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111 Summary

112

113  Global change has accelerated local species extinctions and colonizations, often resulting 

114 in losses and gains of evolutionary lineages with unique features. Do these losses and 

115 gains occur randomly across the phylogeny?

116  We quantified (1) temporal changes in plant phylogenetic diversity and (2) the 

117 phylogenetic relatedness of lost and gained species in 2,672 semi-permanent vegetation 

118 plots in European temperate forest understories resurveyed over an average period of 40 

119 years. 

120  Controlling for differences in species richness, phylogenetic diversity increased slightly 

121 over time and across plots. Moreover, lost species within plots exhibited a higher degree 

122 of phylogenetic relatedness than gained species. This implies that gained species 

123 originated from a more diverse set of evolutionary lineages than lost species. Certain 

124 lineages also lost and gained more species than expected by chance, with Ericaceae, 

125 Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and 

126 Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic 

127 signal in response to changes in macroclimatic conditions and nitrogen deposition.

128  As anthropogenic global change intensifies, temperate forest understories experience 

129 losses and gains in specific phylogenetic branches and ecological strategies, while the 

130 overall mean phylogenetic diversity remains relatively stable.

131

132 Keywords: biodiversity change; biogeography; forestREplot; global change; phylogeny; plant 

133 functional traits; time lag; vegetation resurvey
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134 Introduction

135

136 Changes in global environmental conditions are increasingly modifying biodiversity and 

137 associated ecosystem functions (Haddad et al., 2015; IPBES, 2019). Understanding the processes 

138 that underlie spatiotemporal changes in the composition of ecological communities helps us 

139 predict the impacts of global change drivers (Purschke et al., 2013; Letten et al., 2014; Chai et 

140 al., 2016). Because ongoing environmental changes tend to favor species with particular traits 

141 that are suited to the new environmental conditions (Keddy, 1992; Díaz et al., 1998), and 

142 because traits partly reflect species’ shared evolutionary histories (Losos, 2008), global change 

143 drivers can also shift the phylogenetic diversity and relatedness of ecological communities 

144 (Webb et al., 2002; Gerhold et al., 2015). Understanding how current environmental changes 

145 affect various branches of the tree of life thus helps us identify which phylogenetic lineages, 

146 reflecting distinct evolutionary histories and functional roles, are most likely to expand or go 

147 extinct within local communities.

148 Temporal shifts in community composition reflect local colonizations, extinctions, and 

149 population dynamics (Magurran & Henderson, 2010). The amount of evolutionary history lost 

150 and gained following extinction and colonization events depends on the rate of evolution of 

151 ecological traits (Cavender-Bares et al., 2004). Because traits related to environmental tolerances 

152 are often phylogenetically conserved (Hawkins et al., 2014; De Pauw et al., 2021; Harris et al., 

153 2022a), environmental changes are likely to promote the extinctions of close relatives (Vamosi & 

154 Wilson, 2008; Eiserhardt et al., 2015). In such cases, lost species would represent distinct 

155 phylogenetically clustered subsets of the habitat species pool and be phylogenetically different 

156 from persisting species. Environmental changes and human-mediated biological invasions can 

157 also enhance the colonization of species that are phylogenetically and functionally distant from 

158 the current residents (Mathakutha et al., 2019). This phenomenon can be intensified by 

159 competitive exclusion, which tends to promote the establishment of species displaying 

160 functionally dissimilar characteristics compared to the resident species (Valiente-Banuet & 

161 Verdú, 2013; Li et al., 2015). For instance, during vegetation succession, late successional plant 

162 colonizers represent a broad array of distantly related species with diverse traits (Li et al., 2015). 

163 This diversity could stem from environmental alterations that augment the carrying capacity of 

164 local habitats, thereby facilitating the establishment of species with distinct functional traits 
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165 (Valiente-Banuet & Verdú, 2013). Although many studies have measured net changes in the 

166 phylogenetic diversity of local plant communities over time (e.g., Purschke et al., 2013; Li et al., 

167 2015; Barber et al., 2016), few of these have evaluated whether environmental changes are 

168 associated with non-random gains and losses of phylogenetic diversity. Importantly, none of 

169 these studies have evaluated gains and losses in plant community phylogenetic diversity at the 

170 continental scale.

171 The understories of temperate forests support a variety of herbaceous plant species (Loidi 

172 et al., 2021) that compete for the same resources and are susceptible to various global 

173 environmental changes, including climate change, land-use change, habitat fragmentation, 

174 biological invasions and atmospheric nitrogen deposition (Gilliam, 2007). Previous studies at the 

175 European scale found few systematic declines in understory plant species richness (Bernhardt-

176 Römermann et al., 2015; Perring et al., 2018), consistent with studies of other terrestrial plant 

177 communities (Vellend et al., 2013; Li et al., 2020; Jandt et al., 2022). Nevertheless, temporal 

178 turnover in forests is rarely ecologically random (Kopecký et al., 2012). In European forests, 

179 light-demanding species that tolerate low nitrogen availability and have small geographic ranges 

180 are gradually replaced by shade-tolerant species with higher nutrient requirements and larger 

181 ranges (Kopecký et al., 2012; Staude et al., 2020). Therefore, identifying non-random losses and 

182 gains of specific plant lineages within and across forest understories provides insights into the 

183 ecological strategies favored and disadvantaged by recent environmental changes.

