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Abstract: Herein, we report some specific properties and applications of the so-called Arago–Poisson
spot in optics. This spot results from the diffraction of a plane wave by an occulting disk that leads
to a small bright spot in its shadow. We discuss some of the properties of such beams. In particular,
we focus on the ultimate size that can be reached for these beams, which depends on the diameter
of the disk, the wavelength, and the distance from the disk. We also highlight self-healing and
faster-than-light properties. Applications are then proposed. The applications mainly deal with
new traps with nanometer sizes dedicated to the trapping of nanoparticles. We also discuss beams
that change frequency during propagation and their application for signal delivery in a precise and
determined area.

Keywords: diffraction; Arago–Poisson spot; ultimate beam size; non-diffracting beam; nano-trap

1. Introduction

From an historical point of view, the so-called Arago–Poisson spot has played a major
role in the demonstration of light’s wave nature [1–4]. In 1819, in response to a contest
sponsored by the Académie des Sciences in France, Fresnel presented a manuscript based
on light’s wave nature. Poisson, a fervent supporter of a corpuscular model—in order to
discredit Fresnel’s theory—discovered a surprising consequence of Fresnel’s equations: if a
light source is placed on the axis of a circular obstacle that blocks the light, Fresnel’s theory
predicts that there will be a bright spot behind the screen, whereas Poisson supposed,
by using common sense, that the spot should be dark. Arago actually conducted the
experiment and a bright spot was indeed observed. This was then named after Arago
and Poisson. Sometimes only the name of Arago or the name of Poisson is associated
with the phenomenon, and the name of Fresnel is also associated with them in other
cases. Later, this was recognized to be responsible for damages in unstable cavities [5].
It has also been shown to propagate faster than light [6–9]. Usually, it propagates in a
quasi non-diffracting way [10], and its size should decrease when it moves closer to the
disk [11]. The appearance of the spot is not limited to optics and has also been observed for
X-rays [12], in acoustics [13], for gravitational waves [14], and even with particles such as
molecules [15,16].

Beyond these properties, the aim of this paper is to review some of its most important
properties, emphasizing the ultimate size of the spot that has rarely been previously
addressed and to investigate the practical applications of the Arago–Poisson spots in
optics and in domains such as astronomy, lithography, or alignment. The article will
focus on colloidal trapping and signal delivery. The article is organized as follows. The
next paragraph (Section 2) recalls several theoretical concepts (Section 2.1). The following
paragraphs then deal with experimental considerations (Section 2.2) and some elementary
properties (Section 2.3), especially the spot’s ultimate size (Section 2.3.1). Then, Section 3
includes a detailed discussion of various applications, such as particle trapping (Section 3.1)
and changing frequency beams (Section 3.2) before the article reaches a conclusion in
Section 4.
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2. Results
2.1. Theoretical Considerations

Let us consider a plane wave impinging on an absorbing occulting disk (diameter d)
centered on the beam axis (see Figure 1a). A bright Arago–Poisson spot appears in the
shadow of the disk (see Figure 1b). When one considers the rays diffracted by the disk at a
distance z from the disk, these rays interfere constructively on-axis and destructively off-
axis. The intensity distribution can be calculated using the Huygens–Fresnel principle [17].
It states that every unobstructed point of the plane wavefront becomes the source of a
secondary spherical wavelet. The amplitude of the optical field at a given point is the
superposition of all the secondary wavelets with their relative phases. This can be solved
numerically [18]. However, the radial intensity distribution I(r) at a distance z from the
occulting disk can be approximated analytically, in the near field diffraction regime, by a
squared zeroth Bessel function J0 [19].

5 µm

(a)
z

d

Arago-Poisson 

           spot

(

Figure 1. Principle of the Arago–Poisson spot observation. (a) A light beam impinges on an occulting
disk (diameter d). The diffracted light interferes in the shadow of the disk on a screen at a distance z
from the occulting disk. (b) Example of a picture of the Arago–Poisson spot at a distance of z = 10
cm from the disk, for d = 1 cm and λ = 633 nm.

