Indo-European languages (Chang et al., 2022; Ding et al., 2017; Hansen
et al., 2020; Merrill & Larrouy-Maestri, 2017; Sharma et al., 2021; see also S2.1 and Blasi et
al., 2022), our results provide the strongest evidence to date for the existence of “statistically
universal” relationships between music and speech across the globe. However, none of
these features can be considered an “absolute” universal that always applies to all
music/speech. Fig. 5 shows many exceptions for four of the five features: for example,
Parselelo (Kiswahili speaker) sang with a lower pitch than he spoke, and Ozaki (Japanese
speaker) used slightly more stable pitches when speaking than singing, while many
recording sets had examples where differences in sung vs. spoken timbre or interval size
were substantially larger than our designated “Smallest Effect Size Of Interest’. The most
consistent differences were found for temporal rate, as song was slower than speech for all
73 recording sets in our sample. However, additional exploratory recordings have revealed
examples where song can be faster than speech (e.g., Savage performing Eminem’s rap
from “Forgot About Dre” [https://osf.io/ba3ht]; Parselelo’s recording of traditional Moran
singing by Ole Manyas, a member of Parselelo’s ancestral Maasai community
[hitps://osf.io/mfsjz]).

Our sixth prediction - that song and speech use similar pitch contours - remained
inconclusive. Instead of our predicted similarities, our exploratory analyses suggest that,
while both song and speech contours tend to decline toward the end of a breath, they tend to
do so in different ways: song first rising before falling to end near the same height as the
beginning, speech first descending before briefly rising at the end (Fig. 8). Our prediction
was based in part on past studies by some of us finding similar pitch contours in human and
bird song, which we argued supported a motor constraint hypothesis (Tierney et al., 2011;
Savage et al., 2017). However, our current results suggest that motor constraints alone may
not be enough to explain similarities and differences between human speech, human song,
and animal song, and that future studies directly comparing all three domains will be needed.

Our robustness checks confirm that our primary confirmatory results were not artefacts of
our choice to record from a non-representative sample of coauthors. Specifically: 1)
language families do not account for variances in the measured song-speech differences
and similarities (Table 4), which means that these differences and similarities are
cross-linguistically regular phenomena, and 2) analyzing only recordings from coauthors who
made recordings prior to learning our hypotheses produced qualitatively identical
conclusions (Table 3). Analysis of Hilton et al.’'s (2022) dataset of field recordings also
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supplemented our findings, producing qualitatively identical conclusions, regardless of the
precise analysis methods or specific sample/sub-sample used (Fig. 7).

5.2. Implications from the exploratory analyses

Comparisons with lyrics recitation and instrumental recordings revealed the relationship
between music and language can noticeably change depending on the type of acoustic
signal. In general, many features followed the predicted “musi-linguistic continuum” with
instrumental music and spoken conversation most extreme (e.g., most/least stable pitches
respectively), with song and lyric recitation occupying intermediate positions (Fig. 6).
However, for temporal rate, songs were more extreme (slower) than instrumental music,
while for phrase length, lyric recitation was more extreme (shorter) than spoken
conversation. Increasing variations of acoustic signals and designing the continuum with
multiple dimensions (e.g., by adding further categories such as infant-directed song/speech,
or speech intended for stage acting; mapping music and language according to pitch,
rhythm, and propositional/emotional functionality) may elucidate a more nuanced spectrum
of musi-linguistic continuum (Brown, 2000; Leongdmez et al., 2022; Hilton et al., 2022).

5.3. Limitations on generality

A limitation of our study is that, because our paradigm was focused on isolating melodic and
lyrical components of song, the instrumental melodies we analyzed are not representative of
all instrumental music but only instrumental performance of melodies intended to be sung. It
is thus possible that instrumental music intended for other contexts may display different
trends (e.g., music to accompany dancing might be faster). Different instruments are also
subject to different production constraints, some of which may be shared with singing and
speech (e.g., aerophones like flutes also are limited by breathing capacity), and some of
which are not (e.g., chordophones like violins are limited by finger motor control). For
example, though most of our instrumental recordings followed the same rhythmic pattern of
the sung melody, Dessiatnitchenko’s instrumental performance on the Azerbaijani tar was
several times faster than her sung version because the tar requires the performer to
repeatedly strum the same note many times to produce the equivalent of a single long
sustained note when singing (listen to her instrumental recording at https://osf.io/uj3dn).

Another limitation of our instrumental results is that, while none of our collaborators reported
any difficulty or unnaturalness in recording a song and then recording a recited version of the
same lyrics, many found it unnatural to perform an instrumental version of the sung melody.
For example, while the Aynu of Japan do use pitched instruments such as the tonkori, they
are traditionally never used to mimic vocal melodies. In order to compare sung and
instrumental features, all of our collaborators agreed to at least record themselves tapping
the rhythm of their singing, but such recordings without comparable pitch information (n=28
recordings) had to be excluded from our exploratory analysis of pitch features, and even
their rhythmic features may not necessarily be representative of the kinds of rhythms that
might be found in purely instrumental music. Likewise, the conversational speech recorded
here is not necessarily representative of non-spoken forms of language (e.g., sign language,
written language).
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5.4. Comparison with alternative dataset (Hilton & Moser et al., 2022)

Interestingly, while the qualitative results using Hilton et al.’s dataset were identical, the
magnitude of their song-speech differences were noticeably smaller. For example, while
song was substantially higher-pitched than speech in both datasets, the differences were
approximately twice as large in our dataset as in Hilton et al.’s (~600 cents [half an octave]
on average vs. ~300 cents [quarter octave], respectively). These differences were consistent
even when analyzed using matching sub-samples speaking the same languages and using
the same fully automated analysis methods (Fig. 7), suggesting they are not due to
differences in the sample of languages or analysis methods we chose.

Instead, we speculate that these differences may be related to differences in recording
context and participant recruitment. While our recordings were made by each coauthor
recording themselves in a quiet, isolated environment, Hilton et al.’s recordings were field
recordings designed to capture differences between infant-directed and adult-directed
vocalizations, and thus contain various background sounds other than the vocalizer’s
speaking/singing (especially high-pitched vocalizations by their accompanying infants; cf.
Fig. S11).Such background noise may reduce the observed differences between speech and
song.

Another potential factor is musical experiences. Our coauthors were mostly recruited from
academic societies studying music, and many also have substantial experience as
performing musicians. Although the degree of musical experiences of Hilton et al.’s
participants is not clear, the musical training of our participants is likely more extensive than
a group of people randomly chosen from general populations. Such relatively greater
musical training may have influenced the production of higher and more stable pitches in
singing. In fact, we confirmed that there is no obvious difference in pitch stability of speech
between ours and Hilton et al.’s dataset (2022), but our singing recordings have higher
stability than theirs (Fig. S18). Similarly, even if pitch estimation errors due to background
noise erroneously inflated estimated f, of Hilton et al.’s recordings due to noise, our singing
showcased the use of more heightened pitch (Fig. S17).

Interestingly, we also observed that our spoken recordings have slightly lower pitch height
than Hilton et al.'s spoken recordings. Possible factors that may underlie this difference
include age (Berg et al., 2017), body size (Pisanski, 2014), and possibly avoiding using low
frequencies not to intimidate accompanied infants (Puts et al., 2006). Our instructions to “
describe the song you chose (why you chose it, what you like about it, what the song is
about, etc.)” are also different from Hilton et al.’s instructions to describe “a topic of their
choice (for example...their daily routine)”, and such task differences can also affect speaking
pitch (Barsties, 2013). On the other hand, this result is unlikely to be due to the exposure of
Western styles to participants, since the subset of Hilton's data including only English,
Mandarin, Polish, Spanish, and Kannada speakers show almost the same result as one with
their full data including participants from societies less influenced by Western cultures.

After our Stage 1 Registered Report protocol received In Principle Acceptance, Albouy et al.
(2023) also reanalysed Hilton et al.'s (2022) recordings using different but related methods
that also emphasize pitch stability and temporal rate (“spectro-temporal modulations”).
Albouy et al. transformed audio recordings to extract two-dimensional density features



(spectro-temporal modulations where one axis is temporal modulations [Hz] and the other is
spectral modulations [cyc/kHz]) to characterize song and speech acoustically. Their finding is
similar to our results that speech has higher density in the temporal modulation range of
5-10 Hz, which matches the syllable rate and amplitude modulation rate of speech
investigated cross-culturally (Ding et al., 2017; Pellegrino et al., 2011; Poeppel & Assaneo,
2020), on the low spectral modulation range (rate of change in amplitude due to vocal sound
production including the initiation of utterances and the transition from consonants to vowels,
which is an automated proxy of our measurement of temporal rate via manually annotated
acoustic unit (e.g., syllable/mora/note) durations), and song has higher density in the
spectral modulation range of 2-5 cyc/kHz on the low temporal modulation range (prominent
energy in upper harmonics without fast amplitude change, potentially related to pitch
stability). Their behavioral experiment further confirmed listeners rely on spectral and
temporal modulation information to judge whether the uttered vocalization is song or speech,
which suggests spectro-temporal modulation is an acoustic cue differentiating song and
speech. Although they have not reported other features such as pitch height, the
convergence of our study and their study identifying the same features implies that temporal
rate and pitch stability are robust features distinguishing song and speech across cultures.

5.5. Evolutionary and functional mechanisms

“Discrete pitches or regular rhythmic patterns” are often considered defining features of
music that distinguish it from speech (cf. Fitch, 2006; and Savage et al. 2015 block quote in
the introduction), and our analyses confirmed this using a diverse cross-cultural sample. At
the same time, we were surprised to find that the two features that differed most between
song and speech were not pitch stability and rhythmic regularity, but rather pitch height and
temporal rate (Fig. 5). Pitch stability was the feature differing most between instrumental
music and spoken description, but sung pitches were substantially less stable than
instrumental ones. Given that the voice is the oldest and most universal instrument, we
suggest that future theories of the evolution of musicality should focus more on explaining
the differences we have identified in temporal rate and pitch height. In this vein, experimental
approaches such as transmission chain may be effective in capturing causal mechanisms
underlying the manipulation of these parameters depending on communicative goals (e.g.,
Ma et al., 2019; Ozaki et al., 2023).

On the other hand, while pitch height showed larger differences between speech and song
than pitch stability when comparing within the same individual, our exploratory analysis
evaluating feature importance in song-speech classification showed that pitch stability was
more useful than pitch height comparing song and speech between individuals. This is
consistent with our intuition that song pitch can be artificially lowered in pitch and speech
artificially raised in pitch without changing our categorical perception of them as song or
speech. Future controlled perceptual experiments independently manipulating each feature
may provide more insight on how these acoustic features are processed in our brains.

While our results do not directly provide evidence for the evolutionary mechanisms
underlying differences between song and speech, we speculate that temporal rate may be a
key feature underlying many observed differences. In fact, the temporal rate is the only
feature showing almost no difference between singing and the instrumental (cf. Fig. S13).



While slower singing reduces the amount of linguistic information that can be conveyed in
the lyrics in a fixed amount of time, it gives singers more time to stabilize the pitch (which
often takes some time to reach a stable plateau when singing), and the slower and more
stable pitches may facilitate synchronization, harmonization, and ultimately bonding between
multiple individuals (Savage et al., 2021). However, to ensure comparability between song
and speech, we only asked participants to record themselves singing solo, even when songs
are usually sung in groups in their culture, so future direct comparison of potential acoustic
differences between solo and group vocalizations (cf. Lomax, 1968) may be needed to
investigate potential relationships between our acoustic features and group
synchronization/harmonization.

Furthermore, slow vocalization may also interact with high pitch vocalization since it needs
deeper breaths to support sustained pitches, which may lead to an increase in subglottal
pressure and accompanying higher pitch (Alipour & Scherer, 2007). The use of higher
pitches in singing may also contribute to more effective communication of pitch information.
Sensitivity to loudness for pure tones almost monotonically increases up to 1k Hz (Suzuki &
Takeshima, 2004), but generally, the frequency range of f;s of human voice is below 1k Hz,
so it is reasonable to heighten pitches to exploit higher loudness sensitivity, which may be
helpful for creating bonding through acoustic communication extensively utilizing pitch
control.

The exploratory analysis of additional features can also be interpreted from the same
viewpoint that extra potential differentiating features also function to enhance the saliency of
pitch information: use of longer acoustic phrase, greater sound pressure, and less noisy
sounds may ease the intelligibility of pitch information. On the contrary, similar timbral
brightness, pitch interval size, and pitch range between song and speech may be due to
motor and mechanistic constraints, like the difficulty of rapid transitioning to distanced pitch
caused by the limiting control capacity of tension in the vocal folds. Since utilization of pitch
can also be found in language (e.g., tonal languages; increasing the pitch of the final word in
an interrogative sentence in today’s English and Japanese), inclusively probing what we can
communicate with pitch in human acoustic communication may give insights into the
fundamental nature of songs.

5.6. Inclusivity and global collaboration

Our use of a new “participants-as-coauthors” paradigm allowed us to discover new findings
that would not have been possible otherwise. For example, collaboration with native/heritage
speakers who recorded and annotated their own speaking/singing relying on their own
Indigenous/local knowledge of their language and culture allowed us to achieve annotations
faithful to their perception of vocal/instrumental sound production that we could not have
achieved using automated algorithms, particularly given that there were no apparent
consistent criteria about what exactly constitutes acoustic units among our participants. This
resulted in our identifying surprisingly large differences for features such as temporal rate
when analysed using their manual segmentations that we would have underestimated if we
relied on automated segmentation (cf. combined effect size of translated Cohen’s d>1.5 in
Fig. 5 vs. d<0.4 in Fig. S15). This highlights that equitable collaboration is not merely an
issue of social justice but also of scientific quality (Nature Editors, 2022; Urassa et al., 2021).



