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Abstract: Liquid biopsy (LB) is a minimally invasive method which aims to detect circulating
tumor-derived components in body fluids. It provides an alternative to current cancer screen-
ing methods that use tissue biopsies for the confirmation of diagnosis. This paper attempts to
determine how far the regulatory, policy, and governance framework provide support to LB imple-
mentation into healthcare systems and how the situation can be improved. For that reason, the
European Alliance for Personalised Medicine (EAPM) organized series of expert panels including
different key stakeholders to identify different steps, challenges, and opportunities that need to be
taken to effectively implement LB technology at the country level across Europe. To accomplish
a change of patient care with an LB approach, it is required to establish collaboration between
multiple stakeholders, including payers, policymakers, the medical and scientific community,
and patient organizations, both at the national and international level. Regulators, pharma com-
panies, and payers could have a major impact in their own domain. Linking national efforts
to EU efforts and vice versa could help in implementation of LB across Europe, while patients,
scientists, physicians, and kit manufacturers can generate a pull by undertaking more research
into biomarkers.
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1. Introduction

The revolutionary precision that molecular diagnostics can bring to healthcare and the
dramatic improvements it can bring to oncology screening and treatment are now widely
recognized [1]. However, progress is hampered by several logistical and technical factors.
Current molecular diagnostics is based on resected tissue samples, fine-needle aspirates, and
needle biopsies [2,3]. Still, a majority of molecular diagnostics in tumors, such as those in the
lung, are weighted toward needle biopsies [4]. The small amount of tissue obtained by needle
biopsies may not capture the most aggressive subclones present, since individual tumors
consist of diverse subpopulations (minor key clones can be easily missed). Moreover, some
tumor entities, such as lung cancer, are located at remote sites, and a needle biopsy can be
very difficult and constitute a high risk to the patient [5]. The mere analysis of the resected
primary tumor alone (current standard practice in oncology) may provide misleading
information with regard to the characteristics of metastases, the key target for systemic
anticancer therapy. There are medical risks —particularly in children—from repeated
anesthesia to obtain sufficient diagnostic and prognostic information [6]. Additionally, the
biopsy of metastases is an invasive and sometimes dangerous procedure [7]. The promise of
precision medicine as a model to customize healthcare to the individual patient, deploying
new genetic tools to classify and characterize diseases and their hosts, has thus not reached its
full potential [8]. To accomplish its goals relying only on traditional tumor sampling through
needle and surgical biopsy, a massive increase in invasive procedures would be necessary to
obtain sufficient material to accurately capture and describe genomic variations and their
phenotypes, with obvious negative implications for resources and patient comfort [9,10].
Liquid biopsy (LB) offers an attractive alternative. It permits the sampling and analysis
of non-solid tissue, primarily blood, as a screening, diagnostic, and monitoring tool for
cancer [11,12]. Furthermore, as LB requires only a blood draw, it is a non-invasive procedure
and constitutes a potentially more rapid and less costly alternative to genomic analysis
of tissue biopsies [13]. More importantly, LB can be repeated during cancer treatment to
monitor drug efficacy or to follow minimal residual cancer [14]. However, its predictive
value and clinical utility are still to be compellingly demonstrated in Europe [15] and many
of the related issues that must be better understood—in regard to cost and reimbursement,
infrastructure, and skills—are also still under study. These aspects are moving faster in the
US, with two FDA approvals and some encouraging trial results (see below). Progress on
these questions and the introduction of LB methods and next-generation sequencing (NGS)
technology for routine clinical practice should contribute to the overall improvement and
personalization of anticancer therapy [16–18].

The European Alliance for Personalised Medicine (EAPM) decided to generate this
work as an attempt to address these open challenges and to identify steps that need to be
taken to effectively implement LB at the country level in Europe. EAPM-led expert panels
were organized in the first half of 2022, including key stakeholders from across several
European countries, covering medical, economic, patient, industry, and governmental
expertise. Discussions focused on three key areas: early detection of cancer, i.e., the
use of blood tests for screening and early detection of (multiple) cancers; the use of LB
following curative treatment to guide adjuvant therapy; and cancer treatment selection
and monitoring, i.e., the use of LB to select targeted treatment and monitor progressive
disease and response to treatment. The aim was to determine how best to promote LB use
in routine clinical care and to tackle the challenges this poses. The demand for LB tests
is inevitably influenced by organizational issues relating to standardization, guidelines,
and awareness among physicians and in the patient community, while supply of the tests
is a function of the related infrastructure, arrangements for paying for procedures and
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materials, and how far underlying evidence generates calls for testing. Joint work at both
the national and European level should concentrate on promoting cooperation among the
widest range of stakeholders, the panels agreed.