I(r) ≃ I0
z2

z2 + (d/2)2 J2
0

(πr
λ

d(
z2 + (d/2)2

)1/2

)
(1)

where I0 is the intensity of the incoming plane wave, and λ its wavelength. As z tends to
zero, the Bessel function equals J2

0 (2πr/λ). It does not depend on the disk’s diameter any
more. However, the intensity of the spot decreases to zero. On the other hand, far from the
disk, Equation (1) reduces to the usual formula [2,3,20],

I(r) ≃ I0
z2

z2 + (d/2)2 J2
0
(πrd

λz
)
≃ I0 J2

0
(πrd

λz
)

(2)

The intensity of the Arago–Poisson spot is indeed the same as the intensity of the
incoming beam.

It has been shown [21,22] that light diffraction from an occulting disk could lead to a
dark Arago–Poisson spot instead of a bright one. For this to occur, the usual plane wave has
to be replaced by a vortex beam [23–25]. Briefly, such vortex beams carry Orbital Angular
Momentum (OAM) and have a non-uniform phase distribution. On a plane perpendicular
to the direction of propagation, the phase varies uniformly from 0 to 2πℓ. ℓ is an integer
that is usually called the topological charge of the beam. Diffracted by a disk centered
on the beam axis, the spot retains its topological charge. Its intensity distribution is then
described by the square of the ℓth Bessel function Jℓ. It varies as

I(r) ≃ I0
z2

z2 + (d/2)2 J2
ℓ

(πr
λ

d(
z2 + (d/2)2

)1/2

)
(3)
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As for the Equation (2), far from the disk, the Jℓ function could be approximated by
J2
ℓ

(
πrd/(λz)

)
[21,22,26]. Figure 2 shows an example of the intensity distribution for ℓ = 4,

z = 400 µm and for a disk diameter of d = 600 µm.

2 µm

0 1 2−1−2

r(µm)

I(a.u.)

Figure 2. Experimental intensity distribution (in arbitrary units) of the dark Arago–Poisson spot for
ℓ = 4, z = 200 µm and a disk diameter of d = 600 µm. λ = 633 nm.

2.2. Experiments

In order to investigate the properties of the Arago–Poisson spot, the following set-up
was used (see Figure 3). It was previously described in [27]. Briefly, a collimated laser beam
with several possible wavelengths (λ = 636, 561, 532, 488 and 404 nm, Oxyus lasers L6Cc)
impinges on a dark absorbing object. An aspheric collimator lens (Thorlabs CFC-2X-A)
adjusts the size of the laser beam to the size of the disk. The dark absorbing disks (diameter
d = 500 to 900 µm) are made of chromium, deposited on a 2 mm thick BK7 glass. Special
care is taken to align the axis of the beam with the axes of the disk and the microscope. The
deposited side of the chromium points towards the objective of the microscope (and not
towards the laser), so that the Arago–Poisson spot travels only in the air.

Figure 3. Principle of the experiment: a collimated laser beam impinges on a transparent window
with an occulting disk. The light is diffracted by the disk and forms a bright spot in the shadow of
the disk. The light is collected with an inverted microscope with a ×100 objective. z: distance from
the disk, d: diameter of the disk, θ: maximum angle corresponding to the numerical aperture of the
objective. We cannot observe a spot at a distance shorter than 100 µm for a d = 600 µm disk.
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The diffracted light interferes in a bright spot in the centre of the disk shadow. It
propagates and it is imaged with an inverted microscope (Leica DMi8) with a ×100 objective
(Numerical Aperture NA = 0.95 in air). This numerical aperture is defined by n sin θ, n
being the index in the medium we look at (air in our case), and θ being the maximal angle
of incidence. Light rays diffracted by the edges of the disk, impinge with an angle θ with
respect to the vertical axis. It equals θ = tan−1(d/2z) at the spot location (see Figure 1a).
This therefore means that we cannot observe a spot at a distance shorter than 100 µm for a
d = 600 µm disk.

