
HAL Id: hal-04431858
https://hal.science/hal-04431858

Submitted on 1 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diophantine approximation and coboundary equations
H Queffélec, M Queffélec

To cite this version:
H Queffélec, M Queffélec. Diophantine approximation and coboundary equations. Mediterranean
Journal of Mathematics, 2024. �hal-04431858�

https://hal.science/hal-04431858
https://hal.archives-ouvertes.fr


Diophantine approximation and coboundary

equations
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1 Introduction

This paper is essentially a survey paper on a vast topic some aspects of
which, only, will be touched here.
The main problem we are interested in relates to elementary difference equa-
tions in the context of 1-periodic functions, i.e. functions defined on the
circle T = R/Z, the multiplicative group of unimodular complex numbers
or equivalently the additive group of real numbers modulo one, equipped
with its normalized Haar measure m. More precisely, we focus on equations
of the following form:

h(x+ α)− h(x) = f(x), x ∈ T, f measurable, h unknown, (1)

involving the rotation Rα : x 7→ x + α on T, α ∈ T. The equality in (1) is
to be understood almost everywhere (with respect to the Haar measure of
T).
Those equations, also called “additive coboundary equations” or “cohomo-
logical equations”, appear very naturally in ergodic theory when looking
at the spectral properties of group extensions over some given rotation
[25, 10, 16, 33]; they result also from the linearisation method in the fa-
mous conjugation problem of diffeomorphisms of the circle (for which the
notion of rotation number has been introduced), initiated by Poincaré and
Denjoy [14, 35].

The framework of this inverse type problem, of course, has to be made
precise (nature of α, regularity of f) and the first question that comes to
mind is the existence of measurable solutions to equation (1).

. When α = p/q ∈ Q, (p, q) = 1, a necessary and sufficient condition for
equation (1) to admit a (measurable) solution is

Sq :=

q−1∑
j=0

f ◦Rjα = 0,

and in this case, h has the same regularity as f , no more no less.
This condition is clearly necessary since, for any solution h,

Sq(x) =

q−1∑
j=0

h(x+ (j + 1)α)− h(x+ jα) = h(x+ qα)− h(x) = 0.
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It is sufficient since, for a given f , the function

h :=
1

q

q−1∑
j=0

(j + 1)(f ◦Rjα)

provides a solution as is easily checked...

. Let us next assume α to be irrational. We may invoke basic facts of
ergodic theory and recall in particular that a dynamical system (X,B, T, µ),
T preserving the probability measure µ on (X,B), is ergodic (or T it-
self is ergodic) if invariant sets are “trivial” (∀B ∈ B, T−1(B) = B ⇒
µ(B) = 0 or 1); equivalently, if invariant measurable functions are constant
(f ◦ T = f ⇒ f =constant a.e.).
The irrational rotation Rα is ergodic, thus the measurable solutions to equa-
tion (1) (when they exist) are unique up to an additive constant. By iterating
once more, we get now

Sn(f)(x) := f(x) + f(x+ α) + · · ·+ f(x+ (n− 1)α) = h(x+ nα)− h(x)

for every n ≥ 1, so that, if h is a measurable solution we must have

Snj (f)(x) = h(x+ njα)− h(x)→ 0 in measure, as njα→ 0 mod 1.

Let us detail the latter observation under the form of a simple lemma.

Lemma 1.1. Let h : T→ C be a measurable function, and (tj) a sequence
of reals tending to zero mod 1. Then, h(x+ tj)− h(x)→ 0 in measure.

Proof. We have to show that

Ij :=

∫
T

|h(x+ tj)− h(x)|
1 + |h(x+ tj)− h(x)|

dm(x)→ 0.

Let ε > 0. By Lusin’s theorem ([5] p. 208), there exists a continuous function
g : T→ C and a measurable (even compact) subset E of T such that h = g
on E and m(Ec) ≤ ε. Let Ej = E ∩ (E− tj). Note that Ecj = Ec ∪ (Ec− tj)
has measure ≤ 2ε and that h(x+ tj)−h(x) = g(x+ tj)− g(x) on Ej . Hence

Ij ≤
∫
Ej

|h(x+ tj)− h(x)|
1 + |h(x+ tj)− h(x)|

dm(x) + 2ε

=

∫
Ej

|g(x+ tj)− g(x)|
1 + |g(x+ tj)− g(x)|

dm(x) + 2ε

≤
∫
T

|g(x+ tj)− g(x)|
1 + |g(x+ tj)− g(x)|

dm(x) + 2ε.

This implies lim supj→∞ Ij ≤ 2ε, ending the proof since ε is arbitrary. ♦
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Besides, observe that, if h is some measurable solution, a non-measurable so-
lution also exists. Indeed, by adding to h a weak character (non-measurable)
γ, which satisfies

γ(x+ α) = γ(x)γ(α), γ(α) = 1,

we get the non-measurable solution g = h+ γ. The existence of such weak
characters is folklore in harmonic analysis. A detailed presentation can be
found e.g. in ([29] chapter 1). The idea is: take γ(x) = e2iπg(x), where g is
a non-measurable solution of the Cauchy equation on the real line

g(x+ y) = g(x) + g(y),

rational-valued, with g(1) = g(α) = 1.
But we will see that (1) may have NO measurable solutions at all, even with
an analytic right-hand side f .
If we are looking now for integrable solutions (in L1 or L2) the necessary
condition

sup
n≥1
||Sn(f)||1,2 <∞

emerges if such an h exists. The converse will be useful (Lemma 4.1).

Actually, everything will depend on the interplay between the proper-
ties of the function f , when supposed to be integrable, and the diophantine
properties of the irrational number α; more precisely, the situation will de-
pend on the one hand on the regularity properties of f (restricted Fourier
spectrum, or fast decay of the Fourier coefficients), and on the other hand on
the speed of approximation of α by rationals with controlled denominator.
Let us recall the classical notations in diophantine approximation: first of
all, here || · || = d(·,Z) so that 4||x|| ≤ |e(x) − 1| ≤ 2π||x||, where as usual
we denote

e(x) = e2iπx.

If (pn/qn) is the sequence of convergents to α given by the Continued
Fraction expansion of α, it is well-known ([13] p.151 or [28] p. 74) that it
provides the best rational approximations in the following strong sense:

inf
1≤q<qn+1

‖qα‖ = ‖qnα‖ (2)

and that

qn
∣∣α− pn

qn

∣∣ = ‖qnα‖ ≤
1

qn
· (3)
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Hence the speed above is completely described by the decay rate of ‖qnα‖
and depends only on the sequence of denominators (qn). Badly approxi-
mable numbers are those for which (3) is best possible i.e.

α ∈ Bad⇐⇒ ∃ C > 0, q‖qα‖ ≥ C, q = 1, 2, . . . . (4)

Diophantine numbers α are those for which some constants C, r > 0 exist
such that

‖qα‖ ≥ Cq−r, q = 1, 2, . . . ;

the complementary set to diophantine numbers consists in Liouville num-
bers, explicitly those numbers α such that

lim inf
q→∞

(qr‖qα‖) = 0 ∀r > 0.

In this paper, we will mainly focus on four types of results, with simplified
and extended proofs:

• Anosov type results: if
∫
T f(x)dm(x) =: f̂(0) 6= 0, no measurable solutions

h exist.
• Herman type results: if f ∈ L2 has restricted Fourier spectrum (in a sense
to be precised), and if a measurable solution exists, then an L2, and even
better, solution exists, whatever the decay rate of ‖qnα‖.
• Meyer-Rozhdestvenskii type results: if the decay rate of ‖qnα‖ is slow
(more precisely if α ∈ Bad or if α is diophantine), then a slight reinforcement
of the assumption f ′ ∈ L1 will ensure the existence of highly integrable
solutions, more precisely solutions h ∈ ∩p<∞Lp with estimates on ‖h‖p as
p→∞.
• Fukuyama type results: here, we consider the new coboundary equation
g(2x)−g(x) = f(x). In this case, we can prove, under some restriction on the
Fourier-Walsh spectrum of f , the existence of a square-integrable solution
as soon as a measurable solution does exist.

A huge number of contributions on coboundary equations has been ignored
in this paper which is mainly organized around the notion of Λ(p)-set, due
to W. Rudin [32]; actually this article arose from our reading of the smart
Herman’s article ([15]), which mixed, in a successful way, ergodic theory and
harmonic analysis. It is easily observed that the suitable required hypothesis
on the spectrum of f in his main result, was this Λ(p)-condition which
involves the Lebesgue Lp-spaces; later on, generalizations of those spaces
appear in papers of Meyer ([23]) and Rozhdestvenskii ([31]) in connection
with absolutely continuous coboundaries. A tentative link between harmonic
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analysis (thin sets of integers like Λ(p) or Sidon sets, etc..) and diophantine
approximation (badly approximable numbers, continued fraction expansion,
etc...) is made in this work.

Details and references on ergodic theory can be found in [25], and on dio-
phantine approximation in [28].
Throughout the rest of this paper, we will assume that α /∈ Q.

