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Blaise Hanczar 1,*
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Abstract
Motivation: The increasing availability of high-throughput omics data allows for considering a new medicine centered on individual patients.
Precision medicine relies on exploiting these high-throughput data with machine-learning models, especially the ones based on deep-learning
approaches, to improve diagnosis. Due to the high-dimensional small-sample nature of omics data, current deep-learning models end up with
many parameters and have to be fitted with a limited training set. Furthermore, interactions between molecular entities inside an omics profile
are not patient specific but are the same for all patients.

Results: In this article, we propose AttOmics, a new deep-learning architecture based on the self-attention mechanism. First, we decompose
each omics profile into a set of groups, where each group contains related features. Then, by applying the self-attention mechanism to the set of
groups, we can capture the different interactions specific to a patient. The results of different experiments carried out in this article show that
our model can accurately predict the phenotype of a patient with fewer parameters than deep neural networks. Visualizing the attention maps
can provide new insights into the essential groups for a particular phenotype.

Availability and implementation: The code and data are available at https://forge.ibisc.univ-evry.fr/abeaude/AttOmics. TCGA data can be
downloaded from the Genomic Data Commons Data Portal.

1 Introduction

The disruption of different biological processes (BPs) can neg-
atively affect an organism and lead to a disease state. Early di-
agnosis plays an important role in precision medicine in order
to improve clinical decision-making. The development of
high-throughput methods influenced precision medicine by
enabling easy access to a large amount of biological informa-
tion for each patient, known as omics profile. Omics profiles
are high-dimensional complex signatures resulting from inter-
actions of many molecular entities. The first common step in
most machine learning approaches used in precision medicine
is a feature selection procedure that reduces the data’s size to
construct a classifier from a single-omics (Kourou et al.
2015). As the selection procedure is decoupled from the pre-
diction task, only selected features are used for downstream
predictions (Liu et al. 2019). Using only selected features limit
the model’s capacity to extract hidden information from the
omitted features. Deep learning, on the contrary, can extract
and exploit the complete information from all features and
their interactions. This characteristic may be useful to achieve
better-predicting performances.

Following the recent successes of deep learning in computer
vision or natural language processing (LeCun et al. 2015), dif-
ferent deep learning architectures were successfully applied to
omics data. It allows for a high level of abstraction of features
with nonlinear modeling and can handle complex

dependencies in data to create informative representations.
Assuming that omics data does not have any particular struc-
ture, unlike images or texts, multilayer perceptrons (MLP)
were used to perform predictions (Yu et al. 2021) and autoen-
coders (AE) for dimension reduction (Gore and Azad 2022).
Other approaches tried to integrate a structure in the model
by embedding biological knowledge and applying convolu-
tional neural networks (CNN) (Elbashir et al. 2019) or graph
neural networks (GNN) (Ramirez et al. 2020).

Cellular functions are governed by the combined action of
multiple molecular entities which are specific to a patient. The
expression of one gene may impact the expression of other
genes differently in different patients. With classical deep
learning approaches, these interactions which are learned dur-
ing training, are assumed to be identical for all patients in the
inference phase. It would be more beneficial to compute fea-
ture interactions that are specific to each patient. Self-
attention can be used to improve the representation of the fea-
tures vector by incorporating dynamically computed relation-
ships between elements of the vector. It has been shown that
the transformer architecture’s promising results extensively
rely on attention mechanisms (Vaswani et al. 2017).

Here, we propose a new method based on the self-attention
mechanism to capture interactions between different molecu-
lar entities in order to predict the phenotype of patients, e.g.
cancer types or the risk of death from omics data. Using a
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self-attention mechanism allows the model to capture feature
interactions specific to each patient dynamically. Applying
self-attention on high dimensional vectors such as omics pro-
files is challenging as the self-attention memory requirements
scale quadratically with the number of elements. To overcome
this problem, we propose to consider groups of features and
apply self-attention to these groups. The architecture was
tested on three different omics data: gene (mRNA) expression,
methylation (DNAm), and micro-RNA (miRNA) expression
and was compared with state-of-the-art deep learning-based
methods. The results show that our proposed architecture bet-
ter considers feature interactions in omics data and improves
the model performance.

