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The increasing use of monitoring systems such as Building Management System (BMS) or connected devices bring the opportunity to better evaluate, model or control both occupants' comfort and energy consumed by an operated building thanks to the consequent amount of data provided (e.g., air temperature, CO2 concentration, electricity consumption). Occupants' behavior and more specifically window-openings affect both occupants' thermal comfort and building energy consumption and are therefore key components to consider. This paper presents a comparison of machine learning models applied on window-openings detection during the heating season such as: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Random Forest Classifier (RFC) and two Recurrent Neural Network (RNN), namely, Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). While some applications of Artificial Intelligence (AI) methods applied on window-openings detection exist in the literature, this

Introduction

The building sector accounts for approximately 40% of the final energy use in Europe [START_REF]Clean energy for all Europeans[END_REF]. In addition, life cycle analysis of buildings tends to show that most of the building life cycle energy consumption depends on its operation (80 to 90%) [START_REF] Ramesh | Life cycle energy analysis of buildings: An overview[END_REF]. Thus, evaluating and defining operational loads of building are keys elements in order to reduce or comprehend buildings energy consumptions. The most common use of Building Management System (BMS) and connected devices in the building sector has led to a democratization of edifices called smart buildings. A smart building can be seen as an association of multiple systems, software and sensors [START_REF] Aste | Building Automation and Control Systems and performance optimization: A framework for analysis[END_REF] that aims to meet two main objectives: to reduce both operational and environmental costs by managing and optimizing the energy use [START_REF] Imran | IoT Task Management Mechanism Based on Predictive Optimization for Efficient Energy Consumption in Smart Residential Buildings[END_REF][START_REF] Yang | The coupled effects of personalized occupancy profile based HVAC schedules and room reassignment on building energy use[END_REF][START_REF] Hannan | A Review of Internet of Energy Based Building Energy Management Systems: Issues and Recommendations[END_REF] and to improve the comfort of the occupants [START_REF] Brik | An IoT-based deep learning approach to analyse indoor thermal comfort of disabled people[END_REF][START_REF] Ioannou | In-situ real time measurements of thermal comfort and comparison with the adaptive comfort theory in Dutch residential dwellings[END_REF]. Hence, smart buildings generate a consequent amount of data from measurements (air temperature, CO2 concentration, energy consumption, etc.) that can be studied in order to evaluate, model, correct or optimize specific operational loads during the building life cycle [START_REF] Fan | A framework for knowledge discovery in massive building automation data and its application in building diagnostics[END_REF][START_REF] Esen | Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS[END_REF][START_REF] Esen | Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system[END_REF]. Among these loads, occupants' behavior can have a strong influence on the operational energy consumption of buildings as well as the thermal comfort [START_REF] Delzendeh | The impact of occupants' behaviours on building energy analysis: A research review[END_REF][START_REF] Bonte | Impact of occupant's actions on energy building performance and thermal sensation[END_REF]. A common action is often identified: Since machine learning models show poor generalization capabilities and usually require a specific tuning for each household and building [START_REF] Markovic | Window opening model using deep learning methods[END_REF] the present work aims to contribute on window-opening status detection by comparing five different models to provide tendency observations on models, measurements combinations and transformations.

The main contributions of this article are therefore:

• The comparison on window-status detections for several machine learning models classifier such as Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Random Forest Classifier (RFC) Submitted to Building and Environment January 2023

and Recurrent Neural Network (RNN) such as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU).

• A detailed approach on indoor and outdoor measurements combinations impact on models outputs.

This study might provide a guide on the type of sensor to be preferred for in-situ sites installation in order to detect window openings.

• A detailed explanation on feature engineering followed process in order to quantify measurements transformations and association performances on models outputs.

Related work

Occupants' behavior detection or prediction

Occupants' behavior impact both occupants' thermal comfort and building energy consumption [START_REF] Lopes | Estimating energy savings from behaviours using building performance simulations[END_REF] with around 25% of the total energy consumption in Europe between 1990 to 2014 being dedicated to domestic uses [START_REF]Final energy consumption by sector and fuel[END_REF]. To understand, control or minimize these impacts, machine learning techniques used to model these behaviors (e.g., occupancy, window-openings) can be applied to serve multiple purposes in the building sector including, among others, prediction, fault detection, diagnosis or control optimization [START_REF] Fan | A framework for knowledge discovery in massive building automation data and its application in building diagnostics[END_REF][START_REF] Dai | A review of studies applying machine learning models to predict occupancy and window-opening behaviours in smart buildings[END_REF]. Following this perspective, three different applications of occupants' behavior models are presented in Figure 1Erreur ! Source du renvoi introuvable.: past, present (or real-time) and future (or predictive) detection models. Past detection models (1.a) can take advantage of all monitored data in order to detect or classify, a posteriori, occupants' behavior. This approach can be used, among others things, to perform fault detection or to detect and correct anomalies by comparing modeled to measured behaviors, to reduce the gap between simulated and real energy consumption for energy performance verification [START_REF] Recht | Predicted and measured performances of near zero-energy houses: a comparison methodology[END_REF][START_REF] Gallagher | Development and application of a machine learning supported methodology for measurement and verification (M&V) 2.0[END_REF] or to evaluate retrofit actions [START_REF] Hong | State-of-the-art on research and applications of machine learning in the building life cycle[END_REF][START_REF] Grillone | A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings[END_REF]. Present detection models (1.b) focus on detecting real time behavior while future detection models (1.c) focuses on predicting behavior one or multiple time step ahead. Both approaches are the most commonly performed in studies [START_REF] Dai | A review of studies applying machine learning models to predict occupancy and window-opening behaviours in smart buildings[END_REF] and can be applied for real time implementation in order to perform fault detection [START_REF] Mahmoud | User Activities Outliers Detection; Integration of Statistical and Computational Intelligence Techniques: USER ACTIVITIES OUTLIERS DETECTION[END_REF], control optimization for comfort improvements or energy savings [START_REF] Djenouri | Machine Learning for Smart Building Applications: Review and Taxonomy[END_REF][START_REF] Ardakanian | Non-Intrusive Techniques for Establishing Occupancy Related Energy Savings in Commercial Buildings[END_REF][START_REF] Anastasiadou | Machine Learning Techniques Focusing on the Energy Performance of Buildings: A Dimensions and Methods Analysis[END_REF]. Specificities of models and training process apart, these three applications can be performed by using the same data and are mainly related to intended uses (regardless of the results). Therefore and to avoid any overload, this study focuses solely on past detection but all measurements transformations can also be applied to real-time detection and future prediction. 