2. State of Play

An LB is a simple and non-invasive method that emerged a decade ago as an attrac-
tive alternative and represents one of the most active research areas in oncology [14,19].
Circulating tumor cells (CTCs) are of utmost importance, as you can analyze the genome,
transcriptome, proteome and the secretome in real-time, in addition to assessing the func-
tionality of the most aggressive and disseminating clones. Circulating tumor DNA (ctDNA)
enables real-time assessment of the tumor mutational profile and has therefore rapidly
gained attraction [20,21]. The concept of LB was described and coined for the first time
in 2010 by Drs. Alix-Panabières and Pantel [19] and initially described circulating tumor
cells in the peripheral blood. Nowadays, the definition has been expanded to include
all circulating tumor-derived biomarkers (e.g., circulating tumor DNA; and extracellular
vesicles, such as exosomes, microRNA, tumor-educated platelets, etc.), as well as immune
cells in all body fluids (e.g., bone marrow, urine, and sputum) [14]. These biomarkers offer
complementary information at different levels. Numerous LB-based studies and clinical
trials for a wide variety of cancer types (e.g., breast cancer, colorectal cancer (CRC), prostate
cancer, non-small cell lung cancer (NSCLC), and malignant melanoma) have been initiated
to demonstrate their clinical relevance in cancer patients [14,22,23]. The clinical utility of
LB has been demonstrated for the detection of epidermal growth factor receptor (EGFR)
mutations in NSCLC patients or for the detection of KRAS proto-oncogene, GTPase (KRAS)
mutations in patients suffering from metastatic CRC [24]. When comparing patients’ out-
comes on targeted therapy based on LB and tissue, similar results have been revealed for
NSCLC patients [25–27]. If the tissue-based biopsies are not available, if they are low quality,
or if they involve significant risk to obtain them, guidelines on national and international
level now include companion diagnostic tests as an alternative [22]. For companion diag-
nostics for several cancer types, the clinical utility of LB has been proved. Moreover, four
companion diagnostic tests have been approved to date. They are the cobas EGFR Mutation
Test v2 from Roche (“a quantitative PCR (qPCR)-based test for the detection of EGFR exon
19 deletions, the NP_005219.2:p.L858R substitution in metastatic NSCLC patients to identify
eligibility for TKI treatment, as well as for the EGFR NP_005219.2:p.T790M resistance mu-
tation”) [22,28]. The “Guardant360® CDx from Guardant Health to determine EGFR status
in NSCLC patients” and the “FoundationOne® Liquid CDx from Foundation medicine for
NSCLC, metastatic castrate resistant prostate cancer (mCRPC), ovarian and breast cancer
patients before administration of TKI, PIK3CA, or poly (ADP-ribose) polymerase 1 (PARP)
inhibitors” are two NGS-based tests that were recently approved by FDA. G360 CDx and
F1L CDx, in addition to the FDA-approved CDx claims, include the majority of actionable
targets on their panels, and these have been analytically validated. These providers deliver
not only the CDx claims for the approved therapies but also comprehensive reports with
molecularly guided treatment and trial options which are also actionable in many settings
especially in the US. “Epi proColon® (Epigenomics AG, Berlin, Germany)” is a blood-based
test which is, for now, the only test that detects tumor-associated epigenetic changes and is
FDA-approved for CRC screening [22,29]. These US approvals in effect offer recognition
of clinical utility and US studies are revealing unexplored potential in plasma-based NGS
performed simultaneously with diagnostic biopsy in suspected advanced NSCLC [30],
while other studies suggest that LB has emerged as a viable approach to guide therapeutic
decisions and provide real-time follow-up in NSCLC [31].

These optimistic findings are echoed in the European Society for Medical Oncology
(ESMO) paper summarizing international studies of scenarios where ctDNA mutation
testing may be implemented in clinical practice, highlighting where ctDNA LB may be
considered as a complementary tool to TB analysis to provide the full picture of patients’
actual predictive profiles, as well as ctDNA mutation testing to assist when a patient
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has a discordant clinical history and is suspected of showing intertumor or intratumor
heterogeneity [32,33]. A Canadian study found that incorporation of TL-LBx-CGP demon-
strated an overall impact of CAD 14.7 million with 168 life-years gained in the publicly
funded healthcare system in the 3-year time horizon [34]. A consensus statement from
The International Association for the Study of Lung Cancer (IASLC) concludes that LB
represents a practical alternative source for investigating tumor-derived alterations [35].
However, another ESMO paper is more cautious, suggesting that the clinical utility of an
early diagnosis of progression has not yet been demonstrated in randomized clinical trials
with adequate cohorts of patients [15].

The development of LB assays is often based on the analysis of whole-genome se-
quencing (WGS) or whole-exome sequencing (WES) data from tumor tissue samples. It can
be further processed into large and/or customized gene panels. The Integrated Mutation
Profiling of Actionable Cancer Targets gene panel is FDA approved and was originally
developed as a next-generation sequencing (NGS) hybrid assay for targeted deep sequenc-
ing. The FDA has already approved several single-gene tests and, more recently, multigene
tests to detect genetic changes in plasma cell-free DNA (cfDNA). They would be used
as companion diagnostics aligned with specific molecularly targeted therapies for cancer.
These approvals are a major milestone for the widespread use of LB in the clinic, partic-
ularly in patients with advanced cancer. Currently, cfDNA tests are only approved as a
companion diagnostic for a few specific types of cancer and targeted therapies. Outside
of these indications, it would be necessary to screen many patients to identify the small
percentage of patients who could benefit from drugs approved by a regulatory agency [36].
Whether these initial assessments will last depends on progress in translating findings from
prospective clinical trials and real-world evidence databases into new indications for new
or existing molecularly targeted therapies [37].

Cancer screening and Diagnosis: Potential future applications

The researchers have, in addition to the tissue-based MSK-IMPACT test, developed
the MSK-ACCESS (Cell-Free Analysis of Circulating DNA for Assessment of Somatic
Status) test. It uses deep sequencing of plasma cfDNA for broad coverage of cancer-
related genes. This LB test was approved in 2019 by the New York State Department
for use in the identification of molecular and cellular tumor markers. Some of the key
aspects that must be considered during test development are the type of sample analyzed,
specific sample-collection procedures, processing, handling, and storage, as well as specific
characteristics related to the patient. The standardization of pre-analytical variables is
considered an important part of the test development process. For example, the ESMO Scale
of Actionability of Molecular Targets is one example of an attempt to facilitate this process
by ranking genomic aberrations according to their importance for precision medicine [38].
Clinical adoption of the LB test should be achieved through three distinct steps. The first
step involves test development and validation; the second is regulatory approval, which
means inclusion in guidelines and reimbursement; and the third is inclusion in the clinical
workflow [37].

LB assays in advanced-stage disease

LB assays can be used in patients with advanced stage cancer when choosing the
right treatment to monitor the effectiveness of the treatment and to determine the most
appropriate follow-up treatment if resistance develops [37].