184 Here, we quantify temporal changes in plot-level phylogenetic diversity and the 

185 phylogenetic relatedness of lost and gained plant species in the understory of European 

186 temperate forests resurveyed after an average period of 40 years. Additionally, we test how 

187 phylogenetic diversity and relatedness respond to changes in macroclimate and atmospheric 

188 nitrogen deposition, considering potential confounding factors. We also identify plant lineages 

189 that have experienced more species losses and gains than expected by chance. Finally, we 

190 explore the relationship between species’ tendency to be lost or gained over time and their 

191 functional traits. To this end, we test six hypotheses (H1-H6) to understand how species co-

192 existing in specific habitat types respond to recent environmental changes (Table 1).

193
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194 Table 1. Proposed hypotheses with ecological mechanisms, empirical evidence, and graphical representations.

195

Hypothesis Ecological mechanism/Empirical evidence Graphical representation

(H1) Forest understories in temperate 

Europe have gained more 

phylogenetic diversity than expected 

from random species losses and gains

Lost species are phylogenetically clustered subsets of the 

habitat species pool (Vamosi & Wilson, 2008; Eiserhardt et al., 

2015), while gained species include distantly related species 

with diverse traits (Li et al., 2015)

(H2) Species’ losses and gains across 

communities are not randomly 

distributed across the phylogeny

Environmental tolerances are often phylogenetically conserved 

(Cavender-Bares et al., 2004; De Pauw et al., 2021; Harris et 

al., 2022a)
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(H3) Species’ losses and gains across 

communities are associated with 

phylogenetically conserved plant traits

Abiotic filters operate on phylogenetically conserved plant traits 

and their related ecosystem functions (Keddy, 1992; Díaz et al., 

1998)

(H4) Lost species are more 

phylogenetically clustered than gained 

species within communities

Lost species share conserved traits that make them intrinsically 

vulnerable to extinction (Vamosi & Wilson, 2008; Eiserhardt et 

al., 2015). Gained species include distantly related species with 

diverse traits (Li et al., 2015)

(H5) Lost and gained species are 

phylogenetically distantly related to 

persisting species

Abiotic filters exclude subsets of closely related species with 

ecological strategies distinct from those of persisting species 

(Eiserhardt et al., 2015). Environmental changes and 

competitive exclusion create conditions that enable the 

establishment of species that are functionally dissimilar and 

distantly related to those already present in a community 

(Valiente-Banuet & Verdú, 2013; Li et al., 2015)
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(H6) Temporal changes in 

phylogenetic diversity and the 

phylogenetic relatedness of lost and 

gained species within communities are 

associated with changes in 

macroclimatic conditions and nitrogen 

deposition over time

Abiotic filters select for phylogenetically conserved ecological 

strategies (Keddy, 1992; Gerhold et al., 2015)

196

197
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198 Materials and Methods

199

200 Vegetation surveys

201

202 We obtained resurvey data from the forestREplot database version 2.3 

203 (www.forestreplot.ugent.be; Verheyen et al., 2017). This database contains species occurrence 

204 and cover data from forest resurveys in permanent or semi-permanent plots in natural or semi-

205 natural temperate forests throughout Europe and North America. Our study focused on European 

206 temperate broadleaved deciduous forests (≥ 25% canopy cover of broadleaved trees in the 

207 baseline survey) that have been continuously forested since at least 1850 and have remained 

208 unaffected by any stand-replacing disturbances between the baseline survey and the last 

209 resurvey. Like most forests in Europe, the study sites were largely managed in the past. Plot sizes 

210 varied from 25 to 1,300 m2 (mean ± SD: 264 ± 193 m2). We restricted our analyses to the 

211 understory vegetation layer (herbs and woody juveniles).

212 We selected 2,672 pairs of survey/resurvey plots from 64 datasets representing 14 

213 countries (Appendix S1). We standardized plant species names in the plots according to the 

214 World Flora Online taxonomic backbone, using the R package ‘WorldFlora’ (Kindt, 2020). We 

215 restricted this study to angiosperms to prevent inflated overdispersion due to gymnosperms and 

216 pteridophytes linked to deep phylogenetic nodes. Baseline surveys occurred between 1933 and 

217 1999, and resurveys between 1987 and 2020. The time interval between surveys ranged from 12 

218 to 72 years (mean ± SD: 40 ± 13 years). These plots contained a total of 1,152 angiosperm 

219 species.

220 To compare lineage losses and gains in plots with similar baseline and interval times, we 

221 restricted analyses related to H1, H2, and H3 to plots resurveyed after 2000 and ≥ 20 years after 

222 the baseline survey (N = 2,443 pairs of baseline survey and resurvey plots). By adopting this 

223 approach, we encompassed a significant period during which major environmental changes 

224 occurred in Europe. For example, the European State of the Climate (ESOTC) report for 2022 

225 highlighted that all of the ten warmest years on record for Europe have taken place since 2000 

226 (European Commission, 2022). These selected plots had baseline surveys between 1935 and 

227 1999 and resurveys between 2001 and 2020. This subset of plots contained 1,117 angiosperm 

228 species.
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229

230 Phylogeny

231

232 We generated a phylogenetic tree for the 1,152 angiosperm species in our dataset with the R 

233 package ‘V.PhyloMaker2’ (Jin & Qian, 2022). This package uses an improved and expanded 

234 version of the mega-phylogeny reported by Smith and Brown (2018) as a backbone to construct 

235 phylogenies. To complete the phylogeny, we added missing species (~23% of the total species) 

236 and genera (~4% of the total genera) to the midpoint of their genus or family branch, respectively 

237 (‘Scenario 3’, Qian & Jin, 2016; Jin & Qian, 2022). A phylogeny created with this approach 

238 produces results comparable to a tree fully resolved at the species level if most genera and all 

239 families are resolved (Qian & Jin, 2021).

