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Introduction

This paper is essentially a survey paper on a vast topic some aspects of which, only, will be touched here.

The main problem we are interested in relates to elementary difference equations in the context of 1-periodic functions, i.e. functions defined on the circle T = R/Z, the multiplicative group of unimodular complex numbers or equivalently the additive group of real numbers modulo one, equipped with its normalized Haar measure m. More precisely, we focus on equations of the following form:

h(x + α) -h(x) = f (x), x ∈ T, f measurable, h unknown, (1) 
involving the rotation R α : x → x + α on T, α ∈ T. The equality in [START_REF] Anosov | The additive functional homology equation that is connected with an ergodic rotation of the circles, (Russian) Izv[END_REF] is to be understood almost everywhere (with respect to the Haar measure of T). Those equations, also called "additive coboundary equations" or "cohomological equations", appear very naturally in ergodic theory when looking at the spectral properties of group extensions over some given rotation [START_REF] Petersen | Ergodic theory[END_REF][START_REF] Fayad | A dichotomy between discrete and continuous spectrum for a class of special flows over rotations[END_REF][START_REF] Iwanik | Piecewise absolutely continuous cocycles over irrational rotations[END_REF][START_REF] Volny | Constructions of smooth and analytic cocycles over irrational circle rotations[END_REF]; they result also from the linearisation method in the famous conjugation problem of diffeomorphisms of the circle (for which the notion of rotation number has been introduced), initiated by Poincaré and Denjoy [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF][START_REF] Yoccoz | Petits diviseurs en dimension 1[END_REF]. The framework of this inverse type problem, of course, has to be made precise (nature of α, regularity of f ) and the first question that comes to mind is the existence of measurable solutions to equation [START_REF] Anosov | The additive functional homology equation that is connected with an ergodic rotation of the circles, (Russian) Izv[END_REF].

When α = p/q ∈ Q, (p, q) = 1, a necessary and sufficient condition for equation [START_REF] Anosov | The additive functional homology equation that is connected with an ergodic rotation of the circles, (Russian) Izv[END_REF] to admit a (measurable) solution is

S q := q-1 j=0 f • R jα = 0,
and in this case, h has the same regularity as f , no more no less. This condition is clearly necessary since, for any solution h, S q (x) = q-1 j=0 h(x + (j + 1)α) -h(x + jα) = h(x + qα) -h(x) = 0.

It is sufficient since, for a given f , the function

h := 1 q q-1 j=0 (j + 1)(f • R jα )
provides a solution as is easily checked... Let us next assume α to be irrational. We may invoke basic facts of ergodic theory and recall in particular that a dynamical system (X, B, T, µ), T preserving the probability measure µ on (X, B), is ergodic (or T itself is ergodic) if invariant sets are "trivial" (∀B ∈ B, T -1 (B) = B ⇒ µ(B) = 0 or 1); equivalently, if invariant measurable functions are constant (f • T = f ⇒ f =constant a.e.). The irrational rotation R α is ergodic, thus the measurable solutions to equation (1) (when they exist) are unique up to an additive constant. By iterating once more, we get now

S n (f )(x) := f (x) + f (x + α) + • • • + f (x + (n -1)α) = h(x + nα) -h(x)
for every n ≥ 1, so that, if h is a measurable solution we must have S n j (f )(x) = h(x + n j α) -h(x) → 0 in measure, as n j α → 0 mod 1.

Let us detail the latter observation under the form of a simple lemma.

Lemma 1.1. Let h : T → C be a measurable function, and (t j ) a sequence of reals tending to zero mod 1. Then, h(x + t j ) -h(x) → 0 in measure.

Proof. We have to show that

I j := T |h(x + t j ) -h(x)| 1 + |h(x + t j ) -h(x)| dm(x) → 0.
Let ε > 0. By Lusin's theorem ( [START_REF] Cohn | Measure Theory, Second Edition[END_REF] p. 208), there exists a continuous function g : T → C and a measurable (even compact) subset E of T such that h = g on E and m(E c ) ≤ ε. Let E j = E ∩ (E -t j ). Note that E c j = E c ∪ (E c -t j ) has measure ≤ 2ε and that h(x + t j ) -h(x) = g(x + t j ) -g(x) on E j . Hence

I j ≤ E j |h(x + t j ) -h(x)| 1 + |h(x + t j ) -h(x)| dm(x) + 2ε = E j |g(x + t j ) -g(x)| 1 + |g(x + t j ) -g(x)| dm(x) + 2ε ≤ T |g(x + t j ) -g(x)| 1 + |g(x + t j ) -g(x)| dm(x) + 2ε.
This implies lim sup j→∞ I j ≤ 2ε, ending the proof since ε is arbitrary. ♦

Besides, observe that, if h is some measurable solution, a non-measurable solution also exists. Indeed, by adding to h a weak character (non-measurable) γ, which satisfies γ(x + α) = γ(x)γ(α), γ(α) = 1, we get the non-measurable solution g = h + γ. The existence of such weak characters is folklore in harmonic analysis. A detailed presentation can be found e.g. in ( [START_REF] Queffélec | Topologie[END_REF] chapter 1). The idea is: take γ(x) = e 2iπg(x) , where g is a non-measurable solution of the Cauchy equation on the real line g(x + y) = g(x) + g(y), rational-valued, with g(1) = g(α) = 1. But we will see that (1) may have NO measurable solutions at all, even with an analytic right-hand side f . If we are looking now for integrable solutions (in L 1 or L 2 ) the necessary condition sup

n≥1 ||S n (f )|| 1,2 < ∞
emerges if such an h exists. The converse will be useful (Lemma 4.1).

Actually, everything will depend on the interplay between the properties of the function f , when supposed to be integrable, and the diophantine properties of the irrational number α; more precisely, the situation will depend on the one hand on the regularity properties of f (restricted Fourier spectrum, or fast decay of the Fourier coefficients), and on the other hand on the speed of approximation of α by rationals with controlled denominator. Let us recall the classical notations in diophantine approximation: first of all, here || • || = d(•, Z) so that 4||x|| ≤ |e(x) -1| ≤ 2π||x||, where as usual we denote e(x) = e 2iπx .

If (p n /q n ) is the sequence of convergents to α given by the Continued Fraction expansion of α, it is well-known ( [START_REF] Hardy | An introduction to the theory of numbers[END_REF] p.151 or [START_REF] Queffélec | Diophantine approximation and Dirichlet series[END_REF] p. 74) that it provides the best rational approximations in the following strong sense: inf

1≤q<q n+1 qα = q n α (2) 
and that

q n α - p n q n = q n α ≤ 1 q n • (3) 
Hence the speed above is completely described by the decay rate of q n α and depends only on the sequence of denominators (q n ). Badly approximable numbers are those for which (3) is best possible i.e.

α ∈ Bad ⇐⇒ ∃ C > 0, q qα ≥ C, q = 1, 2, . . . . (4) 
Diophantine numbers α are those for which some constants C, r > 0 exist such that qα ≥ Cq -r , q = 1, 2, . . . ;

the complementary set to diophantine numbers consists in Liouville numbers, explicitly those numbers α such that lim inf q→∞ (q r qα ) = 0 ∀r > 0.

In this paper, we will mainly focus on four types of results, with simplified and extended proofs:

• Anosov type results: if T f (x)dm(x) =: f (0) = 0, no measurable solutions h exist.
• Herman type results: if f ∈ L 2 has restricted Fourier spectrum (in a sense to be precised), and if a measurable solution exists, then an L 2 , and even better, solution exists, whatever the decay rate of q n α .

• Meyer-Rozhdestvenskii type results: if the decay rate of q n α is slow (more precisely if α ∈ Bad or if α is diophantine), then a slight reinforcement of the assumption f ∈ L 1 will ensure the existence of highly integrable solutions, more precisely solutions h ∈ ∩ p<∞ L p with estimates on h p as p → ∞.

• Fukuyama type results: here, we consider the new coboundary equation g(2x)-g(x) = f (x). In this case, we can prove, under some restriction on the Fourier-Walsh spectrum of f , the existence of a square-integrable solution as soon as a measurable solution does exist.

A huge number of contributions on coboundary equations has been ignored in this paper which is mainly organized around the notion of Λ(p)-set, due to W. Rudin [START_REF] Rudin | Fourier Analysis on groups[END_REF]; actually this article arose from our reading of the smart Herman's article ( [START_REF] Herman | L 2 -regularity of measurable solutions of a finite-difference equation of the circle[END_REF]), which mixed, in a successful way, ergodic theory and harmonic analysis. It is easily observed that the suitable required hypothesis on the spectrum of f in his main result, was this Λ(p)-condition which involves the Lebesgue L p -spaces; later on, generalizations of those spaces appear in papers of Meyer ([23]) and Rozhdestvenskii ([31]) in connection with absolutely continuous coboundaries. A tentative link between harmonic analysis (thin sets of integers like Λ(p) or Sidon sets, etc..) and diophantine approximation (badly approximable numbers, continued fraction expansion, etc...) is made in this work.