The disk position can be adjusted using servo-controlled micro-stages positioners in
the XYZ directions, with sub-micrometer resolution. The position z = 0 corresponds to the
focus of the microscope on the chromium-deposited dark disk. The camera is a Hamamatsu
monochrome gray-scale CCD camera (C11440). We have calibrated the imaging system
against a test pattern. One pixel corresponds to 60 nm.

The size of the spot is not limited by diffraction. This spot could be smaller than
the wavelength and may exceed the resolving power or the Rayleigh criterion of a usual
microscope. In fact, this criterion tells us that a faithful image requires that all the spectra
contribute to the formation of the image [2]. This is never possible using ordinary lenses.
Several proposals have been made to go beyond the diffraction limited focusing size of
the spot. Some used the (usually lost) near field components of light to make a sub wave-
length spot in the near field [28,29], or collect it via masks to achieve super-resolution [30].
Others proposed designing a mask or a polarization distribution that corresponds to a
sub-wavelength image after propagation [31,32]. It is very similar, in its principle, to nega-
tive refraction, which has the power to focus all Fourier components of a 2D image, thus
creating a perfect lens [33] and also beating the Rayleigh criterion.

It is worth noting that, in the case of the Arago–Poisson spot, it is a little different, since
the sub-wavelength spot propagates over millimeter/centimeter distances. Indeed, all the
spectra components are within a cone, which angle equals θ. The azimuthal superposition
of these waves leads to the Arago–Poisson spot. As soon as the numerical aperture of the
microscope is higher than this angle, all components enter the microscope. There is no
component left. It could then be that the image reaches hundred of nanometer sizes, well
below λ.

2.3. Properties

Let us investigate some of the main properties of the Arago–Poisson spot.

2.3.1. Ultimate Arago–Poisson Beam Size

As the distance from the occulting disk decreases, the spot size also decreases. How-
ever, according to Equation (1), the intensity distribution tends towards

I(r) ≃ I0
z2

(d/2)2 J2
0

(2πr
λ

)
(4)

While the intensity becomes smaller, the beam size tends toward a finite value. Yet,
since the intensity distribution is not Gaussian, it is necessary to define how to determine the
beam size. We nevertheless decided to characterize the spot by a “waist”, as for Gaussian
beams [5]. It is defined as the distance from the spot axis at which the irradiance has fallen
to 1/e2 of its maximum value. It is, therefore, also the value at which the zeroth-order
Bessel function has fallen to 1/e2 of its maximum value. It corresponds to the value of the
square of the Bessel function with the argument equal to 1.75. According to this definition,
the ultimate spot size is thus

2πrmin
λ

= 1.75 ⇒ rmin =
1.75λ

2π
(5)
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It exceeds the Abbe diffraction limited ultimate size of a Gaussian beam which is
defined as w = 0.5λ/NAl [34], where NAl is the numerical aperture of the focusing lens.
However, for a given wavelength regardless of the diameter of the disk, the value found in
Equation (5) is a finite value. For example, for λ = 633 nm, the ultimate spot size equals
wmin = 176 nm. This is confirmed by the experimental study of the Arago–Poisson beam
size as a function of the distance from the occulting disk of Figure 4.

2 3

1

2

10
0

w(µm) λ= 636 nm

5 µm

z(mm)

3 µm

0.176

2 µm

1 µm

Figure 4. Variation in the size of the Arago–Poisson spot with the distance from the occulting
disk (diameter d = 0.6 mm. As the distances reduce, the size tends to 176 nm. The experimental
uncertainty reads in the error bars. The solid line corresponds to the theoretical curve of Equation (1).
Inserts, pictures of the Arago–Poisson spots corresponding to the experimental points. Note that the
scale changes for each insert.

However, according to Equation (4), there is another way to decrease the ultimate
spot size. This can be achieved by decreasing the wavelength λ. Actually, the spot size
varies linearly with wavelength, according to Equation (1). This can be easily verified
experimentally, as can be seen in Figure 5. The agreement between the experimental values
and the theoretical curve is very good. Nevertheless, decreasing the wavelength down the
ultraviolet or X-rays domain may not be practical.

