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Abstract—This paper addresses the scheduling issue in a real-
time computing system such as a wireless sensor node which is
supplied with regenerative energy present in the environment. We
consider preemptive task scheduling with fixed priority assign-
ment. We propose a novel energy harvesting aware scheduling
approach, namely FP-H. We show how processing time and
energy should be assigned to the deadline constrained tasks in
a short-term perspective so as to guarantee energy neutrality
whenever possible.

Index Terms—Autonomous sensor, real-time computing, energy
harvesting, energy neutrality, Fixed Priority Scheduling.

I. INTRODUCTION

Advancements in energy, computing and wireless
communication technology allow to offer new services
for people and make smart environments and better quality of
life. For example, traffic monitoring, car parking monitoring,
space detection and public transportation monitoring are
use cases for smart cities. Batteries are the obvious way
of powering wireless devices. However, regular battery
replacement or recharging is vital to ensure longtime
operation for them. Such a requirement generally implies
high maintenance costs, especially when the devices are
accessible with difficulty. Note in addition that millions
of sensors may be deployed around the city. The sensors
have to work autonomously for very long periods of time
without any supervision or human intervention. Smart city
applications will expand only with a reduced operational cost
and increased sustainability model for these low powered and
low maintenance sensors. As battery powered sensors stop
working after several years, replacing millions of primary
batteries leads to environmental pollution. Energy Harvesting
(EH) then appears as a potential alternative to address this
autonomy issue (see Figure 1). Ambient light as mechanical
energy can be drawn from the environment so as to supply
small electronic devices including wireless sensors quasi
perpetually [1].

Nonetheless, relying on variable environmental energy in
a sensor node makes it challenging to guarantee reliable
operation over the lifetime horizon. Thus, new methods and
techniques are necessary to assess the longtime behavior

Fig. 1. Energy harvesting to supply small devices

of any EH-powered device which, in addition may have
real-time constraints. The common characteristic of the
so-called RTEH (Real-Time Energy Harvesting) systems
is periodicity of activities that generally involve sampling,
processing the sensed value, transmitting data, etc. [2], [3]
as depicted in Figure 2. Energy neutrality is the property of
an RTEH system that first should consume no more energy
than the harvested energy and second should respect its
timing requirements in every circumstance. To make a system
energy neutral will require to identify the available power
output of the harvester such as solar panel, the capacity of
the energy storage unit and the energy which is consumed by
the different tasks in operation.
Clearly, the challenging questions to be solved in such a
system are real-time scheduling [4] [5], power management
and dimensioning. Firstly, how to assign a priority to each task
in accordance to its importance and/or urgency? Secondly,
how to dynamically adapt the activity of the processing unit
so as to subsist perpetually, given the profile of the energy
source and the timeliness requirements of the tasks? Thirdly,
how to define the size of both the energy storage unit and
the harvester in order to guarantee an acceptable quality of
service?

The rest of the sections in the paper is organized as follows.
In Section 2, a qualitative review on scheduling techniques
for RTEH systems is carried out. In Section 3, the details
of the system model under consideration, for next-generation



autonomous real-time systems, are presented. Section 4 de-
scribes a new energy harvesting aware scheduler, named FP-
H. A discussion on applicability of the scheduler is presented
in section 5 followed by the conclusion in Section 6.