Window-opening behavior models

As presented in Xilei Dai review [START_REF] Dai | A review of studies applying machine learning models to predict occupancy and window-opening behaviours in smart buildings[END_REF], studies on window-openings through machine learning models can be divided into two groups. The first focuses mainly on occupants' actions toward the window, given a specific environment (e.g., indoor and outdoor air temperature, wind speed), in order to model openings and closings actions [START_REF] Naspi | Experimental study on occupants' interaction with windows and lights in Mediterranean offices during the non-heating season[END_REF][START_REF] Kim | Automatic ventilation control algorithm considering the indoor environmental quality factors and occupant ventilation behavior using a logistic regression model[END_REF]. The second, on which this study is based, mainly focuses on modeling window-status as open or close depending on the environment [START_REF] Markovic | Window opening model using deep learning methods[END_REF][START_REF] Markovic | Comparison of Different Classification Algorithms for the Detection of User's Interaction with Windows in Office Buildings[END_REF][START_REF] Stazi | Modelling window status in school classrooms. Results from a case study in Italy[END_REF]. Three main elements can be highlighted from previous studies [START_REF] Dai | A review of studies applying machine learning models to predict occupancy and window-opening behaviours in smart buildings[END_REF]:

• Most of studies mainly focus on one sole machine learning model at a time and rarely compare different models on the same study.

• Logistic Regressions (LR) models are the most used to determine window-status [START_REF] Stazi | Modelling window status in school classrooms. Results from a case study in Italy[END_REF][START_REF] Rijal | Development of a window opening algorithm based on adaptive thermal comfort to predict occupant behavior in Japanese dwellings[END_REF][START_REF] Shi | Seasonal variation of window opening behaviors in two naturally ventilated hospital wards[END_REF][START_REF] Haldi | Interactions with window openings by office occupants[END_REF] followed by Artificial Neural Networks (ANN) in more recent studies [START_REF] Markovic | Window opening model using deep learning methods[END_REF][START_REF] Markovic | Learning short-term past as predictor of window opening-related human behavior in commercial buildings[END_REF][START_REF] Wei | Comparison of different window behavior modeling approaches during transition season in Beijing, China[END_REF]. The vast majority of presented models is based on a supervised approach and thus, uses labeled data.

• Generic models apart, machine learning models for window-status are specific to buildings, occupants or seasons [START_REF] Markovic | Window opening model using deep learning methods[END_REF][START_REF] Shi | Seasonal variation of window opening behaviors in two naturally ventilated hospital wards[END_REF] and their performances can be assessed regarding multiple evaluation metrics (such as accuracy, F1-score, true positive rate, area under the curve, etc.). Thus, evaluating and comparing different models through multiple studies is rather difficult. Submitted to Building and Environment January 2023

Hence, the decision was made to focus this study on various models to compare their results and tendencies. Considering the amount of significant contribution realized with logistic regression models and Artificial Neural Networks, others models underrepresented for window openings detection and based on their popularity on other fields of research, towards pattern recognition, classification, prediction or anomaly detection, were selected. It includes, Recurrent Neural Network (RNN) [START_REF] Chalapathy | Deep Learning for Anomaly Detection: A Survey[END_REF][START_REF] Huchuk | Comparison of machine learning models for occupancy prediction in residential buildings using connected thermostat data[END_REF][START_REF] Liu | Anomaly detection based on machine learning in IoT-based vertical plant wall for indoor climate control[END_REF],

Linear Discriminant Analysis (LDA) [START_REF] Chen | A fusion framework for occupancy estimation in office buildings based on environmental sensor data[END_REF][START_REF] Candanedo | Accurate occupancy detection of an office room from light, temperature, humidity and CO 2 measurements using statistical learning models[END_REF], Support Vector Machine (SVM) [START_REF] Liu | Anomaly detection based on machine learning in IoT-based vertical plant wall for indoor climate control[END_REF][START_REF] Chen | A fusion framework for occupancy estimation in office buildings based on environmental sensor data[END_REF] and Random Forest Classifier (RFC) [START_REF] Huchuk | Comparison of machine learning models for occupancy prediction in residential buildings using connected thermostat data[END_REF][START_REF] Chen | A fusion framework for occupancy estimation in office buildings based on environmental sensor data[END_REF][START_REF] Candanedo | Accurate occupancy detection of an office room from light, temperature, humidity and CO 2 measurements using statistical learning models[END_REF]. It is important to note that SVM and RFC models have been applied on a few studies regarding window-status modeling, showing great results [START_REF] Markovic | Comparison of Different Classification Algorithms for the Detection of User's Interaction with Windows in Office Buildings[END_REF]. On the other hand RNN and LDA models appear to be unrepresented despite potentially being highly effective regarding their actual performances on similar tasks such as detecting occupancy [START_REF] Huchuk | Comparison of machine learning models for occupancy prediction in residential buildings using connected thermostat data[END_REF][START_REF] Candanedo | Accurate occupancy detection of an office room from light, temperature, humidity and CO 2 measurements using statistical learning models[END_REF] or on other fields of studies [START_REF] Hochreiter | Long Short-Term Memory[END_REF] such as medical by detecting anomalies [START_REF] Fernando | Deep Learning for Medical Anomaly Detection -A Survey[END_REF] or energetic by optimizing performances [START_REF] Skrobek | Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)[END_REF]. Machine learning models used in the present study are further detailed in section 3.2.

Feature selection and transformation for window opening models

Features used for window opening models can rather be divided into two groups [START_REF] Dai | A review of studies applying machine learning models to predict occupancy and window-opening behaviours in smart buildings[END_REF] impacts that might be obtained on models performances [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF]. Hence, this study offers to test and compare various measurements transformations that are further presented in section 4.2.1 on several models in order to evaluate their contribution and relevance.

