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ON A CLASS OF CLOSED COCYCLES
FOR ALGEBRAS OF NON-FORMAL, POSSIBLY UNBOUNDED,

PSEUDODIFFERENTIAL OPERATORS

JEAN-PIERRE MAGNOT

Abstract. In this article, we consider algebras \scrA of non-formal pseudodifferential
operators over S1 which contain C\infty (S1), understood as multiplication operators. We
apply a construction of Chern-Weil type forms in order to get 2k - closed cocycles. For
k = 1, we obtain a cocycle on the algebra of (maybe non classical) pseudodifferential
operators with the same cohomology class as the Schwinger cocycle on the algebra of
classical pseudodifferential operators, previously extended and studied by the author
on algebras of the same type.

У цiй статтi ми розглядаємо алгебри \scrA неформальних псевдодиференцiальних
операторiв над S1, якi мiстять C\infty (S1) i розглядаються як оператори множення.
Застосовується конструкцiю форм типу Черна-Вейля, для отримання 2k-замкне-
них коциклiв. Для k = 1, ми отримуємо коцикл на алгебрi псевдодиференцiйних
операторiв (можливо, некласичнiй) з тим самим класом когомологiй, що i коцикл
Швiнгера на алгебрi класичних псевдодиференцiальних операторiв, який був
ранiше розширений i вивчений автором на алгебрах того ж самого типу.

Introduction

We present here a construction of a family of cocycles on the Lie algebra of maybe
unbounded, maybe non classical, non formal pseudodifferential opeartors PDO(S1, V ).
Cocycles on algebras of pseudodifferential operators have been studied from the viewpoint
of algebras of formal symbols, see e.g. [11, 14] for cocycles related to our study, or algebras
of non-formal but classical pseudo-differential operators, see e.g. [31]. In the last study,
the notion of renormalized trace plays an important role, as well as in e.g. the works
[4, 5, 26] where these cocycles are shown to be linked with anomalies in physics via
differential geometric considerations.

In our works [17, 19, 20], we made more precise the link between various aspects:
- the Kravchenko-Khesin cocycle [14] on formal pseudodifferential operators over
S1;

- the index cocycle on the restricted linear group GLres defined in [30];
- the approach of Radul [31];
- the Schwinger cocycle [33], see e.g. [4, 26],

We also showed [20] that the Schwinger cocycle and the index cocycle could be ex-
tended to the algebra PDO(S1, V ) of maybe unbounded, maybe on classical, non formal
pseudodifferential operators over S1.

We come back to this program in the present work by adding a new idea to our
investigations: integrate the classical formulas for Chern-Weil forms tr\Omega k in order to
define (closed) 2k - cocycles on PDO(S1, V ). For this task, the classical Bianchi identity is
obtained algebraically on the Lie algebra PDO(S1, V ) and the connection that we consider
is with values in smoothing operators. This enables us to consider tr as the classical
trace of trace class operators, even if technical steps of our investigations require zeta-
renormalized traces along the lines of [29, 34]. In this framework, classical computations
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of Chern-Weil forms apply and we show that tr\Omega k is a 2k - cocycle on PDO(S1, V ) for
k \in \BbbN \ast .

For k = 1, even if our connection gives a slightly different 2-cocycle tr\Omega from the
one studied in [20], we show that this 2-cocycle related to the cohomology class of the
Schwinger cocycle. We have to remark that we are here able to prove that these two
cocycles have the same cohomology class (up to a factor) on the algebra of classical
pseudodifferential operators, but we have no information of this kind for PDO(S1, V )
(except that tr\Omega is not a coboundary), except that it is not a coboundary.

1. Preliminaries

There are multiple frameworks that call, under the name pseudodifferential operator,
various objects which may not be (true) operators acting on sections of a finite dimensional
complex vector bundle. These last ones are called formal, while the others are called non
formal. Moreover, there exists restricted classes of pseudo-differential operators: classical,
log-polyhomogeneous among others. For the sake of clarity and for a comprehensive
exposition, we start with a non-technical presentation of the operators that we consider,
and a more rigorous description will follow.