II. RELATED WORKS

In this section, we survey the previous studies which are
directly related to the proposed approach. The research on
the design of self-sustainable devices started at the beginning
of the 2000’s. The classical real-time schedulers including
RM (Rate Monotonic) and EDF (Earliest Deadline First) [6]
fail in energy harvesting systems where the supply energy
is intermittent. In the latters, energy must be treated as an
equally important resource as time. In particular, we have
to characterize the tasks by both processing time and energy
consumption. And we have to achieve the online monitoring
of available energy in the storage unit as well as the online
prediction of environmental energy produced in near future.
The first work in the literature that explored task scheduling in
monoprocessor RTEH systems is reported in [7]. It addressed
frame-based tasks with voltage and frequency scaling capa-
bilities. The Lazy Scheduling Algorithm (LSA) proposed by
Moser et al. [8] is an optimal EDF-based algorithm based on
as late as possible policy which applies to any set of deadline
constrained tasks. Liu et al. extended LSA with EA-DVFS and
HA-DVFS which are DVFS-based algorithms [9], [10]. They
slow down the processor so as to save energy and speed up task
execution in case of overflowing harvested energy. In [11], an
optimal preemptive fixed-priority scheduling algorithm called
PFPASAP was proposed, assuming a constant power source.
In [12], EDF was proved to be the best non idling scheduler.
In [13], Chetto presents a strongly optimal scheduler, namely
ED-H, for the general RTEH model with no restriction on task
arrival profile and energy source profile. ED-H is an idling
variant of EDF where two key values are computed on-line:
slack time and slack energy. The dynamic power management
joined to the EDF priority assignment rule guarantees opti-
mality in terms of scheduling and energy neutrality whenever
possible. An exact schedulability test is given for a generic set
of deadline constrained jobs, assuming accurate prediction of
the incoming energy budget. In summary, most research works
addressed the EDF dynamic priority assignment rule [14].
Even if EDF allows higher processor utilization than fixed-
priority schedulers, this scheduler is not commonly integrated
in the commercial RTOS.

A. System Model and Assumptions

Hereafter, we address an RTEH system that consists of three
major parts: energy harvester, computing module supporting
the real-time software and rechargeable energy storage with
limited capacity.

B. System Model

We consider a real-time embedded system which is
supplied from an energy source through an energy harvester
such as solar panel. The energy harvested from time t1 to t2

Fig. 2. Framework of an autonomous sensor node

is calculated with following formula Es(t1, t2) =
∫ t2
t1
Pp(t)dt

where Pp(t) is the worst case charging rate (WCCR).

The energy storage such as a rechargeable battery allows
to continue operation even when no energy is harvested from
the environment. It has nominal capacity C. It stores the
extra amount of energy harvested for immediate or future
use. We assume as negligible energy wasted in charging and
discharging the battery.
At a given time t we have Cmin ≤ C(t) ≤ Cmax where
C(t) is the amount of energy available in the storage at time t.

The real-time software that we are interested has indepen-
dent jobs which may be the invocation requests of N periodic
tasks. τ = {τ1, τ2, ..., τN}. If τi is a periodic task, the jobs
generated by τi along time are also statically specified. We
will focus particularly on the jobset generated by τ because the
source energy is variable and the scheduling sequence varies
according to different time operational conditions.
We will consider a generic set of jobs J = {J1, J2, ..., Jn}.
Ji is completely specified by four-tuple (ri, Ci, Ei, di). It
respectively gives the release time, worst case execution time
(expressed in time units and normalized to processor com-
puting capacity), worst case energy consumption (expressed
in energy units such as joule) and deadline of Ji. Energy
consumed by the processor for executing any job is not
necessarily proportional to the computation time of that job.
Ji has to receive Ci units of execution and Ei units of energy
in the interval [ri, di). dMax = max0≤i≤n di and D is the
longest relative job deadline i.e. D = max1≤i≤n (di − ri).
Energy consumed by the jobs on [t1, t2) is denoted Ec(t1, t2).

III. FP-H: THE OPTIMAL SCHEDULING ALGORITHM

A. Fixed priority scheduling

Under fixed priority scheduling, all the jobs which are
generated by a given periodic task inherit the same fixed
priority statically assigned to that task. The jobs then compete
for the processor at run time using their priority. In this paper,
we are concerned with fixed task priority assignment or
fixed job priority assignment. The scheduling issue in RTEH
systems is twofold: first how to assign priorities to jobs and
second how to decide when to execute a job and when to
let the processor in the sleep mode. Consequently, priority
assignment issue and processor management issue have to be



considered independently to design energy harvesting aware
scheduling algorithms.
Hereafter, we consider the following definition of optimality:
Suppose that a priority assignment is given, say PA. A
scheduler will be said optimal if it finds a valid schedule (i.e.
with no deadline missing) for every PA-schedulable jobset
(i.e. at least one valid schedule exists for this jobset with the
priority assignment PA).