Experiment methodology

In this section a presentation of metrics used and models selected for this study is provided. Evaluation metrics chosen and built to compare the results are discussed and a short explanation of every model specificities, architecture selection and corresponding training process is given. metrics might be useful in order to compare the results to other studies, to deepen models outputs and guide or adapt the choice of models or measurements according to specific needs, with a focus on number of openings detected or on the total opening time for instance. Thus, more domain oriented metrics focusing on window opening classification and evaluation based on true and false opening detection are introduced and discussed in this paper.

Opening Opening

Labels

Model (i) Model (ii)
Figure 2 Window-openings detection for two different models

True and false openings

A true opening is a modeled window opening that corresponds to a measured window opening within a given time step limit. Therefore, a true opening is a true positive or a successive set of true positives which may include one or more false positives. On the other hand, a modeled window opening that does not satisfy this requirement is considered as a false opening. Thus, as shown in Figure 3, for a time limit of two time steps used in this study, the model results (3.i) and (3.ii) are made of two and one true openings, respectively. Six evaluation metrics result from these definitions, the total true and false openings number, the total true and false openings time and the average true opening accuracy score. 

Total true and false openings number

These metrics are used to evaluate a model capability to detect windows openings regardless of their duration and correspond to the total number of true and false openings provided by a model. 

Total true and false openings time

These metrics are used to evaluate a model capability to quantify windows openings duration and correspond to the total amount of time for all true and false openings provided by a model. In Figure 3, the model results (3.i) has a six time step true opening time and no false opening time whereas the model results (3.ii) has a three time step true opening times for a five time step false opening times.

Average true opening accuracy score

A score is associated to every detected opening action (represented by the first open status of a true opening) and to every detected closing action (represented by the last open status of a true opening) in order to evaluate a model precision on window-openings detection. The score is set to 1 for a perfect match between the true opening and the measured opening and is linearly decreased by 0.33 for every time step difference. The penalty of 0.33 is chosen regarding the two time step limit set to define true and false openings. Lastly, the accuracy score, specific to each opening, is averaged for all the true opening provided by the model. In Figure 3, the model results (3.i) has an average opening score of 0.83 and closing score of 0.66 whereas the model results (3.ii) has both average opening and closing score at 0.66.

Models

SVMs

Support Vector Machines (SVMs) are supervised machine learning methods commonly used for classification, regression and novelty detection. In a two-class classification problem and if the data is assumed to be separable in feature space, many boundaries that separate the classes may exists. An SVM model is therefore trained to determine the best boundary between classes (also called decision boundary) by maximizing the distance between every class sample [START_REF] Bishop | Pattern recognition and machine learning[END_REF][START_REF] Duda | Pattern classification[END_REF]. In this paper, a Radial Basis Function (RBF) kernel SVM classifier is trained following a 5-fold cross-validation for time series with an adaptive search algorithm to optimize the regularization and inverse of radius parameters. For every parameters combination in the range listed in Table 1, F1-scores extracted from the 5-fold cross validation are averaged and the SVM model with the best performances is selected for the evaluation. Submitted to Building and Environment January 2023

LDA

Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction technique commonly used for classification. In a two-class classification problem with the same assumption as presented in section 3.2.1, an LDA model is trained in order to construct a linear projection that maximizes the projected interclass variance and minimize the projected intraclass variance [START_REF] Bishop | Pattern recognition and machine learning[END_REF][START_REF] Duda | Pattern classification[END_REF]. The classification is based on Bayes' theorem to estimate a sample probability to belong to a class. Although LDA is only optimal for data with normal distribution and equal covariance matrices, its simplicity and robustness balance the loss in performances if above conditions are not fulfilled [START_REF] Li | Using discriminant analysis for multi-class classification: an experimental investigation[END_REF]. In this paper, an LDA classifier is trained following a 5-fold cross-validation for time series with an adaptive search algorithm to optimize the choice of solver and solver-dependent parameters such as shrinkage or threshold. For every solver and parameters combination in the range listed in Table 1, F1-scores extracted from the 5-fold cross validation are averaged and the LDA model with the best performances is selected for the evaluation.

Random Forest Classifier

Random Forest (RF) is a supervised machine learning method commonly used for classification (RFC)

and regression that combines decision tree and ensemble methods. A decision tree is a tree-based method that divides the feature space into a set of rectangles that optimally split the data into classes. However trees tend to overfit during training and thus, have a low bias and a high variance. To be less prone to overfitting, a RF model is trained by randomly splitting the data into subsets and building a decision tree on each before aggregating their results (ensemble method) [START_REF] Bishop | Pattern recognition and machine learning[END_REF][START_REF] Hastie | The Elements of Statistical Learning[END_REF][START_REF] Breiman | Random Forest[END_REF]. In this study, a Gini RF classifier is trained following a 5-fold cross-validation for time series with an adaptive search algorithm to optimize the choice of the number of trees, the minimum number of samples placed in a node before a node is split, the minimum number of samples required in a leaf node. For every combination of parameters in the range listed in Table 1, F1-scores extracted from the 5-fold cross validation are averaged and the RF model with the best performances is selected for the evaluation.

RNNs

Recurrent Neural Networks (RNNs) are a subclass of Artificial Neural Networks (ANNs). Unlike ANNs, RNNs possess an internal state memory that captures temporal order and dependencies of sequences, making them regularly used for task involving sequential data such as automatic translation, time series forecasting or classification. However, in practice, RNNs are not able to handle long-term dependencies Submitted to Building and Environment January 2023 [START_REF] Bengioy | Learning Long-Term Dependencies with Gradient Descent is Difficult[END_REF]. Long Short-Term Memory (LSTM) is a specific RNN that is designed to avoid this issue by selectively forgetting long-term information [START_REF] Hochreiter | Long Short-Term Memory[END_REF]. On the other hand, Gated Recurrent Unit (GRU) is a variation of LSTM that uses less training parameters and therefore consumes less memory, is faster and can outperform LSTM on some tasks [START_REF] Chung | Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[END_REF][START_REF] Jozefowicz | An Empirical Exploration of Recurrent Network Architectures[END_REF][START_REF] Greff | LSTM: A Search Space Odyssey[END_REF]. Unlike previous presented models, LSTMs and GRUs hyperparameters listed in Table 1, were tuned beforehand in order to make a balance between performance, training difficulties and computing time. Hence, both LSTM and GRU models for this study are composed of a first layer of 16, 32 or 64 units (depending on the number of features used for training) followed with a dense output layer of size 2 with softmax activation. An Adam optimizer is used with a learning rate of 0.001 along with a binary cross-entropy loss function. To avoid overfitting, 25% of the training set is selected as a validation set, the remaining training set is shuffled and a function to stop the training if the model stop improving is used (also called early stopping).