2 Existence of measurable solutions

A. Wintner ([34]) seems to have been the first mathematician to raise the
question of the regularity of the possible solutions of such equations. He
made the first, now well-known, observations in the case f ∈ L1(T), allow-
ing the use of Fourier techniques: if f is a given integrable function, the
existence of some integrable solution clearly implies that f̂(0) = 0. But
this remains true as soon as (1) admits a measurable solution, this is the
pioneer result from Anosov ([1]). Fourier arguments cannot help in looking
forward possible measurable solutions and, actually, the existence of some
measurable h is not automatic at all, whatever the regularity of f .

Proposition 2.1. Suppose f ∈ L1. If (1) admits a measurable solution,
then necessarily f̂(0) = 0.

Proof. We prove the result in a more general context. Let (X,B, µ, T ) be
an ergodic dynamical system and suppose by contradiction that there exists
h measurable with h(Tx) − h(x) = f(x) (µ a.e.), while

∫
X fdµ > 0 (f can

be assumed real); put

Sn =
∑

0≤j<n
f ◦ T j ;

by the ergodic theorem, Sn/n →
∫
fdµ > 0 almost everywhere, whence

Sn →∞ almost everywhere (w.r. to µ). If we denote

En = { inf
p≥n

Sp > 2},

we can find n with µ(En) > 0. We decompose En =
⊔
`∈ZEn,` where

En,` := {h ∈ [`, `+ 1[} ∩ En

so that µ(En,`) > 0 for some ` ∈ Z. The Poincaré recurrence theorem
ensures that

µ(T−kEn,` ∩ En,`) > 0 for infinitely many k.
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This leads to a contradiction: actually, for x in such an intersection with
k > n, we have h(T kx), h(x) ∈ [`, `+ 1[ and h(T kx)−h(x) ∈ [0, 1[; but then

h(T kx)− h(x) = Sk(x) ≥ inf
p≥n

Sp(x) > 2

since x ∈ En, and the proposition is proved by reductio ad absurdum. ♦

As Wintner observed, it is easy to construct a zero-mean integrable func-
tion f and an irrational number α such that equation (1) has no integrable
solution. Of course if a solution h ∈ L1 exists, we appeal to the Fourier
techniques; by identification of the Fourier coefficients, since∫

T
f(x)e(−kx)dm(x) =: f̂(k) = (1− e(kα))ĥ(k), k ∈ Z, (5)

we would have supk∈Z |ĥ(k)| <∞. It is just enough to ensure that

sup
k 6=0
|f̂(k)|/||kα|| =∞ (6)

to get a contradiction, and this can be realized step by step. If now f is
given and satisfies some regularity condition, this contrast between f and
the solution h still holds by adjusting the number α.

Proposition 2.2. For any continuous and zero mean function f , which is
not a trigonometric polynomial, there exists an irrational number α such
that (1) has no integrable solution.

Proof. As above, assume that

f̂(k) = (1− e(kα))ĥ(k), k ∈ Z, and sup
k∈Z
|ĥ(k)| <∞.

It is then sufficient, (f , thus (f̂(k)) being given), to construct an α such that

the sequence
(
f̂(k)/||kα||

)
/∈ `∞; but by our assumption on f , an infinite

sequence (nk) can be found with f̂(nk) 6= 0; it remains to choose α as a
Liouville-type number so that

|f̂(nk)|/||nkα|| → ∞.

♦
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In the following two theorems, we are looking finally towards the exis-
tence of solutions, with a regularity as poor as possible; since we deal with
only measurable h, Fourier techniques are of no more use.

Theorem 2.1. For every irrational number α, there exists a continuous
function f such that (1) admits (a.e.) a measurable solution which is not
integrable.

We can push up this result to the analytic case: let us first recall the
notation Cω(T).

Definition 2.1. The function g ∈ Cω(T) (or g is said to be “analytic”) if
g can be analytically extended to some annulus 1 − γ < |z| < 1 + γ, γ > 0,
in C.

Theorem 2.2. There exists a zero mean f ∈ Cω(T) and some α /∈ Q such
that (1) admits (a.e.) a measurable solution which is not integrable.

We now give a detailed proof of these two theorems.

Proof of Theorem 2.1. The number α (thus its denominators (qn)) being
fixed, we have to construct a continuous coboundary f and we express the
candidate as a series.
Consider for every n the so-called triangle function ∆n,

∆n(x) = 2n max(0, 1− 2n|x|), |x| ≤ 1/2

and extended by 1-periodicity; one has
∫
T ∆ndm = 1, and the measure of

the set {∆n ≥ 2−n} is clearly less than 2−n+1. Since

∞∑
n=1

m(∆n(qknx) > 2−n) =
∞∑
n=1

m(∆n > 2−n) <∞,

the series

h(x) :=
∞∑
1

∆n(qknx)

converges almost everywhere for any subsequence (qkn) of (qn). Such a non-
negative function h, defined a.e., cannot belong to L1:∫

T
hdm =

∞∑
1

∫
T

∆ndm =∞.
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We are left with proving that h is a solution (a.e.) of the coboundary
equation with the continuous righthandside f ; for that, we construct step
by step the subsequence (qkn) in order to control the modulus of uniform
continuity of ∆n:

ωn(h) = sup
|x−y]≤h

|∆n(x)−∆n(y)|;

more precisely we adjust the qkn ’s so as to get

∞∑
n=1

ωn(1/qkn+1) <∞. (7)

In this way, the series with general term

ϕn(x) = ∆n(qknx+ qknα)−∆n(qknx)

is normally convergent on T, since

|ϕn(x)| ≤ ωn(||qknα||) ≤ ωn(1/qkn+1).

Let us now put f(x) =
∑∞

n=1 ϕn(x); this function f is continuous, by con-
struction

∫
T fdm = 0, and it satisfies almost everywhere

f(x) = h(x+ α)− h(x),

which was to be proved. ♦

Proof of Theorem 2.2. This time, we have to exhibit a function f , once
more under the form of a series

∑
n φn, and a sequence of denominators

(qn), in such a way that f is a coboundary for the rotation Rα and can
be analytically extended to some neighbourhood of the circle. We start by
producing a sequence of trigonometric polynomials, (ψn), which take
place of ∆n, and satisfy
•1. ψn ≥ 0
•2.

∑∞
n=1m(ψn > 2−n) <∞

•3.
∫
T ψndm ≥ 1/2.

For that, let us approach each function ∆n by a trigonometric polynomial
ψn = ∆n ∗KN , where KN is the Fejér kernel of order N , N = N(n) being
chosen so as to satisfy:

||ψn −∆n||∞ ≤ 2−n.
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Thus, ψn(x) > 2−n implies |x| ≤ 2−n+1 ensuring 2., while conditions 1. and
3. are fulfilled as well. We now denote by

ωn(h) = sup
|x−y]≤h

|ψn(x)− ψn(y)|

the modulus of uniform continuity of ψn and we construct step by step a
sequence (qn), with q0 = 1, q1 = a, in order that

∞∑
n=1

ωn(1/qn+1) <∞ (8)

and
qn divides qn+1 − qn−1. (9)

(Hence, (qn) will be the sequence of denominators of some irrational number
α). As above, we put

h(x) =
∞∑
n=1

ψn(qnx) ≥ 0;

since
∑∞

n=1m(ψn(qnx) > 2−n) <∞, h is defined almost everywhere, never-
theless h /∈ L1 since ∫

T
hdm =

∞∑
n=1

∫
T
ψn =∞ by 3.

The series with general term

ϕn(x) = ψn(qnx+ qnα)− ψn(qnx)

is normally convergent on T thanks to (8), and h satisfies (a.e.)

h(x+ α)− h(x) = f(x) :=
∞∑
n=1

ϕn(x).

We have a last task left: the analytic extension of the function f to the
annulus C := {1/2 < |z| < 3/2}, up to a better choice of the (qn). It is easy
to extend analytically each trigonometric polynomial ψn to the punctured
complex plane C \ {0} by putting

ψn(z) :=
∑
k∈Z

ψ̂n(k)zk
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then
φn(z) = ψn(zqne(qnα))− ψn(zqn).

To proceed, we consider

ωn,C(h) := sup
|z−w|≤h
z,w∈C

|ψn(z)− ψn(w)|

and, during the inductive construction of the qn’s, we replace the constraint
(8) (choice of qn+1) by a stronger one implying the following:

∞∑
n=1

(3

2

)n
ωn,C(1/qn+1) <∞, (10)

which is always possible. Since supC |φn(z)| ≤
(

3
2

)n
ωn,C(||qnα||) the function

f =
∑∞

n=1 φn is now well defined and analytic on C, which remained to be
proved. ♦

In the next sections, we refer to this last property (theorem (2.2)) as to
“Anosov’s phenomenon”.

3 Reminders of harmonic analysis

We recall in this section some basic facts on “thin sets” in harmonic analysis
to be used in the next sections.

3.1 Fourier and harmonic Analysis

Let G be a compact abelian group, equipped with its normalized Haar mea-
sure m. The character group Γ of G is the (discrete) group of continuous
homomorphisms of G to T = R/Z (see for example [32] or [22]).
A first example, which is essential for our diophantine purposes, is the al-
ready defined group G = T itself with m the arc-length measure. The dual
group of T is the group Z of integers, with the action n 7→ en where

en(t) = [e(t)]n = exp(2iπnt), n ∈ Z, t ∈ [0, 1[. (11)

Another interesting example, which will show up in this work, is the discrete
group Ω = {−1, 1}N of choices of signs ω = (rn(ω))n≥1, with Haar measure
denoted P . The functions ω 7→ rn(ω) appear as P -independent, identically
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distributed random variables, the so-called Rademacher variables. And the
dual group Ω̂ of Ω is formed by the so-called Walsh functions, namely

w∅ = 1, wA =
∏
n∈A

rn, A ⊂ N, A finite.