On the other hand, this paradigm also created challenges and limitations. For example, 6 of
our original 81 collaborators were unable to complete their recordings/annotations, and
these were disproportionately from Indigenous and under-represented languages from our
originally planned sample. Such under-represented community members tend to be
disproportionately burdened with requests for representation, and some also faced additional
barriers including difficulty communicating via translation, loss of internet access, and urgent
crises in their communities (e.g., Nicas, 2023). Of our coauthors representing Indigenous
and under-represented languages who did complete their recordings and annotations,
several were not native speakers, and so their acoustic features may not necessarily reflect
the way they would have been spoken by native speakers. Indeed, several of our coauthors
have been involved in reviving their languages and musical cultures despite past and/or
continuing threats of extinction (e.g., Ngarigu, Aynu, Hebrew; Troy & Barwick, 2020; Savage
et al., 2015). By including their contributions as singers, speakers, and coauthors, we also
hope to contribute to their linguistic and musical revival efforts.

Our requirement that all participant data come from coauthors, and vice versa, led to more
severe sampling biases than traditional studies, as reflected in our discussion of our data
showing higher, more stable-pitched singing than found in Hilton et al.’s data. Many of these
limitations have been addressed through our robustness analyses and converging results
from our own and Albouy et al’s (2023) reanalyses of Hilton et al.’s independent
speech/song dataset described above. However, while our exploratory analyses revealed
strong sex differences in pitch height that may reflect sexual selection, most demographic
factors that may affect individual differences or cultural differences in music-speech
relationships (e.g., musical training, age, bilingualism) will require more comprehensive
study with larger samples in the future. Because a key limitation of our
participants-as-coauthors paradigm is sample size (as manual annotations are
time-consuming and coauthor recruitment is more time-intensive than participant
recruitment), this model may not be feasible for future larger-scale analyses. Instead, other
paradigms such as targeted recruitment of individuals speaking selected languages, or
mixed approaches combining manual and automated analyses may be needed.

6. Conclusion

Overall, our Registered Report comparing music and speech from our coauthors speaking
diverse languages shows strong evidence for cross-cultural regularities in music and
language amidst substantial global diversity. The features that we identified as differentiating
music and speech along a “musilinguistic continuum” - particularly pitch height, temporal
rate, and pitch stability - may represent promising candidates for future analyses of the
(co)evolution of biological capacities for music and language (Fitch, 2006; Patel, 2008;
Savage et al., 2021). Meanwhile, the features we identified as shared between speech and
song - particularly timbral brightness and pitch interval size - represent promising candidates
for understanding domain-general constraints on vocalization that may shape the cultural
evolution of music and language (Tierney et al., 2011; Trehub, 2015; Ozaki et al., 2023;
Singh & Mehr, 2023). Together, these cross-cultural similarities and differences may help
shed light on the cultural and biological evolution of two systems that make us human: music
and language.
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Stage 1 Supplementary Materials

S1. Supplementary Methods

$1.1. Recording and segmentation protocol

In order to keep the quality and consistency of the recordings, we created a detailed
recording protocol for coauthors to follow when recording (Appendix 1). The protocol gives
detailed instructions for things like how to interpret the instructions to choose a “traditional
song in their 1st or heritage language” for cases where they are multilingual; logistics such
as recording duration (minimum 30s, maximum 5 minutes for the song and the spoken
description), file format, and how to deliver recordings to a secure email account monitored
by a Research Assistant who is not a coauthor on the manuscript. All recordings are made
by the coauthor themselves singing/ speaking/ playing instruments.

In addition to the recordings, we also collect the texts of recordings which are segmented
into acoustic units (e.g., notes, syllables) according to their perceptual center (P-center)
(Danielsen et al., 2019; Howell, 1988; Morton et al., 1976; Pompino-Marschall, 1989; Scott,
1998; Vos & Rasch, 1981). Here, the P-center is defined as the moment sound is perceived
to begin, and the P-center is considered to be able to capture the perceptual experience of
rhythm (Scott, 1998; Villing, 2010). The segmentation by the P-center is expected to reflect
the vocalizer’s perception of the beginning of acoustic units. Here, we use acoustic units as
a general term that a listener perceives as a unit of sound sequences such as syllables and
notes. However, some languages have their own linguistic unit (e.g. mora in Japanese) and
music as well (Fushi &i in Japanese traditional folk songs). It is challenging to identify the
beginnings of acoustic units for different domains (e.g., language and music), musical
traditions, and languages comprising different phonemic and suprasegmental properties. For
example, the location of the P-center in speech is known to be dependent on various factors
such as the duration of phonemic elements (e.g. vowel, consonant) and the type of the
syllable-initial consonant (Barbosa et al., 2005; Chow et al., 2015; Cooper et al., 1986;
Villing, 2010). Therefore, rather than building an objective definition of sound onset, we ask
each participant to reflect on their interpretation of acoustic units of their song and speech
focusing on the P-center. Segmented texts are used to create onset and breath annotations
with SonicVisualizer software (Cannam et al., 2010; https://www.sonicvisualiser.org/) which
will be the base of some features. SonicVisualizer was chosen because it provides a simple
interface to add a click sound to the desired time location of the audio to reflect the P-center.
Those annotations will be created by the first author (Ozaki) because the time required to
train and ask each collaborator to create these annotations would not allow us to recruit
enough collaborators for a well-powered analysis.

In order to maximize efficiency and quality in our manual annotations, we adopt the following
3-step process:
1) Each coauthor sends a text file segmenting their recorded song/speech into acoustic
units and breathing breaks (see Appendix 1 for examples).



2) The first author (Ozaki) creates detailed millisecond-level annotations of the audio
recording files based on these segmented texts. (This is the most time-consuming
part of the process).

3) Each coauthor then checks Ozaki’'s annotations (by listening to the recording with
“clicks” added to each acoustic unit) and corrects them and/or has Ozaki correct
them as needed until the coauthor is satisfied with the accuracy of the annotation.

$1.2. Language sample

S.1.2.1. Inclusion criteria

All audio recordings analyzed are made by our group of 81 coauthors recording ourselves
singing/speaking in our 1st/heritage languages, which span 23 language families (Fig. S1).
Coauthors were chosen by opportunistic sampling beginning from co-corresponding author
Savage’s network of researchers, a public call to the email list of the International Council for
Traditional Music (July 15 2022 to ictm-I@ictmusic.org; cf. Appendix 3), and recruitment at
various conferences/symposia (International Council for Traditional Music, July 2022,

Portugal; Joint Conference on Language Evolution, Sep 2022, Japan; |nterdisciplinary
Debates on the Empirical Aesthetics of Music series, Dec 2021, online; Social Bridges, Jan

2022, online; European Society for Cognitive Psychology, Feb 2022; Al Music Creativity,
Sep 2022, online), with additional snowball recruitment from some collaborators using their
own networks. Most authors are multilingual speakers who can speak English, though a few
are multilingual in other languages (e.g., Portuguese, Japanese) with translations to and
from English done by other coauthors as needed.

The set of linguistic varieties in this study represents a considerable portion of the world
cross-linguistic variability in the main aspects that could conceivably play a role in shaping
speech-song  similarities/variabilities across languages (Dryer et al.,, 2013;
https://wals.info/languoid):

e Head-complement order: languages with basic head-complement order (e.g.
English), languages with basic complement-head order (e.g. Bengali)
Vowel inventory size: moderate (e.g. Japanese), large (e.g. German)
Consonant inventory size: small (e.g. Ainu), moderately small (e.g. Guarani),
average (e.g. Greek), moderately large (e.g. Swahili), large (e.g. Ronga)

e Consonant/vowel ratio: low (e.g. French), moderately low (e.g. Korean), average
(e.g. Spanish), moderately high (e.g. Lithuanian), high (e.g. Russian)

e Potential syllable structures: simple (e.g. Yoruba), moderately complex (e.g. Catalan),
complex (e.g. Kannada)

e Word-prosodic systems: stress-accent systems (e.g. Italian), pitch-accent systems
(e.g. Swedish), tonal systems (e.g. Cantonese)

e Stress location: initial (e.g. Irish), postinitial (e.g. Basque), ante-penultimate (e.g.
Georgian), penultimate (e.g. Polish), final (e.g. Balinese)
Rhythm type: iambic (e.g. Mapudungun), trochaic (e.g. Hebrew)
Complexity of tone systems: simple (e.g. Cherokee), complex (e.g. Thai)
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Figure S1. Map of the linguistic varieties spoken by our 81 coauthors as 1st/heritage
languages. Each circle represents a coauthor singing and speaking in their 1st (L1) or heritage
language. The geographic coordinates represent their hometown where they learned that language.
In cases when the language name preferred by that coauthor (ethnonym) differs from the L1 language
name in the standardized classification in the Glottolog (Hammarstrom et al., 2022), the ethnonym is
listed first followed by the Glottolog name in round brackets. Language family classifications (in bold)
are based on Glottolog. Square brackets indicate geographic locations for languages represented by
more than one coauthor. Atlantic-Congo, Indo-European and Sino-Tibetan languages are further
grouped by genus defined by the World Atlas of Language Structures (Dryer et al., 2013;
https://wals.info/languoid).

S.1.2.2. Exclusion criteria and data quality checks

If coauthors choose to withdraw their collaboration agreement at any point prior to formal
acceptance after peer review, their recording set will be excluded (cf. Appendix 2). If their
recording quality is too poor to reliably extract features, or if they fail to meet the formatting
requirements in the protocol we will ask them to resubmit a corrected recording set. In order
to keep ourselves as blind as possible to the data prior to In Principle Acceptance and
analysis, we ask coauthors to send only their segmented texts, not their audio recordings, to
coauthors Ozaki & Savage to conduct formatting checks (e.g., ensuring that coauthors had
understood the instructions to make all recordings in the same language and to segment
their sung/spoken texts into acoustic units), so that we will not need to access the audio
recordings until after In Principle Acceptance.



After we had already begun this process, we decided to add an additional layer of formatting
and data quality checks by hiring a Research Assistant (RA) who is not a coauthor to create
and securely monitor an external email account where authors could send their audio
recordings. This allows us to prevent data loss (e.g., collaborators losing computers or
accidentally deleting files), as well as allowing us to have the RA confirm that recording
quality was acceptable, recordings met minimum length requirements, etc. The RA will not
share the account password needed to access these recordings with us until we have
received In Principle Acceptance.

S$1.3. Features

We will compare the following six features between song and speech for our main
confirmatory analyses:
1) Pitch height (fundamental frequency (f,)) [Hz],
2) Temporal rate (inter-onset interval (IOl) rate) [HZ],
) Pitch stability (-|f;|) [cent/sec.],
) Timbral brightness (spectral centroid) [HZ],
) Pitch interval size (f, ratio) [cent],
- Absolute value of pitch ratio converted to the cent scale.
6) Pitch declination (sign of f, slope) [dimensionless]
- Sign of the coefficient of robust linear regression fitted to the phrase-wise f,
contour.
For each feature, we will compare its distribution in the song recording with its distribution in
the spoken description by the same singer/speaker, converting their overall combined
distributions into a single scalar measure of nonparametric standardized difference (cf. Fig.
2).

a b~ W

We selected these features by reviewing what past studies focused on for the analysis of
song-speech comparison and prominently observed features in music (e.g. Fitch, 2006;
Hansen et al., 2020; Hilton et al., 2022; Savage et al., 2015; Sharma et al., 2021, see the
Supplementary Discussion section S2 for a more comprehensive literature review). Here, f;,
rate of change of f,, and spectral centroid are extracted purely from acoustic signals, while
IOl rate is based purely on manual annotations. Pitch interval size and pitch declination
analyses combine a mixture of automated and manual methods (i.e. extracted f, data
combined with onset/breath annotations). The details of each feature can be found in the
supplementary materials. Note that some theoretically relevant features we explored in our
pilot analyses (especially the “regular rhythmic patterns” from Lomax & Grauer’s definition of
song quoted in the introduction) proved difficult to quantify using existing metrics and thus
are not included in our six candidate features (cf. Fig. S9 for pilot data and discussion for
potential proxies that we found unsatisfactory such as “IOl ratio deviation” and “pulse
clarity”).



S$1.4. Pilot data analysis

We collected recordings from five coauthors for pilot data analysis? Each speaks a different
1st language: English, Japanese, Farsi, Marathi, and Yoruba. Figure S2 uses the analysis
framework shown in Fig. 2 to calculate relative effect sizes for all five recording sets for all
six hypothesized features. Note that our inferential statistical analysis uses the relative
effects, but we translate these to Cohen’s d in Fig. S2 for ease of interpretability, but
technically our analysis is not the same as directly measuring Cohen’s d of the data.

The primary purpose of the pilot analysis is to demonstrate feasibility and proof of concept,
but we also used it to help decide on our final set of six features to focus on for our
confirmatory analyses (Fig. S2). A full pilot analysis including additional features that we
decided not to test is shown in Fig. S9. However, while some of our hypotheses appear to be
strongly supported by our pilot data (e.g., song consistently appears much higher and much
slower than speech, and timbral brightness appears consistently similar), others seem more
ambiguous (e.g., pitch stability and pitch interval size show similar, weak trends although we
predict pitch stability to differ but pitch interval size not to differ). In these cases, we
prioritized our theoretical predictions over the pilot data trends, as effect sizes estimated
from pilot data are not considered reliable (Brysbaert, 2019), while ample theory predicts that
song should use more stable pitches than speech (e.g., Fitch, 2006) but sung and spoken
pitch interval size should be similar (e.g., Tierney et al., 2010). However, we will be less
surprised if our predictions for pitch stability and pitch interval size are falsified than if our
predictions for pitch height and temporal rate are. Summary statistics visualizing the data
underlying Fig. S2 in a finer-grained way are shown in Figure S3.