240

241 Plant traits

242

243 We obtained data on four plant traits known to respond to the biotic or abiotic environment (e.g., 

244 climatic conditions or resource availability; Lavorel & Garnier, 2002) and to support a strong 

245 phylogenetic signal (Appendix S2). These traits were maximum plant height (H), seed mass 

246 (SM), leaf area (LA), and specific leaf area (SLA). These traits are also linked to various 

247 ecological functions, including dispersal, establishment, reproduction, and resource acquisition 

248 (Westoby, 1998; Díaz et al., 2016; Appendix S2). Because our goal was to determine the 

249 potential traits and ecological strategies of understory plant species that relate to their tendency 

250 to be lost or gained over time, we assumed that the trait values of mature woody plants were 

251 indicative of potential, albeit unrealized, traits in juvenile plants. In other words, we regarded 

252 these traits as latent qualities that may not necessarily manifest in the surveyed individuals at the 

253 time of the study. The four traits were only weakly inter-correlated (∣Spearman’s∣ ρ ≤ 0.45; 

254 Appendix S3). 

255 We obtained trait data from the TRY database (www.try-db.org; Kattge et al., 2020). We 

256 removed trait records that were > 4 standard deviations from the species’ mean for each trait to 

257 avoid the potential effects of outliers (Bruelheide et al., 2018). We averaged intraspecific trait 

258 values per species when several trait values occurred for a given trait. Data for individual plant 
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259 traits (H, SM, LA, or SLA) were available for at least 70% of the species (Appendix S3), but 

260 only 34% of species had data for all four traits.

261

262 Missing trait data imputation

263

264 We imputed missing trait data with the R package ‘missForest’ (Stekhoven, 2022). This Random 

265 Forest method imputes species trait values using highly accurate phylogenetic information 

266 (Penone et al., 2014) and fast computation times. We incorporated all phylogenetic eigenvectors 

267 (Debastiani et al., 2020) derived from the R package ‘PVR’ (Santos, 2018) as predictor variables 

268 in the ‘missForest’ imputation alongside functional traits.

269

270 Explanatory variables

271

272 Climate change variables

273

274 We obtained gridded climatic data from the Climatic Research Unit Time Series (CRU TS; v. 

275 4.06) of the University of East Anglia (Harris et al., 2022b). The CRU TS data cover the global 

276 terrestrial surface from 1901 to 2021 and provide monthly climate data at 0.5º (~55 km at the 

277 equator) resolution. For each year between 1901 and 2021, we obtained data for computing three 

278 climatic variables: maximum summer temperature, minimum winter temperature, and annual 

279 precipitation. Selecting these variables accounts for the effects of seasonal extremes and broad 

280 climatic variation.

281 For maximum summer temperature, we averaged monthly maximum daily temperatures 

282 during June, July, and August. For minimum winter temperature, we averaged monthly daily 

283 minimum temperatures during December, January, and February. For annual precipitation, we 

284 summed the monthly precipitation over the year. We then computed the long-term mean values 

285 for these three variables by averaging the annual data for both the ten years before the baseline 

286 survey and the ten years preceding the resurvey (Bernhardt-Römermann et al., 2015). This 

287 approach accounts for likely time lags in vegetation dynamics and how plant species adapt to 

288 long-term environmental changes (De Frenne et al., 2013; Li & Waller, 2017). We then 

289 calculated changes in climatic conditions as the difference between the ten-year average values 
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290 preceding the baseline survey and the resurvey. We repeated the analyses considering variables 

291 capturing the effects of more extreme climatic conditions and obtained similar results (Appendix 

292 S4).

293

294 Nitrogen deposition

295

296 We obtained cumulative dry and wet annual deposition of oxidized nitrogen (hereafter, N) from 

297 the EMEP database (https://emep.int/mscw/mscw_moddata.html) at 0.1º (~11 km) resolution. 

298 Annual N deposition was only available for the 1990–2020 period. To obtain annual N 

299 deposition for the years before 1990, we used the correction factors for the different decades 

300 based on the deposition rates in the year 2000, as described in Duprè et al. (2010). To measure 

301 cumulative N deposition between surveys, we summed up N deposition data for all years 

302 between the baseline survey and the resurvey.

303

304 Covariates

305

306 Because many variables potentially affect species diversity and dynamics, thus confounding our 

307 ability to detect particular effects, we included ten covariates in our models to account for their 

308 possible effects on community change (Simkin et al., 2016; Perring et al., 2018). These 

309 covariates include plot area; herb-layer species richness and cover from the baseline survey (cf. 