Details and references on ergodic theory can be found in [START_REF] Petersen | Ergodic theory[END_REF], and on diophantine approximation in [START_REF] Queffélec | Diophantine approximation and Dirichlet series[END_REF].

Throughout the rest of this paper, we will assume that α / ∈ Q.

Existence of measurable solutions

A. Wintner ([34]) seems to have been the first mathematician to raise the question of the regularity of the possible solutions of such equations. He made the first, now well-known, observations in the case f ∈ L 1 (T), allowing the use of Fourier techniques: if f is a given integrable function, the existence of some integrable solution clearly implies that f (0) = 0. But this remains true as soon as (1) admits a measurable solution, this is the pioneer result from Anosov ( [START_REF] Anosov | The additive functional homology equation that is connected with an ergodic rotation of the circles, (Russian) Izv[END_REF]). Fourier arguments cannot help in looking forward possible measurable solutions and, actually, the existence of some measurable h is not automatic at all, whatever the regularity of f . Proposition 2.1. Suppose f ∈ L 1 . If (1) admits a measurable solution, then necessarily f (0) = 0.

Proof. We prove the result in a more general context. Let (X, B, µ, T ) be an ergodic dynamical system and suppose by contradiction that there exists h measurable with h(T x) -h(x) = f (x) (µ a.e.), while X f dµ > 0 (f can be assumed real); put

S n = 0≤j<n f • T j ;
by the ergodic theorem, S n /n → f dµ > 0 almost everywhere, whence S n → ∞ almost everywhere (w.r. to µ). If we denote

E n = { inf p≥n S p > 2},
we can find n with µ(E n ) > 0. We decompose E n = ∈Z E n, where

E n, := {h ∈ [ , + 1[} ∩ E n so that µ(E n, ) > 0 for some ∈ Z. The Poincaré recurrence theorem ensures that µ(T -k E n, ∩ E n, ) > 0 for infinitely many k.
This leads to a contradiction: actually, for x in such an intersection with k > n, we have h(

T k x), h(x) ∈ [ , + 1[ and h(T k x) -h(x) ∈ [0, 1[; but then h(T k x) -h(x) = S k (x) ≥ inf p≥n S p (x) > 2 since
x ∈ E n , and the proposition is proved by reductio ad absurdum. ♦

As Wintner observed, it is easy to construct a zero-mean integrable function f and an irrational number α such that equation (1) has no integrable solution. Of course if a solution h ∈ L 1 exists, we appeal to the Fourier techniques; by identification of the Fourier coefficients, since

T f (x)e(-kx)dm(x) =: f (k) = (1 -e(kα)) h(k), k ∈ Z, (5) 
we would have

sup k∈Z | h(k)| < ∞. It is just enough to ensure that sup k =0 | f (k)|/||kα|| = ∞ (6) 
to get a contradiction, and this can be realized step by step. If now f is given and satisfies some regularity condition, this contrast between f and the solution h still holds by adjusting the number α.

Proposition 2.2. For any continuous and zero mean function f , which is not a trigonometric polynomial, there exists an irrational number α such that (1) has no integrable solution.

Proof. As above, assume that

f (k) = (1 -e(kα)) h(k), k ∈ Z, and sup k∈Z | h(k)| < ∞.
It is then sufficient, (f , thus ( f (k)) being given), to construct an α such that the sequence f (k)/||kα|| / ∈ ∞ ; but by our assumption on f , an infinite sequence (n k ) can be found with f (n k ) = 0; it remains to choose α as a Liouville-type number so that

| f (n k )|/||n k α|| → ∞.

♦

In the following two theorems, we are looking finally towards the existence of solutions, with a regularity as poor as possible; since we deal with only measurable h, Fourier techniques are of no more use. Theorem 2.1. For every irrational number α, there exists a continuous function f such that (1) admits (a.e.) a measurable solution which is not integrable.

We can push up this result to the analytic case: let us first recall the notation C ω (T).

Definition 2.1. The function g ∈ C ω (T) (or g is said to be "analytic") if g can be analytically extended to some annulus 1 -γ < |z| < 1 + γ, γ > 0, in C. Theorem 2.2. There exists a zero mean f ∈ C ω (T) and some α / ∈ Q such that (1) admits (a.e.) a measurable solution which is not integrable.

We now give a detailed proof of these two theorems.

Proof of Theorem 2.1. The number α (thus its denominators (q n )) being fixed, we have to construct a continuous coboundary f and we express the candidate as a series. Consider for every n the so-called triangle function ∆ n , ∆ n (x) = 2 n max(0, 1 -2 n |x|), |x| ≤ 1/2 and extended by 1-periodicity; one has T ∆ n dm = 1, and the measure of the set

{∆ n ≥ 2 -n } is clearly less than 2 -n+1 . Since ∞ n=1 m(∆ n (q kn x) > 2 -n ) = ∞ n=1 m(∆ n > 2 -n ) < ∞, the series h(x) := ∞ 1 ∆ n (q kn x)
converges almost everywhere for any subsequence (q kn ) of (q n ). Such a nonnegative function h, defined a.e., cannot belong to L 1 :

T hdm = ∞ 1 T ∆ n dm = ∞.
We are left with proving that h is a solution (a.e.) of the coboundary equation with the continuous righthandside f ; for that, we construct step by step the subsequence (q kn ) in order to control the modulus of uniform continuity of ∆ n :

ω n (h) = sup |x-y]≤h |∆ n (x) -∆ n (y)|;
more precisely we adjust the q kn 's so as to get

∞ n=1 ω n (1/q kn+1 ) < ∞. (7) 
In this way, the series with general term

ϕ n (x) = ∆ n (q kn x + q kn α) -∆ n (q kn x)
is normally convergent on T, since

|ϕ n (x)| ≤ ω n (||q kn α||) ≤ ω n (1/q kn+1 ).
Let us now put f (x) = ∞ n=1 ϕ n (x); this function f is continuous, by construction T f dm = 0, and it satisfies almost everywhere f (x) = h(x + α) -h(x), which was to be proved. ♦

Proof of Theorem 2.2. This time, we have to exhibit a function f , once more under the form of a series n φ n , and a sequence of denominators (q n ), in such a way that f is a coboundary for the rotation R α and can be analytically extended to some neighbourhood of the circle. We start by producing a sequence of trigonometric polynomials, (ψ n ), which take place of ∆ n , and satisfy

•1. ψ n ≥ 0 •2. ∞ n=1 m(ψ n > 2 -n ) < ∞ •3. T ψ n dm ≥ 1/2.
For that, let us approach each function ∆ n by a trigonometric polynomial ψ n = ∆ n * K N , where K N is the Fejér kernel of order N , N = N (n) being chosen so as to satisfy:

||ψ n -∆ n || ∞ ≤ 2 -n .
Thus, ψ n (x) > 2 -n implies |x| ≤ 2 -n+1 ensuring 2., while conditions 1. and 3. are fulfilled as well. We now denote by

ω n (h) = sup |x-y]≤h |ψ n (x) -ψ n (y)|
the modulus of uniform continuity of ψ n and we construct step by step a sequence (q n ), with q 0 = 1, q 1 = a, in order that

∞ n=1 ω n (1/q n+1 ) < ∞ (8) 
and

q n divides q n+1 -q n-1 . (9) 
(Hence, (q n ) will be the sequence of denominators of some irrational number α). As above, we put

h(x) = ∞ n=1 ψ n (q n x) ≥ 0; since ∞ n=1 m(ψ n (q n x) > 2 -n ) < ∞, h is defined almost everywhere, never- theless h / ∈ L 1 since T hdm = ∞ n=1 T ψ n = ∞ by 3.
The series with general term

ϕ n (x) = ψ n (q n x + q n α) -ψ n (q n x)
is normally convergent on T thanks to [START_REF] Fukuyama | On a gap series of Mark Kac[END_REF], and h satisfies (a.e.)

h(x + α) -h(x) = f (x) := ∞ n=1 ϕ n (x).
We have a last task left: the analytic extension of the function f to the annulus C := {1/2 < |z| < 3/2}, up to a better choice of the (q n ). It is easy to extend analytically each trigonometric polynomial ψ n to the punctured complex plane C \ {0} by putting

ψ n (z) := k∈Z ψ n (k)z k then φ n (z) = ψ n (z qn e(q n α)) -ψ n (z qn ).
To proceed, we consider

ω n,C (h) := sup |z-w|≤h z,w∈C |ψ n (z) -ψ n (w)|
and, during the inductive construction of the q n 's, we replace the constraint (8) (choice of q n+1 ) by a stronger one implying the following:

∞ n=1 3 2 n ω n,C (1/q n+1 ) < ∞, (10) 
which is always possible. Since sup

C |φ n (z)| ≤ 3 2 n ω n,C (||q n α||) the function f = ∞ n=1 φ
n is now well defined and analytic on C, which remained to be proved. ♦

In the next sections, we refer to this last property (theorem (2.2)) as to "Anosov's phenomenon".