2 Related work

Different deep learning approaches have already been tested
on omics data: CNN, GNN, MLP, AE, and variational
autoencoder (VAE). Hanczar et al. (2022) showed that MLP
outperforms the classic machine learning methods on large
gene expression datasets. Yu et al. explored different MLP
architectures by varying the number of neurons in each layer
and the number of layers. They showed that wider networks
perform better than deeper ones. DeepCC (Gao et al. 2019)
applies an MLP on biologically informed features by trans-
forming gene expression data into a functional spectrum, i.e.
a list of enrichment scores calculated by gene set enrichment
analysis. There are also other approaches that included bio-
logical knowledge in the design of the neural networks by
restricting connections between neurons to known biological
relations, such as Gene Ontology (GO) (Bourgeais et al.
2021) or REACTOME (Hao et al. 2021).

A VAE unsupervised training has been used as a pre-
training for an MLP classifier (Levy et al. 2020), and the VAE
latent space has also been directly passed to a classifier (Wang
and Wang 2018). Another approach constrained the latent
space to learn relevant features for the classification by end-
to-end training a network on both the unsupervised and su-
pervised tasks (Gore and Azad 2022).

Promising results of CNN in computer vision inspired its ap-
plication in precision medicine. Different strategies were devel-
oped to create a 2D image from an expression vector. Some
approaches reshaped a 1D omics vector into a 2D image to ex-
ploit the capacity of CNN architectures to extract relevant vi-
sual patterns (Elbashir et al. 2019; Mostavi et al. 2020;
Rukhsar et al. 2021). Ma and Zhang (2019) created an image
by transforming an expression vector into a tree map based on
the Kyoto encyclopedia of genes and genomes Brite structure.
Instead of forcing a 2D representation, 1D convolution has
been applied to an ordered expression vector (Mostavi et al.
2020; Zhao et al. 2020). In Zhao et al. (2020), the expression
vector was reordered according to the chromosomal locations
before applying a 1D inception architecture. Expression profiles
have also been represented as graphs to represent the interac-
tions of the different molecular entities. A graph convolutional
network based on a co-expression network or a protein–pro-
tein interaction (PPI) network was used to predict cancer types
from gene expression (Ramirez et al. 2020). Ramirez et al.
(2021) explored the combination of a co-expression (CoExp)
graph and a graph constructed from the GeneMania database.

In Levy et al. (2021), an architecture inspired by the capsule
network was used to predict the central nervous system

tumors subtype. Methylation features have been grouped into
capsules to create context-specific embeddings, and dynamic
routing was then applied to make a prediction.

Deep learning architectures using attention mechanisms
have been little explored for the application of omics data.
Some approaches helped the network to focus on relevant
genes for the predicted phenotype by computing feature im-
portance scores with a small neural network (Beykikhoshk
et al. 2020; Lee 2022). Those methods were inspired by the
attention mechanism but did not use the original dot prod-
uct self-attention (Vaswani et al. 2017) layers directly on
the omics data. Computing self-attention on a high dimen-
sional vector is hardware limited as memory requirements
scale quadratically with the number of elements. The Gene
transformer (Khan and Lee 2021) was the first architecture
to apply self-attention to mRNA data. The authors pro-
posed to use 1D convolution layers combined with maxi-
mum pooling to reduce the dimension of the gene
expression vector. Using a pooling layer is equivalent to a
dimension reduction that does not consider all possible fea-
ture interactions.

In our approach, AttOmics, we propose to embed groups
of features in a lower dimension by considering all interac-
tions inside this group and a new way of applying self-
attention (Vaswani et al. 2017) to omics data that takes into
account inter-group interactions. AttOmics can be applied to
vectors of various sizes, and consequently, detect feature
interactions in different omics data.