310 baseline plant community conditions); baseline climatic conditions (average maximum summer 

311 temperature, average minimum winter temperature, and annual precipitation over the ten years 

312 before the sampling); management (unmanaged vs. managed); the temporal change in tree 

313 canopy cover to capture changes in microclimate dynamics; current soil pH; and the time (in 

314 years) between surveys. We also considered cumulative N deposition estimated between 1901 

315 and the baseline, but this variable was strongly correlated with the time between surveys 

316 (Spearman’s ρ = -0.88), so we discarded it in the final models. We obtained raster data for 

317 present-day European soil pH at 15 cm depth (250 × 250 m resolution) from Poggio et al. 

318 (2021). We added these covariates to account for potential confounding effects with our main 

319 variables of interest: macroclimate change and atmospheric N deposition. We provide details of 
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320 the covariates, a full rationale for including them in the models, and their inter-correlations in 

321 Appendix S5.

322

323 Calculation of phylogenetic diversity (PD) and phylogenetic relatedness (PR) metrics

324

325 To measure phylogenetic diversity (PD), we calculated Faith’s PD, the sum of all phylogenetic 

326 branch lengths connecting a set of taxa (Faith, 1992). Faith’s PD is a phylogenetic generalization 

327 of species richness that captures the evolutionary history of a species assemblage (Chao, 2010). 

328 We calculated the change in PD over time in the plots as the log-transformed response ratio 

329 (RR):

330

331 𝑅𝑅_𝑃𝐷 =  
𝑙𝑛

𝑃𝐷𝑡 + ∆𝑡

𝑃𝐷𝑡

∆𝑡

332

333 where PDt is the value for PD at the time of the initial survey, PDt+Δt refers to its value at the 

334 time of the resurvey, and Δt is the number of years between surveys.

335 We calculated two measures of phylogenetic relatedness (PR) within and between species 

336 assemblages at terminal phylogenetic levels. First, we calculated the Mean Nearest Taxon 

337 Distance (MNTD; Webb et al., 2002) to quantify the degree of phylogenetic relatedness of lost 

338 and gained species in the plots. The MNTD is the mean branch length between each taxon and its 

339 phylogenetically nearest neighbor. Second, we used the Dnn metric (Webb et al., 2008) to 

340 measure the degree of phylogenetic relatedness between the lost or gained species and those that 

341 persisted in the plots. We calculated Dnn for each plot as the mean branch length between each 

342 lost and gained species and its phylogenetically nearest neighbor in the pool of persisting 

343 species. We also calculated PR at basal phylogenetic levels (i.e., the mean phylogenetic distance, 

344 MPD, and Dpw), but we obtained similar results and moved the results of these analyses to 

345 Appendix S6. A summary table with the PD and PR metrics used in this study and their 

346 relationship to the hypotheses is provided in Appendix S7. We calculated the PD and PR metrics 

347 using the R package ‘PhyloMeasures’ (Tsirogiannis & Sandel, 2017).
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348 To determine whether RR_PD and PR values for each plot were higher or lower than 

349 expected if species were randomly distributed across the phylogeny, we compared the observed 

350 empirical values of these metrics to a null distribution derived from 999 random reshufflings of 

351 the species across the tips of the phylogenetic tree. These reshufflings included all the species 

352 listed within a focal dataset or study site, corresponding to all the species observed across all 

353 individual plots surveyed and resurveyed within the focal study site. This allowed us to estimate 

354 standardized plot-level effect sizes (SES) for each metric (i.e., RR_PD.ses, MNTD.ses, and 

355 Dnn.ses) as the difference between the observed empirical value and the mean of the random 

356 values divided by the standard deviation of the random values. These SES metrics are thus 

357 independent of changes in species richness in the plots. For each plot, positive SES values of 

358 RR_PD.ses indicate that more phylogenetic diversity was gained than under random expectation, 

359 while negative SES values indicate that more phylogenetic diversity was lost than under random 

360 expectation. Positive SES values of PR metrics indicate that species were more distantly related 

361 than under random expectation (phylogenetic overdispersion), while negative SES values 

362 indicate that species were more closely related than under random expectation (phylogenetic 

363 clustering).

364 We also calculated the lost and gained PD in each plot as the PD of the set of taxa lost or 

365 gained at the site between the resurvey and the baseline survey. However, the standardized effect 

366 sizes of these measures (PD.ses) were highly correlated with MNTD.ses (Spearman’s ρ > 0.95) 

367 and discarded from the main text (Appendix S8).

368

369 Statistical analyses

370

371 We used R v. 4.2.0 (R Core Team, 2022) for all analyses and set statistical significance at α = 

372 0.05.

373

374 Has the phylogenetic diversity of forest understories changed over time? (H1)

375

376 We compared the mean RR_PD and RR_PD.ses across plots to zero using Cohen’s d (Cohen, 

377 1998) in the R package ‘lsr’ (Navarro, 2015). Cohen’s d is a measure of effect size that, unlike 

378 the t-test statistic, estimates a population parameter and is unaffected by sample size. Effect sizes 
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379 are considered small around 0.2, medium around 0.5, and large around 0.8 (Cohen, 1998). This 

380 approach allowed us to compare the magnitude of the difference between the mean values and 

381 zero rather than testing for statistical differences between the mean values and zero.