Reminders of harmonic analysis

We recall in this section some basic facts on "thin sets" in harmonic analysis to be used in the next sections.

Fourier and harmonic Analysis

Let G be a compact abelian group, equipped with its normalized Haar measure m. The character group Γ of G is the (discrete) group of continuous homomorphisms of G to T = R/Z (see for example [START_REF] Rudin | Fourier Analysis on groups[END_REF] or [START_REF] Li | Introduction to Banach spaces, Analysis and Probability[END_REF]).

A first example, which is essential for our diophantine purposes, is the already defined group G = T itself with m the arc-length measure. The dual group of T is the group Z of integers, with the action n → e n where

e n (t) = [e(t)] n = exp(2iπnt), n ∈ Z, t ∈ [0, 1[. ( 11 
)
Another interesting example, which will show up in this work, is the discrete group Ω = {-1, 1} N of choices of signs ω = (r n (ω)) n≥1 , with Haar measure denoted P . The functions ω → r n (ω) appear as P -independent, identically distributed random variables, the so-called Rademacher variables. And the dual group Ω of Ω is formed by the so-called Walsh functions, namely

w ∅ = 1, w A = n∈A r n , A ⊂ N, A finite.
These Walsh functions can be realized as functions on T. If the regular binary expansion of

x ∈ T ∼ [0, 1) is x = ∞ j=1 x j 2 -j , we put r 0 = 1, r j (x) = 1 -2x j = (-1) x j , j ≥ 1;
the (r j ) are now the Rademacher functions on (T, m). Let n = ∞ 1 n j 2 j-1 be the binary decomposition of n; the Walsh function (w n ) (with respect to the Paley ordering), are defined by

w 0 = 1, w n (x) = ∞ j=1 (-1) n j x j , n ≥ 1. If n -1 = 2 k 1 + 2 k 2 + • • • + 2 ks with 0 ≤ k 1 < k 2 < • • • < k s , we recover the notation w n = w A = j∈A r j with A = {k 1 + 1, k 2 + 1, . . . , k s + 1}, so that |A| =: [n] = s. The mapping ϕ : ω ∈ Ω → ∞ 1 1+ω j 2 2 -j
∈ T exchanges the Haar measure on Ω and the Lebesgue measure on T; the spaces L 1 (Ω) and L 1 (T) are thus isometrically isomorphic. Since ϕ is continuous and onto, f → f • ϕ is an isometry from C(T) to C(Ω) and the dual mapping M (Ω) → M (T) is onto. We thus identify the two points of view. The subset

Λ s := {w A : |A| = s} = {w n : [n] = s} ⊂ Ω ( 12 
)
will play an important role in the final section. Note that Λ 1 is the set of Rademacher variables.

If µ is a complex Borel measure on G, its Fourier transform µ : Γ → C is defined by

µ(γ) = G γ(-t)dµ(t).
The (Fourier) spectrum sp(µ) of µ is by definition:

sp(µ) = {γ ∈ Γ : µ(γ) = 0}. ( 13 
)
If f ∈ L 1 , the Fourier transform of f at γ is that of the absolutely continuous measure µ = f dm. If Λ ⊂ Γ and X ⊂ L 1 is a Banach space of integrable functions on G, we denote by X Λ the subspace of X formed by those functions with Fourier spectrum contained in Λ, that is

f ∈ X Λ ⇐⇒ f ∈ X and f (γ) = 0 for all γ / ∈ Λ. ( 14 
)
Often, even if f ∈ X behaves badly on G, by restricting the spectrum of f we get f ∈ X Λ with a much more regular behavior when Λ is small. An extreme example is Λ = ∅, then f ∈ X Λ ⇒ f = 0! Since we can hardly imagine a thinner set than the empty one, sets Λ such that X Λ is formed by much better behaved functions will be called, by extension, "thin sets". For more on this topic, we refer to [START_REF] Li | Some new thin sets of integers in harmonic analysis[END_REF]. We will essentially concentrate here on one type of thin sets, the Λ(p)-sets (of which Sidon sets are a basic example).

Λ(p)-sets

Definitions

Let p a real number with 2 < p < ∞. A subset Λ of Γ is called a Λ(p)-set if there exists a constant λ such that

f p ≤ λ f 2
for each trigonometric polynomial f with spectrum contained in Λ.

We then denote by λ p (Λ) the best possible constant λ. Bourgain ( [START_REF] Bourgain | Bounded orthogonal systems and the Λ(p)-set problem[END_REF]) proved that, for each 2 < p < ∞, there exists a "true" Λ(p)-set, i.e. a set Λ which is Λ(p), but not Λ(q) for any q > p. Whether there exist "true" Λ(2)-sets is an open question ( [START_REF] Bourgain | Bounded orthogonal systems and the Λ(p)-set problem[END_REF]). An important property of Λ(p)-sets with p > 2 is given by the following key lemma, which utilizes the equivalence of norms on L 2 Λ and L p Λ to prove that each set B with large measure is "associate", meaning that the L 2 -norm of ϕ ∈ L 2 Λ is essentially computable on B, up to a constant. The proof is a variant of a lemma due to Paley and Zygmund ([18] p. 31), and plays a key role in what follows.

Lemma 3.1. Let p > 2 and let Λ be a Λ(p)-set with constant λ p (Λ). Then, there exists constants 0 < b < 1 and C, both depending only on

λ p (Λ), such that if B is a measurable subset of Γ with m(B) ≥ b, one has for all ϕ ∈ L 2 Λ ϕ 2 ≤ C B |ϕ| 2 1/2 .

Proof.

Let ϕ ∈ L 2 Λ with ϕ 2 = 1; we will show that B |ϕ| 2 ≥ 1/C 2 for some C, which implies the lemma. We fix a number 0 < a < 1, set E = {|ϕ| > a}, λ = λ p (Λ) and first show that m(E) is large when a is small. Precisely, if r = p/2 and r is the conjugate exponent, we see that:

1 = ϕ 2 2 = |ϕ|≤a |ϕ| 2 + E |ϕ| 2 ≤ a 2 + E |ϕ| 2 ≤ a 2 + ϕ 2 p m(E) 1/r ≤ a 2 + λ 2 ϕ 2 2 m(E) 1/r
by Hölder and the assumption on Λ; it ensues that

1 ≤ a 2 + λ 2 m(E) 1/r
or again that

m(E) ≥ 1 -a 2 λ 2 r . Next, choose b = 1 - 1-a 2 λ 2 r 2 ≥ 1 -m(E) 2 • Assume that m(B) ≥ b; then m(B ∩ E) ≥ m(B) + m(E) -1 ≥ m(E) 2 ≥ 1-a 2 λ 2 r 2 , which entails B |ϕ| 2 ≥ B∩E |ϕ| 2 ≥ a 2 2 1 -a 2 λ 2 r =: 1/C 2 .

♦

Remarks. 1. The preceding lemma claims that every Borel set B of T with Haar measure sufficiently close to 1 is associate for L 2 Λ with a constant depending only on m(B). If Λ = (λ n ) n≥1 is a Hadamard lacunary set of positive integers (meaning that λ n+1 /λ n ≥ q > 1), it can be proved that every set B with positive Haar measure b > 0 is C b -associate, with a constant C b depending only on b. But this is a much deeper result due to Nazarov, Nishry and Sodin ( [START_REF] Nazarov | Log-integrability of Rademacher Fourier Series with applications to random analytic functions[END_REF]), which will not be needed here. 2. Since we make use of it once in the end, the following "extrapolation" property is worth noting: if Λ is a Λ(p)-set with p > 2, there exists δ > 0 such that, for every f ∈ P Λ ,

f 1 ≥ δ f 2 . Indeed, if λ = λ p (Λ), Hölder's inequality, with 1/2 = (1 -θ)/1 + θ/p, gives f 2 ≤ f 1-θ 1 f θ p ≤ f 1-θ 1 λ θ f θ 2 whence f 2 ≤ λ θ 1-θ f 1 .

Examples

In the next subsection, we will define the Sidon sets and comment on the fact that they are Λ(p)-sets for all 2 < p < ∞. Here are two other examples (indeed extensions of the Sidon case) in the framework of Z ( [START_REF] Li | Introduction to Banach spaces, Analysis and Probability[END_REF]).

Theorem 3.1. Let p 1 , . . . , p s be s distinct prime numbers. Then, the following sets are Λ(p)-sets in Z with λ p (Λ) p s/2 for the first one and p s for the second:

1. Λ = {λ n = s j=1 p n j j , n j = 1, 2, . . .} 2. Λ = {λ n = s j=1 p n j j , n j = 1, 2, . . .}
A typical example of the first class is the set of integers 2 i + 3 j . A typical example of the second class (less well known) is the so-called Fürstenberg sequence, the increasing rearrangement (f n ) of integers 2 i ×3 j . This example has been studied by Gundy and Varopoulos in this context ( [START_REF] Gundy | A martingale that occurs in harmonic analysis[END_REF]).