The right treatment for the right patient

PCR-based cfDNA assays for oncogenic driver variants of genes such as EGFR in
non-small cell lung cancer (NSCLC) and KRAS in colorectal cancer (CRC) showed high
specificity (mean 96%) but only moderate sensitivity (mean 66%) when compared with
tumor tissue assays, which are still the gold standard [39]. Nevertheless, the use of droplet
digital PCR (ddPCR) assays increases the level of sensitivity. It should be noted that only
few data are available on the effects of patient-related factors such as pregnancy, smoking,
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exercise, and various non-malignant conditions that might affect cfDNA levels in blood.
Thus, the correlation between patient-related factors and performance of specific ctDNA
assays should be carefully explored in prospective studies. The development of collection
tubes for long-term storage of viable CTCs is an important unmet need for the evaluation
of the full potential of these analytes in multicenter trials. Moreover, the typically low
numbers of CTCs present in blood samples also hamper testing of the clinical utility of
CTC-based functional assays or omics analyses [40].

Detection of resistance mechanisms

The frequent occurrence of co-mutations or copy-number alterations (CNAs) and the
development of resistance mutations is often a major challenge in the application of ctDNA
in guiding treatment decisions. With the use of plasma ctDNA analysis, different mecha-
nisms of resistance to targeted therapy can be monitored; this also includes co-mutations
that can affect treatment decisions in multiple cancer types, most notably in patients with
NSCLC96 and CRC [41]. Besides monitoring for known resistance mechanisms, cfDNA
can be used to identify unknown mechanisms of treatment resistance. One of the first
studies in this area that involved the analysis of serial plasma cfDNA samples by using
WES provided insights into the mechanisms of resistance to commonly used chemothera-
peutic or targeted agents. A patient with metastatic HR+/HER2− breast cancer, e.g., who
progressed following paclitaxel treatment had increased mutant allele fractions of PIK3CA,
BMI1, and SMC4 [42].

“ctDNA relapse”

“ctDNA relapse” is a relatively new term describing a “disease stage in which pa-
tients present with detectable ctDNA during routine cancer surveillance but without overt
imaging-detected disease relapse after completion of surgery and neoadjuvant and/or
adjuvant chemotherapy for their primary cancer. Systemic treatment for ctDNA relapse
has the potential to create a drug-testing setting that goes beyond metastatic, adjuvant,
neoadjuvant, and post-neoadjuvant settings that have been traditionally used in clinical
trials [37].

Liquid biopsy for early cancer detection

In addition to the challenges associated with low levels of ctDNA in early stage cancer,
the low incidence of cancer in the general population is also a significant challenge for
the use of LB [37]. Although the key disadvantage of CTCs and ctDNA as biomarkers is
that they are undetectable in many patients with early stage and some with advanced-
stage cancer, several LB approaches for cancer diagnosis are under development [37].
Initial approaches have been based on the detection of driver gene mutations in plasma
cfDNA [43]. Another approach is based on combined analyses of circulating proteins
and cancer-associated mutations in plasma, such as the CancerSeek platform [44]. Other
approaches are predicated on the analysis of epigenetic alterations that might be tissue-
specific and cancer-type-specific by analyzing genome-wide differentially methylated
regions via cell-free methylated DNA immunoprecipitation and high-throughput bisulfite-
free sequencing (cfMeDIP-seq)165 or other methylation patterns [45,46]. An example of
the potential clinical utility of an LB approach for early detection has been provided by
the DETECT-A study [47]. In this prospective study, 10,006 women aged 65–75 years with
no prior history of cancer were evaluated by using the CancerSeek platform. The study
showed that 26 women had cancers that were detected by using this platform. Five of them
with stage I (19%), three with stage II (12%), eight with stage III (31%), and nine with stage
IV (35%) cancers, as well as one with cancer of unknown stage but without metastases [47].

Psychological aspect

Another dimension that must be taken into account is the psychological aspect of
this type of technology. The traditional meaning of what it means to be “a patient” or “to
have a disease” can notably be changed with the availability of LB assays for the early
detection of cancer. Although for some otherwise healthy, asymptomatic people, the fact
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that the disease is identified at an early stage will be an important discovery, for many, the
diagnosis could be unwanted and potentially destructive [37].

Artificial intelligence (AI) and LB

Artificial intelligence has great promise to revolutionize the way medicine is practiced.
It has already been leveraged to improve the performance of different LB assays, and this
will also facilitate their further integration into the clinical workflow. Some examples are
the use of machine-learning approaches for the detection and characterization of CTCs; for
the analysis of ctDNA for cancer detection and localization; and for integrative multi-omics
analyses and future integration of LB tests together with other clinicogenomic, metabolomic,
immunomic, microbiomic, and homeostatic data to guide treatment decisions [48,49]. A
machine-learning platform named “lung cancer likelihood in plasma” (Lung-CLiP) is being
developed for early lung cancer detection based on targeted sequencing of plasma cfDNA
and matched leukocyte DNA [37].

2.1. National Perspectives

Different perspectives are observed in various European countries regarding the
implementation and current status of LB in healthcare systems (Table 1).

Table 1. Different perspectives and challenges among European countries with implementation of
LB in the healthcare system.

Country Perspective

Austria

- Novel multiparameter bioinformatics approaches are being developed for patients with breast, colorectal, and
prostate cancer

- A platform was launched to educate and guide oncologists in the implementation of LB in the clinic

Bulgaria
- Center for Competence was involved in a Personalized Innovative Medicine PERIMED project
- Little or no coverage of tests by national insurance

Croatia

- National cancer control plan envisages implementation of new, validated, and cost-effective cancer
molecular-testing procedures

- Aim is to apply targeted oncological therapies and include LB for genetic, protein, and RNA profiling in early
CRC diagnosis

Ireland
- LB is not currently routinely used in clinical practice
- Clinical trials show LB analysis is feasible, cost effective, and acceptable to patients

France

- STIC METABREAST clinical trial demonstrated for the first time the clinical utility of CTCs in metastatic HR
(+) breast cancer patients

- IDEA-FRANCE trial concluded that plasma ctDNA testing opens up an opportunity for precision treatment of
patients with localized CRC

Germany

- CRC patients insured by BARMER are covered for the OncoBEAM RAS CRC IVD Test
- German genetic testing firm CeGaT has received funding to support the development of LB methods for the

analysis of ctDNA

Italy

- Cancer LOCATOR is a cfDNA-based method which uses CpG methylation profiles and thus allows for the
detection and prediction of the tissue of origin

- Cardiomyocyte death, a potentially useful marker, was identified by using cfDNA methylation profiles
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Table 1. Cont.