3 Model architecture
3.1 Architecture details

The model includes a grouping module and an encoder fol-
lowed by a predictor, illustrated in Fig. 1a. Instead of consid-
ering each feature individually, features are divided into
different groups. The encoder is a stack of n blocks used to
construct a new representation of the inputs. Each block is
formed of a grouped fully connected network (gFCN) module
where each group is projected into a lower dimension with a
fully connected network (FCN). Segregating features in
groups restrict the potential interactions between features to
the ones inside the same group. Multihead self-attention
(MHSA) is applied to the set of groups to recover all possible
interactions between groups. Around the self-attention block,
a residual connection is added before applying a normaliza-
tion. The encoder output is transmitted to an FCN used as the
predictor.

3.1.1 Grouped FCN

Let X 2 R
p be a training example where p is the number of

features and Y is the associated label. The training example X
is split into groups according to a grouping strategy (see
Section 3.2), XG ¼ fXgig1� i� k, where k is the number of
groups. For each group Xgi , a group embedding is indepen-
dently computed as Xgi

0 by projecting it into an s-dimensional
space with an FCN, a succession of fully connected layers
(FCL) (Fig. 1b).

Each FCL is the composition of an affine transformation of
its inputs with a rectified linear unit (ReLU) activation
function:

FCLðxÞ ¼ ReLUðWxþ bÞ ¼ maxð0;Wxþ bÞ
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After processing each group Xgi
by the successive FCL, we

obtain the set of group embeddings X0G:

X0G ¼ fXgi

0 2 R
sg1� i� k;

where Xgi
0 ¼ FCNðXgiÞ.

Each group projection is only computed using elements
from the same group. To create a representation of the ex-
pression vector based on all possible interactions, MHSA is
then applied to X0G.

3.1.2 Multihead self-attention

MHSA is applied to construct a new representation of the
groups, U ¼ fUgig1� i� k, by allowing them to interact with
each other (Fig. 1c).

MHSA is performed with h different heads to learn differ-
ent types of interactions. For each head j, self-attention is ap-
plied to each group gi (1 � i � k), in order to obtain:
UðjÞ ¼ fUðjÞgi 2 R

lg1� i� k, where l ¼ s
h 2 N.

U
ðjÞ
gi is defined by

UðjÞgi
¼ AðjÞgi

� ½Xg1
0 �WV

j ; . . . ;Xgk
0 �WV

j �
T ;

where A
ðjÞ
gi is the attention vector computed by the usual dot

product attention (Fig. 1d) (Vaswani et al. 2017):

A
ðjÞ
gi ¼ softmax

�
½AðjÞgi;g1 ; . . . ;A

ðjÞ
gi;gk
�
�
;

A
ðjÞ
gi;gk
¼
ðXgi 0 �W

Q
j Þ

T � ðXgk

0 �WK
j Þffiffi

s
p :

Projection matrix WQ
j (respectively WK

j and WV
j ) maps the

group Xgi
0, from an s-dimensional space to an l-dimensional

space. In the transformers formulation Xgi
0 �WQ

j ; Xgk

0 �WK
j ,

and Xgi
0 �WV

j are called, query, key, and value, respectively.

Each element of Ugi
is obtained by concatenating the repre-

sentation of all groups in the different heads and projecting
each group to an s-dimensional space using a projection ma-
trix WO 2 R

s�s as:

Ugi
¼ concat

�
Uð1Þgi

; . . . ;UðhÞgi

�
�WO;

3.1.3 Residual connection and normalization

The value of Xgi
0 is added to Ugi

, through a residual connection
to prevent vanishing gradients.

The last step in the encoder module consists of applying a
normalization to obtain the final representation Zgi of group
gi defined as

Zgi
¼ NormðXgi

0 þUgi
Þ:

The output of an encoder block is Z ¼ fZgi
2 R

sg1� i� k,
which is a representation of the groups capturing their
interactions.

3.1.4 Prediction module

The vectors Zgi are concatenated into a new vector Z0 2 R
ks.

The output of the encoder Z0 is then fed to a FCN followed
by a normalization layer to predict the cancer type or the
prognosis Ŷ (Fig. 1a).