400 λ(nm)600500

1

w(µm)

404 nm

532 nm

636 nm

  z = 2 mm 

d = 0.6 mm

0.5

561 nm

Figure 5. Variation in the size of the Arago–Poisson spot with the laser wavelength. The experimental
uncertainty reads in the error bars. The solid line corresponds to the theoretical curve of Equation (1),
with d = 600 µm and z = 2 mm.

On the other hand, for a given distance, and not too close to the occulting disk, redwe
can reduce the spot size by increasing the occulting disk diameter d. Actually, as for the
wavelength, the spot size varies linearly with the occulting disk diameter, according to
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Equation (1). This is shown in Figure 6. The agreement between the experimental curve
and the theoretical one is very good.

0
0

λ= 532 nm

d(mm)

w(µm) 

1

1

0.5

  z = 2 mm 

Figure 6. Variation in the size of the Arago–Poisson spot with diameter of the occulting disk d. The
experimental uncertainty reads in the error bars. The solid line corresponds to the theoretical curve
of Equation (1), with λ = 532 nm and z = 2 mm.

Nevertheless, it should once again be noted that the ultimate spot size does not depend
on the diameter of the occulting since, according to Equation (4), the argument of the Bessel
function does not depend on d. Additionally, reducing spot size always comes at the cost of
lower beam intensity. In order to enhance the light intensity, it has been shown that using
an annular beam with a diameter of the order of the diffracting disk could be an interesting
solution [35].

The properties that have been described so far are also valid for the dark spots of Arago–
Poisson, which carries OAM (see Section 2.1). This could have interesting applications
in atom optics in the realization of atom guides and atomic funnels [36,37], since OAM
beams are sometimes difficult to focus due to other modes that may be present in the beam.
Besides, focused OAM beams diverge rapidly [25], which is not the case for Arago–Poisson
OAM beams (see following Section 2.3.2).

Arago–Poisson spots have also been produced with molecules [15,16]. A 1 µm spot
has been obtained with helium molecules. It has been proposed to be used for molecular
microscopy. There are two main advantages of this. The first is that contrary to electron
microscopy, helium is neutral. It does not damage the material studied. The second one is
that the de Broglie wavelength could be very small (0.06 nm for a thermal beam), in the
same wavelength range as X-ray wavelengths. However, unlike X-rays, helium molecules
are totally safe for biological uses, for example.

2.3.2. Self-Healing and Nondiffractive Properties

As can be seen in Equation (1), the Arago–Poisson spot is expressed using a Bessel
function of the first kind. In this respect, it resembles Bessel beams [38,39]. A true Bessel
beam is nondiffractive. This means that as it propagates, it does not diffract and spread
out [40–42]. It maintains its intensity over a limited spatial range. It can be generated
by an axicon lens [43–45], sometimes combined with binary amplitude filters [45,46], or
using gratings [47]. It can be used, for example, in microscopy [48,49], in biology [50], in
medicine [51], or even in ophtalmhology [52].

However, the Arago–Poisson spot is not, strictly speaking, a nondiffracting beam.
According to Equation (3), it diverges slightly along propagation with an angle

α =
1.75λ

πd
(6)
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This can be verified on Figure 4. However, this variation must compared with the
divergence of a usual Gaussian [5]

β =
λ

πw0
(7)

w0 is the ’true’ beam waist of the Gaussian beam. The ratio between the two is
α/β = 1.75 w0/d. For a strongly focused Gaussian beam (w0 = 1.0 µm), compared with
an Arago–Poisson spot (d = 0.6 mm, as in our experiment), it leads to α/β = 3 × 10−3,
i.e., the divergence of a Gaussian beam is more than two orders of magnitude higher
than the divergence of an Arago–Poisson spot. Besides, the higher the diameter of the
occulting beam, the smaller the divergence. However, while the Bessel beams that have
been generated up to now exhibit non-diffracting properties over a limited distance, the
Arago–Poisson spot retains its properties over the entire propagation distance. In addition,
its generation is much less expensive, since only an occulting disk is needed.