2 Coauthors who contributed pilot data also recorded separate recording sets to be used in
the main confirmatory analysis to ensure our main analyses are not biased by reusing pilot
data.
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Figure S2. Pilot data showing similarities/differences between song and speech for each of the
six hypothesized features across speakers of five languages (coauthors McBride, Hadavi,
Ozaki, D. Sadaphal, and Nweke) Red diamonds indicate the population mean and black bars
are confidence intervals estimated by the meta-analysis method. Although we use false
discovery rate to adjust the alpha-level, these intervals are constructed based on Bonferroni
corrected alpha (i.e. 0.05/6). Whether the confidence interval is one-sided or two-sided is
determined by the type of the hypothesis. Positive effect sizes indicates song having a higher
value than speech, with the exception of “temporal rate”, whose sign is reversed for ease of
visualization (i.e., the data suggest that speech is faster than song. The effect size is originally
measured by relative effect, and that result is transformed into Cohen’s d for interpretability. The red
shaded area surrounded by vertical lines at £0.4 indicate the “smallest effect size of interest” (SESOI)
suggested by Brysbaert (2019). See Fig. 2 for a schematic of how each effect size is calculated from
each pair of sung/spoken recordings.
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Figure S3. Alternative visualization of Figure S2 showing mean values of each feature of song
and speech, rather than paired differences. “Speech” indicates spoken description (not lyric
recitation). This figure allows us to visualize some trends not viewable from Figure S2, such as
absolute values of each feature. For example, male voices all tend to be lower-pitched than female,
but regardless of sex all singers use higher pitch for singing than speaking. (See Fig. S8 for an
alternate version including exploratory analyses comparing instrumental and recited versions.)

In addition to the above main pilot analysis, we conducted two additional pilot analyses to
validate our choice of duration of recording and annotation procedure. First, we investigated
how estimated effect sizes vary with length of recording excerpt analyzed (Fig. S4). We
concluded that 20 seconds approximately optimizes the tradeoff between accuracy of effect
size estimation and the substantial time required to manually annotate onsets (roughly 10-40
minutes per 10 seconds of recording, with spoken description often taking several times
longer to annotate than sung, instrumental, or recited versions).

Second, we had each of the five coauthors who annotated pilot data for their own language
re-annotate a 10-second excerpt of their own recording (to determine intra-rater reliability)
and then also annotate a 10-second excerpt of recordings in all other languages (to
determine inter-rater reliability). They first did this once without any segmented text provided,
and then corrected this after being provided with segmented texts. We then compared all
these recordings against automated algorithms widely used in speech analysis (de Jong &
Wempe, 2009; Mertens, 2022) to determine reliability of automated methods (Fig. S6).

The results of human-human comparisons were somewhat ambiguous, but overall
suggested that (1) between-annotator differences in onset and break annotation are
negligible even for different languages (provided they are provided with segmented texts),



(2) within-annotators randomness of annotation is also negligible as well, and (3) effect sizes
based on the annotation provided by automated methods can be significantly different from
human annotations. Note that Fig. S6 only compares temporal rate and pitch interval size,
since most other features did not require manual annotations, while pitch declination was not
analyzed because the 10-second excerpts were too short to have enough phrases to
evaluate. Although our validation suggests the value of manual annotation, it would be
desirable to increase its efficiency in future via options such as semi-automated methods or

crowd-sourcing (though there will likely be tradeoffs between data quality and quantity; cf.
Cychosz et al., 2021).
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Figure S4. Relationship between the duration of recording excerpt analyzed and estimated
effect size for the 6 features and 5 sets of pilot recordings analyzed in Fig.S2. Since the length
of the pilot recordings ranged from under 30s to over 70s, plots are truncated at the point when there
is no longer enough matching sung and spoken audio recording for that language (e.g., 25s for
Marathi and Yoruba, 70s for English). The red vertical dashed line at 20s indicates the length we
concluded approximately optimizes the tradeoff between accuracy of effect size estimation and the
substantial time required to manually annotate onsets.

$1.5. Power analysis

We performed a power analysis to plan the number of recording sets (corresponding to the
number of studies in meta-analysis) necessary to infer the statistical significance of the
specified analyses. Because our pilot data consisting of only 5 recording sets is too small to
empirically derive reliable effect size estimates, our power analyses used an SESOI
corresponding to d = .4 (see Anvari & Lakens, 2021; Brysbaert, 2019 for the use of SESOI
for sample size planning). However, there is one nuisance parameter in the model (i.e.
between-study variance) necessary to specify for the power analysis, and we set this value
with the estimate from the pilot data as a workaround.



Although we are planning to use the Benjamini-Hochberg step-up procedure (Benjamini &
Hochberg, 1995) in our hypothesis testing, since the actual critical value depends on the
p-value we will observe, it is challenging to specify sample size based on the false discovery
rate especially when using nonparametric statistics, though some methods are available for
parametric models (Jung, 2005; Pounds & Cheng, 2005). Therefore, we use the family-wise
error rate for setting the alpha level for sample size planning as a proxy. Although it is known
that when all null hypotheses are true, the false discovery rate becomes equal to the
family-wise error rate (Benjamini & Hochberg, 1995), and the required sample size does not
differ significantly between false discovery rate methods and stepwise family-wise error
control methods in certain cases (Horn & Dunnett, 2004), our case may not necessarily
match these conditions. Therefore our sample size estimate will be equal to or more than the
size required for specified power assuming the alpha level determined by Bonferroni
correction to set a stricter critical value.

We define the alpha level as 0.05 divided by six which is a family-wise error control by
Bonferroni correction, and the statistical power as 0.95 for our sample size planning. Our
statistical model is Gaussian random-effect models as explained in 1.2 Analysis plan.

Our power analysis estimated that n=60 recording sets is estimated as the minimum
required sample size to achieve the above type | and type Il error control levels when testing
our six null hypotheses (see Supplementary Materials S3.2 for details). The features other
than the sign of f, slope (i.e. f,, IOl rate, rate of change of f,, f, ratio, and spectral centroid)
were estimated to have a relatively low between-study (recording set) variance, so the
required number of recording sets computed for each feature is estimated to be lower than
10. However, as shown in Fig. S2, the sign of f, slope has a large between-study variance,
and that resulted in 60 recording pairs being needed.

Please note that our power analysis does not take into account the specific languages used.
While it would be ideal to have models that capture how languages (and other factors such
as sex, age, etc.) influence the song-speech difference, we do not have enough empirical
data or prior studies to build such models at this moment. Hence we simply treat each
recording data without such factors, controlling for language family relationships separately
in our robustness analyses. Future studies may be able to better incorporate such factors in
a power analysis based on the data our study will provide.

$1.6. Robustness analyses

$1.6.1. Exclusion of data generated after knowing the hypotheses

One distinctive aspect of this study is that the authors ourselves generate the data for the
analysis. Traditionally, personnel who provide data are blinded from the hypotheses to avoid
biases where researchers (consciously or unconsciously) collect data to match their
predictions. Here, we attempt to control for bias by withholding from analysis of audio data
until we confirm the in-principle acceptance of this manuscript. We collect most recordings in
a way that coauthors do not have access to each others’ audio recordings until In Principle
Acceptance (IPA) of this Registered Report, so that hypothesis formation and analysis
methodology are specified a priori before accessing and analyzing the audio recordings.
Still, some data are generated from the core team who planned and conducted the pilot
analyses and thus already knew most hypotheses before we decided this issue needed to



be controlled for. Data from these authors may possibly include some biases due to knowing
the details of the study (e.g., we may have consciously or unconsciously sung higher or
spoke lower than we normally would to match our prediction that song would use higher
pitch than speech). Therefore, we will test the robustness of our confirmatory analysis results
by re-running the same analyses after excluding recordings provided by coauthors who
already knew the hypotheses when generating data. Our confirmatory analyses test the
direction of effect sizes, so applying the same tests allows us to check if that holds with
varying conditions. In case the results of this analysis and the original confirmatory analysis
do not match, we will interpret our results as not robust (whether due to potential
confirmation bias or to other sampling differences) and will thus not draw strong conclusions
regarding our confirmatory hypotheses.

$1.6.2. Potential dependency caused by language family lineage

Another potential bias in our design is the unbalanced sample of languages due to our
opportunistic sampling design. Related languages are more likely to share linguistic features
due to common descent, and sometimes these features can co-evolve following
lineage-specific processes so that the dependencies between the features are observable
only in some families but absent in others (Dunn et al., 2011)3. Thus, it is possible that our
sample of speakers/singers may not represent independent data points. While our study
includes a much more diverse global sample of languages/songs than most previous
studies, like them our sample is still biased towards Indo-European and other larger
languages families, which might bias our analyses. To determine whether the choice of
language varieties affects our confirmatory analyses, we will re-run the same confirmatory
analyses using multi-level meta-analysis models (linear mixed-effects models; Sera et al.,
2019) with each recording set nested in the language family. We will perform model
comparison using the Akaike Information Criterion (AIC; Bozdogan, 1987) for the original
random-effects model and the multi-level model. The model having the lower AIC explains
the data better in terms of the maximum likelihood estimation and the number of parameters
(Watanabe, 2018), although critical assessment of information criteria and model selection
methods in light of domain knowledge is also important (Dell et al., 2000). If the choice of
model technique qualitatively changes the results of our confirmatory hypothesis testing, we
will conclude that our results depend on the assumption of the language dependency..

S1.7. Exploratory analysis to inform future research

We are interested in a number of different questions that we cannot include in our main
confirmatory analyses due to issues such as statistical power and presence of background
noise. However, we plan to explore questions such as the following through post-hoc
exploratory analyses, which could then be used to inform confirmatory analyses in future
research:

3 There is also some potential that musical and linguistic features may be related, although
past analyses of such relationships between musical features and linguistic lineages have

found relatively weak correlations (Brown et al., 2014; Matsumae et al., 2021; Passmore et
al., Under review).



S$1.7.1. More acoustic features:

We will also explore other features in addition to the specified five features to investigate
what aspects of song and speech are similar and different. Supplementary Figure S9 shows
the analysis using additional features.

S$1.7.2. Relative differences between features:

Our confirmatory analysis will formally test whether a given feature is different or similar
between song and speech, but will not directly test whether some features are more or less
good than others at distinguishing between song and speech across cultures. To explore this
question, we will rank the magnitude of effect sizes to investigate the most differentiating
features and most similar features among the pairs of song and speech.

$1.7.3. Music-language continuum:

To investigate how music-language relationships vary beyond just song and spoken
description, we will conduct similar analyses to our main analyses but adding in the other
recording types shown in Fig. 1 made using instrumental music and recited song lyrics.

$1.7.4. Demographic factors:

Most collaborators also volunteered optional demographic information (age and gender),
which may affect song/speech acoustics. Indeed, Fig. S3 suggests that pitch height
differences between males and females are even larger than differences between song and
speech. We will explore such effects for all relevant features.

$1.7.5. Linguistic factors:

We will also investigate whether typological linguistic features affect song-speech
relationships (e.g., tonal vs. non-tonal languages; word orders such as Subject-Verb-Object
vs. Subject-Object-Verb languages; “syllable-timed” vs. “stress-timed” languages and related
measurements of rhythmic variability (nPVI; cf. Patel & Daniele, 2003), etc.

S$1.7.6. Other factors:

In future studies, we also aim to investigate additional factors that may shape global diversity
in music/language beyond those we can currently analyze. Such factors include things such
as:

-functional context (e.g., different musical genres, different speaking contexts)
-musical/linguistic experience (e.g., musical training, mono/multilingualism)

-neurobiological differences (e.g., comparing participants with/without aphasia or amusia)

$1.7.7. Reliability of annotation process:

Each of Ozaki’s annotations will be based on segmented text provided by the coauthor who
recorded it, and Ozaki’s annotations will be checked and corrected by the same coauthor,
which should ensure high reliability and validity of the annotations. However, in order to
objectively assess reliability, we will repeat the inter-rater reliability analyses shown in Fig.
S6 on a subset of the full dataset annotated independently by Savage without access to
Ozaki’s annotations. Like Fig. S6, these analyses will focus on comparing 10s excerpts of
song and spoken descriptions, randomly selected from 10% of all recording sets (i.e., 8 out
of the 81 coauthors, assuming no coauthors withdraw). Ozaki’s annotations corrected by the



original recorder will be used as the “Reference” datapoint as in Fig. S6, and Savage’s
annotations (also corrected by the original recorder) will correspond to the “Another
annotator” datapoints in Fig. S6. Note however that we predict that Savage’s corrected
annotations will be more analogous to the “Reannotation” data points in Fig. S6, since in a
sense our method of involving the original annotator in checking/correcting annotations is
analogous to them reannotating themselves in the pilot study.

$1.7.8. Exploring recording representativeness and automated scalability:

Because our opportunistic sample of coauthors and their subjectively selected “traditional”
songs are not necessarily representative of other speakers of their languages, we will
replicate our analyses with Hilton, Moser et al.’s (2022) existing dataset, focusing on the
subset of languages that can be directly compared. This subset of languages will consist of 5
languages (English, Spanish, Mandarin, Kannada, Polish) represented by matched
adult-directed song and speech recordings by ~240 participants (cf. Hilton et al. Table 1).