These Walsh functions can be realized as functions on T. If the regular
binary expansion of x ∈ T ∼ [0, 1) is x =

∑∞
j=1 xj2

−j , we put

r0 = 1, rj(x) = 1− 2xj = (−1)xj , j ≥ 1;

the (rj) are now the Rademacher functions on (T,m). Let n =
∑∞

1 nj2
j−1

be the binary decomposition of n; the Walsh function (wn) (with respect to
the Paley ordering), are defined by

w0 = 1, wn(x) =
∞∏
j=1

(−1)njxj , n ≥ 1.

If n− 1 = 2k1 + 2k2 + · · ·+ 2ks with 0 ≤ k1 < k2 < · · · < ks, we recover the
notation wn = wA =

∏
j∈A rj with A = {k1 + 1, k2 + 1, . . . , ks + 1}, so that

|A| =: [n] = s.

The mapping ϕ : ω ∈ Ω 7→
∑∞

1
1+ωj

2 2−j ∈ T exchanges the Haar measure
on Ω and the Lebesgue measure on T; the spaces L1(Ω) and L1(T) are thus
isometrically isomorphic. Since ϕ is continuous and onto, f 7→ f ◦ ϕ is an
isometry from C(T) to C(Ω) and the dual mapping M(Ω)→M(T) is onto.
We thus identify the two points of view.
The subset

Λs := {wA : |A| = s} = {wn : [n] = s} ⊂ Ω̂ (12)

will play an important role in the final section. Note that Λ1 is the set of
Rademacher variables.

If µ is a complex Borel measure on G, its Fourier transform µ̂ : Γ → C
is defined by

µ̂(γ) =

∫
G
γ(−t)dµ(t).

The (Fourier) spectrum sp(µ) of µ is by definition:

sp(µ) = {γ ∈ Γ : µ̂(γ) 6= 0}. (13)

If f ∈ L1, the Fourier transform of f at γ is that of the absolutely con-
tinuous measure µ = fdm. If Λ ⊂ Γ and X ⊂ L1 is a Banach space of
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integrable functions on G, we denote by XΛ the subspace of X formed by
those functions with Fourier spectrum contained in Λ, that is

f ∈ XΛ ⇐⇒ f ∈ X and f̂(γ) = 0 for all γ /∈ Λ. (14)

Often, even if f ∈ X behaves badly on G, by restricting the spectrum of
f we get f̃ ∈ XΛ with a much more regular behavior when Λ is small. An
extreme example is Λ = ∅, then f̃ ∈ XΛ ⇒ f̃ = 0! Since we can hardly
imagine a thinner set than the empty one, sets Λ such that XΛ is formed by
much better behaved functions will be called, by extension, “thin sets”. For
more on this topic, we refer to [21]. We will essentially concentrate here on
one type of thin sets, the Λ(p)-sets (of which Sidon sets are a basic example).

3.2 Λ(p)-sets

3.2.1 Definitions

Let p a real number with 2 < p < ∞. A subset Λ of Γ is called a Λ(p)-set
if there exists a constant λ such that

‖f‖p ≤ λ‖f‖2

for each trigonometric polynomial f with spectrum contained in Λ.
We then denote by λp(Λ) the best possible constant λ. Bourgain ([3]) proved
that, for each 2 < p <∞, there exists a “true” Λ(p)-set, i.e. a set Λ which
is Λ(p), but not Λ(q) for any q > p. Whether there exist “true” Λ(2)-sets is
an open question ([3]).
An important property of Λ(p)-sets with p > 2 is given by the following key
lemma, which utilizes the equivalence of norms on L2

Λ and LpΛ to prove that
each set B with large measure is “associate”, meaning that the L2-norm of
ϕ ∈ L2

Λ is essentially computable on B, up to a constant. The proof is a
variant of a lemma due to Paley and Zygmund ([18] p. 31), and plays a key
role in what follows.

Lemma 3.1. Let p > 2 and let Λ be a Λ(p)-set with constant λp(Λ). Then,
there exists constants 0 < b < 1 and C, both depending only on λp(Λ), such
that if B is a measurable subset of Γ with m(B) ≥ b, one has for all ϕ ∈ L2

Λ

‖ϕ‖2 ≤ C
(∫

B
|ϕ|2

)1/2
.

Proof. Let ϕ ∈ L2
Λ with ‖ϕ‖2 = 1; we will show that

∫
B |ϕ|

2 ≥ 1/C2

for some C, which implies the lemma. We fix a number 0 < a < 1, set
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E = {|ϕ| > a}, λ = λp(Λ) and first show that m(E) is large when a is
small. Precisely, if r = p/2 and r′ is the conjugate exponent, we see that:

1 = ‖ϕ‖22 =

∫
|ϕ|≤a

|ϕ|2 +

∫
E
|ϕ|2 ≤ a2 +

∫
E
|ϕ|2

≤ a2 + ‖ϕ‖2p
(
m(E)

)1/r′ ≤ a2 + λ2‖ϕ‖22
(
m(E)

)1/r′
by Hölder and the assumption on Λ; it ensues that

1 ≤ a2 + λ2
(
m(E)

)1/r′
or again that

m(E) ≥
(1− a2

λ2

)r′
.

Next, choose b = 1−
(

1−a2
λ2

)r′
2 ≥ 1− m(E)

2 · Assume that m(B) ≥ b; then

m(B ∩ E) ≥ m(B) +m(E)− 1 ≥ m(E)

2
≥
(

1−a2
λ2

)r′
2

,

which entails ∫
B
|ϕ|2 ≥

∫
B∩E
|ϕ|2 ≥ a2

2

(1− a2

λ2

)r′
=: 1/C2.

♦
Remarks. 1. The preceding lemma claims that every Borel set B of T
with Haar measure sufficiently close to 1 is associate for L2

Λ with a constant
depending only on m(B). If Λ = (λn)n≥1 is a Hadamard lacunary set of
positive integers (meaning that λn+1/λn ≥ q > 1), it can be proved that
every set B with positive Haar measure b > 0 is Cb-associate, with a constant
Cb depending only on b. But this is a much deeper result due to Nazarov,
Nishry and Sodin ([24]), which will not be needed here.

2. Since we make use of it once in the end, the following “extrapolation”
property is worth noting: if Λ is a Λ(p)-set with p > 2, there exists δ > 0
such that, for every f ∈ PΛ,

‖f‖1 ≥ δ‖f‖2.

Indeed, if λ = λp(Λ), Hölder’s inequality, with 1/2 = (1− θ)/1 + θ/p, gives

‖f‖2 ≤ ‖f‖1−θ1 ‖f‖θp ≤ ‖f‖1−θ1 λθ‖f‖θ2
whence

‖f‖2 ≤ λ
θ

1−θ ‖f‖1.
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3.2.2 Examples

In the next subsection, we will define the Sidon sets and comment on the
fact that they are Λ(p)-sets for all 2 < p <∞. Here are two other examples
(indeed extensions of the Sidon case) in the framework of Z ([22]).

Theorem 3.1. Let p1, . . . , ps be s distinct prime numbers. Then, the fol-
lowing sets are Λ(p)-sets in Z with λp(Λ) . ps/2 for the first one and . ps

for the second:

1. Λ = {λn =
∑s

j=1 p
nj
j , nj = 1, 2, . . .}

2. Λ = {λn =
∏s
j=1 p

nj
j , nj = 1, 2, . . .}

A typical example of the first class is the set of integers 2i + 3j . A typical
example of the second class (less well known) is the so-called Fürstenberg
sequence, the increasing rearrangement (fn) of integers 2i×3j . This example
has been studied by Gundy and Varopoulos in this context ([11]).

We now give examples in the framework of Walsh functions, to be used in
the final Section. We first have the classical ([22], Vol.1, p. 30):

Theorem 3.2. Let S =
∑∞

n=1 znrn(ω) a finite sum, with zn ∈ C. Then

‖S‖p ≤
√
p ‖S‖2 =

√
p
( ∞∑
n=1

|zn|2
)1/2

for all p ≥ 2.

This Λ(p)-property of Rademacher functions extends to the set Λs (12):

Theorem 3.3. Let p > 2 and (ak)k≥0 be a sequence of complex numbers.
Then, for every integer s ≥ 1:

‖
∑
k,[k]=s

akwk ‖p ≤ (p− 1)s/2 ‖
∑
k,[k]=s

akwk ‖2.

Actually, Bonami and Borell ([2], [4], see also [22]) proved a more precise
hypercontractivity result:

Theorem 3.4. Let 1 < q < p, λ =
√

q−1
p−1 and (ak)k≥0 be a sequence of

complex numbers. Then

∥∥ ∞∑
k=0

λ[k]akwk
∥∥
p
≤
∥∥ ∞∑
k=0

akwk
∥∥
q
.