1.1. A panoramic overview on pseudodifferential operators. We specialize below
to the trivial complex vector bundle S1 \times V in which V is a d - dimensional complex
vector space. The following definition appears in [3, Section 2.1].

Definition 1.1. The graded algebra of differential operators acting on the space of
smooth sections C\infty (S1, V ) is the algebra DO(S1, V ) generated by:

\bullet elements of C\infty (S1,Md(\BbbC ));
\bullet covariant derivation operators

\nabla X : g \in C\infty (S1, E) \mapsto \rightarrow \nabla Xg

where \nabla is a smooth connection on E and X is a smooth vector field on S1.

We assign the order 0 to smooth function multiplication operators. The derivation
operators have the order 1. We denote by DOk(S1, V ), k \geq 0, the differential operators
of order less or equal than k. The algebra DO(S1, V ) is filtered by the order. It is a
subalgebra of the algebra of classical pseudo-differential operators Cl(S1, V ) that we
describe shortly hereafter, focusing on its necessary aspects. This is an algebra that
contains, for example, the square root of the Laplacian

| D| = \Delta 1/2 =

\int 
\Gamma 

\lambda 1/2(\Delta  - \lambda Id) - 1d\lambda , (1.1)

where \Delta =  - d2

dx2 is the positive Laplacian and \Gamma is a contour around the spectrum of the
Laplacian, see e.g. [32, 29] for an exposition on contour integrals of pseudodifferential
operators. Cl(S1, V ) contains also the inverse of Id+\Delta , and all smoothing operators on
L2(S1, V ).

Wider classes of pseudo-differential operators can also be considered. An example
of frequent use remains on the real powers of the Laplacian \Delta \alpha , where \alpha \in \BbbR , defined
through contour integrals like \Delta 1/2 already mentioned. One can define the same way
\mathrm{l}\mathrm{o}\mathrm{g}\Delta . Pseudodifferential operators (maybe non-classical) are linear operators acting on
C\infty (S1, V ) which reads locally as

A(f) =

\int 
eix.\xi \sigma (x, \xi ) \^f(\xi )d\xi 

where \sigma \in C\infty (T \ast S1,Mn(\BbbC )) satisfying additional estimates on its partial derivatives
which will be given in a detailed form in the next section and \^f means the Fourier
transform of f .
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Another special class of pseudo-differential operators is also of great interest. This is
the set of smoothnig pseudo-differential operators. They are equivalently:

\bullet classical pseudo-differential operators with order  - \infty , that is, they are in the set
of classical pseudo-differential operators k for any k \in \BbbZ .

\bullet pseudodifferential operators defined on L2(S1, V ) with values in C\infty (S1, V ), which
explains the terminology.

\bullet operators with a smooth kernel K \in C\infty (S1 \times S1,Mn(\BbbC )).
These operators from an ideal in any algebra of pseudo-differential operators. Quotienting
by this ideal, we obtain algebras of formal pseudo-differential operators.

1.2. Rigorous approach to pseudodifferential operators. Basic facts on pseudo-
differential operators defined on a vector bundle E \rightarrow S1 can be found e.g. in [8]. Let us
now recall them in a rigorous exposition, as brief as possible, concentrating our exposition
on pseudo-differential operators over S1 which is equipped with an atlas in which changes
of coordinates are affine maps. This is made possible through the structure of an abelian
group of S1, where the atlas considered is the atlas obtained through the exponential
map. We set S1 = \{ z \in \BbbC | | z| = 1\} . We shall use for convenience the smooth atlas \scrA of
S1 defined as follows:

\scrA = \{ \varphi 0, \varphi 1\} ;
\varphi n : x \in ]0; 2\pi [\mapsto \rightarrow ei(x+n\pi ) \subset S1 for n \in \{ 0; 1\} 