We now give examples in the framework of Walsh functions, to be used in the final Section. We first have the classical ( [START_REF] Li | Introduction to Banach spaces, Analysis and Probability[END_REF], Vol.1, p. 30):

Theorem 3.2. Let S = ∞ n=1 z n r n (ω) a finite sum, with z n ∈ C. Then S p ≤ √ p S 2 = √ p ∞ n=1 |z n | 2 1/2 for all p ≥ 2.
This Λ(p)-property of Rademacher functions extends to the set Λ s (12):

Theorem 3.3. Let p > 2 and (a k ) k≥0 be a sequence of complex numbers. Then, for every integer s ≥ 1:

k,[k]=s a k w k p ≤ (p -1) s/2 k,[k]=s a k w k 2 .
Actually, Bonami and Borell ([2], [START_REF] Borell | On the integrability of Banach space valued Walsh polynomials[END_REF], see also [START_REF] Li | Introduction to Banach spaces, Analysis and Probability[END_REF]) proved a more precise hypercontractivity result:

Theorem 3.4. Let 1 < q < p, λ = q-1
p-1 and (a k ) k≥0 be a sequence of complex numbers. Then

∞ k=0 λ [k] a k w k p ≤ ∞ k=0 a k w k q .
Take q = 2, p > 2 and a k = 0 if [k] = s to recover the previous result.

Sidon sets

Definition and stability properties

We briefly define here the Sidon sets, because they are a typical example of Λ(p)-sets, but they will play a marginal role in this work.

A subset Λ = {γ n } n≥1 of Γ is called a Sidon set if any continuous function f : G → C with Fourier spectrum in Λ has an absolutely convergent Fourier series, equivalently if there exists a constant C such that, for any trigonometric polynomial

f (x) = ∞ n=1 a n γ n (x) with spectrum in Λ, it holds ∞ n=1 |a n | ≤ C f ∞ . (15) 
The best constant in ( 15) is called the Sidon constant of Λ and is denoted S(Λ). A basic theorem due to Rudin (Rudin's transference principle) is:

Theorem 3.5. Let Λ ⊂ Γ be a Sidon set. Then, Λ is a Λ(p)-set for all p > 2 and moreover λ p (Λ) ≤ S(Λ) √ p.
We refer to [START_REF] Li | Introduction to Banach spaces, Analysis and Probability[END_REF], Vol. 2 p. 146, for a proof. A deep theorem of Pisier ( [START_REF] Pisier | Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement convergentes[END_REF], see also [START_REF] Li | Introduction to Banach spaces, Analysis and Probability[END_REF] Vol. 2 p. 146) claims that the converse is true

: if Λ is Λ(p) for each 2 < p < ∞ with λ p (Λ) ≤ C √ p for some constant C, then Λ is a Sidon set.
We finally enunciate a fundamental result due to Drury ([6]).

Theorem 3.6. Let Λ 1 and Λ 2 be two Sidon sets. Then, their union is again a Sidon set.

Examples

The basic example of a Sidon set is that of a Hadamard set (also called a lacunary set and already mentioned), namely a set Λ = (λ n ) n≥1 of positive integers with λ n+1 λ n ≥ q > 1.

Theorem 3.7. If Λ is a Hadamard set, it is a Sidon set and S(Λ) ≤ C q where C q only depends on q. By Drury's theorem for example, it follows that every finite union of lacunary sets is itself Sidon. There are others, but they will not be used in this work. We now switch to applications.

Lacunary coboundaries

After Anosov, Herman studied in [START_REF] Herman | L 2 -regularity of measurable solutions of a finite-difference equation of the circle[END_REF] the coboundary equation ( 1), focusing on the heredity of L 2 -integrability property : a priori, f ∈ L 1 (T) has zero mean and the expected solution h is measurable. If f ∈ L 2 (with zero mean), it may happen, as observed in section 2., that (1) admits no measurable solution, but Herman proved that in case such a solution h exists, then h ∈ L 2 , PROVIDED f has a lacunary spectrum, in other words, an "Anosov phenomenon" cannot occur with lacunary right-handside. This theorem does not involve arithmetical properties of α / ∈ Q, but rests on thin sets theory in harmonic analysis, also on ergodic theory, with slight improvements that we present here. We stick to the notations ( 13) and ( 14) of section 3. Proof. The starting point consists in using a classical criterion for a function ϕ to be a coboundary in L 2 i.e. to ensure that equation (1) with f = ϕ has an L 2 -solution ( [START_REF] Petersen | Ergodic theory[END_REF]): Lemma 4.1. Let ϕ ∈ L 2 and T a measure-preserving transformation of T, more generally a contraction of a Hilbert space H to itself. Given ϕ ∈ H, a necessary and sufficient condition for the existence of ψ ∈ H such that ψ-T (ψ) = ϕ is:

sup n≥1 S n =: M < ∞, where S n = S n (ϕ) = n j=0 T j (ϕ). Proof.
The condition is obviously necessary as seen in the introduction, with S n ≤ 2 ψ . To see that it is sufficient, we first consider λ ∈]0, 1[ and the cocycle equation ψ -λT (ψ) = ϕ whose unique solution is the Neumann series ψ λ = ∞ n=0 λ n T n (ϕ). Thanks to an Abel summation, we have as well

ψ λ = ∞ n=0 (λ n -λ n+1 )S n , and ψ λ ≤ M ∞ n=0 (λ n -λ n+1 ) = M.
The family (ψ λ ) being norm-bounded in H, there exists a sequence (λ j ), going to 1, such that the sequence (ψ λ j ) converges weakly to some ψ ∈ H, so that T (ψ λ j ) converges weakly to T (ψ); passing to the weak limit in the equation

ψ λ j -λ j T (ψ λ j ) = ϕ gives us ψ -T (ψ) = ϕ, as claimed. ♦
Remark. This proof works in the framework of reflexive Banach spaces, whose unit ball is weakly compact; it can be seen as a weak form of the Markov-Kakutani theorem.

Let us now turn back to Theorem 4.1; suppose that f ∈ L 2 Λ and let h be a measurable solution to equation (1); by iterating,

h(x + nα) -h(x) = f n (x) := n-1 j=0 f (x + jα).
The coboundary equation has a solution in L 2 if the sequence (f n ) is bounded in L 2 (Lemma 4.1). To check that last point, fix ε > 0; by Lusin's property, h coincides with a continuous function H on some compact set K ⊂ T with measure ≥ 1 -ε. One has immediately

K∩R -nα (K) |f n (x)| 2 dx ≤ 4 sup K |H(x)| 2 < ∞. (16) 
Also this set K ∩ R -nα (K) is big enough for many integers n, this is a consequence of the following "recurrence" theorem due to Khintchine ( [START_REF] Petersen | Ergodic theory[END_REF]):

Lemma 4.2. Let (X, B, µ, T ) be a dynamical system, with a bijective and measure-preserving transformation T of X and let E be a measurable subset of X. Then for every ε > 0, the set

A(E) = {n ∈ Z : µ(E ∩ T -n E) ≥ µ(E) 2 -ε}
is relatively dense (namely has gaps bounded by k for some k = k ε > 0).

We now use that f ∈ L p Λ and refer to the key Lemma 3.1: if b > 0 is the constant associated to the Λ(p)-set Λ and if K is as above, we consider

A 1 = {n ∈ Z : m(K ∩ R -nα K) ≥ b}; then we choose ε > 0 in order to get m(K) 2 -ε ≥ (1 -ε) 2 -ε ≥ b. Thus A 1 ⊃ A(K) is k-dense
where k is given by Lemma 4.2 with E = K, T = R α , µ = m. Hence, every integer n can be decomposed into n = n 1 + n 2 with n 1 ∈ A 1 and n 2 ∈ A 2 := {-k, . . . , k}; next, since (cocycle law)

f n = f n 1 +n 2 = f n 1 • R n 2 α + f n 2 , we get sup n f n 2 ≤ sup n∈A 1 f n 2 + sup n∈A 2 f n 2 ≤ C 1 + C 2 ;
indeed, for n ∈ A 1 , by combining Lemma 3.1 and ( 16), we can bound

f n 2 ≤ C K∩R -nα K |f n | 2 1/2 ≤ 2C sup K |H|;
the second inequality for n ∈ A 2 is trivial and the proof is complete. ♦

Here are consequences of Theorem 4.1.

Corollary 4.1.

There exist a zero mean function f and an irrational number α such that equation (1) has no measurable solution.

Take for that a function f with a lacunary spectrum (thus Λ(p), ∀p > 2) and a number α such that (1) has no solution in L 2 .