Take q = 2, p > 2 and ak = 0 if [k] 6= s to recover the previous result.
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3.3 Sidon sets

3.3.1 Definition and stability properties

We briefly define here the Sidon sets, because they are a typical example of
Λ(p)-sets, but they will play a marginal role in this work.
A subset Λ = {γn}n≥1 of Γ is called a Sidon set if any continuous func-
tion f : G → C with Fourier spectrum in Λ has an absolutely convergent
Fourier series, equivalently if there exists a constant C such that, for any
trigonometric polynomial f(x) =

∑∞
n=1 anγn(x) with spectrum in Λ, it holds

∞∑
n=1

|an| ≤ C‖f‖∞. (15)

The best constant in (15) is called the Sidon constant of Λ and is denoted
S(Λ). A basic theorem due to Rudin (Rudin’s transference principle) is:

Theorem 3.5. Let Λ ⊂ Γ be a Sidon set. Then, Λ is a Λ(p)-set for all
p > 2 and moreover

λp(Λ) ≤ S(Λ)
√
p.

We refer to [22], Vol. 2 p. 146, for a proof. A deep theorem of Pisier ([26],
see also [22] Vol. 2 p. 146) claims that the converse is true: if Λ is Λ(p) for
each 2 < p <∞ with λp(Λ) ≤ C√p for some constant C, then Λ is a Sidon
set.

We finally enunciate a fundamental result due to Drury ([6]).

Theorem 3.6. Let Λ1 and Λ2 be two Sidon sets. Then, their union is again
a Sidon set.

3.3.2 Examples

The basic example of a Sidon set is that of a Hadamard set (also called a
lacunary set and already mentioned), namely a set Λ = (λn)n≥1 of positive
integers with

λn+1

λn
≥ q > 1.

Theorem 3.7. If Λ is a Hadamard set, it is a Sidon set and S(Λ) ≤ Cq
where Cq only depends on q.

By Drury’s theorem for example, it follows that every finite union of lacunary
sets is itself Sidon. There are others, but they will not be used in this work.
We now switch to applications.
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4 Lacunary coboundaries

After Anosov, Herman studied in [15] the coboundary equation (1), focusing
on the heredity of L2-integrability property : a priori, f ∈ L1(T) has zero
mean and the expected solution h is measurable. If f ∈ L2 (with zero mean),
it may happen, as observed in section 2., that (1) admits no measurable
solution, but Herman proved that in case such a solution h exists, then
h ∈ L2, PROVIDED f has a lacunary spectrum, in other words, an “Anosov
phenomenon” cannot occur with lacunary right-handside.
This theorem does not involve arithmetical properties of α /∈ Q, but rests
on thin sets theory in harmonic analysis, also on ergodic theory, with slight
improvements that we present here. We stick to the notations (13) and (14)
of section 3.

Theorem 4.1. Let Λ ⊂ Z be a Λ(p)-set for some p > 2 and fix f ∈ L2
Λ. If

the coboundary equation

h(x+ α)− h(x) = f(x)

has a measurable solution, then it has a solution ∈ L2
Λ.

If one wishes non-lacunary examples, the theorem applies with the sets

Λ = {λn =
s∑
j=1

p
nj
j , nj = 1, 2, . . .} as well as

Λ = {λn =
s∏
j=1

p
nj
j , nj = 1, 2, . . .}.

Proof. The starting point consists in using a classical criterion for a function
ϕ to be a coboundary in L2 i.e. to ensure that equation (1) with f = ϕ has
an L2-solution ([25]):

Lemma 4.1. Let ϕ ∈ L2 and T a measure-preserving transformation of T,
more generally a contraction of a Hilbert space H to itself. Given ϕ ∈ H,
a necessary and sufficient condition for the existence of ψ ∈ H such that
ψ−T (ψ) = ϕ is: supn≥1 ‖Sn‖ =: M <∞, where Sn = Sn(ϕ) =

∑n
j=0 T

j(ϕ).

Proof. The condition is obviously necessary as seen in the introduction,
with ‖Sn‖ ≤ 2‖ψ‖. To see that it is sufficient, we first consider λ ∈]0, 1[ and
the cocycle equation

ψ − λT (ψ) = ϕ
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whose unique solution is the Neumann series ψλ =
∑∞

n=0 λ
nTn(ϕ). Thanks

to an Abel summation, we have as well

ψλ =
∞∑
n=0

(λn − λn+1)Sn, and ‖ψλ‖ ≤M
∞∑
n=0

(λn − λn+1) = M.

The family (ψλ) being norm-bounded in H, there exists a sequence (λj),
going to 1, such that the sequence (ψλj ) converges weakly to some ψ ∈ H,
so that T (ψλj ) converges weakly to T (ψ); passing to the weak limit in the
equation

ψλj − λjT (ψλj ) = ϕ

gives us
ψ − T (ψ) = ϕ,

as claimed. ♦

Remark. This proof works in the framework of reflexive Banach spaces,
whose unit ball is weakly compact; it can be seen as a weak form of the
Markov-Kakutani theorem.

Let us now turn back to Theorem 4.1; suppose that f ∈ L2
Λ and let h be

a measurable solution to equation (1); by iterating,

h(x+ nα)− h(x) = fn(x) :=
n−1∑
j=0

f(x+ jα).

The coboundary equation has a solution in L2 if the sequence (fn) is bounded
in L2 (Lemma 4.1). To check that last point, fix ε > 0; by Lusin’s property,
h coincides with a continuous function H on some compact set K ⊂ T with
measure ≥ 1− ε. One has immediately∫

K∩R−nα(K)
|fn(x)|2dx ≤ 4 sup

K
|H(x)|2 <∞. (16)

Also this set K ∩ R−nα(K) is big enough for many integers n, this is a
consequence of the following “recurrence” theorem due to Khintchine ([25]):

Lemma 4.2. Let (X,B, µ, T ) be a dynamical system, with a bijective and
measure-preserving transformation T of X and let E be a measurable subset
of X. Then for every ε > 0, the set

A(E) = {n ∈ Z : µ(E ∩ T−nE) ≥ µ(E)2 − ε}

is relatively dense (namely has gaps bounded by k for some k = kε > 0).
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We now use that f ∈ LpΛ and refer to the key Lemma 3.1: if b > 0 is the
constant associated to the Λ(p)-set Λ and if K is as above, we consider

A1 = {n ∈ Z : m(K ∩R−nαK) ≥ b};

then we choose ε > 0 in order to get m(K)2 − ε ≥ (1 − ε)2 − ε ≥ b. Thus
A1 ⊃ A(K) is k-dense where k is given by Lemma 4.2 with E = K, T =
Rα, µ = m. Hence, every integer n can be decomposed into n = n1 + n2

with n1 ∈ A1 and n2 ∈ A2 := {−k, . . . , k}; next, since (cocycle law)

fn = fn1+n2 = fn1 ◦Rn2α + fn2 ,

we get
sup
n
‖fn‖2 ≤ sup

n∈A1

‖fn‖2 + sup
n∈A2

‖fn‖2 ≤ C1 + C2;

indeed, for n ∈ A1, by combining Lemma 3.1 and (16), we can bound

‖fn‖2 ≤ C
(∫

K∩R−nαK
|fn|2

)1/2
≤ 2C sup

K
|H|;

the second inequality for n ∈ A2 is trivial and the proof is complete. ♦

Here are consequences of Theorem 4.1.

Corollary 4.1. There exist a zero mean function f and an irrational num-
ber α such that equation (1) has no measurable solution.

Take for that a function f with a lacunary spectrum (thus Λ(p), ∀p > 2)
and a number α such that (1) has no solution in L2.

Corollary 4.2. Let Λ be a Λ(p)-set, p > 2. If f ∈ L2
Λ, α /∈ Q and if h is a

measurable solution of h ◦Rα − h = f , then, actually, h belongs to Lp.

Indeed, we proved that some solution h ∈ L2 exists. But by construction
h ∈ L2

Λ, and hence h ∈ LpΛ. �.

Remark. Theorem 4.1 is in some sense optimal. Actually, it is rather easy
to produce some function f ∈ Cω with a lacunary spectrum and α /∈ Q such
that equation (1) has no solution in L∞ (even though it has one in ∩p<∞Lp).
We choose first α with an hyper-lacunary sequence of denominators (qn), for
example

||qnα|| ≤ e−qn ; (17)
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and afterwards we construct the function f . For that purpose, given (cn) ∈
`2\`1, c0 = 0, we consider

f(x) =
∞∑
n=1

ncn(1− e(qnα))e(qnx);

By (17), f ∈ Cω(T),
∫
T f(x)dx = 0, and h(x) =

∑∞
n=1 ncne(qnx) is a

Lp−solution to the coboundary equation for each p < ∞. But h /∈ L∞,
otherwise, we should get

∑∞
n=1 |cn| < ∞ since h is a lacunary series too,

and would have to belong to the Wiener algebra.

5 Orlicz or BMO-type coboundaries

Section 4 provides conditional results on the existence of integrable solutions
to (1): under some suitable spectral hypothesis on f , such ones exist as
soon as a measurable solution exists; but up to now, no concrete answer is
still given to the question “for which f and α does an integrable solution
exist ?”.
Regarding relation (5), it is easy to check that for α ∈ Bad (resp. α r-
diophantine) and f ′ ∈ L2 (resp. f (r) ∈ L2), our equation (1) has solutions
in L2. Can we improve this result? In this section, we shall see that, α being
diophantine, a slight reinforcement of the assumption f ′ ∈ L1 will ensure
the existence of highly integrable solutions.

