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Abstract—Autonomous control of building energy resources
including HVAC and battery storage systems has the potential
to optimize operations and achieve objectives such as cost
minimization. Existing approaches either require an explicit
mathematical model of the building, or resort to simple rule-
based controls (RBC) which may be sub-optimal. Model-free
reinforcement learning (RL) is a promising method to overcome
these limitations - however, it often requires a large number
of interactions with the real environment before learning a
functional policy. In this work, we investigate ’Action Masking’,
a technique to improve the learning efficiency of RL algorithms
while respecting safety rules during the learning phase. Our
solution achieves a cost reduction of 6% compared to a baseline
rule-based controller, and also outperforms a popular transfer
learning strategy. This suggests that model-free RL approaches
are feasible and practical for problems in this domain.

I. INTRODUCTION

As of 2021, building operations account for almost 30%
of the global energy consumption, as well as for 27% of the
emissions from the energy sector. A significant fraction of this
consumption is already used to operate Heating, Ventilation
and Air-Conditioning (HVAC) systems today, and the global
demand in this sector is expected to surge over the next few
years. On the other hand, the growing penetration of smart
buildings and distributed energy resources into the energy grid
represents an opportunity to efficiently manage this demand,
using novel energy management systems (EMS). Control of
energy resources based on these new technologies can be
used to optimize operations, and achieve targets such as cost
minimization, decarbonization, and demand response. [1]

Conventional methods for achieving this automation are
either based on rule-based control (RBC), or use an explicit
building model to set up a mathematical optimization problem.
RBCs are widespread due to their simplicity - however, their
performance is often limited since they are unable to adapt
to changing environment dynamics. Model-based approaches,
while offering good performance, are difficult to implement
because of the need for a mathematical model of the building
and its energy resources, as well as forecasts for exogenous
variables such as weather and solar irradiance [2].

In this context, there is growing interest in model-free
methods such as reinforcement learning (RL) for control
tasks, as they offer the potential for high-performance, adap-
tive controllers without significant engineering effort. Deep
Reinforcement Learning (DRL) is a sub-field of RL which
has recently achieved a high level of success in complex
tasks in fields such as computer science and robotics. A
major issue hindering the adoption of DRL techniques in real-
world tasks, such as Building Energy Management (BEM), is
the requirement for a large number of interactions with the
environment during the learning phase, which is only possible
in a virtual environment or a simulation. To address this issue,
recent research has focused on safe exploration for DRL, where
guarantees such as constraint satisfaction are incorporated into
existing algorithms. However, many of the proposed techniques
still require a mathematical model [1].

In this paper, we demonstrate the use of a simple Action
Masking approach to enforce constraints on a DRL agent during
its training and deployment, without the use of a model of the
environment. The key contributions of our work are, in the
context of a building energy management problem:

• The use of Action Masking to embed constraints based
on domain knowledge.

• A comparison of model-free RL approaches focused on
safe exploration.

II. PROBLEM STATEMENT

A. Outline and Objectives

The control agent manages the cooling HVAC and the battery
storage systems for a small office building situated in Singapore.
The building is equipped with a 30 kWh Battery Electrical
Storage System (BESS), capable of charging and discharging
at 7.5 kW. Additionally, it has an off-grid solar energy source
rated at 14 kWp. There is a 3-level pricing scheme in place,
based on the time-of-use, as shown in Table I. In this study,
both the BESS and the solar source are used only for local
consumption - as such, there is no feed-in tariff for surplus
generation.

The objective of the controller is to achieve the minimum
electricity cost while maintaining a mean zone temperature of
25°C during occupied hours, i.e, between 7 am and 7 pm on979-8-3503-9678-2/23/$31.00 ©2023 IEEE
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TABLE I
ELECTRICITY PRICING SCHEME USED IN THIS WORK

Time Price (S$/kWh)
Holidays/Off-Peak 0.15

7 AM - 9 AM 0.25
9 AM - 2 PM 0.5
2 PM - 10 PM 0.25

working days. The latter is not a hard constraint - however,
when comparing different controllers which incur the same
cost, the better-performing controller is assumed to be the one
that follows the setpoint better.