Corollary 4.2. Let Λ be a Λ(p)-set, p > 2. If f ∈ L 2 Λ , α / ∈ Q and if h is a measurable solution of h • R α -h = f , then, actually, h belongs to L p .
Indeed, we proved that some solution h ∈ L 2 exists. But by construction h ∈ L 2 Λ , and hence h ∈ L p Λ . .

Remark. Theorem 4.1 is in some sense optimal. Actually, it is rather easy to produce some function f ∈ C ω with a lacunary spectrum and α / ∈ Q such that equation (1) has no solution in L ∞ (even though it has one in ∩ p<∞ L p ). We choose first α with an hyper-lacunary sequence of denominators (q n ), for example ||q n α|| ≤ e -qn ; [START_REF] Kac | On the distribution of sums of the type f (2 k t)[END_REF] and afterwards we construct the function f . For that purpose, given (c n ) ∈ 2 \ 1 , c 0 = 0, we consider

f (x) = ∞ n=1
nc n (1 -e(q n α))e(q n x);

By (17), f ∈ C ω (T), T f (x)dx = 0, and h(x) = ∞ n=1 nc n e(q n x) is a L p -solution to the coboundary equation for each p < ∞. But h / ∈ L ∞ , otherwise, we should get ∞ n=1 |c n | < ∞
since h is a lacunary series too, and would have to belong to the Wiener algebra.

Orlicz or BMO-type coboundaries

Section 4 provides conditional results on the existence of integrable solutions to (1): under some suitable spectral hypothesis on f , such ones exist as soon as a measurable solution exists; but up to now, no concrete answer is still given to the question "for which f and α does an integrable solution exist ?". Regarding relation [START_REF] Cohn | Measure Theory, Second Edition[END_REF], it is easy to check that for α ∈ Bad (resp. α rdiophantine) and f ∈ L 2 (resp. f (r) ∈ L 2 ), our equation (1) has solutions in L 2 . Can we improve this result? In this section, we shall see that, α being diophantine, a slight reinforcement of the assumption f ∈ L 1 will ensure the existence of highly integrable solutions.

Orlicz spaces

General definition

Some results to come (as well as some previous results on Λ(p) and Sidon sets) are best formulated in the language of Orlicz spaces. Accordingly, we devote some room to their definition and basic properties. Those spaces are an extension of the Lebesgue spaces L p (T), the Orlicz functions replacing the power functions x → x p , 1 < p < ∞. For Lebesgue spaces, Minkowski's inequality in L p is proved by observing that the set B = u : T |u| p dm ≤ 1 is convex. And its gauge is the usual L p -norm. All this generalizes to Orlicz spaces L ψ , which also represent a scale of interpolation between L p and L ∞ . Good references are [START_REF] Krasnosel'skii | Convex functions and Orlicz spaces[END_REF] and [START_REF] Rao | Theory of Orlicz spaces[END_REF]. 

u ψ = inf{a > 0 : ψ(|u|/a)dm ≤ 1}.
This definition is better understood as follows: let

B = u : T ψ(|u|)dm ≤ 1 ;
since ψ is convex, the set B is convex and balanced, and its gauge defines a norm, which is nothing but the Luxemburg norm above. If ϕ is an Orlicz function, the conjugate Orlicz function (or Legendre transform) ψ of ϕ is defined by

ψ(x) = sup y≥0 (xy -ϕ(y)). Observe that ψ(x) < ∞ since lim x→∞ ϕ(x)
x = ∞, and that ϕ is the conjugate of ψ. Another approach to duality, on which we shall not dwell, is the following. One writes ϕ(x) = x 0 u(t)dt where u : R + → R + is a function vanishing at 0 and increasing to infinity, with inverse function v. Then,

ψ(x) = x 0 v(t)dt.
Since what matters is the behaviour at infinity, it is good to coin a definition. Definition 5.3. Let ϕ 1 and ϕ 2 be two Orlicz functions. We say that ϕ 1 is dominated by ϕ 2 , and write ϕ 1 ≺ ϕ 2 , if there exist positive constants x 0 , k such that

ϕ 1 (x) ≤ ϕ 2 (kx) for all x ≥ x 0 . ( 18 
)
We say that ϕ 1 is equivalent to ϕ 2 if ϕ 1 ≺ ϕ 2 and ϕ 2 ≺ ϕ 1 .

A simple example of a pair of conjugate Orlicz functions is:

ϕ(x) = x p p , ψ(x) = x q
q , where q is the conjugate exponent of p. A second, typical example, of such a pair is: ψ 2 (x) = e x 2 -1, and ϕ 2 (x) = x log(x + 1), up to equivalence. More generally, for r > 0, the functions ψ r (x) = e x r -1, and ϕ r (x) = x log(x + 1)

1/r are conjugate, even if, for r < 1, the function ψ r is convex only for large x.

We have the important inequality, called Young's inequality in the approach by inverse functions (see [START_REF] Krasnosel'skii | Convex functions and Orlicz spaces[END_REF], Chapter I), and which is a definition in the Legendre approach:

xy ≤ ϕ(x) + ψ(y) for all x, y ≥ 0. ( 19 
)
This generalizes the famous Hölder inequality xy ≤ x p p + y q q . An important consequence of ( 19) is the following duality principle: Proposition 5.1. Let ϕ, ψ be conjugate Orlicz functions and let f ∈ L ϕ , g ∈ L ψ . Then f g ∈ L 1 and

f g ≤ 2 f ϕ g ψ .
Proof. We can assume that f ϕ = g ψ = 1. We then use [START_REF] Katznelson | Some random series of functions[END_REF] to get

|f g| ≤ ϕ(|f |) + ψ(|g|) = 2.
This finishes the proof. ♦

An easily checked, but important fact (use Stirling's formula) is Proposition 5.2. If r > 0, then

f ψr ≈ sup p>2 f p p 1/r •
With the language of Orlicz spaces, Theorems 3.3, 3.1 and 3.5 can be gathered in the following proposition.

Proposition 5.3. The following three properties hold:

a) If S = |A|=s z A w A , then S ψ 2/s S 2 . b) If Λ = {λ n = s j=1 p n j j , n j = 1, 2, . . .} and S ∈ P Λ , then one has S ψ 1/s S 2 . c) If Λ is a Sidon set, then f ψ 2 f 2 for each f ∈ P Λ .

An instructive example

Consider the function g defined by g(x) =: q≥1 ε q cos 2πqx, ε q = 1 log(q + 1) •

We will see that g is on the verge of belonging to L ϕ 2 (this example will be reconsidered later). More precisely, g(x)

1 x log 3/2 (1/x)
as x → 0 + (this is the right order of growth near the origin, but we insist on the lower bound). Let us prove this. Using two Abel summations, we first get:

(2 sin πx)g(x) = q≥1 ε q [sin(2q + 1)πx -sin(2q -1)πx] = -ε 1 sin(πx) + q≥2 (ε q-1 -ε q )[sin(2q -1)πx] = -ε 1 sin(πx) + (ε 2 -ε 1 ) sin(πx) + q≥2 (ε q-1 + ε q+1 -2ε q )S q (x)
where S q (x) = q k=1 sin(2k -1)πx = sin 2 πqx/sin πx ≥ 0 on (0, 1]. We next observe that: S q (x) q 2 x for qx ≤ 1/2 and ε q-1 + ε q+1 -2ε q ≈ 1 q 2 log 3/2 q • Indeed, S q (x) = sin 2 πqx/sin πx q 2 x and the second estimate comes from Taylor's formula using the second derivative of the function t → 1/ √ log t. Therefore, using also S q (x) ≥ 0, we get for any small x > 0 and the integer N = [1/x]:

x|g(x)| 2≤q≤N (ε q-1 + ε q+1 -2ε q )S q (x) 2≤q≤N q 2 x q 2 log 3/2 q x N log 3/2 N •
We thus get for x near 0:

x|g(x)| 1 log 3/2 (1/x) ,
which is the lower bound claimed in Section 3, and the analogous upper bound x|g(x)|

1 log 3/2 (1/x)
, for x near 0, can be proved similarly. This

implies g / ∈ L ϕ 2 since 1 0 |g(x)| log |g(x)|dx ≈ 1 0 1 x log 3/2 (1/x) log(1/x)dx = 1 0 1 x log(1/x) dx = ∞.
Remark. This example is "sharp" since, in some sense, g is quite close to belonging in L ϕ 2 ! Indeed, the previous pointwise (upper) estimate shows that g ∈ L ϕr for all r > 2. An alternative proof would be the following:

g(x) = G(x)
where G(x) = q =0 ε |q| e 2iπqx . A double Abel summation by parts now gives

G = ∞ q=1 q ε q-1 + ε q+1 -2ε q K q (20) 
where K q = |j|≤q (1-|j|q -1 )e q is the Fejér kernel of order q (see [START_REF] Kahane | An introduction to harmonic analysis[END_REF] p. 24). But since K q ∞ = q and K q 1 = 1, we see that

K q ϕr T K q • (log(1 + K q )) 1/r (log q) 1/r T K q = (log q) 1/r .
So that the series defining G in ( 20) is absolutely convergent in L ϕr for r > 2 since q ε q-1 + ε q+1 -2ε q K q ϕr 1 q(log q) 3/2-1/r with 3/2 -1/r > 1.