Associated to this atlas, we fix a smooth partition of the unit \{ s0; s1\} . We identify each of
these functions with its associated multiplication operator when necessary. An operator
A : C\infty (S1,\BbbC ) \rightarrow C\infty (S1,\BbbC ) can be described in terms of 4 operators

Am,n : f \mapsto \rightarrow sm \circ A \circ sn for (m,n) \in \{ 0, 1\} 2.
A scalar pseudo-differential operator of order o is an operator

A : C\infty (S1,\BbbC ) \rightarrow C\infty (S1,\BbbC )

such that, \forall (m,n) \in \{ 0, 1\} 2,

Am,n(f) =

\int 
]0;2\pi [

e - ix\xi \sigma m,n(x, \xi ) \^(sn.f)(\xi )d\xi 

where \sigma m,n \in C\infty (]0; 2\pi [\times \BbbR ,\BbbC ) satisfies

\forall (\alpha , \beta ) \in \BbbN 2, | D\alpha 
xD

\beta 
\xi \sigma m,n(x, \xi )| \leq C\alpha ,\beta (1 + | \xi | )o - \beta .

We denote by PDO(S1, V ) the space of maybe non classical, maybe unbounded, pseudo-
differential operators acting on C\infty (S1, V ).A pseudo-differential operator of order o is
called classical if and only if its symbols \sigma have an asymptotic expansion

\sigma (x, \xi ) \sim | \xi | \rightarrow +\infty 

o\sum 
j= - \infty 

\sigma j(x, \xi ),

where the maps \sigma j : S
1 \times \BbbR \ast \rightarrow \BbbC , called partial symbols, are j-positively homogeneous,

i.e.,
\forall t > 0, (x, \xi ) \in S1 \times \BbbR \ast , (\sigma )j(x, t\xi ) = tj(\sigma )j(x, \xi ).

The class of log-polyhomogeneous pseudo-differential operators can also be described
this way. These are operators in Cl(S1, V )[\mathrm{l}\mathrm{o}\mathrm{g}(\Delta )], which inherits also a second degree,
from the evaluation of Cl(S1, V ) - polynomials at \mathrm{l}\mathrm{o}\mathrm{g}(\Delta ).

Pseudodifferential operators can also be described by their kernel

K(x, y) =

\int 
\BbbR 
ei(x - y)\xi \sigma (x, \xi )d\xi 

which is off-diagonal smooth.
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The quotient
\scrF Cl(S1, V ) = Cl(S1, V )/PDO - \infty (S1, V )

of the algebra of pseudo-differential operators by PDO - \infty (S1, V ) forms an algebra of
formal classical pseudo-differential operators.

Remark 1.2. Through identification of \scrF Cl(S1, V ) with the corresponding space of formal
symbols, the space \scrF Cl(S1, V ) is equipped with the natural locally convex topology
inherited from the space of formal symbols. A formal symbol \sigma k is a smooth function
in C\infty (T \ast S1 \setminus S1,Mn(\BbbC )) which is k - homogeneous (for k > 0)), and hence with an
element of C\infty (S1,Mn(\BbbC ))2 evaluating \sigma k at \xi = 1 and \xi =  - 1, see [19, 25]. Identifyting
\scrF Cld(S1, V ) with \prod 

k\leq d

C\infty (S1,Mn(\BbbC ))2,

the vector space \scrF Cld(S1, V ) is a Fréchet space, and hence

\scrF Cl(S1, V ) = \cup d\in \BbbZ \scrF Cld(S1, V )

is a locally convex topological algebra.

1.3. The splitting with induced by the connected components of T \ast S1 \setminus S1.. In
this section, we define two ideals of the algebra \scrF Cl(S1, V ), that we call \scrF Cl+(S

1, V ) and
\scrF Cl - (S

1, V ), such that \scrF Cl(S1, V ) = \scrF Cl+(S
1, V )\oplus \scrF Cl - (S

1, V ). This decomposition
is explicit in [10, section 4.4., p. 216], and we give an explicit description here following
[17, 19].