B. Clairvoyance and idling requirements

Energy limitation and variation may affect respect of timing
requirements and schedulability of jobs. Figure 3 enables us to
show that deadline missing can happen if a scheduling scheme
does not consider future production and future consumption of
energy to take its online decision. In other words, an efficient
scheduling algorithm should be clairvoyant.

Fig. 3. Deadline missing because of no clairvoyance.

For example, Figure 3 depicts a job which executes and con-
sequently consumes energy. Thereafter, another job releases
and no sufficient energy is available for it so as to complete
its execution by its deadline whatever its priority. Considering
future arrivals of jobs as well as their energy requirements is
required to decide whether to put the processor in the active
mode or in the sleep mode. The schedule depicted in Figure
4 illustrates that We have to examine not only the energy that
is currently stored in the SM but also the energy that will be
produced by the environmental source and consumed by jobs
in future.

Fig. 4. Smart power management with no deadline missing.

C. Central definitions

Consider a FP-H schedulable jobset at the current time
tc. We assume that Jc is the highest priority job ready for

execution at tc. We address the question of deciding if Jc
can be executed while avoiding a future deadline missing
caused by energy starvation. We have shown that this requires
computation of a variable called preemption slack energy at
tc. If the preemption slack energy is zero, the processor has
to be put in the sleep mode for battery recharging and the
duration will be equal at most to the slack time computed
at tc. Let us recall that the slack time is the maximal time
interval for the processor to stay idle while guaranteeing no
deadline missing.

Let us show how to identify the slack time at current time
tc for a generic PA-schedulable jobset which is not necessarily
issued from periodic tasks. For clarity, let us recall useful
definitions.
• A priority level-j busy period is a time interval during

which jobs, of priority πj or higher, that were released
at or after the start of the busy period, but before its end,
are either executing or ready to execute.

• Assume that for each priority level-j, there is only one
job, say Jj . Let αj be the set of time instants called
scheduling points of job Jj defined as :

αj = {t; t = rk, πk > πj , rj < rk < dj} ∪ {dj} (1)

• The slack time of job Jj at time tc, denoted by STj(tc) is
the largest duration such that, if jobs with a priority higher
than Jj start within a delay at most equal to STj(tc), Jj
will meet its deadline.

• The slack time of jobset J at time tc, denoted by ST (tc)
is the largest duration such that, if the execution of any
job starts with a delay at most equal to ST (tc), all jobs
will meet their deadline.

It was proved in [15] how to compute the slack time of job
Jj at time tc and finally the slack time of jobset J at time tc.

Proposition 1:

STj(tc) = max
t∈αj

t>tc

(t− tc −
∑
πk≥πj

tc<rk<t,

Ck) (2)

Proposition 2:

ST (tc) = min
tc≤rj<dc

STj(tc) (3)

From Proposition 1, it clearly results that if there is some
time tc and some job Jj such that STj(tc) = 0, the processor
has to be busy at tc in order to guarantee the time validity
of the FP-H schedule. To guarantee the respect of all job
deadlines, we need to compute the level-j slack time for all
priority levels and take the smallest one as the slack time of
the jobset, as stated in Proposition 2.

In a similar way to the time domain, we introduce the notion
of slack energy for the energy domain:
• The slack energy of job Jj at time tc, denoted by SEj(tc)

is the largest amount of energy which may be consumed



from tc by jobs with a lower priority that guarantees no
deadline missing for Jj caused by energy starvation.