Country Perspective

Netherlands

- In the COIN-consortium a team of multidisciplinary specialists are working toward a coordinated clinical
implementation of LB ctDNA analysis

- Patients with stage II colon cancer will be offered adjuvant chemotherapy based on the presence of ctDNA in
their blood after surgery

Norway

- Norwegian Regional Research Program ran a five-year research program on LB entitled “Personalised cancer
therapy–biomarkers in clinical trials”

- The biggest challenge is the difficulty to standardize techniques across projects

Poland

- Current guidelines indicate that, in patients with progression during EGFR TKI treatment, it is important to
re-sample material in order to evaluate the potentially acquired T790M mutation in the EGFR gene

- It is recommended to perform tests in cfDNA first

Slovenia

- LB is currently used in everyday clinical practice for detecting T790M mutations in NSCLC patients
progressing on first- or second-generation EGFR TKIs and for primary molecular diagnostics of advanced
non-squamous NSCLC patients who are not candidates for tissue biopsy

- Ongoing studies on the use of LB to guide adjuvant therapy in solid tumors

Sweden

- Provides strong support for innovation with grants and strong intellectual property rights and
start-up support

- Healthcare market is regionalized, which leads to disparate decision-making bodies

In Austria, recent translational research has focused on liquid biopsies to guide pre-
cision medicine, with plasma increasingly being used for molecular profiling to guide
treatment decisions for patients with solid tumors and progressive disease [50]. At several
academic hospitals, there is reimbursement of comprehensive genomic profiling (CGP)
of both tumor tissue and liquid for select patients with progressive disease. However,
doctors disagree on which strategy is most appropriate—a nationwide program involving
community radiologists, or screening programs in well-established cancer centers with all
the required infrastructure already in place [51]. At the Institute of Human Genetics at the
Medical University of Graz, one of the leaders in LB research in Austria, novel multipa-
rameter bioinformatics approaches are being developed in several translational projects
for patients with breast, colorectal, and prostate cancer for early detection and monitoring
purposes. At the same university, funding from the FWF Top Citizen Science initiative was
received to educate patients with breast cancer and to identify novel precision oncology
approaches that help them better understand how treatment decisions were made based
on molecular profiling via LB. Similarly, a platform was recently launched to educate and
guide oncologists in the implementation of LB in the clinic, as well as to create transparency
in complex ctDNA strategies with future application, such as nucleosome mapping and
fragmentomics [52].

Bulgaria’s Center for Competence was involved in a Personalized Innovative Medicine
PERIMED project that was co-funded by the EU and the Science and Education for Smart
Growth Operational Programme. However, there is little or no coverage of tests by national
insurance, usually leaving patients to pay for the tests [53].

Croatia’s national cancer control plan envisages implementation of new, validated,
and cost-effective cancer molecular testing procedures with the aim of applying targeted
oncological therapies and includes LB for genetic, protein, and RNA profiling in early CRC
diagnosis. There is strong support for the concept of better collaboration in Europe [54].

LB is not currently routinely used in clinical practice in Ireland. Standardized methods
will need to be in place before widespread use, particularly for adjuvant treatment decisions.
Integration into cancer care will present organizational and financial challenges. Provision
of appropriate skilled staff requires additional investment. However, the authorities recog-
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nize the need for incorporation of advances in diagnostics into clinical care pathways and
clinical trials show that LB analysis is feasible, cost effective, and acceptable to patients.

In France, the STIC METABREAST clinical trial, a medico-economic trial, demon-
strated for the first time the clinical utility of CTCs in metastatic HR + breast cancer
patients [55]. The quality of life of these patients has also been evaluated. The High Au-
thority of Health (HAS) is currently evaluating whether to refund this blood CTC test by
French social security. It would be a great first step to introduce LB in clinical practice.
Moreover, the IDEA-FRANCE trial concluded that plasma ctDNA testing opens up an
opportunity for precision treatment of patients with localized CRC. The study is also one
of the first to show that, in the future, it may be possible to use LB to direct therapy and
identify which patients can avoid chemotherapy after their surgery and which should
have it. LB units were developed in 1999 at the University Medical Center of Montpellier
and in 2009 at the Laboratory of Clinical and Experimental Pathology, Pasteur Hospital,
University Côte d’Azur. They initiate and lead translational research programs funded
by the French NCI [56]. France uses LB at progression for targeted therapy, for clinical
trials, and for research projects. NGS availability varies widely from city to city [57]. The
complex reimbursement system impedes wide use, including issues of confusion over
which technology—in-house or on commercially available platforms—should be used.
There is now a program for the early detection of lung cancer by using LB in association
with low-dose computed tomography (LDCT), as well as an artificial intelligence program
supported by the National Cancer Institute and some pharmaceutical compagnies in a
pioneering integration of different parameters.

In Germany, CRC patients insured by BARMER are covered for the OncoBEAM RAS
CRC IVD Test, an innovative LB diagnostic that delivers a comprehensive evaluation of RAS
mutations from a single tube of blood. The German genetic testing firm CeGaT has received
funding from the German Federal Ministry of Education and Research KMU-Innovativ:
Biotechnologie-BioChance programme to support the development of LB methods for the
analysis of ctDNA and expand its genetic analysis services to new patients who would
currently be ineligible because they cannot safely undergo a tissue biopsy [58].

In Italy, Cancer LOCATOR is a cfDNA-based method which uses CpG methylation
profiles and thus allows for detection and predicts the tissue of origin [59]. In another study,
cardiomyocyte death, which is a potentially useful marker, was identified by using cfDNA
methylation profiles. The result of these studies was that these markers could potentially
be used in clinical practice to predict or to diagnose certain clinical conditions [60].