Because our main analysis method requires time-intensive manual or semi-manual
annotation involving the recorded individual that will not be feasible to apply to Hilton et al.’s
dataset, we will instead rely for our reanalysis of Hilton et al.’s data on purely automated
features. We will then re-analyze our own data using these same purely automated features.
This will allow us to explore both the scalability of our own time-intensive method using
automated methods, and directly compare the results from our own dataset and Hilton et
al.’s using identical methods.

Fig. S10 demonstrate this comparison using pilot data for one feature (pitch height) based
on a subset of Hilton et al.’s data that we previously manually annotated (Ozaki et al., 2022),
allowing us to simultaneously compare differences in our sample vs. Hilton et al.’s sample
and automated vs. semi-automated methods. Even though this analysis focuses on a feature
expected to be one of the least susceptible to recording noise (pitch height), our pilot
analyses found that these were mildly sensitive to background noise, such that purely
automated analyses resulted in systematic underestimates of the true effect size as
measured by higher-quality semi-automated methods (Fig. S10). While our recording
protocol (Appendix 2) ensures minimal background noise, Hilton et al.’s field recordings were
made to study infant-directed vocalizations and often contain background noises of crying
babies as well as other sounds (e.g., automobile/animal sounds; cf. Fig. S11), which may
mask potential differences and make them not necessarily directly comparable with our
results. This supports the need to compare our results with Hilton et al.’s using both
fully-automated and semi-automated extracted features to isolate differences that may be
due to sample representativeness and differences that may be due to the use of automated
vs. semi-automated methods.

S2. Supplementary discussion of hypotheses and potential mechanisms

This section outlines the literature review on the comparative analyses of music and
language, with special emphasis on relevant hypotheses regarding their evolutionary origins.
This section introduces possible mechanisms underlying differences and similarities
between song and speech. We have include this text here for completeness but placed it in
the Suplementary Material rather than in the “Study aims and hypotheses” section of the
main text because, while relevant to our hypotheses, most are not directly testable in our
proposed design.



S$2.1. Hypotheses for speech-song differences

We predict that the most distinguishing features will be those repeatedly reported in past
studies, namely pitch height and temporal rate of sound production (Chang et al., 2022; Ding
et al., 2017; Hansen et al., 2020; Merrill & Larrouy-Maestri, 2017; Sharma et al., 2021). Why
have these features emerged specific to singing? From the viewpoint of the social bonding
hypothesis, slower production rate may help multiple singers synchronize, facilitating
“formation, strengthening, and maintenance of affiliative connections” (Savage et al., 2021).
The social bonding hypothesis does not directly account for the use of high pitched voice;
instead we speculate that this is related to the loudness perception of human auditory
systems. It is known that the loudness sensitivity of human ears increases almost
monotonically until 5k Hz. Furthermore, the magnitude of neural response to the frequency
change by means of mismatch negativity also increases as the frequency range goes high in
the range of 250 - 4000 Hz (Novitski et al., 2004). Therefore, heightening f; can be
considered as conveying pitch information at a higher sensitive channel as possible. Also, in
song and speech, melody is predominantly perceived via f;, while timbre is predominantly
perceived via the upper harmonics (Patel, 2008). Thus the tendency for music to emphasize
melodic information and language to emphasize timbral information (Patel, 2008) may also
explain a preference for higher sung pitch to optimize the frequency of the key melodic
information. However, in addition to perceptual factors, higher pitch in singing may also be a
consequence of the production mechanism required for sustaining the pitched voice,
especially when keeping sub-glottal pressure at a high level to sustain phonation, which may
facilitate raising pitch (Alipour & Scherer, 2007).

Interestingly, higher pitch and longer duration are identified as features contributing to
saliency and perceived emotional intensity of sounds (but also other factors such as greater
amplitude and higher spectral centroid, see Anikin (2020) for a more comprehensive list).
This suggests our features predicted to show differences may originate in non-verbal
emotional expression. In addition, the pattern of higher pitch height and slower sound
production rate is also cross-culturally characteristic of infant-directed speech compared to
adult-directed speech (Cox et al., 2022; Hilton et al., 2022). Along with other features in
infant-directed speech, this difference is argued to play an important role in linguistic and
social development (Cox et al., 2022).

Pitch discreteness is often considered a key feature of music (Brown and Jordiana, 2013;
Fitch, 2006; Haiduk & Fitch, 2022; Savage et al., 2015; Ozaki et al., 2022; Vanden Bosch der
Nederlanden et al., 2022). However, to our knowledge, there is no well-established way to
analyze this property directly from acoustic signals. In this study, we measure pitch stability
as a proxy of pitch discreteness. Our pitch stability measures how fast f, modulates,
although we admit this may not fully account for the characteristics of pitch discreteness. For
example, recent studies indicated pitch discreteness might relate to the ease of
memorization (Haiduk et al., 2020; Verhoef & Ravignani, 2021), but our measurement does
not directly take into account such effects. Based on the pilot analysis (Fig. S2), we
confirmed that pitch stability can demonstrate the expected trend (i.e. more stable pitch in
singing). The effect size can be medium (size corresponding to Cohen’s d of 0.5) at best, but
considering the limited capacity of human pitch control in singing (e.g. imprecise singing;
Pfordresher et al. (2010)), it is plausible that pitch stability may not matter for the distinction
between song and speech as much as pitch height and temporal rate. Still, we predict this



feature is worth testing for cross-cultural differences between song and speech, particularly
given its prominence in previous debate (including Lomax an Grauer’s definition of song
cited in the introduction). In fact, several empirical studies documented that song usually
produces more controlled f, than speech (Natke et al., 2003; Raposo de Medeiros et al.,
2021; Stegemoller et al., 2008; Thompson, 2014).

In relation to the differentiation between song and speech, Ma et al. (2019) provided an
intriguing simulation result of how a single vocal communication can diverge into a music-like
signal and speech-like signal through transmission chain experiments. Their experiment was
designed to test the musical protolanguage hypothesis (Brown, 2000) and found that
music-like vocalization emerges when emotional functionality is weighted in the transmission
and speech-like vocalization emerges when referential functionality is necessitated. This
result may imply a scenario that singing behaviour emerged as one particular form of
emotional vocal signals conveying internal states of the vocalizer, though its evolutionary
theory has not particularly targeted music (Bryant, 2021). In fact, a melodic character of
music is often considered to function in communicating mental states (Leongémez et al.,
2022; Mehr et al.,, 2021) and infant-directed singing acts as the indication of emotional
engagement (Trehub et al., 1997). Since our recordings are solo vocalizations however, our
recordings may not display key features facilitating synchronization of multiple people such
as regular and simple rhythmic patterns. Although this is out of scope of our study, it is
intriguing to investigate whether this speculation also holds in the case of solo music
traditions (Nikolsky et al., 2020; Patel & von Rueden, 2021).

S$2.2. Hypotheses for speech-song similarities

We predict pitch interval size, timbre brightness and pitch declination will not show marked
differences between song and speech. Amongst these three features, we introduce a novel
way for assessing pitch interval size. Although there is a line of research studying musical
intervals based on the limited notion of the interval defined with the Western twelve-tone
equal-tempered scale (Ross et al., 2007; Schwartz et al., 2003; Stegemoller et al., 2008; but
cf. Han et al., 2011; Robledo et al., 2016), our study treats interval more generally as a ratio
of frequencies to characterize the interval of song and speech in a unified way.

Stone et al. (1999) reported that country singers use similar formant frequencies in both
song and speech which is consistent with our pilot analysis (Figure S2), and they argued that
the use of higher formant frequencies (e.g. singer’s formant, see also Lindblom & Sundberg
(2007)) in Western classical music tradition stemmed from the necessity of the singer’s voice
to be heard over a loud orchestral accompaniment. Similarly, Stegemoéller et al. (2008)
confirmed that speech and song have a similar spectral structure. Although we can find
studies showing higher brightness in singing performed by professional singers (Barnes et
al., 2004; Merrill & Larrouy-Maestri, 2017; Sharma et al., 2021; Sundberg, 2001), our dataset
does not necessarily consist of recordings by professional musicians and as in the case of
Stone et al. (1999) the prominent use of the high formant frequencies in singing may depend
on musical style (but see Nikolsky et al., 2020) for the role of timbre played in personal
music tradition). However, we would like to note that other aspects of timbre such as
noisiness (spectral flatness) can potentially indicate the difference between song and speech
(Durojaye et al., 2021).



Cross-species comparative studies identified that the shape of pitch contour is regulated by
the voice production mechanism (Tierney et al.,, 2011; Savage et al., 2017). Since both
humans and birds use respiratory air pressure to drive sound-producing oscillations in
membranous tissues (Tierney et al., 2011), their pitch contours tend to result in descending
towards the end of the phrase. Although previous studies only compared on pitch contours
of human music (instrumental and vocal) and animal song, we predict the same pattern can
be found in human speech since it still relies on the same motor mechanism of vocal
production. More precisely, pitch declination is predicted to happen when subglottal pressure
during exhalation can influence the speed of vocal fold vibration; the high pressure facilitates
faster vocal fold vibration, and low pressure therefore makes the vibration relatively slower.
Declarative speech is also subject to this mechanism (Ladd, 1984; Slifka, 2006).

S3. Features

The six features introduced in the main section are extracted as follows:

S$3.1. Pitch height (f,):

fy is estimated in a semi-automated way like the annotation in the Erkomaishvili dataset
(Rosenzweig et al., 2020), which used an interactive f, extraction tool (Miller et al., 2017).
We created a graphical user interface application with the following extraction process: 1)
create the time-frequency representation of the audio signal using the fractional superlet
transform (Barzan et al., 2021; Moca et al., 2021); 2) a user specifies the set of points
(beginning, end, upper and lower bound of frequency, and optional intermediate point(s) to
be included in the contour) on the time-frequency plane to constraint the search region of f;;
3) estimate an f, contour using the Viterbi algorithm (Djurovi¢ & Stankovi¢, 2004). It is also
possible to manually draw/delete/modify the contour if the f, is deemed not reliably estimated
automatically due to severe interference by noise. The frequency resolution is 10 cents with
440 Hz = 0 (octave is 1200 cents), and the time resolution is 5 ms.

8$3.2. Temporal rate (Inter-onset interval [IOI] rate):

Inter-onset interval rate is measured by first taking the difference between adjacent onset
annotation times or onset and break annotation times and then taking that reciprocal. Our
proxy for temporal rate is the inter-onset interval of consecutive P-centers (perceptual
centers; Danielsen et al., 2019; Howell, 1988; Morton et al., 1976; Pompino-Marschall, 1989;
Scott, 1998; Vos & Rasch, 1981), which is approximately similar to but not identical to the
rate of linguistic and musical acoustic units (e.g. syllables, notes). Onset is a perceptual
center determined by the person who made the recording.

S$3.3. Pitch stability (-|Af|):

The rate of change of f;, is the negative absolute value of the numerical differentiation at
each sampling point of the f; contour. The negative sign is used so that higher values
indicate greater pitch stability. We use Shao & Ma'’s (2003) wavelet method with a first-order
derivative of Gaussian to derive this because it is robust to noisy f, contours such as the
ones in our pilot dat. We use 20 ms as the standard deviation parameter of the first-order
derivative of Gaussian to smooth the noise, which corresponds to the scaling factor of the
wavelet function.



S3.4. Pitch interval size:

Pitch interval is usually expressed as the ratio of pitch of two notes. We generalize this
concept as follows. Firstly, segment an f, contour with the onset and break times. Secondly,
take the outer product of the antecedent segmented f, contour and the reciprocal of the
consequent f, contour. Here, rather than estimating a single representative pitch from each
segment, we take exhaustive combinations of the ratio of f, values between adjacent
segments and evaluate the interval as a distribution. This approach allows us to quantify
intervals on both musical and linguistic acoustic signals. We calculate this outer product from
each pair of adjacent segmented f, contours and aggregate all results as the pitch interval of
the recording. However, one drawback of this method is the number of data points tends to
become large due to taking outer products, though it can be mitigated by lengthening the
sampling interval of f,. Figure S5 shows a schematic overview of our approach.
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Figure S5. Process of computing f, ratios. The leftmost figure shows an f, contour which is
segmented by three onset times. Then, the pitch ratio of the antecedent segmented f, contour
(orange) and the consequent f, contour (purple) is calculated by taking exhaustive pairs of samples
from two signals (104 samples x 55 samples in this example). The rightmost figure shows the
obtained intervals by histogram which displays two peaks. The right-hand mode is the interval of
ascending direction (around 370 cents) generated from the green rectangle part. The left-hand mode
is the interval of descending direction (around -50 cents) generated from the orange rectangle part.
Note that this example uses the cent scale rather than the frequency scale so that intervals can be
calculated by subtraction.

S3.5. Timbral brightness (spectral centroid):

Spectral centroid is computed by obtaining a power spectrogram using 0.032 seconds
Hanning window with 0.010 seconds hop size. The original sampling frequency of the signal
is preserved. Please note silent segments during breathing/breaks are also included.
However, the majority of the recordings contain a voice (or instrument), so the influence from
silent segments should be minimal. Although we tried using an unsupervised voice activity
detection algorithm by Tan et al. (2020), it was challenging to assess how much the failure of
detection can impact the measurement of the effect size. The unsupervised algorithm was
chosen to avoid the assumption of particular languages and domains as possible since we
deal with a wide range of language varieties and audio signals of both music and language
domains, which is usually beyond the scope of voice activity detection algorithms in general.
Another limitation is that the measurement of spectral centroid can be affected by noise due
to poor recording environment or equipment. However, our study focuses on the difference
in terms of the relative effect in spectral centroid in two recordings (expected to be recorded



in the same environment/equipment/etc.), and we confirmed that the difference in spectral
centroid itself is not markedly influenced by noise if the two recordings are affected by the
same noise.