• The preemption slack energy of the jobset J at current
time tc is the largest amount of energy which may be
consumed by the currently active job Jc that guarantees
no deadline missing caused by energy starvation for
future higher priority jobs
.

Proposition 3:

SEj(tc) = max
t∈αj

t>tc

(E(tc) + Ep(tc, t)−
∑
πk≥πj

tc<rk<t,

Ek) (4)

Proposition 4:

PSE(tc) = min
πj>πc

tc<dj<dc

SEj(tc) (5)

If there is some time tc and some job Jj such that
SEj(tc) = 0, Proposition 3 says that the processor has to
either be idle or execute a higher priority job at tc in order
to guarantee the energy validity of the FP-H schedule i.e.
absence of deadline missing caused by energy starvation.
Consequently, if there is some time tc such that PSE(tc) = 0,
the processor has to be idle from time tc.

D. Informal description

As the classical fixed priority scheduler PA, the energy
aware scheduler FP-H still preemptively schedules the jobs
according to a given priority assignment rule PA. Before autho-
rizing the highest priority job to be executed by the processor,
the residual energy in the battery must be sufficient to supply
it. Furthermore, the energy consumed by it must not provoke
energy starvation for future higher priority jobs. In addition
to the interference with other jobs with higher priorities a job
may be postponed because of necessary processor idling. This
delay occurs because the processor cannot continue working
without injuring energy starvation.
The online problems the power management procedure has to
deal with are first to decide whether the processor can enter
the active mode and if so, second to compute the maximum
amount of energy that may be consumed for preserving the
energy feasibility of all the subsequent higher priority jobs.
Let us note that, by definition of priority, Jc cannot have any
impact on the execution of any job with priority less than πc.
Thus, let us introduce the so-called preemption slack energy of
the jobset J at time tc denoted by PSE(tc). An idle time is
forced if PSE(tc) = 0. Otherwise, the processor is authorized
to be busy consuming at most PSE(tc) units of energy until
Jc be finished or preempted by a higher priority job.

E. The scheduling scheme

Hereafter, Lr(tc) is the list of uncompleted jobs in J ready
for execution at tc. The FP-H scheduling algorithm uses the
following rules:

• At any time tc, the priority order defined by the FP pri-
ority assignment rule allows to select the future running
job in Lr(tc).

• The processor is idle in [tc, tc + 1) if one of the following
conditions is satisfied:

1) Lr(tc) = ∅.
2) Lr(tc) 6= ∅ and E(tc) = 0.
3) Lr(tc) 6= ∅ and PSE(tc) = 0

• The processor is busy in [tc, tc + 1) if one of the follow-
ing conditions is satisfied:

1) ST (tc) = 0 .
2) E(tc) = C.

• The processor can be busy or idle in [tc, tc + 1) other-
wise.

These rules say that the processor should be necessarily
idle if the energy storage is deplenished or if execution of
any job will imply energy starvation for at least one future
occurring job (i.e. the system has no preemption slack energy).
Recharging power is wasted only when there are no ready
jobs and the storage is full at the same time. Decisions of
FP-H are based on computation of PSE(tc). This supposes
to know short term prediction of the energy harvesting rate
. Methods have been developed which aim at providing
prediction with high accuracy, low computation complexity
and low memory requirement [16]. The energy storage stops
to recharge if the slack time is zero. Methods for computation
of slack time are reported in [4]. FP-H assumes here that the
energy thresholds are respectively 0% and 100% of the storage
capacity. Nevertheless, other threshold may be specified, thus
shortening duration of the discharging and recharging phases
and increasing the number of switches between active mode
and power-down mode of the processor.

F. Optimality statement

Theorem 1: The scheduling algorithm FP-H is optimal for
any priority assignment rule.

Theorem 1 was established in [15]. It says the following:
if FP-H does not success in building a valid schedule for any
FP-schedulable jobset J , then no other processor management
policy that respects the priority assignment FP will be able to
build a valid schedule.