As for Bessel beams, since it is expressed with the Bessel function, the Arago–Poisson
spot has self-healing properties. A self-healing beam has the ability to reconstruct itself after
hitting an obstacle [38,48,53–56]. The principle of self-healing of the Arago–Poisson spot is
explained in Figure 7. When an object is inserted in the propagation of an Arago–Poisson
spot, the rays forming the spot close to the object are absorbed. There is no longer a spot in
the vicinity of the perturbing object. However, the rays forming the spot at a longer distance
are not perturbed. The spot is still present far from the object. This is also true for the dark
spots of Arago–Poisson with beams carrying OAM [57]. However, the Arago–Poisson spots
are not resilient to atmospheric turbulences [58].

Figure 7. Principle of self-healing for Arago–Poisson spot. (Top): usual situation leading to an
Arago–Poisson spot. (Bottom): as a perturbing obstacle (blue diamond) is inserted, in its immediate
shadow, the spot disappears. But further on, it reconstructs itself with the same characteristics. The
obstacle does not need to be exactly on axis or even symmetric.

2.3.3. Faster-Than-Light Properties

The Arago–Poisson spot has been shown to have faster-than-light properties [6,7].
This can be understood in the following way. Let us consider diffraction by an occulting
disk as the one depicted in Figure 8, and let us consider a spherical wavelet originating
from the edges of the disk. At time t, the wavelet passes through point M(t) and N(t), and
through M(t + dt) later at time (t + dt). Since light travels at velocity c (we assume here
that it is in a vacuum without loss of generality), during the time interval dt, it has traveled
a distance cdt, from N(t) to M(t + dt). However, on the axis, the spot has traveled from
M(t) to M(t + dt). Such a distance equals the distance from N(t) to M(t + dt) divided by
cos θ. The apparent velocity is therefore

v =
c

cos θ
= c

√
z2 + d2

z2 (8)

It is clearly faster than light. The closer to the occulting disk, the faster than light [6–9].
This superluminal behavior is actually due to the fact that the Arago–Poisson spot is an



Photonics 2024, 11, 55 8 of 16

interference effect. It could be considered as an azimuthal superposition of plane waves
of equal inclination with respect to the optical axis. Then, as for scissor blades, their
contact point can move faster than light [59,60]. However, as for Airy beams [40,61], this
superluminal interference effect obviously does not violate causality and cannot propagate
information at a speed higher than c, because no photon propagates along the axis at the
speed given by Equation (8).

z

d θ

M(t)

M(t+dt)

N(t)

Figure 8. The wavelets emitted by the edges of the occulting disk propagate at a velocity c. During
a time interval dt, they travel from N(t) to M(t + dt). However, on the axis, the spot travels from
M(t) to M(t + dt) over a distance that is greater than the distance from N(t) to M(t + dt), thus at an
apparent faster-than-light velocity.

3. Discussion

Several applications of the Arago–Poisson spot have already been considered. Since
the spots are very tiny, they can be used in litography [62,63], to print sub-micrometer
circuits. They could also be used in alignment [64–67], or to study aberrations [68]. Still
considering the Arago–Poisson spot in optics, it has been used to measure velocities in
fluids [69]. With X-rays [12], in a way analogous to the Arago–Poisson spot, the Bragg
diffraction peaks interfere constructively or destructively on the axis, in the shadow of the
sample to be studied. Then, instead of performing a 2D mapping to identify the different
diffraction peaks, it has been shown that it could be replaced by a 1D mapping in the z
direction. In acoustics [13], this enables to identify localization or mislocalization sources
by listeners.