The space BMO

An interesting related space is the Banach space BMO of integrable functions on T with bounded mean oscillation, equipped with its natural norm . BM O ( [START_REF] Garnett | Bounded analytic functions[END_REF], chapter 6) which we describe: let I be an arc on T equipped with its Haar measure m, and

f I := 1 m(I) I f dm. Then, f ∈ BM O if [f ] := sup I 1 m(I) I |f -f I |dm < ∞
where the supremum is taken over all subarcs I of T, and

f BM O := f 2 + [f ].
Observe that, without this recentering by f I , we would simply get the (smaller) space L ∞ . To play at least once with the definition, note the following, in which f α denotes the indicator function of the arc (0, α):

If 0 < α < β < 1, then f β -f α BM O ≥ 1/2. Indeed, set ∆ = f β -f α as well as I = (α -h, α + h) with h small: 0 < h < min(α, β -α). Then, (f α ) I = 1/2, (f β ) I = 1, ∆ I = 1/2 and ∆ BM O ≥ 1 m(I) I |∆ -∆ I |dm = 1 2h α α-h | - 1 2 |dt + 1 2h α+h α | 1 2 |dt = 1 2 •
As a consequence, BMO is a non-separable space.

One striking feature of this space (indeed the dual space of the real space H 1 ) is given by the John-Nirenberg inequality ([12] p. 223), which immediately implies the Proposition 5.4. One has the continuous inclusion

BM O ⊂ L ψ 1 .
Propositions 5.2 and 5.4 together imply

f ∈ BM O ⇒ f p = O(p) as p → ∞. (21) 
For the proof of both theorems to come, the two following lemmas will be needed, one on diophantine approximation, one of harmonic analysis.

Two lemmas

Lemma 5.1. For every integer n ≥ 0 and every irrational α with convergents p n /q n , one has

0<|q|<q n+1 1 qα 2 ≤ C q n α 2 (22) 
with C = π 2 /3. In particular :

qn≤|q|<q n+1 1 qα 2 ≤ 2C q n α 2 • (23) 
Proof. Set α n = q n α and consider the half-open intervals [jα n , (j+1)α n [ where j = 1, 2, . . .. Every number qα , 1 ≤ q < q n+1 , falls in one of those intervals (no one falls into [0, α n [) and at most two fall in the same interval, for if three of them, say qα , q α , q α belonged to [jα n , (j + 1)α n [, at least two of them, say qα and q α with q > q, would be of the form qα-p and q α-p (otherwise, they would be of the form p-qα and p -q α), so that

qα -q α = |(q α -p ) -(qα -p)| = |(q -q)α -(p -p)| < α n .
Setting Q = q -q with 0 < Q < q n+1 , this would imply Qα < α n , a contradiction with [START_REF] Bonami | Étude des coefficients de Fourier des fonctions de L p (G)[END_REF]. If follows immediately that

0<q<q n+1 1 qα 2 ≤ 2 ∞ j=1 1 j 2 α 2 n = C q n α 2 •
This clearly ends the proof of the lemma, since x is an even function. ♦ Our second lemma (the so-called embedding inequality) says the following (cf. [START_REF] Zygmund | Trigonometric series, Second Edition[END_REF] (Vol. II, page 132): Lemma 5.2. Let Λ = (λ n ) n≥1 ⊂ Z be a Sidon set with constant K. Then, for every function g ∈ L ϕ 2 , with ϕ 2 (x) = x log(1 + x)

1/2 , we have:

∞ n=1 | g(λ n )| 2 1/2 ≤ CK g ϕ 2 ( 24 
)
where C is an absolute constant.

If g ∈ H 1 (namely g ∈ L 1 and g(k) = 0 for k < 0), and if Λ is lacunary (λ n+1 ≥ qλ n > 1 with q > 1), then ∞ n=1 | g(λ n )| 2 1/2 ≤ C q g 1 ( 25 
)
where C q only depends on q.

Proof. Let (a n ) be a norm one sequence with compact support in 2 . Let h(t) = n a n e(λ n t) ∈ L 2 , with h 2 = 1. By Propositions 5.2 and 5.3, we have h ψ 2 ≤ (C/2)K, where the function ψ 2 (x) = e x 2 -1 is the Orlicz function conjugate to ϕ 2 . Parseval's formula and the duality between the spaces L ϕ 2 and L ψ 2 now give us:

∞ n=1 a n g(λ n ) = k∈Z h(k) g(k) = T g(-t)h(t)dm(t) ≤ 2 g ϕ 2 h ψ 2 ≤ CK g ϕ 2 .
Taking the supremum on those test sequences, we obtain

∞ n=1 | g(λ n )| 2 1/2 ≤ CK g ϕ 2 .
The second part of the lemma is due to Paley ( [START_REF] Duren | Theory of H p spaces[END_REF] p. 104): by dividing Λ in at most J subsequences, where q J > 2, we can assume q > 2; then, write g = uv with u, v ∈ H 2 and u 2 v 2 = g 1 , so that

g(λ n ) = 0≤k≤λ n-1 u(k) v(λ n -k) + λ n-1 <k≤λn u(k) v(λ n -k).
Now, apply Cauchy-Schwarz to each of the two sums on the RHS and add up, noting that λ n -λ n-1 > λ n-1 . ♦

Two theorems

We begin with motivating the diophantine conditions to come (to come back!). Y. Meyer ([23]) proved the following, in which W r,2 , r ≥ 1, denotes the Sobolev space of functions f ∈ L 2 whose r first derivatives (in the sense of distributions) are again in L 2 , equipped with its natural norm

f W r,2 = | f (0)| 2 + f (r) 2 2 1/2 .
Theorem 5.1. The three following conditions are equivalent:

1. α belongs to Bad.

2. If f ∈ W 1,2 , the equation h(x+α)-h(x) = f (x) has a square-integrable solution. 3. If f ∈ W 1,2 , the equation h(x + α) -h(x) = f (x) has a solution in BM O.
Proof. The implication 3 ⇒ 2 is obvious thanks to [START_REF] Li | Some new thin sets of integers in harmonic analysis[END_REF]. The implication 2 ⇒ 1 is nearly obvious: to each f ∈ W 1,2 is associated in a unique way a zero-mean solution h ∈ L 2 and then the map f → h is linear. It is readily seen to have closed graph, so that, for some constant C:

h 2 ≤ C f 2 for all f ∈ W 1,2 .
We test this inequality on f (x) = e 2iπqx (e 2iπqα -1), h(x) = e 2iπqx

to get 1 q qα , that is α ∈ Bad.

The deep implication is 1 ⇒ 3. A key point is a sufficient condition due to Y. Meyer ([23]) for membership in BM O (admitted here).

Proposition 5.5.

Let h ∈ L 2 with h(0) = 0, h k = 2 k ≤|j|<2 k+1 h(k)e k , and 
H = k≥0 |h k | 2 1/2
the corresponding square function (the polynomial h k is called the k-th block in the Littlewood-Paley decomposition of h).

If H ∈ L ∞ , then h ∈ BM O and h BM O ≤ C H ∞ .
To check the assumptions of this proposition in the present case, we rely on a simple estimate:

S k := 2 k ≤|j|<2 k+1 1 j 2 jα 2 ≤ C. (26) 
Indeed, let n + 1 be the smallest integer such that q n+1 ≥ 2 k+1 . We see that, thanks to Lemma 5.5 and the assumption α ∈ Bad:

S k 2 -2k 2 k ≤|j|<2 k+1 1 jα 2 2 -2k 1≤|j|<q n+1 jα -2 2 -2k q n α -2 2 -2k q 2 n 2 -2k 2 2k = 1.
Now, write f = c j e j with (c j ) square-summable. The zero-mean solution h of our coboundary equation h(x + α) -h(x) = f (x) is formally given by the Fourier series h = j =0 µ j c j e j with µ j = 1 j(e(jα) -1)

,

|µ j | ≈ 1 j jα • If h k (resp.f k )
is the kth-block in the Littlewood-Paley decomposition of h (resp.f ), we see by Cauchy-Schwarz and ( 26) that

h k 2 ∞ ≤ 2 k ≤|j|<2 k+1 |µ j ||c j | 2 ≤ 2 k ≤|j|<2 k+1 |µ j | 2 2 k ≤|j|<2 k+1 |c j | 2 2 k ≤|j|<2 k+1 |c j | 2 = f k 2 2 .
Summing up, we obtain that k≥0 h k

2 ∞ k≥0 f k 2 2 = f 2 2
, implying H ∈ L ∞ and h ∈ BM O by Proposition 5.5. ♦

Remarks. 1. Similarly, if the equation has an L 2 -solution for each f ∈ W r,2 , then α is r-diophantine, namely verifies 1 q r qα .