5.1 Orlicz spaces

5.1.1 General definition

Some results to come (as well as some previous results on Λ(p) and Sidon
sets) are best formulated in the language of Orlicz spaces. Accordingly, we
devote some room to their definition and basic properties. Those spaces are
an extension of the Lebesgue spaces Lp(T), the Orlicz functions replacing
the power functions x 7→ xp, 1 < p <∞. For Lebesgue spaces, Minkowski’s

inequality in Lp is proved by observing that the set B =
{
u :
∫
T |u|

pdm ≤ 1
}

is convex. And its gauge is the usual Lp-norm. All this generalizes to Orlicz
spaces Lψ, which also represent a scale of interpolation between Lp and L∞.
Good references are [20] and [30].

Definition 5.1. An Orlicz function is a function ψ : R+ → R+ which is
increasing, convex, with ψ(0) = 0 and limx→∞

ψ(x)
x =∞.
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Definition 5.2. The Orlicz space Lψ = Lψ(T) attached to the Orlicz func-
tion ψ is the Banach space of measurable functions u : T→ C such that∫
ψ(|u|/a)dm <∞ for some constant a > 0 and the associated (Luxemburg)

norm ‖u‖ψ of u ∈ Lψ is

‖u‖ψ = inf{a > 0 :

∫
ψ(|u|/a)dm ≤ 1}.

This definition is better understood as follows: let

B =
{
u :

∫
T
ψ(|u|)dm ≤ 1

}
;

since ψ is convex, the set B is convex and balanced, and its gauge defines a
norm, which is nothing but the Luxemburg norm above.
If ϕ is an Orlicz function, the conjugate Orlicz function (or Legendre trans-
form) ψ of ϕ is defined by

ψ(x) = sup
y≥0

(xy − ϕ(y)).

Observe that ψ(x) <∞ since limx→∞
ϕ(x)
x =∞, and that ϕ is the conjugate

of ψ. Another approach to duality, on which we shall not dwell, is the
following. One writes ϕ(x) =

∫ x
0 u(t)dt where u : R+ → R+ is a function

vanishing at 0 and increasing to infinity, with inverse function v. Then,
ψ(x) =

∫ x
0 v(t)dt.

Since what matters is the behaviour at infinity, it is good to coin a definition.

Definition 5.3. Let ϕ1 and ϕ2 be two Orlicz functions. We say that ϕ1 is
dominated by ϕ2, and write ϕ1 ≺ ϕ2, if there exist positive constants x0, k
such that

ϕ1(x) ≤ ϕ2(kx) for all x ≥ x0. (18)

We say that ϕ1 is equivalent to ϕ2 if ϕ1 ≺ ϕ2 and ϕ2 ≺ ϕ1.

A simple example of a pair of conjugate Orlicz functions is: ϕ(x) = xp

p ,

ψ(x) = xq

q , where q is the conjugate exponent of p.

A second, typical example, of such a pair is: ψ2(x) = ex
2 − 1, and ϕ2(x) =

x
√

log(x+ 1), up to equivalence.
More generally, for r > 0, the functions ψr(x) = ex

r − 1, and ϕr(x) =

x
(

log(x+ 1)
)1/r

are conjugate, even if, for r < 1, the function ψr is convex
only for large x.
We have the important inequality, called Young’s inequality in the approach
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by inverse functions (see [20], Chapter I), and which is a definition in the
Legendre approach:

xy ≤ ϕ(x) + ψ(y) for all x, y ≥ 0. (19)

This generalizes the famous Hölder inequality xy ≤ xp

p + yq

q . An important
consequence of (19) is the following duality principle:

Proposition 5.1. Let ϕ,ψ be conjugate Orlicz functions and let f ∈ Lϕ,
g ∈ Lψ. Then fg ∈ L1 and∣∣∣ ∫ fg

∣∣∣ ≤ 2‖f‖ϕ‖g‖ψ.

Proof. We can assume that ‖f‖ϕ = ‖g‖ψ = 1. We then use (19) to get∫
|fg| ≤

∫
ϕ(|f |) +

∫
ψ(|g|) = 2.

This finishes the proof. ♦

An easily checked, but important fact (use Stirling’s formula) is

Proposition 5.2. If r > 0, then

‖f‖ψr ≈ sup
p>2

‖f‖p
p1/r
·

With the language of Orlicz spaces, Theorems 3.3, 3.1 and 3.5 can be
gathered in the following proposition.

Proposition 5.3. The following three properties hold:
a) If S =

∑
|A|=s zAwA, then ‖S‖ψ2/s

. ‖S‖2.

b) If Λ = {λn =
∏s
j=1 p

nj
j , nj = 1, 2, . . .} and S ∈ PΛ, then one has

‖S‖ψ1/s
. ‖S‖2.

c) If Λ is a Sidon set, then ‖f‖ψ2 . ‖f‖2 for each f ∈ PΛ.

5.1.2 An instructive example

Consider the function g defined by

g(x) =:
∑
q≥1

εq cos 2πqx, εq =
1√

log(q + 1)
·
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We will see that g is on the verge of belonging to Lϕ2 (this example will be
reconsidered later). More precisely, g(x) & 1

x log3/2(1/x)
as x → 0+ (this is

the right order of growth near the origin, but we insist on the lower bound).
Let us prove this. Using two Abel summations, we first get:

(2 sinπx)g(x) =
∑
q≥1

εq[sin(2q + 1)πx− sin(2q − 1)πx]

= −ε1 sin(πx) +
∑
q≥2

(εq−1 − εq)[sin(2q − 1)πx]

= −ε1 sin(πx) + (ε2 − ε1) sin(πx) +
∑
q≥2

(εq−1 + εq+1 − 2εq)Sq(x)

where Sq(x) =
∑q

k=1 sin(2k− 1)πx = sin2 πqx/sinπx ≥ 0 on (0, 1]. We next
observe that:

Sq(x) & q2x for qx ≤ 1/2 and εq−1 + εq+1 − 2εq ≈
1

q2 log3/2 q
·

Indeed, Sq(x) = sin2 πqx/sinπx & q2x and the second estimate comes from
Taylor’s formula using the second derivative of the function t 7→ 1/

√
log t.

Therefore, using also Sq(x) ≥ 0, we get for any small x > 0 and the integer
N = [1/x]:

x|g(x)| &
∑

2≤q≤N
(εq−1 + εq+1 − 2εq)Sq(x) &

∑
2≤q≤N

q2x

q2 log3/2 q
& x

N

log3/2N
·

We thus get for x near 0:

x|g(x)| & 1

log3/2(1/x)
,

which is the lower bound claimed in Section 3, and the analogous upper
bound x|g(x)| . 1

log3/2(1/x)
, for x near 0, can be proved similarly. This

implies g /∈ Lϕ2 since∫ 1

0
|g(x)|

√
log |g(x)|dx ≈

∫ 1

0

1

x log3/2(1/x)

√
log(1/x)dx

=

∫ 1

0

1

x log(1/x)
dx =∞.
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Remark. This example is “sharp” since, in some sense, g is quite close to
belonging in Lϕ2 ! Indeed, the previous pointwise (upper) estimate shows
that g ∈ Lϕr for all r > 2. An alternative proof would be the following:
g(x) = <G(x) where G(x) =

∑
q 6=0 ε|q|e

2iπqx. A double Abel summation by
parts now gives

G =

∞∑
q=1

q
(
εq−1 + εq+1 − 2εq

)
Kq (20)

where Kq =
∑
|j|≤q(1−|j|q−1)eq is the Fejér kernel of order q (see [18] p. 24).

But since ‖Kq‖∞ = q and ‖Kq‖1 = 1, we see that

‖Kq‖ϕr .
∫
T
Kq · (log(1 +Kq))

1/r . (log q)1/r

∫
T
Kq = (log q)1/r.

So that the series defining G in (20) is absolutely convergent in Lϕr for r > 2
since

q
(
εq−1 + εq+1 − 2εq

)
‖Kq‖ϕr .

1

q(log q)3/2−1/r
with 3/2− 1/r > 1.

5.2 The space BMO

An interesting related space is the Banach space BMO of integrable functions
on T with bounded mean oscillation, equipped with its natural norm ‖.‖BMO

([12], chapter 6) which we describe: let I be an arc on T equipped with its
Haar measure m, and fI := 1

m(I)

∫
I fdm. Then, f ∈ BMO if

[f ] := sup
I

1

m(I)

∫
I
|f − fI |dm <∞

where the supremum is taken over all subarcs I of T, and

‖f‖BMO := ‖f‖2 + [f ].

Observe that, without this recentering by fI , we would simply get the
(smaller) space L∞. To play at least once with the definition, note the
following, in which fα denotes the indicator function of the arc (0, α):

If 0 < α < β < 1, then ‖fβ − fα‖BMO ≥ 1/2.