Definition 1.3. Let \sigma be a partial symbol of order o on E. Then, we define, for
(x, \xi ) \in T \ast S1 \setminus S1,

\sigma +(x, \xi ) =

\biggl\{ 
\sigma (x, \xi ) if \xi > 0
0 if \xi < 0

and \sigma  - (x, \xi ) =

\biggl\{ 
0 if \xi > 0
\sigma (x, \xi ) if \xi < 0.

We define p+(\sigma ) = \sigma + and p - (\sigma ) = \sigma  - .

The maps p+ : \scrF Cl(S1, V ) \rightarrow \scrF Cl(S1, V ) and p - : \scrF Cl(S1, V ) \rightarrow \scrF Cl(S1, V ) are
clearly smooth algebra morphisms (yet non-unital) that leave the order invariant and are
also projections (since multiplication on formal symbols is expressed in terms of pointwise
multiplication of tensors).

Definition 1.4. We define \scrF Cl+(S
1, V ) = Im(p+) = Ker(p - ) and \scrF Cl - (S

1, V ) =
Im(p - ) = Ker(p+).

Since p+ is a projection, we have the splitting

\scrF Cl(S1, V ) = \scrF Cl+(S
1, V )\oplus \scrF Cl - (S

1, V ).

Let us give another characterization of p+ and p - . The operator D =  - i d
dx splits

C\infty (S1,\BbbC n) into three spaces :
- its kernel E0, built of constant maps
- E+, the vector space spanned by eigenvectors related to positive eigenvalues
- E - , the vector space spanned by eigenvectors related to negative eigenvalues.
The L2-orthogonal projection on E0 is a smoothing operator, which has null formal

symbol. By the way, concentrating our attention on thr formal symbol of operators, we
can ignore this projection and hence we work on E+\oplus E - . When dealing with non-formal
operators, we shall set p+ = pE+

. The following elementary result will be useful for the
sequel.
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Lemma 1.5. [17, 19]
Let pE+ (resp. pE - ) be the projection on E+ (resp. E - ), then \sigma (pE+) =

1
2 (Id+

\xi 
| \xi | )

and \sigma (pE - ) =
1
2 (Id - 

\xi 
| \xi | ).

From this, we have the following result.

Proposition 1.6. [17, 19] Let A \in \scrF Cl(S1, V ). p+(A) = \sigma (pE+
) \circ A = A \circ \sigma (pE+

) and
p - (A) = \sigma (pE - ) \circ A = A \circ \sigma (pE - ).

Notation. For shorter notations, we denote by A\pm = p\pm (A) the formal operators defined
from another viewpoint by

\sigma (A+)(x, \xi ) ( resp. \sigma (A - )(x, \xi )) =

\biggl\{ 
\sigma (A)(x, \xi ) if \xi > 0 ( resp. \xi < 0)
0 if \xi < 0 ( resp. \xi > 0)

We now turn to maybe non classical pseudo-differentail operators, along the lines of [20]:

Proposition 1.7. For any A \in PDO(S1, V ),

[A, pE+
] \in PDO - \infty (S1, V ).

1.4. Renormalized traces of classical pseudodifferential operator. S1 \times V is
equiped this an Hermitian products < ., . >, which induces the following L2-inner
product on C\infty (S1, V ) :

\forall u, v \in C\infty (S1, V ), (u, v)L2 =

\int 
S1

< u(x), v(x) > dx,

where dx is the Riemannian volume.

Definition 1.8. Q is a weight of order s > 0 on E if and only if Q is a classical, elliptic,
self-adjoint, positive pseudo-differential operator acting on smooth sections of E.