This is why we consider this class of numbers in this section.

2. It follows from Theorem 5.1 and (21) that if f ∈ L 2 , the zero-mean solution h will satisfy h p = O(p).

We will now see that relaxing f ∈ L 2 to f ∈ L ϕ 2 preserves some control on h, namely h p = O(p 3/2 ).

Throughout the rest of this subsection, we fix the r-diophantine number α, i.e. α satisfying an inequality of the form:

q r qα ≥ δ, q = 1, 2, . . . ( 27 
)
and we assume without lost of generality that r ∈ N. Having both preceding lemmas at our disposal, we will give a simpler proof of a theorem due to Rozhdestvenskii [START_REF] Rozhdestvenskii | On absolutely continuous weakly mixing cocycles over irrational rotations[END_REF]. In this theorem, one significantly improves the Orlicz class of functions to which the solution h given there belongs (here, H 1 denotes once more the Hardy space of those f ∈ L 1 with vanishing Fourier coefficients of negative index). Here is now our second theorem.

Theorem 5.2. 1. Suppose that f is absolutely continuous and that the r th derivative f (r) ∈ L ϕ 2 where ϕ 2 is the Orlicz function defined by ϕ 2 (x) = x log(1 + x). Then (1) has a solution h ∈ L 2 .

2. Indeed, the solution h of ( 1) is not only in L 2 but in L ψ 2/3 , where ψ 2/3 (x) = e x 2/3 -1 for x ≥ 0. In other terms, one has h ∈ ∩ q<∞ L q with h q ≤ M q 3/2 for every q ≥ 2.

3. If f ∈ H 1 , then f (r) ∈ L 1 is enough to imply that any integrable solution h of the coboundary equation is actually in L 2 .

Before proving Theorem 5.2, we would first like to (re)-consider an instructive example:

Example. A function f to which Theorem 5.2 to come, with α ∈ Bad, will not apply is f (x) = q≥1 sin 2πqx q log(q + 1) Indeed, f is absolutely continuous (with the poor modulus of continuity O((log 1/h) -1/2 ) and f = 2π q≥1 

| f (2 n )| 2 = c n≥0 1 log(2 n + 1) 2 < ∞,
contradicting the divergence of the harmonic series. We can even say that f is not a L 2 -coboundary. Indeed, since α ∈ Bad, we have q n ≤ C n for some C > 1, so that:

q≥1 | f (q)| 2 qα 2 ≥ n≥0 | f (q n )| 2 q n α 2 n≥0 q 2 n | f (q n )| 2 n≥0 1 log(q n + 1) = ∞.
This example was considered in more detail in a previous section, where the sharpness of f / ∈ L ϕ 2 was observed: f ∈ L ϕr for all r > 2. ♦

Proof of Theorem 5.2

By examining the Fourier coefficients, we can only have:

h(x) = k =0 f (k) e(kα) -1 e(kx)
and we first show that the right-hand side is in L 2 . Denote by q n and q n integers of [q n , q n+1 [ and ]-q n+1 , -q n ] respectively where | f (q)| is maximum on this block. We can write, using Lemma 5.1 in the wake, as well as the diophantine hypothesis ||qα|| q -r on α:

k =0 f (k) e(kα) -1 2 n≥0 qn≤|q|<q n+1 | f (q)| 2 qα 2 n≥0 | f (q n )| 2 q n α 2 + | f (q n )| 2 q n α 2 n≥0 q 2r n | f (q n )| 2 + | f (q n )| 2 n≥0 (q n ) 2r | f (q n )| 2 + n≥0 (q n ) 2r | f (q n )| 2 n≥0 | g(q n )| 2 + | g(q n )| 2
where g = f (r) . Now, since q n+2 ≥ 2q n for continued fractions, taking the points of even and odd index separately, we get that the set of integers E = {q n , q n , n ≥ 1} is the union of at most four Hadamard lacunary sets with ratio ≥ 2, and is therefore a Sidon set with an absolute constant. An appeal to Lemma 5.2 ends the proof, since we assumed that g = f (r) ∈ L ϕ 2 . The second part is proved similarly, using now the second item of Lemma 5.2. It remains to prove the more ambitious conclusion h ∈ L ψ 2/3 . To that effect, we will first make a more careful study of the function h. We need the additional:

and use the triangle inequality in L ψ 2 , as well as the Rudin-Khintchine inequalities of Lemma 5.2, which give G j ψ 2 G j 2 1/j, to get the estimate for u N . Besides, since the G j 's have disjoint spectra:

T |v N | 2 dm = j>N T |G j | 2 dm j>N j -2 N -1 .
This ends the proof of Lemma 5.3. ♦

We can now end the proof of Theorem 5.2 by a Marcinkiewicz interpolation type argument, which lets L ψ 2/3 appear as a real interpolate space between L 2 and L ψ 2 . We will denote by δ > 0 some numerical constant. Let t be a real number ≥ t 0 where the constant t 0 ≥ 1 will be fixed, depending on δ. We write h =: u N + v N , where N = N (t) will be adjusted later. Clearly

m(|h| > 2t) ≤ m(|u N | > t) + m(|v N | > t). (30) 
We will find a good upper bound for the RHS of (30) in two steps:

Step 1. We have

m(|u N |) > t) e -δt 2 /(log N ) 2 . (31) 
Indeed, if λ ≥ u N ψ 2 , Markov's inequality gives us

m(|u N | > t) = m(e |u N | 2 /λ 2 > e t 2 /λ 2 ) ≤ e -t 2 /λ 2 e |u| 2 /λ 2 dm ≤ 2e -t 2 /λ 2 .
(32) Now, we know from Lemma 5.3 that we can take λ = C log N . This gives the relation [START_REF] Rozhdestvenskii | On absolutely continuous weakly mixing cocycles over irrational rotations[END_REF].

Step 2. It holds

m(|v N | > t) 1 N t 2 ≤ 1 N • (33) 
This is Chebyshev's inequality and the estimate v N 2 1 √ N of Lemma 5.3. Now, it is easy to conclude. Adjust N in order to balance the contributions of ( 31) and [START_REF] Volny | Constructions of smooth and analytic cocycles over irrational circle rotations[END_REF]; namely aiming for

N = e δt 2 /(log N ) 2 or log N = (δt 2 ) 1/3 , N = e (δt 2 ) 1/3 , we take N = e (δt 2 ) 1/3 + 1 (34) 
where [ ] denotes the integer part. By adjusting now t 0 large enough in terms of δ, we obtain e (δt 2 ) 1/3 ≤ N ≤ e (2δt 2 ) 1/3 , so that e -δt 2 /(log N ) 2 ≤ e -δt 2 /(2δt 2 ) 2/3 ≤ e -δ t 2/3

where δ > 0 only depends on δ. Inserting this value in [START_REF] Rozhdestvenskii | On absolutely continuous weakly mixing cocycles over irrational rotations[END_REF] and [START_REF] Volny | Constructions of smooth and analytic cocycles over irrational circle rotations[END_REF] gives, taking [START_REF] Rao | Theory of Orlicz spaces[END_REF] into account and changing the value of δ if this is necessary: m(|h| > 2t) e -δt 2/3 for t ≥ t 0 . Equivalently (changing δ and t 0 again):

m(|h| > t) e -δt 2/3 for t ≥ t 0 .

Using the classical "integration by parts" formula actually just a version of the "ergodic theorem" as observed by F. Riesz a few years later, and the convergence rate aroused the interest of M. Kac who established a central limit theorem for those sums [START_REF] Kac | On the distribution of sums of the type f (2 k t)[END_REF]. The following is a striking analog (for the special transformation x → 2x) of Lemma 4.1: the spectrum of the trigonometric polynomial µ * K N being contained in the Sidon set Λ, on which the L 1 and L 2 -norms are equivalent. That is

∞ n=1 | µ(λ n )| 2 (K N (λ n )) 2 ≤ C 2 µ 2 , which implies ∞ n=1 | µ(λ n )| 2 ≤ C 2 µ
2 by letting N tend to infinity.

Whence the question of M. Kàc: anyway, could f be a coboundary but now with some measurable g ? Fukuyama [START_REF] Fukuyama | On a gap series of Mark Kac[END_REF] proved that this equation actually has no measurable solution by establishing Theorem 6.2. Suppose that f ∈ A(T) and f (n) = 0 if n = ±2 k , (k ≥ 0); if the coboundary equation f (x) = g(2x) -g(x) a.e.

(

) 36 
has a measurable solution g, it has also a solution in L 2 (T).