$3.6. Pitch declination (Sign of f; slope):

Pitch declination is estimated in the following steps. First, a phrase segment is identified by
the onset annotation after the break annotation (or the initial onset annotation for the first
phrase) and the first break annotation following that. Secondly, an f, contour is extracted
from that segment. We treat f;s as response variable data and correspondence times as
dependent variable data. If there are frames where f; is not estimated, we discard that
region. Finally, we fit a linear regression model with Huber loss and obtain the slope. If the
pitch contour tends to have a descending trend at the end of the phrase, we expect the slope
of the linear regression tends to be negative. MATLAB’s fitim() function was used to estimate
the slope. Figure 3 illustrates linear models fitted to each phrase.

S4. Statistical models and power analysis

S4.1. Statistical models

The Gaussian random-effects model used in meta-analysis is (Brockwell & Gordon, 2001;
Liu et al., 2018)

Yi|6; ~ N(0;,02), 0; ~ N(po,72), i=1,....K

Yi is the effect size (or summary statistics) from ith study, ¢i is the study-specific

population effect size, a? is the variance of ith effect size estimate (e.g. standard error of

estimate) which is also called the within-study variance, Ho is the population effect size, 2

is the between-study variance, and K is the number of studies. In our study, Y: is the
relative effect and “; is its variance estimator (Brunner et al., 2018). In addition, the term
“studies” usually used in meta-analysis corresponds to recording sets. This model can also
be written as

Y; ~ N(po,0f +72), i=1,...,.K

$4.2. Power analysis

We first describe the procedure for sample size planning for the hypotheses testing
differences (H1-3). In this case, hypothesis testing evaluates H : 0 = fiwun V8. K : pig > pinu
, which means that the null hypothesis assumes the population effect size is the same as no
difference and the alternative hypothesis assumes the difference exists in the positive
direction (one-sided). Since we use relative effects as our effect sizes, we define fuun = 0.5,
As described in “S1.5 Power Analysis”, we decided to use SESOI for sample size planning,
meaning we assume that the population effect size is the same as SESOI. Therefore, we
specify where #o = (0.4/v2) = 06114 ®(-) s the standard cumulative normal distribution.



The power of the Gaussian random-effects model is given by (Hedges & Pigott, 2001;
Jackson & Turner, 2017)

B8, 7%, 0) =1+ ®(~Zq — 6/\/ V&) — B(Za — §/+/ V) (1)
1
Vi =

S E(e? 72

, Where Zo satisfies ®(Z,) =« that @ is the significance level of the test, and 4 is

non-centrality parameter defined as 0 = o — Huull which represents the gap between the
parameter of the null hypothesis model and the population parameter.

In order to perform the power analysis, we first need to specify the nuisance parameter T2

(between-study variance) which is generally unknown. We use DerSimonian-Laird estimator
(Dersimonian & Laird, 1986; Liu et al., 2018) to estimate T2 using pilot data. However, there

is the issue that the within-study variance of of sign of f, slope of the Yoruba recordings
became 0. This happened because the signs of f, slope of singing and spoken description
are all -1, which means f, contours of all phrases show better fitting to a downward direction
than the upward. Zero variance causes divergence (i.e., +«) in the weighting used in the
DerSimonian-Laird estimator. As a workaround, the hypothetical standard error of the
relative effect is estimated by assuming at least one of the observations was +1 (i.e. one of
the f, slopes fits the upward direction). Specifically, we first re-estimated the standard error of
the relative effect with both patterns that one of the signs is +1 in either the singing or
spoken description. Then we took the smaller variance estimate for the hypothetical
standard error of this recording set.

Furthermore, we also need assumption for o7 to calculate the power and to estimate the
necessary number of studies K since the power is the function of the non-centrality
parameter, between-study variance, and within-study variances. We assume the within-study
variance has a mean and plug in the average of the within-study variances from pilot data.
Algorithmically, our procedure is

1. Estimate 7% and 0 = 40 — full
2. Calculate the average of the within study variance.

N is the number of pilot recording sets (i.e. N =5) here.

3. Set o =1{01,...,0n}
Calculate the power using the equation (1)
5. If the calculated power is lower than the target power then,

s

o+ [o 5] (append & to the current &) and return to 4.
Otherwise, take the number of elements of & as the necessary number of studies.



For the power analysis of equivalence tests (H4-6), we first note that the Gaussian
random-effects model is equivalent to a normal distribution since random-effects models are
Gaussian mixture models having the same mean parameter among components, therefore

. 1 K )
p(Ylo, ) = = 3 N (¥iluo,o? +7%)
=1

= N(Yipo,02),i=1..K
where

1 &
2 Z 2 2
T K 2.:1( ' )

We use this reparameterized version for equivalence tests. We estimate the necessary
number of studies K by simulating how many times the test can reject a null hypothesis
under the alternative hypothesis being true out of the total number of tests. Specifically, the
rejection criteria is (Romano, 2005)

KY?|¥g| < Cla, 6, 0,)

where C = C(e,4,0) satisfies

o6 (%) -

Yk s sample estimate of the mean, and we use the estimated M0 instead of the simple
average of effect sizes. Here, & defines the boundary for equivalence testing, namely
H:0]>dvs. K:|0] <6 that the boundary is symmetric at 0. We set the boundary
parameter based on SESOI 6= ¥(0.4/v2) ~ 0.5~ 01114 that shifts the center of the relative

effect to 0 from 0.5, and specify # =0 assuming that the population effect sizes of the
features to be tested are null. When running the simulation, we draw random samples as

YE"‘”N(MD}GE) and increase the number of studies K gradually until the simulation
satisfies the expected power under the specified significance level.



S5. Supplementary Figures
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Figure S6. Within- and between-annotators randomness of onset annotations including automated
methods (de Jong & Wempe, 2009; Mertens, 2022) discussed in Section S1.4 “Pilot data analysis”.
10-second excerpts were used. Reference is the result of the annotation by the person who originally
made the recording.
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Figure S7. Effect sizes of each feature across five languages using the pilot data as in Figure S2 but
with exploratory comparisons with recitation and instrumental recording types.
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Figure S8. Mean values of each feature as in Figure S3 but with all recording types (including
recitation and instrumental). “Desc.” means spoken description, “Recit.” means recited lyrics.
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Figure S9. Effect sizes of each feature across five languages using the pilot data as in Figure S2 with
additional exploratory features. Green-colored diamonds and two-sided confidence intervals are used
for the features that hypotheses are not specified.
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Figure S$10. Pilot analysis of a subset of Hilton et al’s (2022) data (pairs of adult-directed
singing/speaking recordings from n=9 participants speaking English, Spanish, or Mandarin) focusing
on pitch height. Ozaki et al., (2022) previously analyzed this subset for preliminary analyses using the
same method described in S2.1 to avoid contamination by various noises included in audio
(vocalization by babies, car noises, etc.), which allows us to explore issues such as whether such
extraneous noises are likely to be a concern in our planned fully automated analysis of Hilton et al.’s
full dataset (cf. Fig. S11). Although all four conditions demonstrate the predicted trend of song being
consistently higher than speech, the effect size varies depending on the dataset and analysis method
used (see Section S1.7.8. for discussion).
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Figure S11. An example of fully-automated vs. semi-automated f0 extraction underlying the
analyses in Fig. S7 for one of the field recordings from Hilton et al.’s dataset. AC002D =
adult-directed speech [D] from individual #02 from the Spanish-speaking Afro-Colombian [ACO]
sample). While the extracted fO values are generally similar, the fully automated pYIN method
sometimes has large leaps, particularly when there are external noises and the main recorded
individual stops vocalizing to breathe (here the high-pitched blue contours at around 3.5 and 8
seconds correspond to the vocalizations of a nearby child while the recorded adult male takes a
breath).

S$6. Exploratory features

The summary of the additional features that will be examined in the exploratory analysis is
as follows.

7) Rhythmic regularity (10l ratio (Roeske et al., 2020) deviation) [dimensionless],

- Absolute difference between the observed IOl ratios and the nearest mode
estimated from the observed [OI ratios. If the perceived onsets constitute
similar ratios over the recording, each data point (IOl ratio) would be
concentrated around the mode thus small deviation from the most typical ratio
would be expected. This idea is similar to measuring the variance of the
within-cluster that modal clustering is used to create clusters. However, the



deviation of each data point from a cluster centroid is measured instead of
variance.

- Various methods for density modes (equivalently zero-dimensional density
ridges or degree zero homological features) have been recently proposed
(Chacén, 2020; Chaudhuri & Marron, 1999; Chazal et al., 2018; Chen et al.,
2016; Comaniciu & Meer, 2002; Fasy et al., 2014; Genovese et al., 2014;
Genovese et al.,, 2016; Sommerfeld et al., 2017; Zhang & Ghanem, 2021).
Here, we adopted techniques of topological data analysis. In particular, we
use the mean-shift algorithm (Comaniciu & Meer, 2002) to detect the modes.
Gaussian kernels are used and we choose to obtain a bandwidth parameter
using Pokorny et al. (2012)’'s method that selects a bandwidth from the range
that the Betti number (number of modes in this case) is most stable
(Carlsson, 2009; Pokorny et al., 2012). Note that this is not the only way and
other criteria also exist (e.g. Genovese et al., 2016; Chazal et al., 2018) for
the bandwidth selection from the viewpoint of topological features. The search

space of bandwidth is set as o{log(n)/n} as minimum following Genovese et
al. (2016). The maximum bandwidth value is set as Silverman’s rule-of-thumb
(Silverman, 1986) since this bandwidth selection is usually considered
oversmoothing (Hall et al., 1991), and this idea was previously also used for
ridge detection analysis (Chen et al., 2015). Removing low density data points
(outliers) to infer the persistent homology features is recommended (Chazal
et al., 2018), so we set the threshold to eliminate data points that is
{X::p(X;) <t}, t=max(2,001N)K(X;h) where K(X;h) is a kernel

density function with the bandwidth parameter & and P(X) is kernel density
estimate using all data points. This threshold removes samples from density
created by a few samples; equivalent to density less than 2 data points or
less than 1% of the number of data points. Figure S12 illustrates our
approach.
8) Phrase length (duration between two breaths/breaks) (onset-break interval)
[seconds],

- An interval between the first onset time after a break time (or the beginning
onset time) and the first break time after the onset time, roughly
corresponding to the length of a musical phrase or spoken utterance..

9) Pitch interval regularity (f, ratio deviation) [cen{],

- Like the 10l ratio deviation, the absolute difference between the observed f,
ratios and the nearest mode. The method for calculating this feature is
identical to the IOl ratio deviation, but for frequency rather than for time..

10) Pitch range (phrase-wise 90% f, quantile length) [cent],

- The phrase is an interval as defined in 8) Phrase length. The sample quantile

length of f, within each phrase is extracted.
11) Intensity (short—term energy) [dimensionless],

- We measure the energy of the acoustic signal as a rough proxy of loudness
although loudness is a perceptual phenomenon and these two are not
necessarily equal. The short-term energy is the average of the power of the
signal within a rectangular window whose length is 25 ms. We slide this
window every 12.5 ms to collect the short-term energies of the recording. In
order to avoid including the unvoiced segments, the energy is calculated from



the samples within |Ols or onset-break intervals. Since the relative effect is
invariant with the order-preserving transformation, we do not apply a
logarithm though the feature name is intensity. There are some limitations in
this feature. One limitation is that recording is not strictly controlled. However,
assuming the collaborator follows the protocol (e.g. keep the same distance
between microphone and mouth/instrument and use the same recording
device and recording environment across recordings), we assume the
intensityof the recordings within each collaborator can be roughly compared.
Another limitation is that the recording method is not unified across the
collaborators. Therefore, even if there are the same level of differences in
sound pressure level of singing and speech among the collaborators, the
effect sizes to be calculated can be different. More precise control of
recording conditions would be necessary for more accurate measurement of
the difference in loudness in the future study.
12) Pulse clarity [dimensionless],
- Pulse clarity is calculated using MIRToolbox V1.8.1 (Lartillot et al., 2008).
13) Timbre noisiness (spectral flatness (Johnston, 1988; Peeters, 2004)) [dimensionless]
- Spectral flatness is measured at each acoustic unit, namely inter-onset
intervals and onset-break intervals, as in Durojaye et al. (2021).
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Figure S12. lllustration of the computation of 10l ratio deviation and f; ratio deviation. The interval
between the magenta lines is the range of the bandwidth parameter that Betti number (number of
modes) is most stable which we interpret as indicating the strong persistence of the topological
features. Note that due to the removal of data points from the low density region, the number of
modes does not simply monotonically decrease with the increase in the bandwidth parameter.

S7. Manipulation of features to demonstrate our designated SESOI (Cohen’s D = 0.4).