382

383 Were particular plant lineages lost and gained over time across plots? (H2)

384

385 For each species (N = 1,117), we calculated its tendency (U) to be lost or gained in the plots as:

386

387 𝑈 =  
∑𝑗

𝑖 = 1𝑆𝑖

j

388

389 where S is the species’ response in plots i = 1 to j (1 if the species was gained, 0 if the species 

390 persisted, and -1 if the species was lost). A U value of -1 indicates that the species was lost from 

391 all the plots where it occurred at the time of the baseline survey, while a U value of 1 indicates 

392 that the species was not present at the time of the baseline survey in any of the plots where it 

393 occurred at the time of the resurvey.

394 We evaluated the phylogenetic signal in U values with Pagel’s λ (Pagel, 1999) in the R 

395 package ‘phytools’ (Revell, 2012). Values of λ close to zero indicate phylogenetic independence 

396 of U values. In contrast, values close to one indicate that U values co-vary directly with their 

397 shared evolutionary history. We plotted the U values of each species in the phylogeny to identify 

398 lineages with high or low U values. We also calculated for each node in the phylogeny whether 

399 the observed mean U value of species descending from that node was higher or lower than 

400 expected if species were randomly distributed in the phylogeny. To this end, we reshuffled the 

401 tips of the phylogeny 999 times and recalculated the mean U values. Then, we compared the 

402 observed mean U value of the node with the distribution of random mean U values to determine 

403 a P-value based on the quantiles’ null distribution. Specifically, we calculated P-values as the 

404 proportion of random mean U values lower than the observed mean U value. Here, P-values 

405 below 0.025 or above 0.975 indicated that the observed mean U value was significantly lower or 

406 higher, respectively, than expected by chance.

407 Plot resurveys may inadvertently overlook certain species during the field sampling, 

408 potentially leading to the misidentification of pseudo-colonizations and extinctions. These errors 
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409 can inflate U values of rare species (Verheyen et al., 2018). Furthermore, species’ absolute U 

410 values exhibited a partial negative correlation with their occurrence frequency across plots 

411 (Pearson’s r = 0.34). To mitigate these issues and avoid spurious results associated with random 

412 species losses and gains, we recalculated U values considering species present in at least five (N 

413 = 678 species) and ten (N = 534) plots. This sensitivity analysis allowed us to evaluate the effect 

414 of rare species on the results and identify plant lineages that were lost and gained independently 

415 from species frequency across plots.

416

417 Are U values associated with plant traits? (H3)

418

419 Species cannot be considered statistically independent in regression models because they are 

420 evolutionarily related (Ives & Zhu, 2006). We therefore applied Phylogenetic Generalized Least 

421 Squares (PGLS) regression in the R package ‘caper’ (Orme et al., 2018) to test for associations 

422 between U values and plant traits (H, SM, LA, and SLA). The PGLS approach allows for 

423 flexibility in the underlying evolutionary assumptions and uses generalized least squares to 

424 explicitly include the predicted covariance among species into the model’s fit. Models using 

425 ordinary least squares regressions yielded very similar results and are not presented. We loge-

426 transformed all traits to improve normality. To test H2 and H3, we repeated these analyses, 

427 excluding juvenile trees, to evaluate whether tree recruitment associated with mature traits 

428 modified our results. 

429

430 Does the phylogenetic relatedness of lost and gained species deviate from random expectations? 

431 (H4 and H5)

432

433 We used Cohen’s d to compare the MNTD.ses and Dnn.ses of lost and gained species across plots 

434 to zero (Cohen, 1998).

435

436 Have environmental changes driven alterations in phylogenetic diversity and relatedness? (H6)

437

438 We used linear mixed-effect models in the R package ‘nlme’ (Pinheiro et al., 2022) to examine 

439 the relationships between plot-level temporal changes in the PD and PR metrics and the set of 
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440 explanatory variables. We treated the predictor variables of interest (i.e., changes in maximum 

441 summer temperature, minimum winter temperature, annual precipitation, and N deposition) and 

442 the covariates as fixed effects. In the models predicting temporal changes in PD, we did not use 

443 the time between surveys as a covariate because this variable was included in the denominator of 

444 the response and focal predictor variables. In all models, we included ‘dataset’ as a random 

445 intercept term to account for variation in residual variances among plots (Zuur et al., 2007). To 

446 minimize dispersion in model residuals, we loge-transformed plot area. We standardized and 

447 centered all explanatory variables before model fitting to obtain comparable coefficients (Zuur et 

448 al., 2007). We complemented these analyses with models that separately predicted species’ 

449 losses and gains within plots (Appendix S8). The variance inflation factor (VIF), calculated 

450 using the R package ‘usdm’ (Naimi et al., 2014), indicated low multicollinearity among 

451 explanatory variables (VIF < 3).

452

453 Results

454

455 Temporal changes in the phylogenetic diversity of forest understories (H1)

456

457 Forest understories experienced a slight decrease in overall phylogenetic diversity (PD; Fig. 1a; 

458 Cohen’s d = 0.13). However, after controlling for changes in species richness across plots by 

459 randomizing the evolutionary relationships among species, forest understories had a small 

460 overall increase in PD (Fig. 1b; Cohen’s d = 0.23).