There have also been some interesting applications in astronomy. An Arago–Poisson
spot can appear in the blurry image of a star given by a defocused Newton telescope. In this
case, the star constitutes an ideal point source at infinity, and the secondary mirror of the
telescope constitutes the circular obstacle [70]. It can also appear in coronagraphs [71–73].
A coronagraph is a disk attached to a telescope designed to block out the direct light from a
star or another bright object so that nearby objects—which otherwise would be hidden in
the object’s bright glare—can be resolved. To circumvent this effect, an occluder with petals,
otherwise known as a starshade, has been proposed [74,75]. It is specifically designed to
avoid diffraction on the central axis.

On the contrary, in astronomy, the Arago–Poisson spot could contribute to increasing
the resolution of telescopes. The idea is to place a suitable disk in space accompanied by a
separate telescope some distance away along its axis [76,77]. The resolution of the system
would be equal to the resolution of a conventional lens with the same size of the occluder.
As such, 100 m diameter occluders made of light weight plastic can be considered; these
would lead to better resolution than that of the Hubble Space Telescope [78,79] with a much
lower cost. However, the light intensity would be much lower.
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In the following section, two applications of the Arago–Poisson spot in optics in
different domains will be considered. The first will discuss nanoparticle trapping, while
the second will deal with communication addressing.

3.1. Particle Trapping

Since the first report by [80] in 1986, optical tweezers have become a powerful tool for
manipulating and trapping micrometer to nanometer particles [81–84]. They are trapped at
the focal point of a tightly focused beam. The mechanism relies on optical gradient forces.
However, due to light diffraction, optical tweezer trap sizes are limited to a fraction of a
micrometer [81]. Besides, the force involved further decreases to the power of three of the
particle diameter [85], thus limiting their applications for nanometer–sized particles.

In order to circumvent these limitations, two different main directions have been
followed. The first combines tight light focusing and total internal reflection [86–88].
However, although the size of the trapis in the nanometer range is perpendicular to the
interface, it is still limited by diffraction in the other directions. The other uses a plasmon-
enhanced electromagnetic field to break the diffraction limit [89–94]. Nevertheless, these
nanometric optical tweezers are based on dedicated plasmonic structures. One is still
looking for versatile nanometer size optical traps.

The Arago–Poisson spot can reach sub-micrometer dimensions (see Section 2.3.1) and
could be a good candidate towards nanometer scale traps. However, since the spot is
diffraction free, it retains its characteristics throughout propagation and cannot efficiently
trap in this direction. Additionally, the intensity is rather low. In order to get around these
problems, we therefore proposed the following experimental set-up (see Figure 9) [27,95].
The blue light from a laser (λ = 488 nm) impinges on a glass lamella (e = 170 µm) with an
occulting disk deposited on the top of the glass (i.e., oriented towards the laser), leading to
an Arago–Poisson spot that propagates through the glass and then into a colloid suspension
in demineralized water (see [95] for more details). The particles are monodisperse fluores-
cent polystyrene spheres (Molecular Probes, diameter 200 nm). These colloids have been
chosen as model particle examples [96] to exemplify the nano-trapping phenomenon. They
travel in water, in a homemade PDMS channel. In order to fluoresce and to be detected,
they are illuminated from below in the violet (λ = 470 nm) and the fluorescent light (in the
blue and green part of the spectrum) is detected with an inverted microscope.

Concerning the Arago–Poisson spot, the diameter of the occulting disk and the thick-
ness of the lamella lead to a spot with an incident angle on the liquid/lamella interface i
that is (close but) higher than the critical angle. The Arago–Poisson spot is then under total
internal reflection conditions. There is thus an outgoing running evanescent wave around
the Arago–Poisson spot that forms a sort of donut around the Arago–Poisson spot. Due to
the so-called Goos–Hächen shift [97] (small shift of the beam under total internal reflection
that increases close to the critical angle), the closer to the critical angle, the larger the donut.