We focus in turn on this coboundary equation and look for conditions ensuring the existence of L 2 -solutions. The Walsh decomposition of course is very well appropriate to the 2-shift. By mimicking Herman's approach, we are able to prove: Theorem 6.3. Let f ∈ L 2 have its Fourier-Walsh spectrum in the set Λ s where Λ s = {w k : [k] = s}, s is fixed and [k] is the sum of digits of the integer k in base 2. Then if the coboundary equation f (x) = g(2x) -g(x) a.e.

(37)

has a measurable solution g, it has also a solution in L 2 (T).

Remarks. 1. Observe that the hypothesis can also be expressed in terms of the already encountered set Λ s = {±2 k 1 ± • • • ± 2 ks }, k i ≥ 1.

2. The set Λ s being sub-lacunary, this result provides an improvement to Fukuyama's theorem.

Proof. Our proof makes use of three arguments:

• The previous Lemma 4.1.

• The property 3.1 since Λ s is a Λ(p)-set with p > 2.

• The strong mixing property of the 2-shift.

We now use the precise version of Theorem 3.3 for the Λ(p)-character of the sets Λ s . We write Λ := Λ s and we suppose that g is a measurable solution of (36) with f ∈ L 2 Λ i.e. g(x) -g(σx) = f (x). The function g is "almost bounded" : ∀ε > 0, ∃K ⊂ [0, 1); m(K) ≥ 1 -ε and g |K is bounded; we just have to observe that T = ∪ n {|g| ≤ n} = lim ↑ n {|g| ≤ n}.

As S n f (x) = f (x) + f (σx) + • • • + f (σ (n-1) x), we can write

K∩σ -n K |S n f (x)| 2 dx = K∩σ -n K |g(x) -g(σ n x)| 2 dx ≤ sup K∩σ -n K |g(x) -g(σ n x)| 2 ≤ (2 sup K |g(x)|) 2 < +∞.
We check that S n f ∈ L 2 Λ for every n; indeed, observe that, for any h ∈ L 2 , (with the Walsh notations of section 3), and there exists N > 0 such that, for n ≥ N , m(K ∩ σ -n K) ≥ m(K) 2 -ε.

h(σ j x), w k = 0 if 2 j | k = h,
We may apply Lemma 3.1 to the function ϕ = S n f ∈ L 2 Λ and the set E = K ∩ σ -n K, since m(E) ≥ b by our choice of N and ε. Finally,

S n f 2 ≤ C K∩σ -n K |S n f (x)| 2 dx 1/2 ≤ 2C g K .
It follows that sup n S n f 2 < +∞ and f is a coboundary in L 2 by Lemma 4.1.

♦

Theorem 4 . 1 .

 41 Let Λ ⊂ Z be a Λ(p)-set for some p > 2 and fix f ∈ L 2 Λ . If the coboundary equationh(x + α) -h(x) = f (x)has a measurable solution, then it has a solution ∈ L 2 Λ . If one wishes non-lacunary examples, the theorem applies with the sets Λ = {λ n = s j=1 p n j j , n j = 1, 2, . . .} as well as Λ = {λ n = s j=1 p n j j , n j = 1, 2, . . .}.

Definition 5 . 1 .

 51 An Orlicz function is a function ψ : R + → R + which is increasing, convex, with ψ(0) = 0 and lim x→∞ ψ(x) x = ∞. Definition 5.2. The Orlicz space L ψ = L ψ (T) attached to the Orlicz function ψ is the Banach space of measurable functions u : T → C such that ψ(|u|/a)dm < ∞ for some constant a > 0 and the associated (Luxemburg) norm u ψ of u ∈ L ψ is

∈ L 1 1 √

 11 by the usual properties of the cosine series, since the sequence log(q+1) is convex and tends to zero ([19] p. 24). But if f ∈ L ϕ 2 , Lemma 5.2 will give us:

  n≥0

2 Λ 1 N

 21 3)t -1/3 e εt 2/3 m(|h| > t)dt < ∞ for ε < δ.This ends the proof of Theorem 5.2. ♦6 The equation g(2x) -g(x) = f (x)More general coboundary equations, associated to arbitrary measure-preserving transformations, appear as well in ergodic theory. The case of the 2shift σ : x → 2x (mod 1) is of specific interest, since its very rich dynamics (chaos) is the opposite of the rotation's one; in return, the conditionf ∈ L =⇒ f • σ ∈ L 2Λ is much more restrictive for Λ. Raikov proved the following theorem for f ∈ L 1 (T): lim N n<N f (2 n x) exists almost everywhere and = T f dm,

  w k/2 j otherwise. Now, w k ∈ Λ =⇒ w 2k ∈ Λ (because [2k] = [k] = s) so that, if k ∈ Λ and k = 2 j , then / ∈ Λ in turn; this implies < S n f, w k >= 0 for every k / ∈ Λ.Let us then choose ε so that (1 -ε) 2 -ε ≥ b where b is given by Lemma 3.1. Since the 2-shift is strongly mixing with respect to the Lebesgue measure, lim n→∞ m(K ∩ σ -n K) = m(K) 2

Lemma 5.3. One can write

where the functions G j have disjoint spectra E j , each E j being Sidon with a constant less than an absolute constant. As a consequence, for each integer N ≥ 1, one has a decomposition h = u N + v N with

Proof. The proof of Lemma 5.3 is just a matter of rearrangement; to save notation, we will assume that f ∈ H 2 , i.e. f (k) = 0 if k < 0. From Lemma 5.1, we can write by increasing rearrangement (recall that α n = q n α ):

[q n , q n+1 [= {l n,j , 1 ≤ j ≤ q n+1 -q n } with l n,j α jα n .

We have seen that

Now, for fixed j, the spectrum E j = {l n,j } of G j is as before the union of two Hadamard sets with ratio ≥ 2 and is Sidon with a uniform constant. The E j are clearly disjoint, and finally, using once more that α is r-diophantine and recalling that g = f (r) :

the last inequality coming from Lemma 5.2 applied to g ∈ L ϕ 2 and E j . Finally, take

Proof. The function f is assumed to satisfy some Hölder's condition and, under the condition

we shall prove that f is a coboundary. We make use of the spectral local correspondence by defining the spectral measure of f ∈ L 2 , σ f , through its Fourier coefficients:

U is the isometry of L 2 associated to σ, we have for every trigonometric polynomial R:

Thus, hypothesis ( 35) is nothing but lim N →∞ K N * σ f (0) = 0, where K N is the Fejér kernel (the square of a Dirichlet kernel), and this means (thanks to the Fejér convergence theorem) that σ f {0} = 0, i.e. σ f has no mass at 0. Now, the following lemma gives a description of a coboundary in terms of its spectral measure ([27] page 288).

Lemma 6.1. The function f is a coboundary for the shift in L 2 if and only if the function 1/ sin 2 πt ∈ L 1 (σ f ).

To pursue, more information on f and σ f is needed, and here the hölderian regularity of f is an unbreakable assumption as we shall see ( [START_REF] Kac | On the distribution of sums of the type f (2 k t)[END_REF]).

Lemma 6.2. Let f be an α-hölderian real function with α > 1/2. Then,

the constant depending on f and α. In particular,

It follows from Lemma 6.2 that σ f is an absolutely continuous measure with a C ∞ density, say F ; by hypothesis [START_REF] Yoccoz | Petits diviseurs en dimension 1[END_REF], F (0) = σ f ({0}) = 0, and F (0) = 0 since F is even. Thus, clearly, 1/ sin 2 πt ∈ L 1 (σ f ) and f is a coboundary in L 2 . ♦ Kàc ( [START_REF] Kac | On the distribution of sums of the type f (2 k t)[END_REF]) asked for completing his result when 0 < α ≤ 1/2 and gave an example of an f ∈ A(T) (the Wiener algebra) without any integrable solution g: consider

we shall prove that τ = 0 though no solution g ∈ L 2 exists to the coboundary equation f (x) = g(2x) -g(x). Indeed we can compute the partial sum

Parseval identity then gives

because (r -N ) -1/2 -r -1/2 N r -3/2 for r > 2N by the mean-value theorem. This implies τ = 0. Actually, there exists no g ∈ L 1 satisfying f (t) = g(2t)-g(t). In the opposite case, the Fourier (cosine) coefficients of such a g would satisfy b j = 0 if j is not a power of 2 and b

k is not even the Fourier series of a bounded measure on T. Indeed, if Λ = {λ n } is a Sidon set (here Λ = {2 n }), and µ a complex measure with spectrum inside Λ (here µ = g(t)dt), then

Remark. The asymptotic behaviour of general Raikov sums S n f (x) := k≤n f (ω k x) has been investigated for less lacunary sequences (ω k ): an emblematic example consists in the so-called Fürstenberg sequence of integers (s n ), which is the semigroup 2, 3 rearranged as an increasing sequence; more general semigroups p 1 , . . . , p s have been studied, where the p j are coprime numbers. The following result deserves to be notified [START_REF] Fukuyama | Le théorème limite central pour les suites de R. C. Baker[END_REF]. for some L 2 -functions f j .
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