Indeed, set ∆ = fβ − fα as well as I = (α− h, α+ h) with h small:
0 < h < min(α, β − α). Then, (fα)I = 1/2, (fβ)I = 1, ∆I = 1/2 and

‖∆‖BMO ≥
1

m(I)

∫
I
|∆−∆I |dm =

1

2h

∫ α

α−h
| − 1

2
|dt+

1

2h

∫ α+h

α
|1
2
|dt =

1

2
·
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As a consequence, BMO is a non-separable space.
One striking feature of this space (indeed the dual space of the real space H1)
is given by the John-Nirenberg inequality ([12] p. 223), which immediately
implies the

Proposition 5.4. One has the continuous inclusion

BMO ⊂ Lψ1 .

Propositions 5.2 and 5.4 together imply

f ∈ BMO ⇒ ‖f‖p = O(p) as p→∞. (21)

For the proof of both theorems to come, the two following lemmas will
be needed, one on diophantine approximation, one of harmonic analysis.

5.3 Two lemmas

Lemma 5.1. For every integer n ≥ 0 and every irrational α with conver-
gents pn/qn, one has ∑

0<|q|<qn+1

1

‖qα‖2
≤ C

‖qnα‖2
(22)

with C = π2/3. In particular :∑
qn≤|q|<qn+1

1

‖qα‖2
≤ 2C

‖qnα‖2
· (23)

Proof. Set αn = ‖qnα‖ and consider the half-open intervals [jαn, (j+1)αn[
where j = 1, 2, . . .. Every number ‖qα‖, 1 ≤ q < qn+1, falls in one of those
intervals (no one falls into [0, αn[) and at most two fall in the same interval,
for if three of them, say ‖qα‖, ‖q′α‖, ‖q′′α‖ belonged to [jαn, (j + 1)αn[, at
least two of them, say ‖qα‖ and ‖q′α‖ with q′ > q, would be of the form
qα−p and q′α−p′ (otherwise, they would be of the form p−qα and p′−q′α),
so that∣∣‖qα‖ − ‖q′α‖∣∣ = |(q′α− p′)− (qα− p)| = |(q′ − q)α− (p′ − p)| < αn.

Setting Q = q′ − q with 0 < Q < qn+1, this would imply ‖Qα‖ < αn, a
contradiction with (2). If follows immediately that∑

0<q<qn+1

1

‖qα‖2
≤ 2

∞∑
j=1

1

j2α2
n

=
C

‖qnα‖2
·

This clearly ends the proof of the lemma, since ‖x‖ is an even function. ♦

25



Our second lemma (the so-called embedding inequality) says the following
(cf. [36] (Vol. II, page 132):

Lemma 5.2. Let Λ = (λn)n≥1 ⊂ Z be a Sidon set with constant K. Then,

for every function g ∈ Lϕ2, with ϕ2(x) = x
(

log(1 + x)
)1/2

, we have:( ∞∑
n=1

|ĝ(λn)|2
)1/2

≤ CK‖g‖ϕ2 (24)

where C is an absolute constant.
If g ∈ H1 (namely g ∈ L1 and ĝ(k) = 0 for k < 0), and if Λ is lacunary
(λn+1 ≥ qλn > 1 with q > 1), then( ∞∑

n=1

|ĝ(λn)|2
)1/2

≤ Cq‖g‖1 (25)

where Cq only depends on q.

Proof. Let (an) be a norm one sequence with compact support in `2. Let
h(t) =

∑
n ane(λnt) ∈ L2, with ‖h‖2 = 1. By Propositions 5.2 and 5.3, we

have ‖h‖ψ2 ≤ (C/2)K, where the function ψ2(x) = ex
2 − 1 is the Orlicz

function conjugate to ϕ2. Parseval’s formula and the duality between the
spaces Lϕ2 and Lψ2 now give us:∣∣∣ ∞∑

n=1

anĝ(λn)
∣∣∣ =

∣∣∣∑
k∈Z

ĥ(k)ĝ(k)
∣∣∣ =

∣∣∣ ∫
T
g(−t)h(t)dm(t)

∣∣∣
≤ 2‖g‖ϕ2‖h‖ψ2 ≤ CK‖g‖ϕ2 .

Taking the supremum on those test sequences, we obtain

( ∞∑
n=1

|ĝ(λn)|2
)1/2 ≤ CK‖g‖ϕ2 .

The second part of the lemma is due to Paley ([7] p. 104): by dividing Λ
in at most J subsequences, where qJ > 2, we can assume q > 2; then, write
g = uv with u, v ∈ H2 and ‖u‖2‖v‖2 = ‖g‖1, so that

ĝ(λn) =
∑

0≤k≤λn−1

û(k)v̂(λn − k) +
∑

λn−1<k≤λn

û(k)v̂(λn − k).

Now, apply Cauchy-Schwarz to each of the two sums on the RHS and add
up, noting that λn − λn−1 > λn−1. ♦
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5.4 Two theorems

We begin with motivating the diophantine conditions to come (to come
back!). Y. Meyer ([23]) proved the following, in which W r,2, r ≥ 1, denotes
the Sobolev space of functions f ∈ L2 whose r first derivatives (in the sense
of distributions) are again in L2, equipped with its natural norm

‖f‖W r,2 =
(
|f̂(0)|2 + ‖f (r)‖22

)1/2
.

Theorem 5.1. The three following conditions are equivalent:

1. α belongs to Bad.

2. If f ∈W 1,2, the equation h(x+α)−h(x) = f(x) has a square-integrable
solution.

3. If f ∈ W 1,2, the equation h(x + α) − h(x) = f(x) has a solution in
BMO.

Proof. The implication 3⇒ 2 is obvious thanks to (21).
The implication 2⇒ 1 is nearly obvious: to each f ∈W 1,2 is associated in a
unique way a zero-mean solution h ∈ L2 and then the map f 7→ h is linear.
It is readily seen to have closed graph, so that, for some constant C:

‖h‖2 ≤ C‖f ′‖2 for all f ∈W 1,2.

We test this inequality on

f(x) = e2iπqx(e2iπqα − 1), h(x) = e2iπqx

to get
1 . q‖qα‖, that is α ∈ Bad.

The deep implication is 1 ⇒ 3. A key point is a sufficient condition due to
Y. Meyer ([23]) for membership in BMO (admitted here).

Proposition 5.5. Let h ∈ L2 with ĥ(0) = 0, hk =
∑

2k≤|j|<2k+1 ĥ(k)ek, and

H =
(∑
k≥0

|hk|2
)1/2

the corresponding square function (the polynomial hk is called the k-th block
in the Littlewood-Paley decomposition of h). If H ∈ L∞, then h ∈ BMO
and

‖h‖BMO ≤ C‖H‖∞.
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To check the assumptions of this proposition in the present case, we rely on
a simple estimate:

Sk :=
∑

2k≤|j|<2k+1

1

j2‖jα‖2
≤ C. (26)

Indeed, let n+1 be the smallest integer such that qn+1 ≥ 2k+1. We see that,
thanks to Lemma 5.5 and the assumption α ∈ Bad:

Sk . 2−2k
∑

2k≤|j|<2k+1

1

‖jα‖2
. 2−2k

∑
1≤|j|<qn+1

‖jα‖−2 . 2−2k‖qnα‖−2

. 2−2kq2
n . 2−2k22k = 1.

Now, write f ′ =
∑
cjej with (cj) square-summable. The zero-mean solution

h of our coboundary equation h(x + α) − h(x) = f(x) is formally given by
the Fourier series

h =
∑
j 6=0

µjcjej with µj =
1

j(e(jα)− 1)
, |µj | ≈

1

j‖jα‖
·

If hk (resp.f ′k) is the kth-block in the Littlewood-Paley decomposition of h
(resp.f ′), we see by Cauchy-Schwarz and (26) that

‖hk‖2∞ ≤
( ∑

2k≤|j|<2k+1

|µj ||cj |
)2
≤
( ∑

2k≤|j|<2k+1

|µj |2
)( ∑

2k≤|j|<2k+1

|cj |2
)

.
∑

2k≤|j|<2k+1

|cj |2 = ‖f ′k‖22.

Summing up, we obtain that
∑

k≥0 ‖hk‖2∞ .
∑

k≥0 ‖f ′k‖22 = ‖f ′‖22, implying
H ∈ L∞ and h ∈ BMO by Proposition 5.5. ♦

Remarks. 1. Similarly, if the equation has an L2-solution for each f ∈
W r,2, then α is r-diophantine, namely verifies

1 . qr‖qα‖.

This is why we consider this class of numbers in this section.

2. It follows from Theorem 5.1 and (21) that if f ′ ∈ L2, the zero-mean
solution h will satisfy

‖h‖p = O(p).
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We will now see that relaxing f ′ ∈ L2 to f ′ ∈ Lϕ2 preserves some control on
h, namely

‖h‖p = O(p3/2).

Throughout the rest of this subsection, we fix the r-diophantine number
α, i.e. α satisfying an inequality of the form:

qr‖qα‖ ≥ δ, q = 1, 2, . . . (27)

and we assume without lost of generality that r ∈ N. Having both preceding
lemmas at our disposal, we will give a simpler proof of a theorem due to
Rozhdestvenskii [31]. In this theorem, one significantly improves the Orlicz
class of functions to which the solution h given there belongs (here, H1

denotes once more the Hardy space of those f ∈ L1 with vanishing Fourier
coefficients of negative index). Here is now our second theorem.