Fig. 1. Schematic Illustration of Control Problem

B. Control Actions

The controller is responsible for choosing the temperature
setpoints for the cooling HVAC system, as well as the
magnitude of charge and discharge of the battery system. The
control timestep is 15 minutes. The key inputs are the grid
power (P grid

t−1 ) and the zone temperature (T zone
t−1 ) at the end of

the previous time step, alongside the battery state-of-charge
(SOC) (BSOC

t−1 ), the grid electricity price (pgt ) and the type of
day (Dholiday

t ) for the current time step.
A schematic of the environment and the control actions

are shown in Fig 1. The building is treated as a single zone
building with a direct expansion cooling coil and condenser
system. It is simulated using EnergyPlus (v22.2) and makes
use of TMY weather data for Singapore. The other components
(solar energy source and battery system) are simulated using
Python, and communicates with the building simulation using
the EnergyPlus Python API.

C. Baseline Controller

To evaluate the performance of different approaches, two
baseline RBCs were developed based on a simple time-of-use
strategy, which aim to charge the battery during off-peak hours.
The actions of these controllers are summarized in Table II.

III. METHODS AND IMPLEMENTATION

The control problem is framed as a finite horizon Markov
Decision Process (MDP), which is characterized by a state

TABLE II
RULE-BASED CONTROLLERS

Time RBC 1 RBC 2
Tset(°C) Pbess(kW) Tset(°C) Pbess(kW)

Before 6 AM Off -2.6 Off -2.4
6 AM - 7 AM 25.85 -3 Off -2.4
7 AM - 9 AM 25 1.5 25 0.75
9 AM - 11 AM 24.85 2.7 25 0.75
11 AM - 1 PM 25.15 2.7 25 0.75
1 PM - 2 PM 24.85 2.7 25 0.75
2 PM - 5 PM 25 0.55 25 0.75
5 PM - 7 PM 25.65 0.55 25 0.75
After 7 PM Off -2.6 Off -2.4

transition function that depends only on the current state and the
action, and a reward function which depends on the previous
state, the action taken, and the next state [3]. A schematic
representation of an MDP is shown in Fig 2. The task of an
agent in an MDP is to take actions to maximize the net reward
accumulated over the horizon.

Fig. 2. Markov Decision Process

Recently, DRL has achieved notable success in solving MDPs
with unknown transition dynamics, as is the case in the problem
under consideration. In this paradigm, agents are implemented
as neural networks, whose weights are updated by gradient
ascent using a variant of the Bellman equation to maximize
the expected future reward [4].

A. Proximal Policy Optimization (PPO)

PPO is an on-policy DRL algorithm which learns a stochastic
policy by constraining the maximum deviation between sub-
sequent policies during the weight update step [5]. Compared
to other algorithms such as Deep-Q Networks (DQN), PPO is
known to be more stable during the learning phase, and less
dependent on hyperparameter tuning.

B. Action Masking

In reinforcement learning problems with large action spaces,
a strategy employed to improve the exploration efficiency of the
agent is to eliminate actions which are invalid or undesirable
given a particular state [6]. In stochastic policies such as PPO,
this is implemented by setting the probabilities of these actions
to zero, and the process is called ”Action Masking” [7].

A schematic of the working of an action mask is shown in
Fig 3 - here, P1 to P3 represent the relative confidence the
controller has in taking the corresponding action, and the mask



Fig. 3. Action Masking in Stochastic RL

eliminates the chance for a specific action (P2) to be selected
based on pre-existing rules. The action mask implemented in
this work is based on prior knowledge of the problem, and
enforces the following constraints:

1) If the battery is full (empty), eliminate actions that would
charge (discharge) it.

2) The cooling system must be switched off after 10 PM
and before 5 AM.

3) If the zone temperature is above 26.5°C during occupied
hours, the cooling system cannot be switched off.

C. Behavioural Cloning

Behavioural cloning (BC) in reinforcement learning is a
method to learn a policy by imitating the actions of an expert
operating in the same environment. The most common approach
is to implement a function approximator, such as a neural
network, which is trained on a dataset of recorded expert
interactions.