461
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462
463 Fig. 1: Temporal changes in phylogenetic diversity (PD) in temperate forest understories and 

464 their environmental predictors. a,b, Histograms of the change in PD between the baseline survey 

465 and the resurvey estimated using unstandardized (RR_PD) (a) and standardized (RR_PD.ses) (b) 

466 response ratios. The dashed red lines show mean PD values. Cohen’s d measures the effect size 

467 of the difference between the mean and zero. c,d, Standardized estimated coefficients (±95% 

468 confidence intervals) of focal variables and covariates predicting temporal changes in RR_PD (a)  

469 and RR_PD.ses (b) from linear mixed-effect models. The dotted horizontal line separates focal 

470 predictors (top) from covariates (bottom). Max. = maximum; Min. = minimum; bl. = baseline.

471

472 Lost and gained lineages across plots (H2) and their association with plant traits (H3)

473
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474 Species’ tendencies to be lost or gained (i.e., their U values) showed a slight but significant 

475 phylogenetic signal (Pagel’s λ = 0.20; P < 0.001). The U values for individual species varied 

476 considerably (Fig. 2a; Appendix S9). Roughly 14% of the internal nodes in the phylogeny 

477 experienced either more losses (7%) or gains (7%) in descendant species than randomly 

478 expected. For example, species from the Apiaceae, Ericaceae, Fabaceae, Orchidaceae, and 

479 Orobanchaceae families were more likely to be lost, while species in the Amaranthaceae, 

480 Cyperaceae, Rosaceae (subfamily Amygdaloideae), and Urticaceae were more likely to be 

481 gained (Fig. 2a; Appendix S10). The observed trends among these families remained consistent, 

482 regardless of whether all species or only the most common ones were considered (Appendix 

483 S11). Among the tested traits, plant height (H) and specific leaf area (SLA) were positively and 

484 significantly related to species’ U values (Fig. 2b). This effect was still significant after removing 

485 juvenile trees from the analysis (Appendix S12).

486
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487
488 Fig. 2: Species tendency to be lost or gained in temperate forest understories and associated 

489 traits. a, Distribution of U values of plant species across the phylogeny. Positive (blue) and 

490 negative (brown) U values indicate species and lineages gained or lost over time, respectively. 

491 Points in the phylogeny indicate nodes with U values higher (blue) or lower (brown) than 

492 expected if species were randomly distributed across the phylogeny. Only significant nodes with 

493 at least three species are shown. The 50 plant families with the largest number of species are 

494 shown. b, Results from a Phylogenetic Generalized Least Squares (PGLS) regression predicting 

495 U values from plant height (H), seed mass (SM), leaf area (LA), and specific leaf area (SLA). 
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496 Black and empty circles denote significant and non-significant effects, respectively. Bars 

497 crossing the circles indicate 95% confidence intervals.

498

499 Phylogenetic relatedness of lost and gained species (H4) and between lost or gained species and 

500 persisting species (H5)

501

502 Both the phylogenetic relatedness (PR) of lost and gained species measured at the tips of the 

503 phylogeny (MNTD.ses) and between lost or gained species and persisting species (Dnn.ses) were 

504 mostly random (Fig. 3a,b). However, lost species were, on average, more phylogenetically 

505 clustered (Cohen’s d = 0.31) than gained species (Cohen’s d = 0.04). When lost species were 

506 phylogenetically clustered (7% of plots), Poaceae were often overrepresented (Appendix S13). In 

507 contrast, gained species were, on average, more phylogenetically distantly related to the 

508 persisting species (Cohen’s d = 0.20) than lost species (Cohen’s d = 0.06). We found almost 

509 identical results when we measured PR metrics at basal phylogenetic levels (Appendix S6).

510
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511  
512 Fig. 3: Phylogenetic relatedness (PR) of (1) lost and gained species and (2) between lost or 

513 gained species and persisting species in temperate forest understories, and their environmental 

514 predictors. a,b, Violin plots showing PR of lost (a) and gained (b) species (MNTD.ses) and 

515 between lost or gained species and persisting species (Dnn.ses) in forest plots. Positive and 

516 negative values indicate phylogenetic overdispersion and clustering, respectively. Red dots 

517 represent median values, and bars indicate the 95% confidence interval. Cohen’s d measures the 

518 effect size of the difference between the mean and zero. c,d, Standardized estimated coefficients 

519 (±95% confidence intervals) of focal variables and covariates predicting PR metrics of lost (a) 

520 and gained (b) species from linear mixed-effect models. The dotted horizontal line separates 

521 focal predictors (top) from covariates (bottom). Max. = maximum; Min. = minimum; bl. = 

522 baseline.
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523

524 Associations between phylogenetic metrics and environmental change variables (H6)

525

526 Plots that experienced warmer winters and higher annual precipitation had a significant net 

527 increase in PD associated with an increase in species richness (Fig. 1c). When species’ losses 

528 and gains were analyzed separately, plots that experienced increased precipitation lost less PD 

529 and species (Appendix S8). In contrast, plots that experienced warmer summers gained more PD 

530 and species. However, climate change and N deposition had no effect either on the standardized 

531 change in PD (Fig. 1d) or PR metrics for lost (Fig. 3c) and gained (Fig. 3d) species. Among the 

532 covariates, baseline species richness had the highest negative effect on the unstandardized 

533 change in PD, while management and plot size had the highest positive effects.