In the Netherlands, the COIN-consortium is a nationwide initiative in which a team of
multidisciplinary specialists are working toward a coordinated clinical implementation of
LB ctDNA analysis as an innovative form of minimal invasive molecular diagnostics in
clinical practice. These studies focus on colorectal and non-small cell lung cancer, as there
is a substantial and active ctDNA research community for these two tumor types. Patients
with stage II colon cancer will be offered adjuvant chemotherapy based on the presence of
ctDNA in their blood after surgery [61].

The EU-funded Lima aims to develop and validate technologies and tools to include
liquid biopsies in the clinical workflow, aiming at introducing a more precise and dynamic
genetic characterization of tumor at the diagnosis and during treatment phases [62].

In Norway, the Norwegian Regional Research Program ran a five-year research pro-
gram on LB entitled “Personalised cancer therapy—biomarkers in clinical trials”. The
biggest challenge is the difficulty to standardize techniques across projects in the face of the
continuous development of new technologies [61].

In Poland, current guidelines indicate that, in patients with progression during EGFR
TKI treatment, it is important to re-sample material in order to evaluate the potentially
acquired T790M mutation in the EGFR gene, as this is strongly associated with developed
resistance to TKI. It is recommended to perform tests in cfDNA first, and only if these results
are negative, re-biopsy or needle biopsy should be performed. There is strong support for
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standardization of an approach at the national and EU level in terms of diagnosis and in
treatment [63].

In Slovenia, LB is currently used in everyday clinical practice for detecting T790M
mutations in NSCLC patients progressing on first- or second-generation EGFR TKIs and
for primary molecular diagnostics of advanced non-squamous NSCLC patients who are
not candidates for tissue biopsy. In addition, there are ongoing studies on the use of LB to
guide adjuvant therapy in solid tumors, and there is strong support for joint EU efforts in
screening and for the use of LB in advanced screening for lung cancer [64].

Sweden provides strong support for innovation with grants and strong intellectual
property rights and start-up support, but the healthcare market is regionalized, thus leading
to disparate decision-making bodies for health technology assessment.

At the European level, CANCER-ID, a five-year Innovative Medicines Initiative (IMI)
consortium, which came to an end in 2019, published best-practice protocols and the
results of ring studies based on the implementation of harmonized protocols and standard
materials [65]. Against this background, LB protocols are being explored in clinical studies.
CTCs and ctDNA assays were evaluated for their predictive and clinical utility in the use
of immune checkpoint inhibitors. Except bringing LB into clinical trials and practice, the
project is also supporting LB research in a wide range of applications. The particular merit
of the project is that it provides a platform for bringing together regulators, healthcare
professionals, and patients with academia and industry. The impact of the work is being
amplified by the drafting of guidelines, and training and communication strategies so as
raise the profile of Europe in the field and boost international research collaborations (in
the US, Asia and Australia) [66]. In a continuum of CANCER-ID, the novel EU consortium,
the European Liquid Biopsy Society (ELBS), established by the University Medical Centre
Hamburg-Eppendorf (Prof Klaus Pantel), aims to become the leading hub for LB research
in Europe with the goal to translate LB assays into clinical practice for the benefit of
patients [67,68].

Buyers in Belgium, France, Germany, Italy, and Spain cooperate in the oncNGS con-
sortium, challenging the market to develop novel affordable solutions to provide the most
advanced NGS tests for cancer patients. They wish to co-develop an EU innovative tender
for LB diagnostics based on complex NGS-driven DNA profiling within a pre-commercial
procurement Horizon-2020 financed project [69].

2.2. Opportunities

Plasma ctDNA analysis has opened previously unexpected perspectives for moni-
toring cancer genomics in the peripheral blood [70]. The use of LB as a form of early
diagnosis and screening for cancer patients has emerged as an attractive option, offering
multiple benefits in patients with diverse tumor types with a highly precise evaluation of
the tumor genomic alteration landscape, reflective of disease burden. In addition to the
role that it could play in more sensitive and specific screening, LB has enormous potential
as personalized medicine increasingly expands into the clinic and more therapeutics are
actively being developed and used in patients based on the molecular profiles of their
different cancer types [2,71]. The discovery and classification of these biomarkers is of
utmost importance. Solid tumors are not static, but rather they are continuously growing,
spreading, and changing their microenvironment, as well as shedding intact cells and cell
components into surrounding body fluids. LB serves as a safe alternative to solid biopsies
(complementary information is given by both biopsies) and is thus a useful and critical
component to fully realizing personalized medicine. Their use extends beyond screening
and selecting a targeted treatment for monitoring progressive disease and response to
treatment [6,72]. LBs have been used in the field of immuno-oncology (I-O) to predict
response, relapse, or adverse advents for patients undergoing immune-checkpoint inhibitor
(ICI) therapy (anti-PD-1/PD-L1 and CTLA-4). Alongside the quantification of cfDNA as
a predictive biomarker, there is additionally the quantification of PD-L1 from CTCs that
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are bound on exosomes or free in plasma, as well as the determination of cytokines, as it is
being actively investigated with promising results [73].

LB is an important milestone in the modernization of oncology care, granting access
to critical information for timely selection of the most appropriate therapy. The technology
offers genetic analysis services to new patients who would currently be ineligible because
they cannot safely undergo a tissue biopsy. In addition to the primary diagnosis, the
analysis of CTCs and DNA also allow close for the monitoring of cancer in ways that tissue
analysis does not [74–76].

The main goals in determining treatment are to choose the most effective course
for an individual patient, targeting the subpopulation of patients who will benefit most
from a particular medicine and avoiding toxic therapies for patients who do not need
them [77,78]. Plasma ctDNA testing and CTC enumeration plus phenotyping open up
great opportunities for precision treatment of patients with localized and metastatic solid
cancers [74,79].