Let us now concentrate on the trapping mechanism (see Figure 10). The exciting laser
(λ = 470 nm) from underneath, pushes the particles close to the liquid/lamella interface.
In the vicinity of the evanescent wave, the excited particle emits in a stimulated way
(λ = 488 nm, a higher wavelength than the exciting one) in the outgoing evanescent wave.
Due to the recoil following the stimulated emission, the particle is pushed towards the
center, i.e., towards the Arago–Poisson spot. It should be noted that when the particle is
trapped, the fluorescence decreases, since the excited particle mainly loses its excitation via
stimulated emission and no longer via fluorescence. This has been observed experimentally.
It thus confirms the trapping mechanism.

Curiously, in the mechanism described here, the magnitude of the Goos–Hänchen
δG−H spatial shift dictates the size of the trap. Since the shift decreases when increasing
the angle of incidence i, the trap should become smaller with the increase of i. This was
achieved in Figure 11. Actually, we have increased the size of the occulting disk. This makes
the Arago–Poisson spot smaller, but it also increases the angle of incidence of the rays
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forming the spot. We experimentally observe a decrease in the trap size that is proportional
to the Goos–Hänchen effect, as expected.

In principle, the lower limit of the trap size is imposed by the ultimate Arago–Poisson
spot size. Furthermore, this would come at the expense of light intensity (see Section 2.3.1).
The mechanism could be applied to even smaller particles down to the molecular or atomic
scale as soon as the particles could be excited and then fluoresced at a reasonable rate.

488 nm

Cr disk

Arago-Poisson 

      spot

PDMS

(a) (b)

DM

Figure 9. Experimental set up: (a) an Arago–Poisson spot originates from the diffraction of a 488 nm
collimated laser beam diffracted by a chromium occulting disk deposited on a glass lamella. First,
200 nm diameter fluorescent colloids flowing within the liquid, are exited with a 470 nm diode.
The fluorescence is collected with a X20 microscope objective and a camera. DM: Dichroic Mirror.
(b) Details of the experimental set-up. The Arago–Poisson spot is under total internal reflection on
the glass/liquid interface. The particles are trapped by the evanescent Arago–Poisson spot.

Arago-Poisson 
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  interface

evanescent 

  waves 
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 emission 

  488 nm
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Figure 10. Principle of the trapping mechanism. The particle is pushed to the upper side of the
channel by the radiation pressure from the 470 nm diode that excites the particle. Then, the particle
reemits light in a stimulated way at 488 nm in the outgoing evanescent wave. The particle is thus
pushed towards the center of the trap by the force F. Insert shows an example of a trapped particle.
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Figure 11. (Left): experimental situation for the realization of an evanescent trap. The Arago–Poisson
spot is under total internal reflection. As the size of the occulting disk increases, the angle of incidence
of the spot on the surface increases. (Right): variation of the radius of the trap size versus the angle
of incidence. The diameter of the occulting disk is recalled for each size. The solid line corresponds to
the variation in the Goos–Hänchen shift (δG−H) with the angle of incidence.

3.2. Changing Nature of the Arago–Poisson Spot and Application to Signal Addressing

As already mentioned, when the incoming beam carries OAM, the bright Arago–
Poisson spot is replaced by a donut–shaped bright spot with a dark zone in the center [21,22].
This spot also carries OAM with the same topological charge as the incoming beam. Such
dark spots could also be generated by the diffraction of a plane wave via an occulting object
with asymmetries [98]. The different diffracted rays interfere destructively in the center of
the shadow of the occulting object, in a way similar to the starshade in astronomy [74,75].
However, it is still surrounded by a small bright spot. Interestingly, in these cases, because
the incoming beam is a plane wave, due to angular momentum conservation, this generates
a torque on the diffracting occulting object [99,100] and makes them rotate.