Table 1 List and range of Models' tuning parameters 

Models

Data description and data preprocessing

In this section a review of the data collected and features used for this study is presented. A short explanation of the specificities of the train and test data is given followed by a detailed approach of the feature engineering process conducted. . Thus, one of the main limitations of this paper lies in the studied period which is characteristic of a heating season with an average indoor air temperature usually superior to the outdoor. The test set is made of one month of data from mid-December 2020 to mid-January 2021 for a total of 3 115 data points that is also representative of heating seasons. This set is introduced in the following section. The unoccupied period is characterized by a slow drift of approximately 2°C of indoor air temperature and a low stagnating CO2 concentration. These differences are shown in Table 3. The occupied period is characterized by higher average indoor temperature and indoor CO2 concentration. While period (5.i)

presents data characteristics relatively close to the training set characteristics, those shown in period (5.ii) tend to differ. Such differences might impact the evaluation phase but may also provide useful information on models behavior and sensibility to uncommon data characteristics.

For all the test data, the measured open window-status time represents 25.75 hours for a total of 18 openings and can be separated into two types of openings based on their impact on the indoor data.

( On the other hand high impact openings tend to be easier to detect and classify. 2)

(i) (ii) (i) 𝐸𝑀𝐴(𝛼) ! ! = ( 𝑀 " 𝑡 = 0 𝛼. 𝑀 # + (1 -𝛼). 𝐸𝑀𝐴 ! !"# 𝑡 > 0 Eq. (
𝑑 ! ! = 2 0 𝑡 = 0 ! ! $! !"∆! ∆# 𝑡 > 0 Eq. (3)

Data preprocessing 4.2.1. Feature engineering

Feature selection and representation tend to have a direct impact on most models performances [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF][START_REF] Razavi | Occupancy detection of residential buildings using smart meter data: A largescale study[END_REF]. Feature engineering is the process of combining or transforming existing features to create additional features that are not in the original dataset. The main idea behind feature engineering is to use domain knowledge, visualization and statistical methods to provide discriminative information from the data that, the model alone, may not or cannot extract [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF]. For this study, two types of additional features are created based on the heating season specificities presented in section 4. 

𝐷𝑖𝑓𝑓 ! ! = 𝑀 # -𝐸𝑀𝐴 ! !
Eq. ( 5)

𝑅𝑒𝑠𝑖𝑑𝑢𝑒 ! ! = 𝑀 # -𝑇𝑟𝑒𝑛𝑑 ! ! -𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 ! !
Eq. ( 4)

• STL-Residue: is a feature transformation based on the Seasonal-Trend decomposition using LOESS (STL). STL is a statistical method which decomposes the input data into three components: a recurrent pattern over time (seasonality), a tendency (trend) and a residue (or noise) composed of random or unpredictable fluctuation [START_REF] Rb | STL: A seasonal-trend decomposition procedure based on loess (with discussion)[END_REF]. Hence, STL-Residue is used to extract unusual pattern from measurements such as opening window impacts. The STL-Residue is calculated with Equation ( 4)

where Mt is the value of the measurement at time t and SeasonalityMt, TrendMt and ResidueMt are the value of the seasonality, trend and residue for a measurement at time t, respectively. The STL-Residue transformation of a measurement is further referred as residueMeasurement.

• EMA-Difference: is a feature combination pursuing the same goal as the STL-Residue transformation.

The EMA-Difference for a measurement is calculated using Equation ( 5) where Mt is the value of the measurement at time t, EMAMt is the value of the EMA for this measurement at time t and DiffMt is the value of the EMA-Difference for this measurement at time t. This feature consists of a difference between the data and the same data smoothed by an EMA. The EMA applied is composed of a strong tuned smoothing coefficient (α), in range between 0.01 and 0.10 to extract the measurement tendencies only. Therefore, a high (resp. low) value characterizes a measured point that is far from (resp. close to) the tendency and that is more likely to be unusual (resp. usual). Several smoothing coefficients were tested on the training set with similar observed results but the one selected for this study corresponds to a value of 0.04. The EMA-Difference transformation of a measurement is further referred as differenceMeasurement.

353

These transformations are applied on indoor measurements such as temperature, relative and absolute 

Data preparation and association

For this study, more than 800 different combinations of measurements and measurements transformations and associations were performed for every model. More specifically a base of 20 different Submitted to Building and Environment January 2023

associations, as presented in section 4.2.1, was processed for every indoor measurement (temperature, humidity and CO2 concentration). Based on the previous combination results, 175 additional combinations were performed for dual indoor measurement combinations (temperature + humidity and temperature + CO2). By following a similar process, around 100 different combinations for triple indoor measurements combination were created with around 300 more by adding outdoor measurements (temperature and humidity) to all previous combinations. Except for RFC models, features are normalized between 0 and 1 based on the training set characteristics.

Unlike other models, LSTM and GRU models are trained in a "many to one" way with an overlapping sliding window that moves one step ahead. The size of the observation window is set to three hours of data in order to find a good balance between time training and performances. As shown in Figure 7Erreur ! Source du renvoi introuvable. (7.a) on a three time step sample, the overlapping sliding windows was centered in a way that the target corresponds to the window-status at the center of the observation window. For reference and as presented in (7.b), the sliding window for real-time application targets the last window-status while it targets one time step-ahead for prediction purposes ( 

Results and discussion

Due to the specificities of LSTM, GRU and RFC models training, each of the 800 combinations has been performed ten times. Thus, only the model output with the best F1-score and accuracy results out of the ten was retained for evaluation. Since LDA and SVM models provide more stable outputs, each of the 800 combinations was only performed once. To not overload this study and since relative humidity systematically provides poorer results than absolute humidity, only absolute humidity based associations Submitted to Building and Environment January 2023 are presented. Hence, absolute humidity is further referred simply as humidity. All the following results are evaluated regarding their F1-score and alternative metrics presented in section 3.1 in order to discuss about measurements transformations, associations and combinations that might appear to be the most adequate to detect window openings. Models raw performances to recognize past window openings will be taken into consideration but are not the sole focus of this study. Thus, a comparison of the observed results between models and combination is preferred.