Following Brysbaert’s (2019) recommendation, we use the relative effect corresponding to
0.4 of Cohen’s D as the SESOI for our hypothesis testing. Although the choice of 0.4 of
Cohen’s D is somewhat arbitrary, we empirically measured how much such differences



correspond to the physical attribute of audio using our pilot data focusing on pitch height and
temporal rate. For each pair of singing and spoken description recording, we first measured
the relative effect (3rd column: Relative effect (p.)). Then, we manipulated the
corresponding feature of the song to result in a relative effect equal to 0.61 (corresponding to
0.4 of Cohen’s D) and 0.5 (corresponding to no difference, 0.0 of Cohen’s D). Specifically,
we shifted down the entire f, for pitch height and slowed down the playback speed for
temporal rate. The 4th and 5th columns show actual scale factors identified at each
recording and feature. For example, the first row indicates the f, of the sung version needed
to be shifted 730 cents downward to manipulate the difference in this feature between
singing and spoken description to be as small as our proposed SESOI of Cohen’s D = 4.
Similarly, the sixth row indicates the 10ls of singing needed to be multiplied by 0.472 (i.e.,
each sung note sped up to be 47.2% as short as the original duration) to make no difference
against the spoken description recording, meaning the playback speed of singing should be
over 2x faster than the the original recording. Although there are only 5 recording pairs and
this measurement does not directly provide the justification for using 0.4 of Cohen’s D, we
can see how the current SESOI threshold corresponds to the physical attribute of audio by
comparing the 4th and 5th columns (106 cents for pitch height and factor of 0.091 for
temporal rate in average), which to we authors seems reasonable borderlines for listeners
to notice the change in audio content. The corresponding audio examples are available in
our OSF repository (https://osf.io/mzxc8/files/osfstorage/638491c81daabb1394759086).

Table S1. Overview of our pilot recordings with key features (pitch height [f0] and
temporal rate [1/101]) manipulated to demonstrate what real examples of song and
speech might sound like if they the differences were non-existent (“equivalence”) or
negligible (as small as our chosen SESOI [Smallest Effect Size Of Interest]).

Manipulation to Manipulation to

. Relativ monstr
Vocalizer Feature elative demonstrate SESOI de 0 strate
effect (p..) (Pr. = 0.611) equivalence
AR (P = 0.5)
D. Sadaphal (Marathi) fo 0.992 -730 cents (i.e., pitch is -860 cents
transposed down such
that sung pitch is more
than half an octave lower
than the original)
Nweke (Yoruba) fo 0.995 -930 cents -1030 cents
McBride (English) fo 0.931 -650 cents -770 cents
Hadavi (Farsi) fo 0.978 -430 cents -480 cents
Ozaki (Japanese) fo 0.997 -1300 cents -1430 cents
D. Sadaphal (Marathi) 101 0.931 x 0.544 (i.e., playback x 0.472

speed is increased by
almost 2x such that the
duration of each sung
note is only 54.4% as fast
as the original)

Nweke (Yoruba) 101 0.831 x 0.622 x 0.499



McBride (English) 101 0.836 x 0.530 x 0.415
Hadavi (Farsi) 101 0.932 x 0.396 x 0.324
Ozaki (Japanese) 101 0.939 x 0.393 x 0.320




Appendix 1 Recording protocol

We study how and why song and speech are similar or different throughout the world, and we need
your help! We are recruiting collaborators speaking diverse languages who can record themselves
singing one short (minimum 30 second) song excerpt, recitation of the same lyrics, spoken description
of the song, and an instrumental version of the song’s melody. In addition, we ask collaborators to
include a transcribed text that segments your words according to the onset of the sound unit (e.g.,
syllable, note) that you feel reasonable. The recording/transcription/segmentation process should
take less than 2 hours. (Later we will ask you to check sound recordings that we produce based on
your segmented text, which may take up to 2 more hours.)

Collaborators will be coauthors on the resulting publication, and will also be paid a small
honorarium (pending the results of funding applications). In principle, all audio recordings will be
published using a CC BY-NC 4.0 non-commercial open access license, but exceptions can be
discussed on a case-by-case basis (e.g., if this conflicts with taboos or policies regarding indigenous
data sovereignty). We seek collaborators aged 18 and over who are speakers of diverse 1st/heritage
languages.

Once you have finished the recordings and created the segmented text files, please:
e email us your text files (but NOT your audio recordings) to psavage@sfc.keio.ac.jp and
yozaki@sfc.keio.ac.jp.
e email your audio recordings to globalsongspeech@gmail.com, where they will be securely
monitored and checked by our RA, Tomoko Tanaka, who is not a coauthor on the manuscript.

This folder shows an example template of one full set of recordings and text files:

If you have any questions about the protocol, please email:
- Dr. Patrick Savage (psavage@sfc.keio.ac.ip), Associate Professor, Keio University
- Yuto Ozaki (vozaki@sfc.keio.ac.jp), PhD student, Keio University

[Recording content]

e Please choose one traditional song to record. This should be a song you know how to sing that is
one of the oldest/ most “traditional” (loosely defined)/ most familiar to your cultural background.
This might be a song sung to you as a child by your parents/relatives /teachers, learned from old
recordings, etc. (we plan to include other genres in future stages). Since there is no universally
accepted definition of “song” (which is an issue we hope to address in this study), you are free to
interpret “song” however feels appropriate in your language/culture. Please contact us if you
would like to discuss any complexities of how to define/choose a “traditional song”.

e Please choose a song that you can record yourself singing for a minimum of 30 seconds.
However, we encourage you to record yourself for as long as makes sense for your song to enable
more in-depth future studies without having to go back and re-record yourself (though we request
you keep within a maximum of 5 minutes if possible). Note that it is fine if it takes less than 30
seconds to recite the same lyrics when spoken, but please ensure that your free spoken
description also lasts a minimum of 30 seconds.
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e Please use your Ist/heritage language for every recording (except for the instrumental track). If
you speak multiple languages, please choose one language (and let us know which one ahead of
time) and avoid combining multiple languages in singing, recitation and spoken description.

e Please record song, lyric recitation, spoken description and instrumental in the order that you feel
natural.

o Song: When you sing, please sing solo without instrumental accompaniment, in a pitch range that
is comfortable to you. You do not need to follow the same pitch range sung by others. Feel free to
sing while reading lyrics/notation if it is helpful.

o Lyric recitation: When you recite the lyrics, please speak in a way you feel is natural. Feel free to
read directly from written lyrics if it is helpful.

o Spoken description: Please describe the song you chose (why you chose it, what you like about
it, what the song is about, etc.). However, please avoid quoting the lyrics irn your description.
Again, aim for minimum 30 seconds.

o Instrumental version: Please also record yourself playing the melody of your chosen song(s).
We would be delighted for you to play with a traditional instrument in your culture or country.
Continuous-pitch instruments (e.g., violin, trombone, erhu) are especially helpful, but fixed-pitch
instruments (e.g., piano, marimba, koto) are fine, too. Please do not use electronic instruments
(e.g. electric keyboard). Choose whatever pitch/key is comfortable for you to play (this need not
be the same pitch/key as the sung version). Please contact us if you want to discuss any
complexities involved in trying to play your song’s melody on an instrument.

> If you do not play a melodic instrument, it is also acceptable to just record the song’s
rhythm using tapping sounds or other percussive sounds (e.g., drums). In this case,
this “instrumental” recording will only be used to analyze rhythmic features. In this
case, you can tap the rhythm while singing in your head, but please do not sing out
loud.

[Recording method]

e Please record in a quiet place with minimal background noise.

e Please record each description/recitation/song/instrumental separately as different files. The file
name should be "[Given name] [Surname] [Language] Traditional [Song
title] [YYYYMMDD of the time you record]_[song|recit|desc|inst].[file format]". For example,

o Yuto Ozaki Japanese Traditional Sakura 20220207 song.wav
o Yuto Ozaki_Japanese Traditional Sakura 20220207 recit.wav
o Yuto Ozaki Japanese Traditional Sakura 20220207 desc.wav
o  Yuto Ozaki Japanese Traditional Sakura 20220207 inst.wav

e Please ensure that your mouth (or instrument) is the same distance from your recording
device for each recording, and please make all recordings during one session (to avoid
differences in recording environment and/or your vocal condition on that day).

e Regarding the recording device, a high-quality microphone would be great, but a smartphone or

personal computer built-in microphone is also fine. Preferred formats are: .mp4, .MOV, .wav,
with sampling rate: 44.1kHz or higher / bit rate: 16bit or higher for .wav and lossless codecs (e.g.
Apple Lossless Audio Codec) and 128kbps or higher for MOV and .mp4 with lossy compression
codecs. If you are an iPhone user and considering using the Voice Memos app, please set the
"Audio Quality" configuration to "Lossless".



o Note: although we only require and will only publish audio data for the main study,
we have found that default audio quality can be higher when recording video via
smartphone than when recording audio. Also, when it comes time to publish the
findings with accompanying press releases, we plan to ask for volunteers who want to
share videos of their own singing/speaking. So if you want to make your initial
recordings using video, it may save time if you decide you want to volunteer video
materials later on.

[Segmented texts]

After the recording of spoken description, lyric recitation or song, please create a Word file or
Rich Text Format file per recording that segments your utterance based on the onset of acoustic
units (e.g., syllable, note) that you feel natural. It is up to you how you divide song/speech into
what kind of sound unit.

o  Technically, we would like you to focus on the perceptual center or "P-center" (Morton,
Marcus, & Frankish, 1976), which is "the specific moment at which a sound is perceived to
occur" (Danielsen et al., 2019).

o Segmentation by the acoustic unit of language (e.g. syllable, mora), by the acoustic unit of
music (e.g. note, Hji fushi), and by the P-center are not necessarily the same. For example, one
syllable may sometimes be sung across multiple notes (and vice versa).

Please use a vertical bar (“|”) to segment recordings (see examples below).

Please use romanization when writing and also write it based on the phoneme in your native
script if it doesn’t use Roman characters. You may use IPA (International Phonetic Alphabet)
instead of romanization if you prefer.

Please start a new line in the segmented text at the position where your utterance has a pause for
breathing

When there are successive sound units that keep the same vowels (e.g. "melisma" in Western
music, "kobushi" in Japanese music, etc.) and you feel have separate onsets, then you can
segment the text by repeating vowels (e.g. Ajmen — Ala|ajajmen).

Please include a written English translation of the text of the spoken description and the sung
lyrics.

Example (Japanese)

o Singing of Omori Jinku
(Segmented texts with romanization)
Ton|Bi|Da|Ko|Na|Ra|Yo|O|O|O
[|To|Me|Wo|O|Tsu|Ke|E|Te
Ta|Gu|Ri|Yo|Se|Ma|Su[Yo|O|O
[|To|Me|Wo|O|Tsu|Ke|E|Te

Hi|ZaMo|To[Ni[I|Yo|O
Ki|Ta|Ko|Ra|Yoi|Sho|Na

(Original lyrics)
BlilZesa SR BZOTT


https://www.freecodecamp.org/news/how-to-type-the-vertical-line-bar-character-on-a-keyboard
https://drive.google.com/file/d/1vxRp2ruZcHx22l0TgiEDHkJANlKRMQU7/view?usp=sharing

(=1=21)
FoEEEI HBooica
(Ha7aATat))

(English translation of the lyrics)
Tie the bridle of a kite kite (Tonbi-dako), pull it in to your knees.
(Kita-ko-ra Yoi-sho-na)

Lyrics recitation of Omori Jinku
(Segmented texts with romanization)
Ton|Bi|Da|Ko|NaJRa|Yo
[|To|Me|Wo|Tsu|Ke|Te
Ta|Gu|Ri|Yo|Se|Ma|Su|Yo
Hi|ZaMo|To[Ni[I|Yo
Ki|Ta|Ko[Ra|Yoi|Sho|Na

Spoken description of Omori Jinku
(Segmented texts with romanization)

E-|Wa|Ta|Shi|Ga|E|Ran|Da|No|Ha, |Oo|Mo|Ri|Jin|Ku, |To|Iu, |E-, |Tou|Kyou[No|Min|You|De|Su.
Oo|Mo|Ri|To|lu|No|Ha|Tou|Kyou|No|Ti|Mei|De,
I[Ma|Wa|Son|Na|O|Mo|Ka|Ge|Ha|Na|In|Desu|Ke|Re[Do|Mo
Ko|[No|U|Ta|Ga|U|Ta|Wa|Re|Te|I| Ta| To|Ki|Ha,|Sono,|No|Ri|Ga,|Ni[Hon|De|I| Ti|Ban| To|Re|Ru/Ba
|Sho|To[lu|Ko|To|De,

Maa|Wa|Ri|To|So[No,|Kai|San|Bu|Tsu|De[Nan|Ka|Yuu|Mei|Na, | Ti|I|Ki|Dat|Ta|Mi| Ta|I|De|Su.
Kyo|Ku|No|Ka|Shi|Mo,

E-, [Sou|Des|Ne, |Ho|Shi|Za|Ka|Na, | To|Ka, |Sou|lu|Ki-|Wa-|Do|Ga|De|Te|Ki|Ma|Su.