Theorem 5.2. 1. Suppose that f is absolutely continuous and that the rth

derivative f (r) ∈ Lϕ2 where ϕ2 is the Orlicz function defined by ϕ2(x) =
x
√

log(1 + x). Then (1) has a solution h ∈ L2.

2. Indeed, the solution h of (1) is not only in L2 but in Lψ2/3, where

ψ2/3(x) = ex
2/3 − 1 for x ≥ 0. In other terms, one has h ∈ ∩q<∞Lq with

‖h‖q ≤Mq3/2 for every q ≥ 2. (28)

3. If f ∈ H1, then f (r) ∈ L1 is enough to imply that any integrable solution
h of the coboundary equation is actually in L2.

Before proving Theorem 5.2, we would first like to (re)-consider an in-
structive example:

Example. A function f to which Theorem 5.2 to come, with α ∈ Bad, will
not apply is

f(x) =
∑
q≥1

sin 2πqx

q
√

log(q + 1)

Indeed, f is absolutely continuous (with the poor modulus of continuity
O((log 1/h)−1/2) and f ′ = 2π

∑
q≥1

cos 2πqx√
log(q+1)

∈ L1 by the usual properties

of the cosine series, since the sequence 1√
log(q+1)

is convex and tends to zero

([19] p. 24). But if f ′ ∈ Lϕ2 , Lemma 5.2 will give us:∑
n≥0

|f̂ ′(2n)|2 = c
∑
n≥0

( 1√
log(2n + 1)

)2
<∞,
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contradicting the divergence of the harmonic series. We can even say that f
is not a L2-coboundary. Indeed, since α ∈ Bad, we have qn ≤ Cn for some
C > 1, so that:

∑
q≥1

|f̂(q)|2

‖qα‖2
≥
∑
n≥0

|f̂(qn)|2

‖qnα‖2
&
∑
n≥0

q2
n|f̂(qn)|2 &

∑
n≥0

1

log(qn + 1)
=∞.

This example was considered in more detail in a previous section, where the
sharpness of f ′ /∈ Lϕ2 was observed: f ′ ∈ Lϕr for all r > 2. ♦

5.5 Proof of Theorem 5.2

By examining the Fourier coefficients, we can only have:

h(x) =
∑
k 6=0

f̂(k)

e(kα)− 1
e(kx)

and we first show that the right-hand side is in L2. Denote by q′n and q′′n
integers of [qn, qn+1[ and ]−qn+1,−qn] respectively where |f̂(q)| is maximum
on this block. We can write, using Lemma 5.1 in the wake, as well as the
diophantine hypothesis ||qα|| & q−r on α:

∑
k 6=0

∣∣∣ f̂(k)

e(kα)− 1

∣∣∣2 .∑
n≥0

∑
qn≤|q|<qn+1

|f̂(q)|2

‖qα‖2
.
∑
n≥0

( |f̂(q′n)|2

‖qnα‖2
+
|f̂(q′′n)|2

‖qnα‖2
)

.
∑
n≥0

q2r
n

(
|f̂(q′n)|2 + |f̂(q′′n)|2

)
.
∑
n≥0

(q′n)2r|f̂(q′n)|2 +
∑
n≥0

(q′′n)2r|f̂(q′′n)|2

.
∑
n≥0

(
|ĝ(q′n)|2 + |ĝ(q′′n)|2

)
where g = f (r). Now, since qn+2 ≥ 2qn for continued fractions, taking the
points of even and odd index separately, we get that the set of integers
E = {q′n, q′′n, n ≥ 1} is the union of at most four Hadamard lacunary sets
with ratio ≥ 2, and is therefore a Sidon set with an absolute constant. An
appeal to Lemma 5.2 ends the proof, since we assumed that g = f (r) ∈ Lϕ2 .
The second part is proved similarly, using now the second item of Lemma
5.2. It remains to prove the more ambitious conclusion h ∈ Lψ2/3 . To that
effect, we will first make a more careful study of the function h. We need
the additional:
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Lemma 5.3. One can write

h =
∑
j≥1

Gj with ‖Gj‖2 ≤ C/j (29)

where the functions Gj have disjoint spectra Ej, each Ej being Sidon with a
constant less than an absolute constant. As a consequence, for each integer
N ≥ 1, one has a decomposition h = uN + vN with

‖uN‖ψ2 . logN and ‖vN‖2 .
1√
N
·

Proof. The proof of Lemma 5.3 is just a matter of rearrangement; to save
notation, we will assume that f ∈ H2, i.e. f̂(k) = 0 if k < 0. From Lemma
5.1, we can write by increasing rearrangement (recall that αn = ‖qnα‖):

[qn, qn+1[= {ln,j , 1 ≤ j ≤ qn+1 − qn} with ‖ln,jα‖ & jαn.

We have seen that

h(x) =
∑
n

∑
1≤j≤qn+1−qn

f̂(ln,j)

e(ln,jα)− 1
e(ln,jx)

=
∑
j≥1

[ ∑
n,

qn+1−qn≥j

f̂(ln,j)

e(ln,jα)− 1
e(ln,jx)

]
=:
∑
j≥1

Gj .

Now, for fixed j, the spectrum Ej = {ln,j} of Gj is as before the union of two
Hadamard sets with ratio ≥ 2 and is Sidon with a uniform constant. The
Ej are clearly disjoint, and finally, using once more that α is r-diophantine
and recalling that g = f (r):

‖Gj‖22 .
∑
n

|f̂(ln,j)|2

‖ln,jα‖2
.
∑
n

1

j2α2
n

|f̂(ln,j)|2 .
1

j2

∑
n

q2r
n |f̂(ln,j)|2

.
1

j2

∑
n

l2rn,j |f̂(ln,j)|2 .
1

j2

∑
n

|ĝ(ln,j)|2 .
1

j2
,

the last inequality coming from Lemma 5.2 applied to g ∈ Lϕ2 and Ej .
Finally, take

uN =
N∑
j=1

Gj , vN =
∞∑

j=N+1

Gj
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and use the triangle inequality in Lψ2 , as well as the Rudin-Khintchine
inequalities of Lemma 5.2, which give ‖Gj‖ψ2 . ‖Gj‖2 . 1/j, to get the
estimate for uN . Besides, since the Gj ’s have disjoint spectra:∫

T
|vN |2dm =

∑
j>N

∫
T
|Gj |2dm .

∑
j>N

j−2 . N−1.

This ends the proof of Lemma 5.3. ♦

We can now end the proof of Theorem 5.2 by a Marcinkiewicz inter-
polation type argument, which lets Lψ2/3 appear as a real interpolate space
between L2 and Lψ2 . We will denote by δ > 0 some numerical constant. Let
t be a real number ≥ t0 where the constant t0 ≥ 1 will be fixed, depending
on δ.
We write h =: uN + vN , where N = N(t) will be adjusted later. Clearly

m(|h| > 2t) ≤ m(|uN | > t) +m(|vN | > t). (30)

We will find a good upper bound for the RHS of (30) in two steps:

Step 1. We have
m(|uN |) > t) . e−δt

2/(logN)2 . (31)

Indeed, if λ ≥ ‖uN‖ψ2 , Markov’s inequality gives us

m(|uN | > t) = m(e|uN |
2/λ2 > et

2/λ2) ≤ e−t2/λ2
∫
e|u|

2/λ2dm ≤ 2e−t
2/λ2 .

(32)
Now, we know from Lemma 5.3 that we can take λ = C logN . This gives
the relation (31).

Step 2. It holds

m(|vN | > t) .
1

Nt2
≤ 1

N
· (33)

This is Chebyshev’s inequality and the estimate ‖vN‖2 . 1√
N

of Lemma 5.3.

Now, it is easy to conclude. Adjust N in order to balance the contributions
of (31) and (33); namely aiming for

N = eδt
2/(logN)2 or logN = (δt2)1/3, N = e(δt2)1/3 ,

we take
N =

[
e(δt2)1/3

]
+ 1 (34)
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where [ ] denotes the integer part. By adjusting now t0 large enough in
terms of δ, we obtain

e(δt2)1/3 ≤ N ≤ e(2δt2)1/3 ,

so that
e−δt

2/(logN)2 ≤ e−δt2/(2δt2)2/3 ≤ e−δ′t2/3

where δ′ > 0 only depends on δ. Inserting this value in (31) and (33) gives,
taking (30) into account and changing the value of δ if this is necessary:

m(|h| > 2t) . e−δt
2/3

for t ≥ t0. Equivalently (changing δ and t0 again):

m(|h| > t) . e−δt
2/3

for t ≥ t0.

Using the classical “integration by parts” formula∫
T
ρ(|h|)dm =

∫ ∞
0

ρ′(t)m(|h| > t)dt

now gives∫
T
eε|h|

2/3
dm =

∫ ∞
0

(2ε/3)t−1/3eεt
2/3
m(|h| > t)dt <∞ for ε < δ.

This ends the proof of Theorem 5.2. ♦

6 The equation g(2x)− g(x) = f(x)

More general coboundary equations, associated to arbitrary measure-preser-
ving transformations, appear as well in ergodic theory. The case of the 2-
shift σ : x 7→ 2x (mod 1) is of specific interest, since its very rich dynamics
(chaos) is the opposite of the rotation’s one; in return, the condition f ∈
L2

Λ =⇒ f ◦ σ ∈ L2
Λ is much more restrictive for Λ.