Transformations and associations impact on one indoor measurement based on F1-score

An overview of the performances of each model trained on the twenty bases transformations and associations (4.2.1) for every indoor measurement is presented in Table 5 Average F1-score and standard deviation of the 20 best results for each measurements combination and models. It appears that, regardless of the transformation or association used, indoor air humidity or CO2 concentration sole base combination (referred as Hin and Cin, respectively) does not provide good results on window-status detection with an average F1-score that, at best, usually does not exceed 0.39. On the other hand, indoor air temperature sole base combinations (Tin) seem to provide better and exploitable results with a higher F1-score average for all models and especially for RNN based models with an average value close to 0.70. However these results present a high dispersion that can be explained by looking at the F1-score results for the five base transformations without associations shown in Table 6. transformations such as the derivate, the STL-Residue or the EMA-Difference to perform better and increase the F1-score from 0.60 to 0.77 for LSTM and GRU models (representing an improvement of 25 %) and from around 0.00 to 0.6 for LDA, SVM and RFC models . Results including different measurements combination based on the same transformations and associations are presented in the following section. 

Measurements selection and combination impact based on F1-score

In order to have an overview of the best achievable performances of each model depending on the measurements combination used, the best twenty models are selected based on F1-score, for each performed combination. The average and standard deviation of those twenty best models outputs are presented in Table 7 with a total of 280 combinations out of the 800 originals for each model. Dual indoor measurements combinations (Tin + Hin and Tin + Cin) usually tend to provide higher opening window detection performances with a systematic increase of the maximum and average F1-score. For all models, indoor CO2 concentration combined with indoor temperature seems to provide significate higher performances than humidity and temperature combinations. This performance enhancement is reflected by a consistent improvement on F1-scores averages for all models compared to temperature and humidity combinations. The combination of the three indoor measurements (Tin + Hin + Cin) seems to provide only slight to no improvement for all models on window opening detection compared to temperature and CO2 combination. Based on F1-scores it appears that enough information are provided during training with this dual combination for LSTM, GRU, LDA and RFC models contrary to the SVM. Hence, LSTM and GRU models output on opening window detection seem to be capped around an average F1-score of 0.76 -0.78 whereas LDA, SVM and RFC models appear to be lower limited around a 0.72 -0.73 average score.

Lastly and LDA model apart, the addition of outdoor humidity measurement (Hout), outdoor temperature measurement (Tout) or both (Tout + Hout) to all indoor measurement combination tend to usually deteriorate all models window-opening detections with a common decrease of the maximum and the average F1-score. However, even if indoor and outdoor temperature combination appears to slightly deteriorate the best attainable performances with a drop of average F1-score for RNN models, it appears to be more relevant for LDA, SVM and RFC models than the sole use of indoor air temperature.

Of all models, LSTM and GRU appear to be the most efficient ones in order to detect window-status with the best average and maximum F1-scores and thus even with just one measurement. Both of these models, including RFC, tend also to be sensitive to the addition of, what appears to be, sub-optimal measurements and might need proper data selection or transformation. LDA and SVM seem to be more reliable with a low repartition of results and by their tendency to improve or to maintain their performances despite the addition of measurements that worsen other models results. On the contrary the RFC model appears to be the less consistent and sensitive one. To conclude, even if the combination of the three indoor measurements (Tin + Hin + Cin) seems to provide the best results on opening detection regardless of the model, two indoor measurements such as Tin + Cin or even Tin + Hin, are likely to be sufficient to provide good or great results for all models. Although Submitted to Building and Environment January 2023

very fluctuating with variations that are not only related to windows openings (occupancy, occupant position in the room, natural air movement) the indoor CO2 concentration measurement seems to be preferable to indoor humidity. Furthermore, depending on the transformation used, the sole indoor temperature measurement proves to be consistent enough to provide opening window detection results on par with dual or triune combinations. Due to the observed tendency of outdoor measurements to decrease opening detection performance for the majority of the models, this study will further be focused on indoor measurements.

Measurements selection and combination impact based on additional metrics

The additional evaluations metrics introduced in section 0 are used in order to provide more in-depth explanations on the differences observed and described previously. The number of true and false openings, the total time (in hour) of true and false opening and the opening and closing score are recorded as a boxplot repartition in Figure 8. This figure is constructed by using the same best twenty models output, based on F1-scores, for each performed combination as in Table 7. However, a specific focus on one to three indoor measurements combinations is made with Tin, Tin + Cin, Tin + Hin and Tin + Hin + Cin that represent a total of 80 combinations out of the 470 originals for each model. Regarding the measurements combination, Figure 8 shows that for all models and for all additional metrics, indoor temperature and CO2 combinations appear to perform slightly better than indoor temperature and humidity combinations. The difference seems to be mostly due to the fact that CO2 based combinations tend to have a higher capacity to get better maximum results for true openings detections (8.a), opening and closing score (8.c and 8.c').

This observation might be explained by the propensity of the CO2 concentration to fluctuate on higher levels than the humidity and thus, with an adequate transformation, to detect or to better define a few more openings. Furthermore, for all models, aside of GRU and LSTM, the use of a combination of minimum two indoor measurements provide a clear improvement on the results compared to the sole use of the indoor temperature even if the higher score tend to be close to all other combinations. Submitted to Building and Environment January 2023 Based on F1-scores presented in Table 7, GRU and LSTM models seem to produce similar results and follow identical tendencies. Figure 8 shows that whatever the combination is, LSTM models predictions seem to detect more false openings (8.a') that are rather small with a lower average total time of false opening (8.b') whereas GRU models detections appear to be more precise in defining opening and closing window-status (8.c and 8.c'). SVM and LDA models also seem to provide rather close opening detection results but SVM models predictions appear to provide the worst rate of true opening detection detected from all models that, apart from the sole indoor temperature combination, appear to be short. Submitted to Building and Environment January 2023 

Conclusion

This study presents a comparison of the performance of Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) and Random Forest Classifier (RFC) models in detecting window openings depending on several indoor and outdoor measurements combinations, transformations and associations in the field of building energy during heating season. The results showed that not only the choice of input data measurement was essential to obtain satisfactory results but also that it was neither always optimum nor required to add more information to the input of the models (e.g., outdoor measurements) and that a preliminary selection might be necessary. Hence, if required, the sole use of a temperature sensor with adapted transformation (e.g., temperature derivate, temperature STL-Residue or temperature EMA-Difference) might be sufficient to provide satisfying results for window-openings detection. Adding other indoor measurements appears recommended to obtain slightly more precise results for LSTM and GRU models and necessary for other models. In this case, the combination of indoor temperature and CO2 concentration measurement seems to be the one to be privileged for all models.