It should be noted that the expert in this scenario is taken to
be the RBC, and the dataset is created by recording one year
of interactions with the environment. First, a clone of the RBC
is created by training a neural network to predict its actions
given the states. This network is subsequently deployed in the
real environment for online learning using a reward function
and the PPO algorithm. A lower value for the PPO clip rate
(0.2) was used in this step, as it represents a numerical measure
of the maximum deviation between subsequent policies in the
learning process - in other words, it discourages the agent
from moving too far from the RBC policy in order to improve
stability.

In a previous work, we showed that BC followed by
online learning using PPO is an effective strategy for energy
management problems, especially when the existing rule-based
controller performs well [8]. The same technique is used in the
present work to understand its relative strengths and weaknesses
compared to reinforcement learning with an action mask.

D. DRL Problem Formulation

1) Train and Test Duration: The deployment period is set
for a period of 3 years, from January 2015 to December 2017.
There is an additional 30-day test set, which is used to evaluate
the final strategy learnt by each method. This test set is made
up of 15 days each in February and August 2020. Finally, a
1-year window between January 2014 and December 2014 is

used to record the RBC operations for BC-based experiments.
As the experiment is conducted using TMY weather data [9]
from 2007-2021, the different divisions are implemented by
setting the run period parameter in EnergyPlus.

2) State and Action Space: The state and action spaces
available for the agent are summarized in the Table III. Here,
t is the time step at which the controller takes an action.
The state space consists of 6 variables, containing information
about the BESS, the previous zone temperature, the electricity
price and the grid consumption from the previous time step.
Notably, the controller does not use any forecasts, or explicit
information about the solar power generation, which represents
an advantage compared to model-based approaches.

The action space is a 36-dimension discrete space offering 4
levels for the HVAC control, and 9 levels for the battery power
control. The battery action linearly divides the interval [-7.5
kW, +7.5 kW] into 9 discrete points, with each one represented
by one control action (abess). The 4 settings for the setpoint
control (ahvac) are {HVAC Off, 24°C, 25°C, 26°C}.

TABLE III
STATE AND ACTION SPACES

State Space
Parameter Timestep

Time of Day t
Is Holiday? t
Grid Price t

Battery SOC t− 1
Zone Temperature t− 1

Grid Power t− 1

Discrete Action Space
abess ∈ {0, 1, .., 8}
ahvac ∈ {0, 1, 2, 3}

The choice of constraints described in the section III-B was
observed empirically to reduce the number of actions available
to the agent by 47% on average.

3) Reward Function: The reward function used for the agent
is the product of two quadratic terms, one representing the
thermal comfort performance and the other representing the
grid price performance. They are calculated using equations
(1) - (3). The coefficients for the two terms are chosen to
adequately penalize the agent for high costs or poor thermal
comfort, while ensuring a maximum reward of 1.0.

rtherm,A1
t := −0.11∆T 2

t − 0.22∆Tt + 0.89 (1)

rgridt := 1.0− 6(cgridt )
2

(2)

Rt = rgridt × rthermt (3)

Here, Rt is the reward value, ∆Tt is the difference between
the zone temperature and the reference temperature, cgridt (=
P grid
t ×pgt ) is the cost incurred by the agent and the subscripts

represent the timestep. If both components are negative, Rt is
inverted to preserve the intended shape of the function. This
formulation of the reward function is labelled A1 in the results
section, and shown in Fig 4.

To test the impact of different reward function shapes
on the thermal comfort performance, the following alternate
formulations in Eqs (4)-(5) (named A2 and A3 respectively)
were also tested for the second term.



Fig. 4. Reward Function Components

Fig. 5. Training Performance of Different Agents

rtherm,A2
t = 1− max(∆Tt, 0)

2 (4)

rtherm,A3
t = 1−∆T 2

t (5)

Fig 5 shows the mean reward obtained (solid) by different
agent types under reward A1, as well as the cumulative cost
(dashed) during the training period. The black dashed line is
the net cost incurred by the RBC in the same period.

4) Hyperparameters: All the Deep RL experiments per-
formed in this work make use of the implementation of the
PPO algorithm in the popular Python library, Stable-Baselines3
[10]. Table IV summarizes the key hyperparameters used
- the specific values were determined using Optuna [11],
an automated hyperparameter search program, through an
search-and-prune algorithm over 50 iterations each for the
continuous and the discrete action spaces. Additionally, due to
the stoichastic nature of PPO, all reported values are averaged
over 3 runs with different random seeds.