For classification tasks, the output layer has one neuron per
class, and a softmax activation function is applied to get the
probability vector P ¼ ½pc�1� c�M, where M denotes the num-
ber of classes. For the survival analysis, the output is a single
neuron with a linear activation function.

3.2 Grouping strategies

The AttOmics architecture can be applied to any group speci-
fication. We explore different grouping strategies such as

gFCN

MHSA

Normalization

FCN

Normalization

Outputs

Scaled Dot Product Attention

Linear Linear Linear

Concat

Linear

h

MatMul

Scale

SoftMax

MatMul

Grouping

(a)(c)(d) (b)

Encoder

Predictor

FCN FCN FCN FCN

Figure 1. The AttOmics architecture is composed of a grouping module, an encoder and a predictor (a). The grouping module transforms the input

features into a set of different groups. In each of the n encoder blocks, each group is projected into a lower dimensional space (b). Interactions between

the different groups is computed with the MHSA (c). In each of the h heads of the MHSA, a scaled dot product attention is computed between the

different groups (d). A residual connection is added around the MHSA before applying a normalization. The new representation obtained with the encoder

is transmitted to the predictor, an FCN followed by a normalization.
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random groups, groups obtained with clustering, groups
based on biological information like the GO (Gene Ontology
Consortium 2021) or the hallmarks collection available in
MSigDB (Liberzon et al. 2015).

3.2.1 Random

With the random strategy, groups are formed by randomly
sampling the input features in groups of similar sizes, p/k.

3.2.2 Gene ontology

We used BP gene ontology as it groups different molecular ac-
tivities in a shared process which are more likely linked to the
same cancer phenotype. To avoid possible problems with
selecting the GO terms (i.e. groups) of interest, we restrict our-
selves to terms available in GO slims.

Inside the BP slim ontology, a gene can belong to more
than one group; on average, they belong to two groups.
Before applying self-attention, each group must be projected
into the same dimensional space. Each group is projected with
a different number of layers to have the same reduction ratio
across different groups. This grouping strategy can only be
applied to mRNA data.

3.2.3 Hallmarks

In the MSigDB hallmarks collection (Liberzon et al. 2015),
there are 50 groups. Each one represents a well-defined BP.
Each group is projected with a different number of layers to
ensure identical reduction ratio across different groups. This
grouping strategy can only be applied to mRNA data.

3.2.4 Clustering

The clustering strategy groups features based on their expres-
sion levels. Traditional clustering methods, like K-Means or
hierarchical clustering, can return sets of highly unbalanced
clusters that may negatively affect the efficiency of our model.
Large groups would require many parameters to be projected
into a space with a dimension lower than the smallest group.
Group unbalances would also imply a high compression of
larger groups and almost no compression for the smallest
group. To prevent this, we used constrained K-means cluster-
ing to ensure comparable group sizes (Bradley et al. 2000).

3.3 Model training

For classification problems, our model is trained end-to-end
with a weighted cross-entropy loss to account for class
imbalance:

LðhÞ ¼ �
XM
c¼1

wcYc log ðpcÞ;

where wc denotes the weight (inversely proportional to the
size) of class c 2 f1; . . . ;Mg and h the model parameters.

For survival analysis, our model is end-to-end trained with
a partial log-likelihood loss, as proposed in DeepSurv
(Katzman et al. 2018):

LðhÞ ¼ 1

Ndi¼1

X
i:di¼1

�
Ŷ i � log

X
j2RðTiÞ

gj

�
;

where di specifies if the event occurred for patient i, Ti repre-
sents the time associated to the event and Ndi¼1 is the number
of patients for which the event occurred (di ¼ 1). gi ¼ eŶ i is

the predicted risk for patient i. RðTiÞ ¼ fj : Tj > Tig is the
risk set, the set of patients who are still at risk of death at
time Ti.