This work also showed that a simple transformation of the data beforehand (e.g., derivate) or more complex ones introduced in this paper (STL-Residue or EMA-Difference) could have a significant positive impact on the quality of the window-openings detections by turning unusable results (e.g., temperature

Figure 1

 1 Figure 1 Occupants behavior detection based on monitored data: (a) past detection, (b) present detection and (c) future prediction

Figure 3

 3 Figure 3 True and false opening examples

  Tuning parameters and hyperparameters SVM Regularization: range 0.1 to 100 ; Inverse radius: range 0.01 to 10 LDA Solver: Singular value decomposition, Least squares solution or Eigenvalue decomposition ; Shrinkage: Ledoit-Wolf lemma or None ; Absolute threshold: range 0.001 to 0.00001 RFC Number of trees: range 10 to 150, Minimum number of samples required to split an internal node: range 2 to 10 ; Minimum number of samples required to be at a leaf node: range 1 to 4 LSTM & GRU Number of hidden layers: range 0 to 2 ; Number of units (size): range 4 to 128 ; Dropout: range 0 to 0.5

4. 1 . Data description 4 . 1 . 1 .

 1411 Data collection and preparationThe raw data used for this study is made of 1 minute time step measurements collected over two years (from July 2019 to February 2021) in a northwest bedroom of an apartment located in Bordeaux citycenter (France). The raw data include indoor climate measurements (such as temperature, relative humidity and CO2 concentration), outdoor climate measurements (such as temperature and relative Submitted to Building and Environment January 2023 humidity) and window-status measurements. Sensors positions for all studied measurements are illustrated in Figure4.

Figure 4

 4 Figure 4 Studied sensors position

Figure 5

 5 Figure 5 Test dataset of indoor temperature, indoor CO2 and window-status

  ) Low impact openings that are characterized by a slow or inexistent fluctuation on indoor climate measurements that can be due to a window that is briefly or only slightly open, and (2) high impact openings which include all other and more impactful openings. Low impact openings represent 5 hours of open window-status time out of the 25.75 measured and are considered hard to classify for the models.

  humidity and CO2 concentration. They can be associated in order to provide different information from the data to the model. Hence, for every indoor measurement, 20 different associations are performed by combining the measurement without modifications and the transformations presented above. As shown in Table4by comparing both periods presented previously on the test set to the training set, derivation, STL-Residue and EMA-Difference transformations appear to provide information without large variation such as global or local seasonality by centering the data. The same effect can be observed on three weeks extracted from the training set with Figure6where dtemperature, residuetemperature and differencetemperature transformations remain centered contrary to the temperature measurement. These transformations are intended to push models to be less sensitive to measurements values or global variations and more on local dynamics. However some drawbacks might be observed: a lag effect can be noticed on EMA based transformations such as EMA-Difference whereas derivation transformations can provide data with a low variance that might be, depending on the model, delicate to exploit.

Figure 6

 6 Figure 6 Applied data transformation and combinations representation on 3 training weeks

Figure 7

 7 Figure 7 Training window for LSTM and GRU models for: (a) past window-openings, (b) real-time window-openings and (c) window-openings prediction

  For air humidity measurements, it appears that EMA-Difference and STL-Residue based transformations increase models performances compared to other transformations or base measurement. Best results are observed with differencehumidity for both LSTM and GRU models with an F1-score around 0.70. Regarding air temperature, the dispersion might be caused by the difficulty of all models to provide results when trained on untransformed temperature, EMAtemperature or some other measurements transformations including them. These results might be explained by the differences between the training and testing set. Testing set measurements reach values and dynamics unseen during the training phase, allowing less contextual Submitted to Building and Environment January 2023

Figure 8

 8 Figure 8 Additional evaluation metrics for every model and measurement combination

  (8.a) while LDA models appears to heavily underperform in closing window precision (8.c'). The RFC model seems to be the most sensitive model with the highest number of true opening (8.a) and false opening (8.a')

Table 2

 2 Training dataset measurements characteristics

	Measurement name	Maximum value	Minimum value	Mean	Standard deviation
	Indoor temperature (°C)	23.0	19.6	21.7	0.5
	Indoor relative humidity (%)	69.8	29.6	49.7	6.1
	Indoor CO2 concentration (ppm)	2000.0	436.2	727.3	237.4
	Outdoor temperature (°C)	23.5	4.8	12.3	2.9
	Outdoor relative humidity (%)	93.6	36	71.2	10.2
	Window-status (0-1)	1	0	-	-
	4.1.2. Data analysis				

Figure

5

provides an overview of the test data used to evaluate every model and highlights two periods with (5.i) and without occupants (5.ii). Submitted to Building and Environment January 2023

Table 3

 3 Test dataset measurements characteristics by occupancy period

	Measurement name	Maximum value	Minimum value	Mean	Standard deviation
	(1) Indoor temperature (°C)	22.4	17.3	21.6	0.6
	(2) Indoor temperature (°C)	22.0	19.8	20.7	0.7
	(1) Indoor relative humidity (%)	58.1	26.5	43.4	6.3
	(2) Indoor relative humidity (%)	54.0	34.0	42.8	5.8
	(1) Indoor CO2 concentration (ppm)	1700.7	440.7	932.9	236.9
	(2) Indoor CO2 concentration (ppm)	526.2	411.5	449.2	17.8

  1.1: STL-Residue and EMA-Difference. These features are built to reflect the impact created by a window opening between two

	• Derivation: is a feature transformation used in order to capture sudden variations on measurements
	by differencing seasonal and cyclic drifts (low successive derivate values) and sudden drops such as
	windows opening (higher successive derivate values). The derivation transformation of a

different environments, indoors and outdoors. Thus, window openings influence ambient indoor measurements by creating a data point or successive data points with specific values that locally seem to be inconsistent with the rest of the data. In other words, window openings are represented by specific patterns that tend to differ from the tendency. Therefore, as shown in Table

4

and represented in , four features transformations and combinations are applied in this study with the aim of extracting information that differentiate open and close window-status in measurements:

• Exponential Moving Average (EMA): is a feature transformation based on a smoothing technique used to reduce measurements noises and only capture important patterns such as windows opening.