Recall that, under these assumptions, the weight Q has a real discrete spectrum, and
that all its eigenspaces are finite dimensional. For such a weight Q of order q, one can
define the complex powers of Q [32], see e.g. [4] for a fast overview of technicalities. The
powers Q - s of the weight Q are defined for Re(s) > 0 using with a contour integral,

Q - s =

\int 
\Gamma 

\lambda s(Q - \lambda Id) - 1d\lambda ,

where \Gamma is a contour around the real positive axis. Let A be a log-polyhomogeneous
pseudo-differential operator. The map \zeta (A,Q, s) = s \in \BbbC \mapsto \rightarrow tr (AQ - s) \in \BbbC , defined for
Re(s) large, extends on \BbbC to a meromorphic function [16]. When A is classical, \zeta (A,Q, .)
has a simple pole at 0 with residue 1

q resWA, where resW is the Wodzicki residue ([35],
see also [10]). Notice that the Wodzicki residue extends the Adler trace [2] on formal
symbols. Following textbooks [29, 34] for the renormalized trace of classical operators,
we make the following definition.

Definition 1.9. Let A be a log-polyhomogeneous pseudo-differential operator. The finite
part of \zeta (A,Q, s) at s = 0 is called the renormalized trace trQA. If A is a classical
pseudo-differential operator,

trQA = \mathrm{l}\mathrm{i}\mathrm{m}
s\rightarrow 0

(tr(AQ - s) - 1

qs
resW (A).

If A is trace class acting on L2(S1,\BbbC k), trQ(A) = tr(A). The functional trQ is of
course not a trace. In this formula, it appears that the Wodzicki residue resW (A).

Proposition 1.10.
(i) The Wodzicki residue resW is a trace on the algebra of classical pseudo-differential
operators Cl(S1, E), i.e. \forall A,B \in Cl(S1, V ), resW [A,B] = 0.
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(ii) (local formula for the Wodzicki residue) Moreover, if A \in Cl(S1, V ),

resWA =
1

2\pi 

\int 
S1

\int 
| \xi | =1

tr\sigma  - 1(x, \xi )d\xi dx =
1

2\pi 

\sum 
\xi =\pm 1

\int 
S1

tr\sigma  - 1(x, \xi )d\xi dx.

In particular, resW does not depend on the choice of Q.

Since trQ is a linear extension of the classical trace tr of trace-class operators acting on
L2(S,V ), it has weaker properties. Let us summarize some of them which are of interest
for our work following first [4], completed by [22] for the third point.

Proposition 1.11. \bullet Given two (classical) pseudo-differential operators A and B,
given a weight Q,

trQ[A,B] =  - 1

q
res(A[B, \mathrm{l}\mathrm{o}\mathrm{g}Q]). (1.2)

\bullet Under the previous notations, if C is a classical elliptic injective operator or a
diffeomorphism, trC

 - 1QC
\bigl( 
C - 1AC

\bigr) 
is well-defined and equals trQA.

Since trQ is not tracial, let us give one more property on the renormalized trace of the
bracket, from e.g. [24].

Proposition 1.12.

\forall (A,B) \in PDO - \infty (S1, V )\times Cl(S1, V ), trQ[A,B] = tr[A,B] = 0.

Moreover, we can push further the property on PDO(S1, V ) :

Proposition 1.13.

\forall (A,B) \in PDO - \infty (S1, V )\times PDO(S1, V ), tr[A,B] = 0.

Proof. Let (A,B) \in PDO - \infty (S1, V )\times PDO(S1, V ). Let o = ord(B). Then (1 + | D| )o+2

is a pseudodifferential operator of order o + 2 with inverse (1 + | D| ) - o - 2. Since A is
smoothing, [A,B] is also smoothing and hence trace class. Therefore, the following
expression makes sense and we can compute (since we are commuting operators of order
-2 at most, which are trace class anyway):

tr(AB) = tr(A(1 + | D| )o+2(1 + | D| ) - o - 2B)

= tr((1 + | D| ) - o - 2BA(1 + | D| )o+2)

= tr(BA(1 + | D| )o+2(1 + | D| ) - o - 2)

= tr(BA).

\square 

2. A family of cocycles

We consider the Lie algebra cohomology of PDO(S1, V ) and of its Lie subalgebras.