4 Experiments
4.1 Data

TCGA data were used to evaluate our proposed approach
AttOmics. We collected DNA methylation, gene expression,
and miRNA expression data for 8416 patients of 19 different
cancers and 361 normal samples from the GDC Data Portal
(https://portal.gdc.cancer.gov/). FFPE samples and bad
replicates were removed according to TCGA consortium
recommendation. Methylation data was restricted to
the probes common to both HumanMethylation27 and
HumanMethylation450 platforms. No feature selection was
applied, and data were standardized to a zero mean and unit
variance.

Patients with incorrect survival information were removed:
8349 patients were available for survival prediction. A total
of 70% of the data are used as a training set, 15% forms the
validation set, and the remaining 15% forms the test set while
preserving the proportion of each cancer.

The training set is used to perform two predicting tasks:
phenotype prediction, 19 different cancers and normal, and
survival risk prediction.

4.2 Comparative study

For a comprehensive and comparative evaluation, we choose
three deep learning architectures for comparison: CNN,
GNN, and MLP.

For the CNN (CNN1d), we ordered features based on their
position on the genome, then used a 1D convolution, fol-
lowed by a ReLU activation and a maximum pooling. For the
GNN architecture, two graphs were used: PPI (GNN—PPI)
and co-expression (GNN—CoExp) graphs. The PPI graph is
based on data available in the STRING database (Szklarczyk
et al. 2020) and was constructed by retaining only high-
confidence links: edges with a score higher than 700. The
CoExp graph was constructed similarly to Ramirez et al.
(2020). The Spearman correlation matrix between gene
expressions was computed. If the correlation was higher than
a threshold and the associated P-value was lower than .05,
then an edge between the two features was added to the
graph. For mRNA and miRNA, the correlation threshold was
set to 0.6. For DNAm, a 0.7 correlation threshold was used.
Self-loops were not considered in the graph construction, and
isolated nodes were removed. The PPI graph and the CoExp
graph for mRNA have 9384 genes in common. Each graph is
described in the Supplementary Table S2. MLP architecture
has two hidden layers with ReLU activation and makes use of
batch normalization. We also consider three state-of-the-art
non-deep-learning models for comparison: support vector
machine (SVM), random forest (RF), and extreme gradient
boosting (XGBoost). For the non-deep-learning approaches,
the 2000 most discriminative features are selected with a t-
test-based selection.

The hyperparameters of each approach are tuned on each
omics data with a random search to achieve the best perform-
ances. The different values tested for each parameter are de-
fined in the Supplementary Table S3. For each
hyperparameter at each search iteration, a value is randomly
drawn from the defined range. A model is constructed using
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these parameters, trained on the training set, and evaluated
on the validation set. The selected hyper-parameters for each
architecture are presented in the Supplementary Table S5.

AttOmics is trained end-to-end using the Adam optimizer
with a learning rate of 0.0001 and a batch size of 512. The
maximum number of epochs was set to 100. An early stop-
ping strategy is deployed to avoid over-fitting with a patience
of 8 and a delta of 0.001 on the validation metric between
two epochs.

For the classification task, models were evaluated with the
error rate. Prognosis prediction is evaluated with the concor-
dance index (Harrell et al. 1996). It estimates that for a pair
of individuals, the predicted risks, g, are concordant with their
actual survival times.

C� Index ¼
P

i;j1Tj <Ti
1gj>gi

djP
i;j1Tj <Ti

dj

A C� Index ¼ 0:5 represents a random prediction and C�
Index ¼ 1 corresponds to a perfect ranking. Results for the
prognosis task are presented in the Supplementary Material.

5 Results
5.1 Hyperparameters choice

We investigate the impact of the main hyperparameters on the
model error rate by applying a random search procedure. For
each hyper-parameter, a random value is drawn from a set of
predefined possible values. A model is trained with selected
hyperparameters on the training dataset. For each grouping
strategy, 1500 models are trained. The performance metrics
reported here are estimated on the validation set. The results
for the main hyperparameters of this experiment are pre-
sented in Fig. 2. The performance obtained for each tested
value is represented with a boxplot.