The EMA for a measurement is calculated following Equation

[START_REF] Ramesh | Life cycle energy analysis of buildings: An overview[END_REF] 

where Mt is the value of the measurement at time t, EMAMt is the value of the EMA for this measurement at time t and α is a constant smoothing (or weight) coefficient ranged between 0 and 1. For this study, an EMA is applied on the data with a light tuned smoothing coefficient (α) of 0.10, previously chosen in range between 0.10 and 0.25. A smoothed measurement is referred as EMAMeasurement.

measurement is presented with Equation (3) where Mt is the value of the measurement at time t, dMt is the value of the derivate of this measurement at time t and Δt is a time step value. A derivate measurement is further referred as dMeasurement. Submitted to Building and Environment January 2023

Table 4

 4 Applied data transformation on train and test set temperature measurements

	Transformation	Period	Maximum	Minimum	Mean
	Temperature	Train	23.0	19.6	21.7
		Test (1)	22.4	17.3	21.6
		Test (2)	22.0	19.8	20.7
	EMA smoothing	Train	23.0	20.2	21.7
		Test (1)	22.2	18.7	21.5
		Test (2)	22.0	19.8	20.9
	Derivation				
	(				

Table 5

 5 Average F1-score and standard deviation of the 20 best results for each measurements combination and models

	F1-score: mean ± standard deviation	GRU	LSTM	LDA	SVM	RFC
	Indoor absolute humidity (Hin)	0.35 ± 0.23	0.39 ± 0.20	0.11 ± 0.11	0.18 ± 0.16	0.21 ± 0.13
	Indoor CO2 (Cin)	0.28 ± 0.15	0.19 ± 0.14	0.01 ± 0.01	0.04 ± 0.04	0.18 ± 0.08
	Indoor temperature (Tin)	0.				

73 ± 0.07 0.68 ± 0.18 0.54 ± 0.24 0.38 ± 0.28 0.46 ± 0.21

  

Table 6

 6 F1-score for indoor humidity and temperature base transformations

	Transformation F1-score	GRU	LSTM	LDA	SVM	RFC
	Tin	0.60	0.57	0.00	0.04	0.04
	EMA.Tin	0.54	0.00	0.00	0.00	0.03
	Derivate.Tin	0.77	0.75	0.25	0.25	0.50
	EMA-Difference .Tin	0.75	0.72	0.65	0.62	0.60
	STL-Residue.Tin	0.77	0.70	0.55	0.54	0.49
	Hin	0.00	0.26	0.00	0.00	0.04
	EMA.Hin	0.00	0.00	0.00	0.00	0.06
	Derivate.Hin	0.43	0.40	0.16	0.14	0.07
	EMA-Difference.Hin	0.72	0.71	0.13	0.17	0.41
	STL-Residue.Hin	0.57	0.52	0.41	0.40	0.35

Table 7

 7 Average F1-score and standard deviation of the 20 best results for each measurements combination and models

	F1-score: average ± standard deviation	GRU	LSTM	LDA	SVM	RFC
	Indoor absolute humidity (Hin)	0.35 ± 0.23	0.39 ± 0.20	0.11 ± 0.11	0.18 ± 0.16	0.21 ± 0.13
	Indoor CO2 (Cin)	0.28 ± 0.15	0.19 ± 0.14	0.01 ± 0.01	0.04 ± 0.04	0.18 ± 0.08
	Indoor temperature (Tin)	0.73 ± 0.07	0.68 ± 0.18	0.54 ± 0.24	0.38 ± 0.28	0.46 ± 0.21
	Tin + Tout	0.70 ± 0.03	0.70 ± 0.03	0.67 ± 0.03	0.66 ± 0.04	0.62 ± 0.08
	Tin + Hin	0.76 ± 0.01	0.75 ± 0.02	0.69 ± 0.01	0.68 ± 0.03	0.65 ± 0.04
	Tin + Hin + Tout	0.71 ± 0.03	0.69 ± 0.05	0.68 ± 0.02	0.68 ± 0.04	0.63 ± 0.11
	Tin + Hin + Hout	0.71 ± 0.03	0.71 ± 0.02	0.69 ± 0.01	0.66 ± 0.04	0.53 ± 0.05
	Tin + Hin + Tout + Hout	0.73 ± 0.03	0.72 ± 0.02	0.70 ± 0.01	0.68 ± 0.03	0.53 ± 0.07
	Tin + Cin	0.78 ± 0.01	0.76 ± 0.01	0.72 ± 0.01	0.70 ± 0.01	0.73 ± 0.02
	Tin + Cin + Tout	0.70 ± 0.03	0.65 ± 0.05	0.71 ± 0.02	0.67 ± 0.02	0.71 ± 0.04
	Tin + Hin + Cin	0.78 ± 0.01	0.76 ± 0.01	0.71 ± 0.01	0.72 ± 0.01	0.73 ± 0.01
	Tin + Hin + Cin + Tout	0.70 ± 0.05	0.64 ± 0.07	0.71 ± 0.01	0.69 ± 0.04	0.71 ± 0.04
	Tin + Hin + Cin + Hout	0.73 ± 0.02	0.70 ± 0.02	0.72 ± 0.01	0.70 ± 0.02	0.68 ± 0.02
	Tin + Hin + Cin + Tout + Hout	0.72 ± 0.01	0.69 ± 0.03	0.73 ± 0.01	0.69 ± 0.02	0.65 ± 0.02

Table 8

 8 Average F1-score and standard deviation of the 20 best results for each measurements combination and models for past and real time window-status detection