534

535 Discussion

536

537 We measured long-term shifts in plot-level phylogenetic diversity (PD) and the phylogenetic 

538 relatedness (PR) of lost and gained species in the understory of 2,672 vegetation plots in 

539 temperate forests in 14 European countries. Over periods that averaged 40 years, species of 

540 certain plant lineages (and their associated ecological strategies) persisted or increased while 

541 others declined. Within plots, species that colonized or went extinct were phylogenetically 

542 random subsets of the forest species pool, suggesting stochastic dynamics. However, lost species 

543 within plots exhibited a higher degree of phylogenetic relatedness than gained species. After 

544 accounting for differences in species richness across plots, changes in PD did not respond to 

545 climate change or nitrogen deposition, confirming that species are lost or gained randomly 

546 throughout the tree of life in response to environmental change.

547

548 Temporal changes in phylogenetic diversity and its association with environmental change 

549 drivers

550

551 We found that forest understories in temperate Europe have mostly experienced slight declines in 

552 PD due to a general reduction in species richness. This finding matches reports of few systematic 

553 shifts in plot-level plant species richness across continents (Bernhardt-Römermann et al., 2015; 
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554 Jandt et al., 2022) and globally (Vellend et al., 2013). However, after accounting for differences 

555 in species richness among plots, we observed a slightly greater increase in PD than expected by 

556 chance (H1). This implies that the newly acquired species come from more diverse evolutionary 

557 lineages than the lost species, which were part of more phylogenetically clustered subsets of the 

558 habitat species pool. Accordingly, we also found that the lost species within plots were more 

559 closely related to each other than the gained species (H4). These findings suggest that, assuming 

560 niche conservatism, species that have been gained possess a broader range of ecological 

561 strategies than lost species (see evidence in Appendix S14). Nevertheless, this interpretation 

562 should be treated cautiously, as evolutionary lability may be a common feature across many 

563 ecologically relevant functional traits (Gerhold et al., 2015).

564 Forest sites that experienced warmer winters and higher annual precipitation had greater 

565 increases in PD and species richness (H6). In contrast, neither changes in summer temperature 

566 nor N deposition significantly affected the unstandardized change in PD. Therefore, our findings 

567 indicate that diversity changes may increase at forest sites experiencing greater large-scale 

568 environmental changes. However, drought-induced losses of plant species can become more 

569 common under changing precipitation regimes and varying tree canopy structures (Archaux & 

570 Wolters, 2006). At a finer scale, increased canopy cover in forest plots (reducing light 

571 availability) promoted greater decreases in unstandardized PD over time. This result can explain, 

572 for example, the losses in light-demanding lineages such as Fabaceae and the gains in shade-

573 tolerant woody lineages. Increased shading may also buffer the effects of a hotter and drier 

574 macroclimate (De Frenne et al., 2013; Suggit et al., 2018) by promoting greater thermal stability 

575 (Zellweger et al., 2020).

576 Our findings also suggest that changes in environmental factors do not influence changes 

577 in PD in forest understories after accounting for differences in species richness (H6). This 

578 implies that losses and gains of specific lineages within local communities and along 

579 environmental gradients occur randomly across the phylogeny. Therefore, if species’ ecological 

580 roles are phylogenetically conserved, then losses and gains of specific functions are independent 

581 of recent environmental changes in temperate forests. However, it is possible that filtered traits 

582 are not phylogenetically conserved or that their response to abiotic variation is nonlinear and 

583 may reach tipping points. Furthermore, other biotic and abiotic covariates not included in our 

584 models are also known to affect diversity changes. For example, the interaction between 
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585 environmental change and forest management practices can favor certain lineages (e.g., clades 

586 within Poaceae or Cyperaceae) through soil compaction (Mohieddinne et al., 2022), canopy 

587 openness (Pilon et al., 2020), and human-assisted dispersal (Closset-Kopp et al., 2019). In 

588 addition, grazing pressure promotes different ecological strategies, particularly along the 

589 eutrophication gradient (Segar et al., 2022). 

590

591 Plant lineage losses and gains across plots

592

593 Despite almost no net change in PD, the likelihood of species being lost or gained between 

594 surveys across all plots depended on their lineage (H2). For example, species from the Fabaceae 

595 family, characterized by strong niche conservatism in their ability to fix atmospheric N, or from 

596 the Ericaceae family, which have adapted to survive in acidic and nutrient-deficient soils through 

597 ericoid mycorrhiza, were more likely to decline. These species groups are probably being 

598 outcompeted by species adapted to using nitrogen supplied by increased atmospheric N 

599 deposition (van Strien et al., 2017; Berendse et al., 2021). Accordingly, we found an increase in 

600 species with acquisitive leaf economics (i.e., higher SLA) across plots (H3). Additional plant 

601 lineages considered of high conservation value, e.g., Orchidaceae (CITES, 2019), or with unique 

602 ecological functions such as the holo- or hemiparasitic Orobanchaceae, have also experienced 

603 consistent declines. These results highlight that regional and global changes in environmental 

604 conditions threaten lineages with particular ecological strategies. The ecological strategies of 

605 plant families can provide insights into community dynamics and ecosystem functioning that are 

606 not immediately apparent when considering individual functional traits alone.