(Original spoken description)

A= BADSBRATEDIL, RERIEA], V) 2 — BHDORFETT,
REREVODITH I DOHIA T,

SITFARERIIROATTITNED

ZOEPFON TN EET, £, #EED, BATEFRNLGHT LN ZET,
FEnFILZD, WEY TR 272 HTZ ST TN T,

DS |

A= EOTT R, FLA L ZOVHF—U =R TEET,

(English translation of the spoken description)

Ah, the song I chose is entitled Omori-Jinku, ah, a Minyo song from Tokyo. Omori is the
name of a place in Tokyo, and it has changed a lot these days, but in those days when this song
was sung, the place was known for producing the largest amount of nori (seaweed) in Japan,
and it also seemed popular due to seafood. Speaking of the lyrics of the song, ah, yeah, like
dried fishes, such keywords appear.

e Example (English)

o

Singing of Scarborough Fair

(Segmented texts with romanization)

Are |you |goling |to |Scar|bolrough [Fair
Pars|ley, |sage, [rose|ma|ry |and |thyme
Rejmem|ber |me [to [one [who |lives |the|ere
She |once |was |a [true [love |of |mine

Tell |her [to jmake |me |a |cam|b|ric [shirt
Pars|ley |sage, [rose|malry |and [thyme
With|out |no |seam |or |nee|dle[wo|ork
Then |she’ll |be |a |true |love |of mine

Lyrics recitation of Scarborough Fair
(Segmented texts with romanization)



https://drive.google.com/file/d/1aminjvMyA2dFIQLlTneK1jdUOgg989lL/view?usp=sharing
https://drive.google.com/file/d/1UCsnrbPEsTpqSvs-DpnR_9GuElvqxyMA/view?usp=sharing
https://drive.google.com/file/d/1iZHkvsqrSVDRvBa8OmX-jLvgm7LA2Ogk/view?usp=sharing
https://drive.google.com/file/d/1eam02tIWAizwVUNbfei_l2djMjjQmQZ0/view?usp=sharing

Are |you |goling [to |[Scar|bo|rough |Fair
Pars|ley, |sage, [rose|ma|ry |and |thyme
Rejmem|ber |me [to [one [who |lives [there
She |once |was |a [true [love |of |mine

Tell |her |to |make |me |a |[cam|bric |shirt
Pars|ley |sage, [rose|malry |and [thyme
With|out |no |seams |nor [nee|dle[work
Then |she’ll |be |a |true |love |of mine

o Spoken description of Scarborough Fair

(Segmented texts with romanization)

For |my |tra|di|tio|nal |[song |I’'m |gon|na |sing |Scar|bo|rough |Fair,|

um, |be|cause |it |is |one |of |the |ol|dest]|

songs [that [is, [uh, |quite [well |known |be|cause |it [was, |ah, |made |[po|pullar |by, |ah, |Paul
|Sijmon |and |Art |Gar|fun|kle.|

Um,

and [it [al|so |has [this |nice |kind |of |haun|ting,|

beaulti[ful |me|lo|dy |with |this, [uh, |nice |Dojrijan |scale |that |gives |it [this [kind |of |old
|fa|shioned |feel |that [T |quite |like.|

And [then [the, [the |mea]|ning |is |quite [um, |ah, [In|t’res|ting,|

has |this |kind |of |strange,|

um, [im [pos|si|ble |rid|dle |kind |of [theme [where |the,|

ah, |chajrach|ter |keeps |as|king [the, [um,|

o|thers [to |do |these |im|pos]si|ble [things, |so |it’s |kind |of [this|

crypltic, |old|falshioned [song |that |I, |ah, |I |quite |like.

e Please save the segmented texts of each description/recitation/song separately as different files.
The file name should be "[Given name] [Surname] [Language] Traditional [Song
title] [YYYYMMDD of the time you record]_[song|recit|desc].[file format]". For example,

o Yuto_Ozaki Japanese Traditional Sakura 20220207 song.docx
o Yuto Ozaki Japanese Traditional Sakura 20220207 recit.docx
o  Yuto Ozaki Japanese Traditional Sakura 20220207 desc.docx
> Therefore, you will upload 7 files in total as your deliverables (i.e. 4 audio files and 3
Word/RTF files) in the end.


https://drive.google.com/file/d/1HhuIGihfUE16U8fR1sx2R6UijI1Oh9Th/view?usp=sharing

Appendix 2 Collaboration agreement form*

Collaboration agreement form for "Similarities and differences in a global sample of song and speech
recordings"

This project uses an unusual model in which collaborators act as both coauthors and participants. All
recorded audio data analyzed will come from coauthors, and conversely all coauthors will provide
recorded audio data for analysis. Collaborators will be expected to provide data within 2 months of
when these are requested. Please do NOT send data now - we are following a Registered Report
model where data must not be collected until the initial research protocol has been peer-reviewed and
received In Principle Acceptance. We estimate this will be in early 2023, and ask that you provide
your audio recordings and accompanying text within 2 months of In Principle Acceptance. We
estimate this recording/annotation will take approximately 1-2 hours to complete. This will be
followed by an additional 1-2 hours to check/correct the final files we prepare at a later date.

All collaborators reserve the right to withdraw their coauthorship and data at any time, for any reason,
until the manuscript has passed peer review and been accepted for publication. In such cases, their
data will be immediately deleted from all computers and servers, public and private (though be aware
that if this happens after posting to recognized preprint/data servers such as PsyArXiv or Open
Science Framework some data may remain accessible). The corresponding authors (Patrick Savage
and Yuto Ozaki) also reserve the right to cancel this collaboration agreement and publish without a
given collaborator’s data and coauthorship if necessary (e.g., if data are not provided according to the
agreed timeline, or if an insurmountable disagreement about manuscript wording arises). In such a
case, any contributions made will be acknowledged in the manuscript.

Collaborators will be coauthors on the resulting publication, and will also be paid a small honorarium
(pending the results of funding applications) unless they choose to waive the honorarium. In principle,
all audio recordings will be published as supplementary data with this manuscript and permanently
archived via recognized preprint/data servers (e.g., PsyArXiv, Open Science Framework, Zenodo)
using a CC BY-NC 4.0 non-commercial open access license, but exceptions can be discussed on a
case-by-case basis (e.g., if this conflicts with taboos or policies regarding indigenous data
sovereignty). We seek collaborators aged 18 and over who speak a diverse range of 1st/heritage
languages.

For analysis, we plan to collect and publish demographic information about each collaborator along
with their recordings (language name, city language was learned, biological sex [optional], birth year

“ NB: This agreement had a different timeline from that eventually adopted, because
after beginning the process of scheduled review and discussing the issue of
confirmation bias with our editor, we concluded that we needed to modify our planned
level of bias control from Level 6 (“No part of the data that will be used to answer the research question
yet exists and no part will be generated until after IPA [In Principle Accepantce] (so-called ‘primary RR’)”) to Level

2 (“At least some data/evidence that will be used to answer the research question has been accessed and partially
observed by the authors, but the authors certify that they have not yet sufficiently observed the key variables within
the data to be able to answer the research question AND they have taken additional steps to maximise bias control
and rigour (e.g., conservative statistical threshold, recruitment of a blinded analyst, robustness testing, the use of a
broad multiverse/specification analysis, or other approaches for controlling risk of bias)”; cf. “Reqistered Reports with

existing data”).
We thus had to ask collaborators to record themselves several months earlier than

they had originally agreed. Most of them managed to do this, but some did not.
Because the number of collaborators who could not meet the revised timeline was
small enough not to affect our planned power analyses or robustness analyses, we
shared the manuscript with all authors and will incorporate those who had not yet
made their recordings in the robustness analyses, along with the other authors who
made their recordings after knowing the hypotheses.


https://rr.peercommunityin.org/PCIRegisteredReports/help/guide_for_authors#h_95790490510491613309490336
https://rr.peercommunityin.org/PCIRegisteredReports/help/guide_for_authors#h_95790490510491613309490336

[optional]). Providing your biological sex or birth year are optional - if you opt not to include these,
we will simply exclude your audio data from exploratory analyses that use these variables. (Though
please note that biological sex and age may be guessed from your recordings even if you opt not to
answer these questions.)

For compliance purposes, CompMusic Lab (“we” or “us”) is the data controller of demographic data
and audio recordings we hold about you, and you have a right to request information about that data
from us (including to access and verify that data). We would like your informed consent to hold and
publish demographic data and recordings that you provide to us. All such data will be treated by us
under agreed license terms. Please tick the appropriate boxes if you agree and then sign this form:

[J 1 agree for my data (audio recordings, written transcriptions, and demographic information [language, city
language learned, and biological sex and birth year if provided]) to be used as part of research.
O agree to provide my audio recordings and text annotations within 2 months of the Stage 1 protocol’s In Principle
Acceptance, and to check/correct the final annotated files within 2 months of their preparation.
1 agree to publish my data under a CC BY-NC 4.0 non-commercial open access license.
a. (If you do not agree to publish your data under CC BY-NC 4.0 [e.g., for reasons relating to Indigenous
data sovereignty]) please state your conditions for sharing your audio recording data.:
[(J 1agree to be a coauthor of the manuscript.

O agree for a preprint of the manuscript and accompanying data to be posted to recognized preprint/data servers
(e.g., PsyArXiv, Open Science Framework, Zenodo).

If you would like to waive the honorarium, you can also tick this box. If you do not waive the honorarium, we will contact
you separately to provide bank account details for the wire transfer after you have provided all data.

|:| I choose to waive the honorarium

Name:
Affiliation (e.g., Department, University, Country):
Ist/heritage language(s) spoken:
Primary city/town/village(s) where language(s) were learned:
[Optional] Biological sex (e.g., male, female, non-binary, etc.):
[Optional] Birth year:

Appendix 3: Open call for collaboration to the International Council for Traditional
Music (ICTM) email list. Adapted versions of this email were also used later in tandem with
in-person recruitment at the conferences described in the main text). Note that in later
meetings we decided to relax the restriction of one collaborator per language, in part due to
difficulties of defining the boundaries separating languages and the desire to maximize
inclusion.

From: Patrick Savage <psavage@sfc.keio.ac.jp>

Subject: Call for collaboration on global speech-song comparison
Date: July 15, 2022 9:49:57 JST

To: "ictm-I@ictmusic.org" <ictm-lI@ictmusic.org>

Dear ICTM-L members,

| am emailing to inquire if any of you are interested in collaborating on a project comparing
speech and song in diverse languages around the world to determine what, if any,
cross-culturally consistent relationships exist.

| mentioned this project briefly back in January in response to the discussion about Don
Niles’ post to this list entitled “What is song?”. Since then, we have recruited several
dozen collaborators speaking diverse languages (see attached rough map), but would like


https://creativecommons.org/licenses/by-nc/4.0/
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd

to open up the call to recruit more. As you can see from the map, our current recruitment is
quite unbalanced, particularly lacking speakers of indigenous languages of the Americas,
Oceania, and Southeast Asia. We hope you can help us correct that!

Englj amsh Russian
E mlan Ainu

S rklsh Korean Cherokee
ﬁ GrEEé(bre‘JarShI Mandarin japanese
Marathl Rukai
Kannada

Youke Lo
Kiswahili
Maasali

Te Reo
Maori

Collaborators will be expected to make short (~30 second) audio recordings of themselves
in four ways:

1) singing a traditional song in their native language

2) reciting the lyrics of this song in spoken form

3) describing the meaning of the song in their native language

4) performing an instrumental version of the song’s melody on an instrument of their
choice (negotiable)

They will also provide written transcriptions of these recordings, segmented into acoustic
units (e.g., syllables, notes) and English translations. Later, they will check/correct
versions of these recordings created by others with click sounds added to the start of each
acoustic unit. Finally, they will help us interpret the results of acoustic comparisons of
these recordings/annotations. Our pilot studies suggest that this should all take 2-4 hours
for one set of 4 recordings.

Collaborators will be coauthors on the resulting publication, and will also be paid a small
honorarium (pending the results of funding applications). In principle, all audio recordings
will be published using a CC BY-NC non-commercial open access license, but exceptions
can be discussed on a case-by-case basis (e.g., if this conflicts with taboos or policies
regarding indigenous data sovereignty).

We seek collaborators aged 18 and over who are native speakers of diverse languages, but
we are open to collaborators who are non-native speakers in cases of
endangered/threatened languages where there are few native speaker researchers
available. During this first stage, we only plan to recruit one collaborator per language, on
a first-come first-served basis in principle (in future stages we will recruit multiple
speakers per language).

More details and caveats (e.g., how to interpret “traditional” or “song") can be found in a
draft protocol here:

https://docs.google.com/document/d/1glICEXwew70Ej06dkSoR59TIF7THCmVGcudkenMwHR
mM/edi


https://docs.google.com/document/d/1qICFXwew7OEj06dkSoR59TlF7HCmVGcudkenMwHRemM/edit
https://docs.google.com/document/d/1qICFXwew7OEj06dkSoR59TlF7HCmVGcudkenMwHRemM/edit
https://docs.google.com/document/d/1qICFXwew7OEj06dkSoR59TlF7HCmVGcudkenMwHRemM/edit

We actually are not quite ready to begin the formal recording/analysis process yet as we
are still working out some methodological and conceptual issues (for which we would also
welcome your contributions). The reason | am putting out this call now is that | will be
presenting at ICTM in Lisbon next week and | know many of you will also be there, so |
wanted to use this chance to reach out in case any of you want to meet and discuss in
person in Lisbon.

I'll be mentioning more details about this project briefly during a joint ICTM presentation on
"Buildin inable Global Collaborative Networks” m on July 26th ion VIA01),
and would be delighted to meet anyone interested in collaboration following this session
or at any other time during the week of the conference.

Please email me (mentioning your native language[s]) if you’re interested in collaborating
or in meeting in Lisbon to discuss possibilities!

Cheers,
Pat

Dr. Patrick Savage (he/him)

Associate Professor

Faculty of Environment and Information Studies
Keio University SFC (Shonan Fujisawa Campus)
http://compmusic.info



https://ictmusic.org/ictm2022/programme
https://ictmusic.org/ictm2022/programme
http://compmusic.info/

Stage 2 Supplementary Materials

S8 Break annotation

Break is defined as the end of a continuous sequence of sounds before relatively long pauses.
Breaks are used to avoid creating inter-onset intervals that do not include sounds. For vocal
recordings, that would typically constitute when the participant would inhale. In the case of
instrumental recordings, how to determine break points between instrumental phrases is up to
the person who made the recording, but it is expected to indicate pauses during sound
production.