In the case of the generation of a dark spot, it is worth noting that the OAM carried by
the Arago–Poisson spot changes during propagation. This has been verified experimentally,
as shown in Figure 12 which also presents the experimental set-up. Very far from the
occulting object, the spot has lost its OAM character and does not carry OAM any more. It
looks like the usual Arago–Poisson spot. However, close to the occulting object, the beam
carries OAM. In addition, its topological charge increases. This can also be evidenced on
Figure 13.

z = 6.4 mz = 1.5 m z = 2.5 m

z
Arago-Poisson 

spot

λ=1550 nm

f1

νr
laser

Figure 12. Experimental set-up. The infrared light from a 1550 nm impinges on a dissymmetric object.
The diffracted Arago–Poisson spot on the axis of the light, close to the occulting dissymmetric object,
has a donut-shaped structure (see insets) and carries OAM. f1: focusing lens. The occulting object
can be rotated at a given frequency νr. Inserts: picture of the spot intensity along the axis for different
positions z. The scale is different for each insert.

As the occulting disk is set into rotation, the phase distribution of the diffracted beam
is going to rotate accordingly, with a frequency that depends on the topological charge of
the Arago–Poisson spot ℓ and on the rotation frequency of the object νr. In fact, it is nothing
other than a rotational Doppler effect [101]. This effect is the counterpart of the usual linear
Doppler effect for rotating bodies. It can be observed when the topological charge changes
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upon interaction with the rotating object. Since the incoming plane wave is transformed
into a beam carrying OAM, this is the case here. The frequency shift is then equal to ℓνr.
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u
)

6.7

v
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Figure 13. Frequency shift of the diffracted beam as a function of the distance from the occulting disk
z. The object rotates at a frequency ν = 9 Hz. The frequency shift is measured with a self-heterodyne
technique. The reference beam is frequency shifted with acousto-optic modulators.

This indeed means that since the topological charge changes during propagation, the
optical frequency of the spot must also change during propagation. This counterintuitive
assumption has been verified experimentally [102] and is evidenced in Figure 13. The
frequency has been measured with a self-heterodyne technique, with a beat signal against a
reference signal that has been shifted thanks to acousto-optic modulators. It is clearly seen
that the frequency changes as the distance z between the occulting disk and the detection
varies. Furthermore, and above all, the frequency changes in a discrete manner by multiples
of the rotating frequency of the object. For practical applications, the rotating occulting disk
may also be mimicked by a spatial light modulator, for example.

Aside from this somewhat upsetting consequence, this may have several practical
applications. Let us detail one of them. Such a device can address a signal at a given specific
point at a given distance from the source. The laser can be tuned to a narrow resonance
that could be either an atomic resonance [103,104], a nonlinear optical resonance [103–105],
or electromagnetic-induced transparency [106]. These resonances could be in the 10s of
Hertz range or below. Then, a cell with a medium subjected to such resonances could be
placed just after the occulting object in order to allow only a single frequency associated
with a single topological charge to be transmitted (for example, ℓ = 2). Then, only a specific
point in the shadow of the object and over a limited distance would be subject to optical
radiation. Thus, transmissions would be much more discreet and less subject to spying.
Furthermore, it would also reduce the electromagnetic pollution in the neighborhood. This
type of technique could also be adapted to radio transmission, since the Arago–Poisson
spot also exists in the radio domain.

4. Conclusions

In this article, we have discussed the origin of the Arago–Poisson spot and its theo-
retical description. In particular, we have isolated a fundamental finite limit to the spot
size. It could, however, be diminished by increasing the size of the occulting beam and
getting closer to it. Nevertheless,this comes at the expense of the beam intensity. In the case
of an incoming beam that carries orbital angular momentum, the bright Arago–Poisson
is replaced by a dark spot surrounded by a small annular bright ring. Furthermore, such
beam is a self-healing, non-diffracting beam, with supra-luminic properties. Several appli-
cations in different domains have been considered, and 100 nm traps for 200 nm diameter
fluorescent particles have been realized. The particles are trapped in the evanescence of an
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Arago–Poisson spot. Smaller traps for molecules or atoms can be considered. It has also
been shown that the Arago–Poisson beam can change its nature (topological charge) and
(most surprisingly) its frequency during propagation. This could have applications, for
example, in telecommunications in order to send a signal at a very precise given position,
without perturbing or polluting the vicinity of the point.
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