The encoder’s residual connection and the choice of nor-
malization type greatly impact the performances. Adding a re-
sidual connection in an encoder block significantly impacts
the model’s performance. It stabilizes the model performances
(Fig. 2a). We explore two types of normalization in the en-
coder: layer normalization (LayerNorm) and batch normali-
zation (BatchNorm). Layer normalization gives better and
more stable results (Fig. 2b). The different hyperparameters
which control the model architecture impact the performances
differently. A sufficient number of encoder blocks is required
to achieve the best performances. There is an 11% error rate
improvement from 1 to 3 blocks. Beyond three blocks, there
is no error rate decrease (Fig. 2d). The number of heads used
in the MHSA layer has no significant impact on the validation
error rate. There is only a 0.002 mean validation error rate
difference between 1 and 4 heads (Fig. 2c).

Another important hyperparameter of the architecture is
the number of groups (Fig. 2e). An increase in the number of
groups impacts the model performances. There is a 10% in-
crease in the error rate between 10 and 100 groups. In the
range of 10–50 groups, the impact on the performances is lim-
ited. The maximum mean error rate difference observed is
0.004, which is less than 1% of variation. Increasing the num-
ber of groups also impacts the model complexity as self-
attention scales quadratically with the number of groups.

The selected hyperparameters for each grouping strategy
and each omics data are presented in the Supplementary
Table S4.

5.2 Comparison with state of the art

Despite the broad adoption of high throughput methods in
personalized medicine, the availability of omics data from
cancer patients remains limited. We explore the impact of the
training database size on the performances of AttOmics and
other deep-learning architectures by training the different
models on a subset of the training set. The different subsets
are created by randomly sampling 10%, 30%, 50%, and
70% of the training set while preserving class proportions. To
prevent data leakage, structures computed from the training
set, like CoExp graphs or clustered grouping, are recomputed
with the selected subset. For each subset, five models are
trained. The reported performance metrics are estimated on
the test set.

Figure 3 shows the average and standard deviation of the
error rate on the cancer-type classification task according to
the training set size for all tested methods. A Wilcoxon test is
used to assess the significance of the results, P-values are cor-
rected for multiple testing with a two-stage approach describe
in Benjamini and Hochberg (1995) (Supplementary Table
S8). The best error rates are achieved with the highest number
of samples.

CNN1d is the worst model across omics when trained on
the whole training set. Convolutions are more suited for struc-
tured data, and even the incorporation of a structure in the
data based on the chromosomal location is a constraint that
limits the range of possible interactions. Only genes in the
same convolution window interact with each other, which
does not consider long-range interaction. The AttOmics
model achieves better or similar performances than the best
model that does not use self-attention across the different
omics. For methylation data, the mean error rate is better
than the GNN—CoExp approach. However, there is no sta-
tistical significance as the performances on the GNN are more

(a)

(b)

(e)

(c)

(d)

Figure 2. Results of the random search for mRNA data with the clustering

grouping strategy.
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variable across training. For gene expression data, similar
error rates are achieved between MLP and GNN approaches.

Depending on the omics, non-deep-learning models do not
perform equally. The SVM approach obtains similar perform-
ances for the methylation data to AttOmics, whereas
XGBoost and RF achieve lower performances than the
CNN1d model. XGBoost and AttOmics have the same per-
formances for gene expression data. SVM and RF do not
compete with other architectures and obtain one of the high-
est error rate. For the miRNA data, the best-performing meth-
ods are RF and XGBoost. The SVM approach obtains an
error rate comparable to the deep-learning architecture, and
there are no differences between the different deep-learning
models (Supplementary Table S6).

We do not observe a difference in terms of performances
between the different grouping strategies. For methylation
data, random or clustering approaches give the same error
rate. For gene expression data, GO and random grouping
reach the same error rate, whereas the clustering approach
has worse performances but still performs better than other
deep learning approaches. The architecture based on the hall-
marks grouping achieves performances similar to the MLP or
GNN, whereas other grouping approaches improved the per-
formance. The worst performance is probably due to this
strategy’s implicit feature selection; only 4305 genes were
used. A too-large selection of the number of features limits the
potential for the model to learn the relevant interactions.