In addition, this type of research has an important role in public health because
of its ability to provide more efficient cost control. The advantages of LB include high-
throughput assays, with minimal sample, reagents, and waste production. LB has health
economic potential if used to initiate and serially monitor treatment response, to inform
decisions to discontinue inactive treatment, or to switch treatment to agents that target
other molecular mechanisms in case of resistance [75]. In the future, it may be possible to
use LB to direct therapy and identify which patients can avoid chemotherapy after their
surgery and which should have it. CTC/ctDNA for minimal residual disease (MRD) is
strongly prognostic in early cancers, and LB is a perfect tool for MRD detection that may
allow for the personalization of adjuvant/consolidation therapy [80].

Some key advantages are better accuracy in clinical settings, tertiary prevention with
MRD after treatment for the early stage, monitoring the disease burden and emergence of
resistance in the metastatic setting, and identification of actionable alterations for targeted
therapy in trials or approved medicines [81].

In lung cancer, with its high mortality; disease heterogeneity, pattern of late diagnosis;
the limitations of tissue biopsy (and re-biopsy), particularly because of tumor location; and
the challenge of intra-tumoral heterogeneity, LB offers new hope [82]. LB for biomarker
testing in NSCLC confers advantages. In Europe, tissue biopsy may be unfeasible or in-
adequate for molecular workup in an estimated 16,000 patients annually with NSCLC;
these patients could potentially benefit from LB. Based on published frequencies of NSCLC
driver alterations, a molecular diagnosis based on LB could allow approximately 6560
patients annually to benefit from current, emerging, and future targeted treatments [83–85].
A study in 2022 investigated whether a ctDNA-guided approach as compared with a stan-
dard approach in stage II colon cancer can reduce the use of adjuvant treatment without
compromising the risk of recurrence. The results showed that a ctDNA-guided approach re-
duced adjuvant chemotherapy use without compromising recurrence-free survival. Among
ctDNA-negative patients, 3-year recurrence-free survival was higher among patients with
clinical low-risk cancers than among those with high-risk cancers. Nevertheless, further
studies and data will be needed to finalize and prove all the results [86].

2.3. Challenges

To successfully implement LB into standard care, certain barriers have to be overcome.
Besides considering technical issues related to acquiring proper workflows, the quality
of LB testing should also be assured. The comparability of LB test results is also very
important part since it is a prerequisite for reliable diagnostics and reimbursement.

Some of the technical issues related to LB are as follows:

- The low concentration of the circulating biomarkers at early stage of cancer; a solution
is (i) to increase the blood volume and (ii) to combine different circulating biomarkers
to be more sensitive;
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- For ctDNA: possibility of fragmentation, the low fraction of ctDNA in total amount of
cfDNA [22].

It is considered important to standardize pre-analytical and analytical procedures to
ensure reproducibility and generate structured and accessible clinical reports. Pre-analytical
variability is a vital issue. Errors in the pre-analytical phase—specimen collection and
processing, transport and storage, cDNA isolation, and quality controls—can heavily affect
the data generated in the following analytical steps, resulting in unreliable results which
ultimately can lead to incorrect clinical decisions [87].

The quality assurance of LB in terms of internal and external quality control (QC) is
critical to ensure reliable test results. The internal QC of the pre-analytical workflow should
assess cfDNA yield and integrity. Appropriate external controls should be analyzed in
parallel, as well, to evaluate ctDNA analysis [22,88].

The clinical validity of LB (measured as the capacity of a test to divide a population
into groups with significantly different clinical results) and the clinical utility (measured as
the capacity of a test to improve cancer diagnosis, treatment, management, or prevention
results) are the objectives of current oncology studies on LB. More interventional clinical
trials must be initiated to demonstrate the clinical utility of LB and to introduce this test
in clinical practice [67]. To date, LB is not considered a sufficiently sensitive or specific
technique for early cancer detection in an asymptomatic population and cannot substitute
for or complement radiological tests [89].

Multidisciplinary molecular tumor boards are needed to oversee these processes and
to enable the most suitable therapeutic decisions for each patient according to the genomic
profile [89]. The way that the costs of genomic medicine are covered strongly influences
access to testing. Both directly and indirectly, the arrangements for payment have an
impact on which patients benefit, on whether they then received targeted therapies, and,
consequently, on the outcome of their care [90].

The cost-effectiveness of LB is a requirement for adoption and reimbursement in many
countries with a Health Technology Assessment (HTA) program. The benefits of LB have
been positively evaluated in initial cost-effectiveness studies, and recent increases in private-
and public-payer reimbursement for LB testing have been noted [22]. It is still not widely
adopted in Europe, and reimbursement options are limited to a few applications in only
several countries. Furthermore, recognition by health insurers is a lengthy process, so there
is an urgent need for prospective large-scale clinical trials for promising LB applications.
In Europe, a shift by public hospitals toward greater use of LB in NSCLC—where tissue
biopsy still predominates—is conditioned by regional policies [85], with some moves
toward paying for EGFR mutation testing (in Italy, Slovenia, and the UK, for instance), but
with widespread hesitation over other biomarkers. In the study by Wu et al. [91] it was
pointed out that LB use is frequently restricted to monitoring the resistance to EGFR TKIs,
and more recent studies list LB assays approved in Europe still limited to EGFR mutation
testing [92]. The uptake of NGS-based LB faces even greater obstacles in Europe since NGS
is not reimbursed in many of its countries [57].

Highly specific tests are needed for screening purposes. Low prevalence will strongly
increase false positives and decrease positive predictive value. With 95% specificity and
95% sensitivity and a prevalence of 1:2000, 10,000 tests will generate 500 false positives and
5 true positives, providing a PPV of less than 1% [93]. Every false positive will generate
extra costs of further testing, anxiety, and potential burden of invasive or radiology testing.
Integration of LB assay into clinical practice could bring advantages of ease and accuracy.
There is a need for more sensitive and specific testing [94].