Raikov proved the following theorem for f ∈ L1(T):

lim
N

1

N

∑
n<N

f(2nx) exists almost everywhere and =

∫
T
fdm,

actually just a version of the “ergodic theorem” as observed by F. Riesz a
few years later, and the convergence rate aroused the interest of M. Kac who
established a central limit theorem for those sums [17]. The following is a
striking analog (for the special transformation x 7→ 2x) of Lemma 4.1:
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Theorem 6.1. Let f be an α-hölderian function with α > 1/2. Then
limN→∞ ‖SNf‖22/N = 0⇐⇒ f is a L2-coboundary for the shift i.e. f(x) =
g(2x)− g(x) for some L2-function g.

Proof. The function f is assumed to satisfy some Hölder’s condition and,
under the condition

τ2 := lim
N→∞

1

N

∥∥∥ N∑
n=0

f(2nt)
∥∥∥2

2
= 0, (35)

we shall prove that f is a coboundary. We make use of the spectral local
correspondence by defining the spectral measure of f ∈ L2, σf , through its

Fourier coefficients: σ̂f (k) = 〈f ◦ σk, f〉 if k ≥ 0, and σ̂f (−k) = σ̂f (k). If
U is the isometry of L2 associated to σ, we have for every trigonometric
polynomial R:

||R(U)f ||L2 = ||R||L2(σf ).

Thus, hypothesis (35) is nothing but limN→∞KN ∗ σf (0) = 0, where KN is
the Fejér kernel (the square of a Dirichlet kernel), and this means (thanks
to the Fejér convergence theorem) that σf{0} = 0, i.e. σf has no mass at 0.
Now, the following lemma gives a description of a coboundary in terms of
its spectral measure ([27] page 288).

Lemma 6.1. The function f is a coboundary for the shift in L2 if and only
if the function 1/ sin2 πt ∈ L1(σf ).

To pursue, more information on f and σf is needed, and here the hölderian
regularity of f is an unbreakable assumption as we shall see ([17]).

Lemma 6.2. Let f be an α-hölderian real function with α > 1/2. Then,∣∣∣ ∫
T
f(2kt)f(2jt)dt

∣∣∣ = O(2−|j−k|α),

the constant depending on f and α. In particular,

σ̂f (k) = O(2−kα), k ≥ 0.

It follows from Lemma 6.2 that σf is an absolutely continuous measure with
a C∞ density, say F ; by hypothesis (35), F (0) = σf ({0}) = 0, and F ′(0) = 0
since F is even. Thus, clearly, 1/ sin2 πt ∈ L1(σf ) and f is a coboundary in
L2. ♦
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Kàc ([17]) asked for completing his result when 0 < α ≤ 1/2 and gave
an example of an f ∈ A(T) (the Wiener algebra) without any integrable
solution g: consider

f(t) =
∑
j≥1

aj cosπ2jt, with aj =
1√
j
− 1√

j − 1
for j ≥ 2, a1 = 1;

we shall prove that τ = 0 though no solution g ∈ L2 exists to the coboundary
equation f(x) = g(2x)− g(x). Indeed we can compute the partial sum

SNf(t) =
N∑
r=1

cosπ2rt√
r

+

∞∑
r=N+1

(
1√
r
− 1√

r −N
) cosπ2rt.

Parseval identity then gives

2‖SNf‖22 =
N∑
r=1

1

r
+

∞∑
r=N+1

( 1√
r −N

− 1√
r

)2

.
N∑
r=1

1

r
+

2N∑
r=N+1

1

r −N
+
∑
r>2N

N2r−3 = 2 logN +O(1)

because
∣∣(r − N)−1/2 − r−1/2

∣∣ . Nr−3/2 for r > 2N by the mean-value
theorem. This implies τ = 0.
Actually, there exists no g ∈ L1 satisfying f(t) = g(2t)−g(t). In the opposite
case, the Fourier (cosine) coefficients of such a g would satisfy

bj = 0 if j is not a power of 2 and b2k =
1√
k
·

But this is impossible since
∑

k b
2
2k

= ∞, and
∑∞

k=1
e(2kt)√

k
is not even the

Fourier series of a bounded measure on T. Indeed, if Λ = {λn} is a Sidon
set (here Λ = {2n}), and µ a complex measure with spectrum inside Λ (here
µ = g(t)dt), then

∞∑
n=1

|µ̂(λn)|2 <∞.

Because if KN is the Fejér kernel, it holds

‖µ ∗KN‖2 ≤ C‖µ ∗KN‖1 ≤ C‖µ‖
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the spectrum of the trigonometric polynomial µ∗KN being contained in the
Sidon set Λ, on which the L1 and L2-norms are equivalent. That is

∞∑
n=1

|µ̂(λn)|2(KN (λn))2 ≤ C2‖µ‖2,

which implies
∑∞

n=1 |µ̂(λn)|2 ≤ C2‖µ‖2 by letting N tend to infinity.

Whence the question of M. Kàc: anyway, could f be a coboundary but
now with some measurable g ? Fukuyama [8] proved that this equation
actually has no measurable solution by establishing

Theorem 6.2. Suppose that f ∈ A(T) and f̂(n) = 0 if n 6= ±2k, (k ≥ 0);
if the coboundary equation

f(x) = g(2x)− g(x) a.e. (36)

has a measurable solution g, it has also a solution in L2(T).

We focus in turn on this coboundary equation and look for conditions
ensuring the existence of L2-solutions. The Walsh decomposition of course
is very well appropriate to the 2-shift. By mimicking Herman’s approach,
we are able to prove:

Theorem 6.3. Let f ∈ L2 have its Fourier-Walsh spectrum in the set Λs
where Λs = {wk : [k] = s}, s is fixed and [k] is the sum of digits of the
integer k in base 2. Then if the coboundary equation

f(x) = g(2x)− g(x) a.e. (37)

has a measurable solution g, it has also a solution in L2(T).

Remarks. 1. Observe that the hypothesis can also be expressed in terms
of the already encountered set Λs = {±2k1 ± · · · ± 2ks}, ki ≥ 1.
2. The set Λs being sub-lacunary, this result provides an improvement to
Fukuyama’s theorem.

Proof. Our proof makes use of three arguments:
• The previous Lemma 4.1.
• The property 3.1 since Λs is a Λ(p)-set with p > 2.
• The strong mixing property of the 2-shift.
We now use the precise version of Theorem 3.3 for the Λ(p)-character of the
sets Λs. We write Λ := Λs and we suppose that g is a measurable solution
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of (36) with f ∈ L2
Λ i.e. g(x) − g(σx) = f(x). The function g is “almost

bounded” :

∀ε > 0, ∃K ⊂ [0, 1); m(K) ≥ 1− ε and g|K is bounded;

we just have to observe that T = ∪n{|g| ≤ n} = lim ↑n {|g| ≤ n}.
As Snf(x) = f(x) + f(σx) + · · ·+ f(σ(n−1)x), we can write∫

K∩σ−nK |Snf(x)|2 dx =
∫
K∩σ−nK |g(x)− g(σnx)|2 dx

≤ supK∩σ−nK |g(x)− g(σnx)|2
≤ (2 supK |g(x)|)2 < +∞.

We check that Snf ∈ L2
Λ for every n; indeed, observe that, for any h ∈ L2,

(with the Walsh notations of section 3),

〈h(σjx), wk〉 = 0 if 2j 6 | k
= 〈h,wk/2j 〉 otherwise.

Now, wk ∈ Λ =⇒ w2k ∈ Λ (because [2k] = [k] = s) so that, if k 6∈ Λ and
k = 2j`, then ` /∈ Λ in turn; this implies < Snf, wk >= 0 for every k /∈ Λ.

Let us then choose ε so that (1− ε)2− ε ≥ b where b is given by Lemma 3.1.
Since the 2-shift is strongly mixing with respect to the Lebesgue measure,

lim
n→∞

m(K ∩ σ−nK) = m(K)2

and there exists N > 0 such that, for n ≥ N ,

m(K ∩ σ−nK) ≥ m(K)2 − ε.

We may apply Lemma 3.1 to the function ϕ = Snf ∈ L2
Λ and the set

E = K ∩ σ−nK, since m(E) ≥ b by our choice of N and ε. Finally,

‖Snf‖2 ≤ C
( ∫

K∩σ−nK |Snf(x)|2dx
)1/2

≤ 2C‖g‖K .

It follows that supn ‖Snf‖2 < +∞ and f is a coboundary in L2 by Lemma
4.1. ♦
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Remark. The asymptotic behaviour of general Raikov sums Snf(x) :=∑
k≤n f(ωkx) has been investigated for less lacunary sequences (ωk): an em-

blematic example consists in the so-called Fürstenberg sequence of integers
(sn), which is the semigroup 〈2, 3〉 rearranged as an increasing sequence;
more general semigroups 〈p1, . . . , ps〉 have been studied, where the pj are
coprime numbers. The following result deserves to be notified [9].

Theorem 6.4 (Fukuyama-Petit). Assume f satisfies a “strong” Hölder type
condition. Then

lim
N
‖SNf‖2/N = 0⇐⇒ f(x) =

s∑
j=1

(fj(pjx)− fj(x))

for some L2-functions fj.
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