Since, in real-world applications, datasets are much smaller
than the TCGA dataset, it is particularly interesting to analyse
the performances of models trained from small training sets.
Reducing the number of training examples affects model per-
formance adversely, as a limited training database hinders the
capacity of the model to extract hidden information during
training. The performances vary similarly between the differ-
ent grouping strategies when reducing the number of parame-
ters. When training with the lowest number of examples, we
can identify different sets of architectures. For mRNA, the
MLP has the worst performance. All architectures incorporat-
ing a structure in the data (CNN and GNN) achieve similar
performances. AttOmics architecture performs best and out-
performs non-deep-learning methods with small training sets
for gene expression and methylation data.

Only the hallmarks grouping strategy has worse perform-
ances than the other grouping strategies. We note that for the
GNN architecture, the performances standard deviation
across different training with the same number of training
varies more than AttOmics architecture. This suggests that
the GNN architecture depends on the selected training exam-
ples, whereas AttOmics models are less sensitive to this issue.

Other classification metrics were improved, such as the f1-
score (Supplementary Fig. S4 and Table S7). The improve-
ment is more significant when the number of training exam-
ples is limited.

The size of a neural network, i.e. its number of parameters
to fit, has a strong impact on its performances and required
hardware resources (memory, computing time). AttOmics ar-
chitecture reduces the number of parameters compared to the
CNN architecture or MLP and achieves similar or better per-
formances (Supplementary Table S6). Due to the high number
of features in the omics profile, most MLP parameters are
within the first layer. However, the total number of parame-
ters of a model is limited by the available hardware. One way
to reduce the number of parameters would be to select fea-
tures, but as explained earlier, this may lead to a loss of rele-
vant information. Another approach would be to reduce the
dimension of the first layer, therefore limiting the range of the
possible number of neurons in the first hidden layer to meet
the memory constraints. Limiting the first projection’s space
leads to an extensive compression of the omics profile. With
self-attention, we can increase the dimension of the projection
by reducing the number of parameters and compressing the
omics profile more gradually. For instance, for the mRNA
clustering approach with self-attention, the profile is projected
into a 43 280-dimensional space with only 125 million
parameters, whereas projecting into the same dimension
would require 2.5 billion parameters with an MLP.

As self-attention is known to have a quadratic complexity,
we explored its impact on the memory usage of the model and
the runtime to obtain prediction from the test set
(Supplementary Fig. S7 and Table S9). During inference on
the test set, there is a 45% increase in memory consumption
with the MLP. With AttOmics, memory overhead range from
65% for the largest model to 250% for the smallest model.
The runtime increases with AttOmics compared to the MLP

Figure 3. Error rate on the test set according to the size of the training set.
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but stays in the milliseconds’ range and is at least an order of
magnitude better than the non-deep-learning methods.

A similar study is performed for prognosis prediction. The
evolution of the C� Index according to the number of train-
ing examples is presented in Supplementary Fig. S6. All mod-
els obtain similar performance on this task. We note that the
AttOmics architecture is more stable as it achieves a similar
C� Index as the best state-of-the-art approach in different
omics. Indeed, for DNAm data, AttOmics has a similar C�
Index to the CNN architecture. For mRNA data, AttOmics
has similar performances to the GNN. For miRNA data, the
GNN architecture outperforms all other architectures.

To conclude these results, incorporating self-attention in
the architecture allows having a softer compression of the fea-
tures, improving the representation of the data and, therefore,
the performances.

AttOmics works on methylation data (DNAm) and gene
expression data (mRNA) but not on miRNA expression data.
For miRNA data, the best performances were obtained with
non-deep-learning approaches. There is some uncertainty
when using biologically motivated groups, as the domain
knowledge constantly evolves. When using biologically aware
groups, the model is limited to only considering a subset of
the possible feature interactions. Random or clustering group-
ing can detect relevant interactions not yet included in the bio-
logical knowledge. Future work will investigate different
biological knowledge. Nevertheless, in this article, one can
prefer biologically motivated groups that are more interpret-
able, although the other grouping strategies give slightly bet-
ter results. This reflects the well-known trade-off between
performance and interpretability in machine learning
(Linardatos et al. 2021).