2.4. Identified Issues and Challenges from the Panels

The anecdotal evidence from the EAPM panels included the following areas of weak-
ness in the current arrangements:

• Failings in communication among HCPs: A considerable number of pathologists and
clinicians especially are not yet familiar with NGS results and with LB outside of a
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clinical trial or a research study, so they receive a report and do not know what to do
with it;

• Information, guidance, and recommendations vary too much across Europe;
• Clinicians often take distinct approaches in response to the same results;
• Lack of molecular tumor boards in some parts of Europe;
• Patient awareness is insufficient, and patient contact is too limited: Patients who take

part in research studies come in to get a blood draw and receive little or no feedback;
• Limitations remain regarding the use of LB and how it helps patients when we do not

have treatments for ovarian cancer;
• Limited access to early stage samples of cancers;
• No universal standard for sample processing exists;
• Absence of networks for sending patients to clinical trials across borders;
• Lack of reimbursement deprives patients of access, but also discourages innovators

from investing;
• Technology and methods are always evolving, making them overwhelming to incorporate.

2.5. Moving toward Solutions

Demonstrating the clinical utility of LB and its usefulness for research would be
assisted if there were easy-to-use, robust, and reproducible workflows. Currently, there
are no integrated multicenter-tested workflows available covering the requirements for the
clinical setting. Such workflows should include Standardized Operating Procedures (SOPs)
for all of the abovementioned phases of laboratory testing starting with specimen collection
and ending with result interpretation, e.g., via bioinformatics analysis. An international LB
standardization alliance is needed among organizations and foundations that recognize
the importance of working toward the global use of LB in oncology practice to support
clinical decision-making and regulatory considerations and seek to promote it in their
communities [10].

LB can increase access to testing in advanced cancer, but it requires an awareness of
profiling opportunities, an understanding of the methodologies and the results, conversion
of the results into actionable insight, reimbursement strategies, and expert guidance for the
interpretation and application of cfDNA analyses [52].

Overall, precision oncology demands polymath proficiency across multiple knowledge
domains in order to decide which patients to test; which panels to order and for which
indication and issue (for targeted therapy at baseline, for targeted therapy at progression,
for immunotherapy at baseline, for prognosis purpose in MRD, or for screening and early
detection); with which technology; and whether outsourced or in-house, which labs to
use; how to standardize value-based precision medicine hospital-wide; and what the
results mean. It demands the ability to answer questions from patients as to why they
are receiving their particular treatment, and whether a particular test will improve their
outcome. At the level of health systems, it needs to be determined how to drive volume
and enhance reimbursement, as well as decide which tests should be reimbursed and for
which treatments [11,95]. Precision oncology and information overload are a problem in
that technology, evidence, and approvals are always changing. There is a pressing need
for designing and executing adaptive clinical trials based on LB/MRD detection in the
neoadjuvant/adjuvant setting to establish their clinical utility, along with improvements to
CTC/ctDNA assays’ sensitivity and reproducibility [96].

2.6. EU Engagement

The EU Beating Cancer Plan, the Cancer Mission, the EHDS, and the evolving EU
pharmaceutical legislation all offer scope for progressing LB through funding and other
support. Notably, however, two of the four key objectives in the Cancer Mission are
“prevention and early detection” and “diagnosis and treatment”.

The plan specifically mentions LB in its priorities: “the Mission will develop non-
invasive (or minimally-invasive) cancer screening and detection methodologies (‘integrated
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diagnostics’—imaging, tissue, fluid, clinical biomarkers), also using Artificial Intelligence.
In dialogue with the Member States and with support from the JRC, it will bring them
into everyday medical practice with the aim to enhance participation of the target pop-
ulation in population-based screening programmes”. There will be a role for academia,
citizens/patients, SME/industry in the implementation, and the subject is a priority for
funding in the Horizon Europe work program. The mission will “support an innovative
clinical trial program focused on diagnosis optimisation, building on existing and mini-
mally invasive diagnostic techniques, including imaging, and/or implementation research
of validated AI powered integrated diagnostic methods (e.g., imaging, tissue, fluid, clinical
biomarkers)”, with academia, citizens/patients, and SME/industry/charities, healthcare
providers foreseen as involved in implementation. It also aims to improve the performance
of the existing screening programs to make them faster, more accurate, and more personal-
ized, as well as, through research, develop new screening tools that can be integrated in
new screening programs and easily implemented at national level. There is an explicit role
for academia, Member States, regions, healthcare, and insurance providers in the plan [97].

3. Recommendations

The recommendations (Table 2) emerging from the roundtable panels fall into three
main categories: harmonizing the current inconsistencies at national and European
level, improving the management and organization of the work of those involved in
LB, and outreach to relevant stakeholders to improve awareness and to influence the
policy environment.

Table 2. Recommendations emerged from the roundtable grouped in three categories.

Harmonization of the Current
Inconsistencies at National and

European Level

Improvement of Management
and Organization Outreach to Relevant Stakeholders

-Standardize technology
-Ensure LB receives adequate expert
guidance in terms of interpretation
and application

-Raise patient awareness and identify and
cooperate with strong
patient-advocacy groups

-Standardize clinical approaches
-Require the creation of molecular tumor
boards to ensure adequate interpretation
of results

-Persuade reimbursement authorities of
the need to support molecular
diagnostics and LB development

-Standardize pre-analytical practice
-Educate and discuss with colleagues,
even where caseloads do not permit
individual discussions in real time

-Seek the standardization of national
approaches to reimbursement

-Create integrated multicenter-tested
workflows covering the requirements for
the clinical setting, with SOPs for all
phases of laboratory testing, from
specimen collection to
result interpretation

-Ensure training concerning LB,
particularly among pathologists

-Persuade health authorities of the need
for the uptake of innovations with
molecular diagnostics and
LB development

-Set up an international LB
standardization alliance

-Create transparency in workflows for
clinicians—even with an
easy-to-read handbook

-Persuade policymakers to include
molecular diagnostics and LB in the
national cancer-control plans

-Design and execute adaptive clinical
trials based on LB/MRD detection to
establish their clinical utility, along with
improvements to CTC/ctDNA assays
sensitivity and reproducibility

-Train next-generation pathologists who
are able to evolve from morphological
evaluation to molecular analysis, taking
account not just of tissue and
cytopathology but also LB and
data analysis

-Engage with the European Commission
to seek a funding line to support the
uptake of LB in the healthcare system
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Table 2. Cont.