IV. ILLUSTRATIVE EXAMPLE

The following is an example to illustrate the energy aware
scheduler FP-H and the performance gain compared to the
classical scheduler FP. We consider an RTEH system com-
posed of the jobset J whose time and energy parameters are
in Table I. The hardware platform has an energy storage unit
with capacity C = 10 mJ. The harvesting power is set to 0
mW from initial time instant 0 during 7s and then, 2 mW.

Assume that energy supply is not limited. Figure 5 depicts
the FP schedule where all the jobs are executed in the ASAP
mode. As no deadline is missing, we say that the jobset is
time-schedulable under the FP priority assignment rule with
π1 > π2 > π3 > π4.



Job Ji πi Ci (s) ri (s) di (s) Ei (mJ)
J1 1 1 7 13 10
J2 2 1 5 12 10
J3 3 1 6 14 2
J4 4 1 0 15 2

TABLE I
PARAMETERS OF THE JOBS

Fig. 5. FP scheduling with no limitation in energy supply

Consider now that we apply a classical scheduler under a
fixed priority assignment rule. Figure 6 shows us that, firstly
a non idling scheduler cannot face to energy depletion, and
second a non clairvoyant scheduler cannot avoid deadline
missing caused by energy starvation.

Fig. 6. FP Scheduling with no clairvoyance.

The valid FP-H schedule is depicted on Figure 7. To decide
whether or not J4 may start execution at tc = 0, the energy
availability is checked by computing the preemption slack
energy with equation (4). As SE2(0) = 0, the processor has
to idle so as the energy storage does not deplenish. The slack
time is computed so as to determine the latest time when to
stop the idle mode according to equations (2) and (3). We have
ST (0) = 10. However, as the energy storage is full when J2
releases at time 5, J2 immediately starts execution since there
is no advantage in delaying the job. J2 finishes at time 6 where
the energy storage is totally depleted. Since ST (6) = 6, the
processor is put in the idle mode until time 12 where J1, J2
and J4 may be executed as late as possible with no deadline
missing. Note that J3 and J4 execute by consuming energy at
the same speed as that it is produced. This example illustrates
that the premature consumption of only two units of energy
by J4 was enough to make the system faulty when it was

possible to postpone its execution with no deadline violation
(see Figure 6).

Fig. 7. The optimal FP-H schedule

V. IMPLEMENTATION CONSIDERATIONS

Probably the greatest difference between energy-neutral and
conventional battery-operated systems is their behavior in
situations where a system has deplenished its energy storage.
At this point, an energy-neutral system switches into a sleep
mode and wakes up as soon as enough energy has been
harvested to resume task execution. In contrast, a classical
battery-operated system reaches the end of its lifetime. For this
purpose, an energy-neutral system needs to provide means to
safely store its state in persistent memory after having detected
that no more energy is available in the storage. Furthermore,
the system must have detailed knowledge about the energy
consumption of tasks, here called WCEC (Worst Case Energy
Consumption. In addition, the system must have detailed the
minimum energy that should be available in the storage to
autorize wake up and guarantee the system to execute tasks
for at least a given amount of time.

VI. CONCLUSION

In this paper, we addressed the scheduling issue in a
self-powered device with timeliness requirements expressed
in terms of deadlines. The central challenge is to make
this system energy neutral despite intermittent and variable
production of environmental energy used to supply it. The
paper reported a new fixed priority based scheduler which
smartly defines the busy and sleep periods of the processor.
The resulting intermittent computing framework allows to
achieve an energy-neutral mode of operation with no wasted
energy, no energy starvation and no deadline missing whenever
possible. Most RTOS (Real Time Operating Systems) use
fixed-priority scheduling where the developers assign each task
a suitable static priority level to indicate its relative urgency.
Consequently, integration of this new scheduler will permit
RTOS to evolve and to meet the rising demand of energy
harvesting technology.
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