5.3 Attention map interpretation

One advantage of using self-attention in the model is the abil-
ity to visualize the learned interactions (Fig. 4). The attention
map corresponds to the attention weights average across
patients with the same phenotype. The learned interactions
are different across cancer (Supplementary Figs S9 and S10),
suggesting that the model learns interactions specific to each
cancer.

The self-attention mechanism used in the architecture was
not designed to be an interpretability tool. However, it can
provide information on the interaction learned by the model
depending on the grouping strategy. We used GO slim or
MSigDB hallmarks as a biological knowledge-aware grouping
strategy. The terms used in GO slim represent general BPs; the
high level of the terms makes it difficult to link the detected in-
teraction with the phenotype. On the contrary, MSigDB hall-
marks focuses on important and specific BPs and are,
therefore, easier to interpret.

With the hallmarks grouping, we identified interactions be-
tween well-known pathways in cervical cancer: Wnt signal-
ing, HedgeHog signaling, and JAK/STAT signaling (Fig. 4).
STAT proteins play a role in the development of cervical can-
cer (Gutiérrez-Hoya and Soto-Cruz 2020). The inactivation
of the Wnt pathway is known to promote cell growth in cervi-
cal cancer (Yang et al. 2018). It has been shown that
HedgeHog pathway components are expressed in cervical
cancer cells and are involved in cell proliferation (Samarzija
and Beard 2012). It has also been shown that there is a cross-
talk between Wnt and HedgeHog pathways, which are
known to be involved in chemo-resistance in cervical cancer
(Kumar et al. 2021).

Interestingly, we identified similar interactions learned by
the model between the GO slim and hallmarks grouping strat-
egies. For BLCA cancer, a model based on GO slim identified
multiple interactions involved in the inflammatory response
(GO : 0006954). In the model based on hallmarks, the inflam-
matory response group is also identified as involved in differ-
ent interactions (Supplementary Fig. S11). The group
composition between the two strategies is different, with an
overlap of 29%.

The model can handle any grouping, handcrafted groups,
or based on a different knowledge source that could be used
to improve the information contained in an attention map.

6 Conclusion

In this article, we propose AttOmics, a novel deep-learning
architecture for personalized medicine. AttOmics leverages
self-attention to capture feature interactions specific to each
patient. Features were grouped before applying self-attention
on high dimensional vectors, such as omics profile. With this
approach, we can reduce the number of parameters compared
to an MLP with a similar dimension while accurately predict-
ing the type of cancer. The self-attention also allows the visu-
alization of the learned interactions to understand the model
better. AttOmics is the only architecture consistently perform-
ing well on different omics data.

In future works, we will explore the use of linear approxi-
mation of self-attention maps for high-dimensional vectors.
For example, to reduce the memory footprint of self-
attention, new algorithms have been proposed to compute
self-attention sequentially on chunks of queries (Rabe and
Staats 2021). Different approximations have also been pro-
posed like sparse attention (Child et al. 2021), which limits
what each element can attend to, or Nyströmformer (Xiong
et al. 2021), which computes attention using a modified
Nyström approximation with linear complexity. Those new
self-attention formulations could help its application on omics
profiles.

In this study, the different omics profiles were studied indi-
vidually. Considering the different omics profiles in a unique

Figure 4. Attention map visualization for the TCGA-CESC class obtained

after applying the hallmarks grouping on mRNA.
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model could improve the prediction performances by exploit-
ing the complementary information between the different
omics profiles. The attention mechanism has proven to com-
bine multiple modalities within a joint representation effec-
tively. In our subsequent work, we will use attention-based
multimodal deep-learning models to integrate the different
omics data into the same model. Therefore a fusion of the dif-
ferent omics profiles with the attention mechanism could be
computed directly onto the hidden layers of the model.
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Supplementary data is available at Bioinformatics online.
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