607 In contrast, in recent decades, nitrophilous weedy Amaranthaceae species, moisture-

608 demanding Cyperaceae species, or woody Rosaceae species have increased across temperate 

609 forest understories. These findings parallel positive associations between species’ tendency to be 

610 lost or gained (their U values) and their potential height and SLA (H3). These associations 

611 remained significant even when juvenile trees were removed from the analysis. Increased 

612 dominance of taller and nitrogen-demanding species in forest understories has already been 

613 documented in Europe (Kopecký et al., 2012; Staude et al., 2020) and may, in part, reflect how 

614 environmental changes interact with management legacies that alter soil resources (Perring et al., 

615 2018). Increased recruitment of taller and more acquisitive species could alter forest vegetation 
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616 dynamics, ultimately reshaping ecosystem function. These results across plots and the 

617 phylogenetic signal in species’ tendencies to be lost or gained underscore the importance of 

618 distinguishing between suppressed and colonizing species when assessing changes in the 

619 evolutionary history of ecological communities at the continental scale.

620 Although plant height and SLA significantly affected species’ tendencies to be lost and 

621 gained, seed mass and leaf area did not (H3). These results suggest that relating other 

622 phylogenetically conserved traits to particular drivers of recent species extinctions and 

623 colonizations in temperate forests may be challenging. The overall metric of PD, however, also 

624 captures the functional diversity of hard-to-measure or unmeasured traits such as dispersal mode, 

625 pollination system, and root traits (e.g., mycorrhizal type and N-fixing symbioses), all known to 

626 affect extinction probabilities in other forest types (e.g., Sodhi et al., 2008). The evolutionary 

627 history of a species is, therefore, a useful predictor of extinction risk, with greater risks often 

628 associated with either more diverse evolutionary branches or more recent speciation (Mace et al., 

629 2003). For both extrinsic (i.e., environmental) and intrinsic (e.g., life-history trait) drivers of 

630 extinction, conserving communities with a high PD increases the probability that a broad 

631 combination of traits will persist under uncertain future conditions (Owen et al., 2019).

632

633 Phylogenetic relatedness of lost and gained species and its association with environmental 

634 change drivers

635

636 Our results support the hypothesis that locally lost species are more phylogenetically clustered 

637 than gained species in forest understories (H4). Nevertheless, phylogenetic relatedness (PR) of 

638 locally lost and gained species in these forest understories was generally random. This finding 

639 complements previous studies showing non-random phylogenetic losses of woody species 

640 between glacial-interglacial cycles (Eiserhardt et al., 2015) and non-random distributions of 

641 global extinction risk among angiosperms (Vamosi & Wilson, 2008). These results also suggest 

642 that traits that confer intrinsic susceptibility to extinction or the ability to colonize new 

643 environments may not necessarily be shared among closely related species in temperate forests. 

644 However, when lost species were phylogenetically clustered (7% of plots), Poaceae were often 

645 overrepresented (Appendix S13). Poaceae are thought to have originated at tropical forest edges 

646 and have since diversified based on their ability to withstand grazing, fire, and drought (Clayton, 
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647 1981). Hence, the reported loss of closely related grasses in a small subset of temperate forest 

648 understories could be related to a reduction in light availability triggered by canopy closure and 

649 rapid expansion of woody species.

650 The European forest understories that were studied generally exhibited random 

651 phylogenetic relatedness between the lost and gained species and persisting species (H5). 

652 Assuming phylogenetic niche conservatism (Losos, 2008), the functional similarity or 

653 dissimilarity of the lost and gained species to persisting species did not differ from what would 

654 be expected by chance. Notably, the gained species tended to be, on average, more distantly 

655 related to the persisting species than were the lost species. Previous studies of vegetation 

656 succession have demonstrated that late-stage colonizers comprise species from a wider diversity 

657 of lineages with various traits (Li et al., 2015). This pattern may result from environmental 

658 modifications that reduce the strength of environmental filtering, increase the carrying capacity 

659 of local habitats, and facilitate the colonization of species with distinct functional traits 

660 (Valiente-Banuet & Verdú, 2013). Additionally, competition may exclude functionally similar 

661 species that occupy similar niches (i.e., competitive exclusion; Li et al., 2015).

662 We found no evidence that the phylogenetic relatedness of lost and gained species varied 

663 along gradients of environmental change, as initially predicted (H6). The environmental filters 

664 imposed by recent macroclimate changes and N deposition may not be strong enough or have 

665 operated over sufficient time to exclude ecological strategies that increase intrinsic vulnerability 

666 to extinction. Alternatively, these strategies may not be phylogenetically conserved, or stochastic 

667 processes could account for many local extinctions.

668 Our study reveals that despite limited change in mean overall PD in temperate forest 

669 understories, substantial differences exist in the loss or gain of phylogenetic lineages in recent 

670 decades. Each lineage contains unique evolved features that play distinct ecological roles. We 

671 also found that regional shifts in macroclimate only affected changes in PD through changes in 

672 species richness. After controlling for differences in species richness within plots, we observed 

673 random losses and gains of species throughout the phylogeny across environmental gradients. 

674 Moreover, the fact that, within plots, lost species tend to be phylogenetically randomly related 

675 implies that close relatives may not share traits that confer intrinsic susceptibility to local 

676 extinction. Our results enhance our understanding of how shifts in environmental conditions 
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677 drive both subtle and profound changes in the phylogenetic and functional structure of forest 

678 plant communities.
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