Harmonization of the Current
Inconsistencies at National and

European Level

Improvement of Management
and Organization Outreach to Relevant Stakeholders

-Set up interventional clinical trials in
advanced stages of cancer, with robust
and standardized methodologies, along
with the development of an algorithm
that can combine different circulating
biomarkers to obtain a precise
tumor profile

-Engage with the public sector and
public–private partnerships to support
the translation of research and academic
work into innovation

-Establish guidelines and SOP for LB for
technical variability in the pre-analytical
and analytical steps

-Persuade authorities to link diagnostics
and therapy more coherently in national
regulation and reimbursement, so as to
close the gap between predictions based
on molecular pathology and access to the
drug to treat the mutation detected

-Create a laboratory network that is
capable of carrying out the
next-generation-sequencing testing of
tissue and LB in the context of regional
oncological networks

-Maximize the potential of EU actions on
cancer and on research to advance the
acceptance of and uptake of LB

-Link institutes of research and hospitals
to assist in the wider circulation of and
access to samples

-Standardize the preparation of samples
and favor consortia such as the European
Liquid Biopsy Society (ELBS) in working
on protocols

-Talk about the limitation and uncertainty
the LB and patient benefit

-Ensure recommendations target all types
of hospitals across Europe countries

-Ensure recommendations reach hospitals
that do not have much access to testing so
that they can at least advise patients
about the possibilities elsewhere

-Ensure integration of the range of
information from all sources

-Explore sending patients with very large
mutations to clinical trials across borders

4. Discussion

If LB is to have an impact on care, it has to be used in clinical practice, and the
challenges are likely to be best resolved if there is closer collaboration both at the EU
and at the national level among payers, politicians, healthcare professionals, and the
research community—along with, of course, input from patient organizations. The current
limitations notably include the need for more clinical trials to assess what could be the
clinical importance of detection of tumor heterogeneity with ctDNA testing. Regarding
other areas of implementation of ctDNA, such as screening, MRD assessment, etc., the
evidence is lacking to provide proper recommendations. New technologies are under
development that have the chance to provide the evidence for decision-making in clinical
settings for the adoption of ctDNA assays [98].
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Pharma companies, regulators, and payers around the EU, as well as at the global
level, could conduct studies in which the LB serves as the patient selector (prognostic)
or as treatment decider (predictive). Regulators could endorse LB-based endpoints, as
preliminary approval and payers could use them as starting points for risk-based reim-
bursement discussions, and they could also generate real momentum as a push factor.
Implementation of LB across Europe can be aided by linking national efforts, where care
is delivered to in-need patients, with those at the European Union level. Furthermore,
patients, scientists, physicians, and kit manufacturers can generate a pull by highlighting
the benefits of convenience, undertaking more research into biomarkers, using LB more (if
needed on research budgets), manufacturing cheap but mostly reliable kits, and financing
QA ring schemes

The current wave of EU health-related legislation and policies—and, notably, the Beat-
ing Cancer Plan—provide a conducive background for focusing attention on the potential
of LB. The EU Beating Cancer Plan presented in February 2021 takes new technologies,
research, and innovation as its starting point and sets out a new EU approach to cancer
prevention, treatment, and care, tackling the entire disease pathway, from prevention to
the quality of life of cancer patients and survivors. Among its flagship actions are the
creation of a Knowledge Centre on Cancer to better coordinate scientific and technical
related initiatives at the EU level, an initiative on Cancer Diagnostic and Treatment for All
to provide access to innovative cancer diagnosis and treatments across 2021–2025, and a
EU Cancer Screening Scheme that will update recommendations on screening and new
guidelines and Quality Assurance schemes over 2022–2025. The parallel EU Cancer Mission
is bringing together Member State actions on understanding cancer, prevention and early
detection, and diagnosis and treatment. The scope for the emergence of a conducive policy
environment is also enhanced by concurrent legislation to update the EU In Vitro Diag-
nostic Regulation and by the prospect—from late 2022—of a wide-ranging review of EU
pharmaceutical legislation, which has, as one of its main objectives, the need incorporate
innovation into healthcare. The European level is also important in the discussion, since
joint work there can help avoid the complications that could arise if individual national
approaches are unaligned and consequently lead to fragmentation rather than cooperation.

5. Conclusions

The well-documented deficiencies of the current screening and diagnostic techniques
hold back the fuller exploitation of molecular diagnostics and stand in the way of the
evolution of personalized medicine. Somewhat perversely, the demonstrable attractions
of LB continue to be underappreciated. Although evidence of its predictive value in
clinical utility is still evolving, enough is already known about its potential to justify
further exploration. Experience is showing its value in monitoring treatment response and
prognosis, as well as in cost-effectiveness.

In 2022, ESMO published recommendations about ctDNA as a part of genomic testing
and its potential use in clinics. Many different aspects of ctDNA have been reviewed by the
ESMO Precision Medicine Working Group, which gave some perspective as to what the
future of ctDNA testing could be. The recommendations and conclusions include taking
incomplete sensitivity into account into clinical use—in particular, lower sensitivity for
gene fusions and copy number events—and developing tests to differentiate correct results
for further advanced genotyping [98].

The EU’s 2022 plan to extend its 20-year-old guidance on cancer screening to a wider
range of tumor types—something that EAPM has advocated since 2017—offers some
additional hope of recognition of LB. Lung and prostate cancer are likely to be added.
Moreover, as the EU plan itself suggests, improvements in screening and early diagnosis
will require updates on the practical tools, as well as policy pronouncements. The plan
notes the need for incorporating wider use of more recent technologies, such as digital
breast tomosynthesis in breast cancer and HPV testing in cervical cancer. No mention is
made of LB, but for full effect, updating recommendations should reflect the full potential
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of screening technology, which has moved fast and far since 2000. The EU should encourage
the development of LB alongside other innovative methods by explicitly including it in its
updated recommendation. Together with continued technological and scientific advances
bringing greater precision and predictability to LB, there is a role for policy in enhancing
the environment for further development.
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