	F1-score:		GRU	LSTM
	average ± standard deviation		
		past	0.73 ± 0.07	0.68 ± 0.18
	Tin	real time	0.63 ± 0.17	0.59 ± 0.17
	Tin + Tout	past	0.70 ± 0.03	0.70 ± 0.03
		real time	0.59 ± 0.10	0.56 ± 0.05
	Tin + Hin	past	0.76 ± 0.01	0.75 ± 0.02
		real time	0.71 ± 0.02	0.67 ± 0.03
	Tin + Cin	past	0.78 ± 0.01	0.76 ± 0.01
		real time	0.76 ± 0.01	0.72 ± 0.02
	Tin + Hin + Cin	past	0.78 ± 0.01	0.76 ± 0.01
		real time	0.77 ± 0.01	0.73 ± 0.02
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To conclude, although all models in Figure 8 present an average number of true openings of 10 to 13 out of the 18 existing (represented as a red line in 8.a), this result should be balanced. As explained in 4.1.2, several openings have no or little impact on the indoor environment, and thus are harder (or impossible) to detect. However, all models tend to detect an average of 18 to 22 hours of opening out of the 25.75 existing (represented as a red line in 8.b) for an average of 30 minutes to 2 hours of false opening. Additionally, LSTM and GRU models show satisfying results with the sole use of indoor temperature by detecting on average 84 to 88 % of opening time (21 to 22 hours out of 25.75) for an average of 1.5 to 2 hours of false openings while the use of a second measurement tend to be needed for other models to present an average of 66 to 77 % of opening time (17 to 20 hours out of 25.75). These results tend to show that most of the impactful openings are detected over this one month test period. The major negative point and realistic way to improve seems to be based on improving opening and closing precision that always seem to be more than 1 time step too early or late with and average score of 0.50 or 0.60.

Measurements transformations and association impact based on F1-score

In order to have an overview of the best performance of each model depending on the indoor measurements transformations and associations used, the best twenty models output, based on F1-score, for two and three indoor combinations (Tin + Cin, Tin + Hin and Tin + Hin + Cin) are studied. A boxplot of these twenty best models outputs is presented in Figure 9 with a total of 60 combinations out of the 450 originals for each model. All measurements (referred as M) transformations and associations that are not part of the top twenty are not represented on this figure. Similarly, those under or low represented are displayed as a box with a small repartition or a small horizontal line.

Regarding humidity transformations and associations the three most recurrent and efficient for all models appear to be, by far, solely composed of dhumidity (9.c.13), differencehumidity (9.c.15) or both (9.c.14).

Contrary to differencehumidity that is a measurement transformation which is sufficient to detect window-opening as detailed in section 5.2, dhumidity seem to perform better combined with other measurements. For temperature transformations and associations a distinction has to be made between models. The sole dtemperature (9.a.13) seem to be consistent for LSTM and GRU models whereas it has to be combined with other transformations for LDA, SVM and RFC models (9.a.3, a.7, a.8, a.9 and a.14). For these last models, a large amount of temperature transformation association seems to be preferred in order to Submitted to Building and Environment January 2023

get good results contrary to RNN models that appear to perform well with just one or no transformation associations such as dtemperature, differencetemperature or residuetemperature (9.a.13, a.15, a.18). Contrary to the previous observations, a consensus doesn't seem to appear for CO2 transformations associations.

Associations based on dCO2 or a smoothed EMACO2 seems to be a bit more present and thus effectives ( performed on models that are not yet widely used on this domain, several limitations remains. Most transformations applied on measurements (STL-Residue, derivate or EMA-Difference) are built to reflect an impact created by a window opening between two environments with different characteristics (e.g., air temperature, CO2 concentration). Thus, despite showing great results by improving and stabilizing models performances, they might not be suitable in other climates or seasons and need to be carefully evaluated beforehand. Therefore, a similar process will be followed on other seasons in order to highlight appropriate measurements combinations, transformations and associations.

Regarding measurements selection, LSTM and GRU models achieve satisfying results with the sole use of indoor temperature measurements although the addition of indoor CO2 concentration appears to stabilize and slightly improve their results. For SVM, LDA and RFC models, the use of minimum both indoor temperature and CO2 concentration tend to be recommended even if a small improvement in results can be observed by adding indoor humidity measurement.

It appears that, for untransformed data, results observed in other studies are consistent regarding the most important features that are indoor and outdoor air temperature [START_REF] Dai | A review of studies applying machine learning models to predict occupancy and window-opening behaviours in smart buildings[END_REF]. However, the observed tendency tend to change when transformations are applied on indoor measurements and results deterioration can be observed by adding outdoor measurements. Furthermore, it is important to note that, as experienced by [START_REF] Markovic | Learning short-term past as predictor of window opening-related human behavior in commercial buildings[END_REF], air humidity appears to have a low impact on models.

Additional metrics introduced in this study provided a different perspective on models performances regarding window-status detection. These metrics offer a field perspective approach on models results that might allow selecting the model that best suits the needs for a project (e.g., by privileging the number of detected openings over their accuracy) or comparing results between relevant studies. However, unlike commonly used metrics adapted to unbalanced classes such as F1-score, their implementation is heavy and requires investigating simultaneously six different metrics.

A similar process is followed for real-time detection and future window-status prediction. The same work, conducted on real-time detection, shows identical results for RFC, LDA and SVM models as those presented in Table 7. However, an average drop of 0.01 to 0.10 on the average F1-score is observed for LSTM and GRU models. These differences are presented for both models in Table 8. It appears that LSTM performs significantly worse than the GRU for real-time detection despite being still better than other models. These differences can mainly be explained with additional metrics and are due to a drop in accuracy regarding window opening scores. In addition a predictive approach is currently in progress. Submitted to Building and Environment January 2023

sole or with other combinations) to satisfactory results. Depending on the model used, specific association of measurement transformation might be appropriate.

Furthermore, the additional metrics evaluations show that despite satisfying F1-scores results, the number of openings detected by all models may seem low (10 to 13 predicted out of 18 measured in total) but several openings have no or little impact on the indoor environment (a temperature decrease of 0.2°C for instance) and thus, does not offer enough information to the models to detect them. However, all models tend to detect an average of 18 to 22 hours of opening out of the 25.75 existing for an average of 30 minutes to 2 hours of false opening. These results tend to show that the most impactful openings are detected over this one month test period. Thus, this may not be an issue depending of the application of these models, such as the estimation of the thermal losses of a building linked to window openings for example.