S9 Exploratory analysis figures
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Figure S13. Effect sizes of each feature using the same data as in Figure 5 but with exploratory
comparisons with recitation and instrumental recording types.



Table S2. Nonparametric trend test (Jonckheere-Terpstra test) for the shift of mean
values of features across different acoustic forms. The category is ordered as 1 =
instrumental, 2 = song, 3 = lyrics recitation, and 4 = spoken description. Note that the
Jonckheere-Terpstra test assumes observations in each category to be independent of the
other categories (e.g., between-subjects design), but our data are collected in a
within-subjects design. Therefore, the p-values can be somewhat inaccurate in testing the
null hypothesis (i.e., Hy: 6, = 8, = 6; = 8,) if there is a strong correlation within subjects. The
p-values were calculated by a Monte Carlo permutation procedure.

Feature JT statistics P-value

Pitch height 6752 1.2x10*
Temporal rate 27672 1.2 x10*
Pitch stability 3569 1.2x10*
Timbral brightness 16864 1.2x10*
Pitch interval size 13340 0.30

Pitch declination 10288 1.2x10*
Phrase length 10876 1.2x10*
Intensity 13787 3.7x10*
TImbral noisiness 22998 1.2x10*
Rhythmic regularity 23484 1.2 x10*
Pitch interval regularity 20329 1.2x10*
Pulse clarity 9911 1.2x10*

Pitch range 13114.5 0.20
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Figure S14. Alternative visualization of Figure 9 showing mean values of each feature by biological
sex and focusing on the features subject to the main confirmatory analysis. Note that the colors of
data points indicate language families, which are coded the same as in Figure 3
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Figure S$15. Re-running of the analysis on our full data with automated feature extraction. pYIN

(Mauch & Dixon, 2014) was used for fO extraction and de Jong & Wemp’s (2009) Praat script was

used for onset timing extraction. Break annotation was not automated so pitch declination was not

measured.
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Figure S16. Color mapping of Figure 12.
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Cantonese
HainanHua
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Enga

Quechua & Achuar
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Figure S17. Supplementary information for Fig. 10. Mean values of pitch height of each recording are
displayed. f,s were extracted by pYIN (Mauch & Dixon, 2014). The horizontal lines in the violin plots
are median.
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Figure S18. Supplementary information for Fig. 10. Mean values of pitch stability of each recording
are displayed. f,s were extracted by pYIN (Mauch & Dixon, 2014). The horizontal lines in the violin
plots are median.
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Figure S19. Supplementary information for Fig. 10. Mean values of timbral brightness of each
recording are displayed. f,s were extracted by pYIN (Mauch & Dixon, 2014). The horizontal lines in
the violin plots are median.
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Figure S20. Mapping data by nPVIs of song and spoken description by each collaborator and its
song-instrumental version, and the density plot of nPVIs of each . The red lines are linear fitting of
nPVIs of spoken description and nPVIs of song, and the dotted line is y = x which can be used to
grasp if nPVIs of spoken description is larger than that of song and vice versa.
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Figure S21. Difference between onset times annotated by Ozaki (YO) and onset times annotated by
Savage (PES) per recording for the 8 codings re-annotated by Savage to assess inter-rater reliability.
The horizontal lines in the violin plots indicate the median. Color is coded as the same in Fig. 3.
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Table S3. Average over performance metrics measured by randomly splitting recording sets into
training and test sets 1024 times.

Logistic SVM Naive Bayes
regression
Accuracy 95.78% 93.75% 92.94%
Song Precision | 96.66 92.68 92.81
Recall 95.25 95.70 93.98
F1 score |95.72 93.92 93.03
Spoken Precision | 95.74 95.89 94 .45
description
Recall 96.31 91.80 91.91
F1 score |95.80 93.50 92.76

Correlation matrix of featurs (Song)

Pitch height - - 015 020 -004 009 -011 -013 014 013 011 -029 000 0.10
Temporal rate - -015- 032 -038 014 -019 020 -047 017 010 -006 -012 009

Pitch stability - 020 -032 -0.28 -0.03 0.02 -0.13 -0.04 -0.03 -004 -053 -0.46 -0.03 r
Timbral brightness - -0.04 -0.38 -0.28 -0.05 017 -0.04 026 007 -0.15 047 059 -0.07 - 1.0
Pitch interval size - 009 014 -003 -0.05 - -0.00 009 -0.05 0.01 034 003 003 -0.04

Pitch declination = -0.11 -019 002 017 -0.00 -0.16 018 001 -010 014 017 -0.16 0.5
Phrase length = -013 020 -013 -004 009 -0.16 000 -009 -0.16 0.14 002 -001

Intensity - 014 -047 -004 026 -005 0.18 0.00 - -0.06 -0.13 0.06 053 -0.00 0.0
Timbral noisiness = 013 017 -003 007 001 001 -0.09 -0.06 - 003 -006 007 022 05
Rhythmic regularity - 011 0.0 -004 -015 034 -0.10 -0.16 -0.13 0.03 - 003 -0.04 -0.13 e
Pitch interval regularity - -029 -006 -053 047 003 014 014 006 -0.06 -0.03 0.36 -0.07 [ 10
Pulse clarity- 000 -012 046 059 003 017 002 053 007 -0.04 0.36 0.02 '
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Figure S23. Correlation matrix of the features within song recordings. The data are the mean values
of the features, which are plotted in Figure 6.



Correlation matrix of featurs (Spoken description)

Pitch height---o.1s 002 013 006 -015 -003 014 -024 011 013 026 -0.01
Temporal rate - -0.18 018 -030 006 014 013 -010 005 008 -026 -0.04 -0.00

Pitch stability - -002 -0.18 -0.58 006 0.09 012 -0.14 -0.14 -015 -056 -0.57 -0.03 r
Timbral brightness - 013 -030 -053 008 0.06 -023 022 0.12 009 --0.13 . 1.0

Pitch interval size = 006 006 006 -o.os- 0.17 -010 -0.04 -0.02 055 -0.13 0.06 -0.08

Pitch declination = -0.15 014 009 006 017 020 023 008 013 0.02 -0.13 -0.03 0.5
Phrase length - -003 013 o012 -023 -0.10 E- 008 -007 002 -019 -027 -004
Intensity - 014 -010 -014 022 -004 -023 -0.08 025 003 024 040 -0.05 0.0
Timbral noisiness - -024 005 -014 012 -002 0.08 -0.07 E- 009 008 017 -0.07

Rhythmic regularity - 011 008 -015 009 055 013 002 003 0.09--0.09 0.19 005 0.5
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Figure S24. Correlation matrix of the features within spoken description recordings. The data are the
mean values of the features, which are plotted in Figure 6.



Appendix 3 List of songs

# Name Song title Language Instrument
(Romanization)
1 Nori Jacoby Laila Laila Modern Hebrew [Jerusalem] Whistle
2 Limor Raviv ant 7w no'7win' | Modern Hebrew [Tel Aviv] Tapping
(Yerushalayim ShelZahav)
3 lyadh El Kahla e |l é}\ o saY Tunisian Arabic Aerophone
4 Utae Ehara 134> (ltasan) Aynu (Hokkaido Ainu) Tapping
5 Neddiel Elcie Mufioz Naumen pu llauken Tsesungun (Huilliche) Clapping
Millalonco
6 Nozuko Nguqu Ulele IsiXhosa (Xhosa) Piano
7 Mark Lenini Parselelo Lala Mtoto Lala Kiswahili (Swahili) Tapping
8 Cristiano Tsope Hiya Tlanguela xinwanana Ronga Clapping
xinga pswaliwa namuntla
9 Florence Nweke Pat omo o Yoruba Piano
10 Adwoa Arhine Yeye Eguafo Fante (Akan) Clapping
11 Jehoshaphat Philip Daa na se Twi (Akan) Piano
Sarbah
12 Latyr Sy Mbeuguel Wolof Clapping
13 | Putu Gede Setiawan | Putriceningayu Balinese Suling
14 Suzanne Purdy Pokarekare Ana Te Reo Maori (Maori) Tapping
[Auckland]
15 Rob Thorne Ko Te Pi Te Reo Maori (Maori) Kdauau rakau
[Wellington]
16 Nerea Bello Xoxo Beltza Euskara (Basque) Aerophone
Sagarzazu [Hondarribia]
17 Urise Kuikuro Told Lingua Kuikuro Clapping
(Kuikuro-Kalapalo)
18 Shantala Hegde Moodala Maneya Kannada Clapping
19 Rytis Ambrazevicius Séjau rugelius Lithuanian Idiophone
20 Tadhg O Meachair Einini Gaeilge (Irish) Piano Accordion
21 Niels Chr. Hansen | Skovens Dybe Stille Ro Danish Piano
22 Mark van Tongeren Hoor De Wind waait Dutch [Heemstede] Piano
23 Kayla Kolff Dikkertje Dap Dutch [Nairobi] Membranophone
24 Adam Tierney Simple Gifts English [Indiana] Electric Piano
25 Christina Vanden Sleep Now Rest Now English [Michigan] Cello




Bosch der

Nederlanden

26 Patrick Savage Scarborough Fair English [Nevada] Piano

27 John McBride Arthur McBride English [Newry] Flute

28 William Tecumseh Rovin’ Gambler English [Pennsylvania] Guitar
Fitch

29 Peter Pfordresher America the Beautiful English [Washington D.C.] Piano

30 Yannick Jadoul Vandaagls't Sinte Maarten Flemish (Dutch) Piano

31 Felix Haiduk Die Gedanken Sind Frei German Melodica

32 Ulvhild Feeravik Nordmannen Norwegian Clapping

33 Daniel Fredriksson Ho Maja Svenska (Swedish) Offerdalspipa

34 Emmanouil Benetos Saranta Palikaria Greek Clapping

35 Dhwani P. Sadaphal Saraswatee maateshwaree Hindi Harmonium

36 Parimal M. Sadaphal Sukhakartaa Marathi Sitar

37 Meyha Chhatwal gHg T fier (Bajre Da Punjabi (Eastern Panjabi) Harmonium

Sitta)

38 Ryan Mark David Dil Dil Pakistan Urdu Acoustic guitar

39 Shahaboddin Dabaghi | Morgh e Sahar Western Farsi [Isfahan] Clapping
Varnosfaderani

40 Shafagh Hadavi Mah Pishanoo Western Farsi [Tehran] Piano

41 Manuel Anglada-Tort La Preso de Lleida Catalan Piano

42 Pauline A la claire fontaine French Piano
Larrouy-Maestri

43 Andrea Ravignani Bella Ciao Italian Saxophone

44 Violeta Magalhaes O milho da nossa terra Portuguese [Porto] Tapping

45 Camila Bruder A Canoa Virou Portuguese [Sao Paulo] Tambourine

46 Marco Antonio Correa | Suite do Pescador Portuguese [Sao Paulo] Nose flute
Varella

47 Juan Sebastian El pescador Spanish [Bogotd] Guitar
Gomez-Cafion

48 Martin Rocamora Aquello Spanish [Montevideo] Guitar

49 Javier Silva-Zurita Un gorro de lana Spanish [Santiago] Guitar

50 Ignacio Soto-Silva El Lobo Chilote Spanish [Osorno] Clapping

51 Dilyana Kurdova Zarad tebe, mome, mori Bulgarian Clapping

52 Aleksandar Arabadjiev | Jovano Macedonian Kaval




53 Wojciech Wilazt Kotek Na Ptotek Polish Guitar
Krzyzanowski
54 Polina Proutskova Dusha moia pregreshnaia Russian Violin
55 Vanessa Nina Borsan En Hribéek Bom Kupil Slovenian Tapping
56 Olena Shcherbakova Podolyanochka Ukrainian Piano
57 Diana Hereld CAWOH Ok (unelanvhi Cherokee Tapping
uwetsi)
58 Gakuto Chiba BB LINE Japanese [Hokkaido] Tsugaru-shamisen (2§
(Tsugaru-yosarebushi) =BRER)
59 Shinya Fuijii ThoLaff Japanese [Hyogo] Clapping
(Dekansho-bushi)
60 Yuto Ozaki XFFE A (Omori-Jinku) Japanese [Tokyo] Guitar
61 Naruse Marin BATEHR Northern Amami-Oshima Sanshin (Z#g)
(Asabana-bushi)
62 Teona Lomsadze Nana (Lullaby) Georgian Chonguri
63 Sangbuem Choo Otel & (Arirang) Korean Guitar
64 Patricia Opondo Ero Okech Nyawana Luo (dholuo) (Luo (Kenya and | Whistle
Tanzania))
65 Rogerdison Jakara Wata Rikbaktsa Clapping
Natsitsabui
66 Jakelin Troy Gundji gawalgu yuri Ngarigu Percussion
67 Tutushamum Puri Petara Puri Kwaytikindo (Puri) Terara (bamboo flute)
Righi
68 Su Zar Zar Mya Man Giri Myanmar (Burmese) Saung-gauk
69 Psyche Loui 2% (Butterfly Lovers) Cantonese (Yue Chinese) Violin
70 Minyu Zeng F15ILER (The Song of the HainanHua (Min Nan Chinese) | Idiophone
Five-Fingers Mountain)
71 Fang Liu %7 (Farewell) Mandarin Chinese Clapping
72 Great Lekakul a1adLAau (Lao Doung Thai "Klui"(28#) (a Thai flute)
Duan)
73 Brenda Suyanne Apykaxu Mbya-Guarani Clapping
Barbosa
74 Polina Ay Lachin North Azerbaijani Tar
Dessiatnitchenko
75 Olcay Muslu Uzun Ince Bir Yoldayim Turkish Tapping