TABLE IV
HYPERPARAMETERS USED

Hyperparameter Continuous Discrete
Learning Rate 2.7e-4 2.3e-4

Gamma 0.999 0.988
GAE Lambda 0.99 0.840

Clip Range 0.6 0.7
Steps Per Update 12 days 5 days
Episode Length 1 day 1 day

IV. RESULTS AND DISCUSSION

The key metrics from each experiment are shown in Table
V. The thermal comfort score is the probability that the indoor
temperature is within 0.1°C of the setpoint during occupied
hours. All values shown are calculated over the 30-day test
set.

TABLE V
SUMMARY OF RESULTS

Agent Reward
Function

Cost ($) Comfort Score

RBC 1 None 468.43 0.43
RBC 2 None 513.73 0.65
BC 1 None 482.15 0.52
BC 2 None 513.53 0.65
Direct RL A1 428.89 0.09
Direct RL A2 463.83 0.93
Direct RL A3 476.70 0.93
Masked RL A1 439.27 0.39
Masked RL A2 563.76 0.44
Masked RL A3 472.47 0.53
BC 1 + RL A1 460.60 0.55
BC 1 + RL A3 473.03 0.56
BC 2 + RL A1 496.77 0.72

A. Overview and Pareto Front

The Pareto Front in Fig 6, plotted using the results in Table
V, can be used to study the tradeoffs associated with each
type of controller, and to understand the relative strengths and
weaknesses. Fig 6 also contains a plot of the mean indoor
temperature during the test period, as well as the grid power
profile for different agents. The final strategy used by each
approach can be visualized in Fig 7.

Fig. 6. Pareto Front Plot

The agents based on direct RL are able to outperform the
reference RBC, but have a large variation in performance across
different runs. While it may be possible to improve the stability
of these agents by changing the hyperparameters of the training
process, or modifying the reward function, such an approach is
not feasible in practice for a real building energy management



problem. The indoor thermal comfort may not be respected
at all during the training process as the agent is free to take
any available action. This unpredictability during the training
period is one of the major reasons hindering the deployment
of DRL in critical control tasks.

Fig. 7. Top: Average Indoor Temperature, Bottom: Average Grid Power Profile

B. Action Masking

The best performing agent for this task was obtained through
action masking. Due to the constraints embedded in the mask,
the agent is prevented from exploring parts of the action space
that would result in poor thermal comfort while training. This
is an important guarantee required to use black-box deep RL
models in real-world control problems. It is notable that the
agent converged to the best policy in the study through this
safe exploration process, achieving a 6% reduction in energy
costs compared to the reference RBC. However, the use of a
mask does not remove the dependence on the reward function,
as evidenced by the action masking agents trained using the
other reward formulations, which incur a higher cost while
maintaining thermal comfort.

C. Behavioural Cloning and Online Learning

BC + RL offers improved stability at the cost of significantly
limiting the agent’s exploration. As a result, the agents’ perfor-
mance is similar to the RBC, with only small improvements
obtained through online learning. This is clearly visible in Fig 6,
where the BC + RL runs are clustered close to their respective
RBCs. This indicates that using online learning after BC is an
effective strategy only if the underlying RBC performs well;
in other words, the agent is unable to deviate sufficiently from
the actions of the RBC without compromising the training
stability. Compared to the other methods, BC + RL is also less
dependent on the reward function used.

D. Impact of Problem Complexity

It is important to note that even for the single-zone building
considered in the study, it was not feasible to directly use DRL
algorithms to learn a control policy. In real applications, the en-
vironment is often more complex, with multiple interdependent
zones and decision variables. Action masking is a reasonable

strategy in this scenario to implement a DRL agent that offers
safe exploration. It has been used successfully in more complex
problems (such as games and autonomous driving) [6], given
that the required constraints may be expressed using explicit
rules.

V. CONCLUSION

Action Masking is a practical way to implement DRL
algorithms such that the agents respect given rules during the
training phase. This is a key requirement for the use of such
methods in real-world applications such as energy management,
where some safety guarantees are mandatory. While not fully
eliminating the dependence on a well-defined reward function,
the technique has the potential to outperform other model-
free approaches, such as RBCs and transfer learning. Further
research is required to assess the scalability of the solution to
more complex problems in this domain.
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