Definition 2.1. We define on PDO(S1, V )

\theta : (a, b) \in PDO(S1, V ) \mapsto \rightarrow \theta a(b) = a \circ pE+
\circ b.

In order to understand better our construction, we have to precise that the reader has
to understand \theta as a 1-form

a \mapsto \rightarrow \theta a = (a \circ pE+
) \circ (.)

with values in linear maps on PDO(S1, V ), in order to understand better the link of this
construction with the theory of connection 1-forms. This linear map is only a composition
operator, in the spirit of the connection 1-forms described in [24].
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Remark 2.2. On formal symbols,

\sigma (\theta (a)) = \sigma (a)+.

Therefore, we consider the curvature \Omega of the connection \theta , that is,

\Omega (a, b) = \theta a\theta b  - \theta b\theta a  - \theta [a,b]

which is, like \theta a, is an operator of coomposition on the left, i.e.

\Omega (a, b) = s(a, b) \circ (.).

Proposition 2.3. \Omega is a PDO - \infty (S1, V ) - valued 2-form, in the sense that .

\forall (a, b, c) \in PDO(S1, V )3, \Omega (a, b)c = sc

where s(a, b) \in PDO - \infty (S1, V ).

Proof. Let (a, b, c) \in PDO(S1, V )3. From Proposition 1.7,

apE+bpE+  - bpE+apE+ = [a, b]pE+ + s(a, b)

where
s(a, b) = a[pE+

, b]pE+
 - b[pE+

, a]pE+

is a smoothing operator. Therefore,

\Omega (a, b)c = (\theta a\theta b  - \theta b\theta a  - \theta [a,b])c

= (apE+
bpE+

 - bpE+
apE+

c - [a, b]pE+
)c

= s(a, b)c

\square 

We now consider

\Omega k(a1, ..., a2k) = \Omega \wedge ... \wedge \Omega (a1, ..., a2k) = sk(a1, ..., a2k) \circ (.).
with

sk(a1, ..., a2k) =
\sum 

\sigma \in \frakG 2k

( - 1)\epsilon (\sigma )

2k!

k\prod 
i=1

s(a\sigma (2i - 1), a\sigma (2i))

Since s is with values in smoothing operators, so is the 2k - form sk. By slight abuse of
notations, we define the 2k - form with values in \BbbC :

tr(\Omega k) = tr(sk) (2.1)

where tr is the trace of trace-class operators on L2(S1, V ). Since \Omega (a, b) = s(a, b) \circ (.) is
the composition on the left by a smoothing operator, we will now understand tr(\Omega k),
and the similar expressions, along the lines of (2.1). This is the main property to get the
following theorem

Theorem 2.4. The Chern-Weil like forms

tr(\Omega k)

define closed 2k-cocycles in Lie algebra cohomology of PDO(S1, V ).

Proof. We compute directly the coboundary

dtr\Omega k = trd\Omega k

and reduce the computation to
d\Omega =  - [\theta ,\Omega ].

Therefore,
dtr\Omega k =  - tr[\theta ,\Omega k] = 0

applying Proposition 1.13. \square 



CLOSED COCYCLES ON PDOS 331

This result remains valid for any Lie subalgebra \scrA \subset PDO(S1, V ). Let us now give a
key elementary lemma about non-exactness, already applied in [20]:

Lemma 2.5. Let \scrA be a Lie subalgebra of PDO(S1, V ). Let c be a cocycle on \scrA . Let \scrB 
be a commutative Lie subalgebra of \scrA , i.e. [\scrB ,\scrB ] = \{ 0\} . If c is non vanishing on \scrB , then
c is not exact.

3. tr\Omega is cohomologous to the Schwinger cocycle on Cl(S1, V ).

Theorem 3.1. On Cl(S1, V ), tr\Omega has the same cohomology class as 1
2cs, where cs is

the Schwinger cocycle. By the way it has non-trivial Lie algebra cohomology class on
PDO(S1, V ).

Proof. First, let (X,Y ) \in Cl(S1, V )2. We have that

tr\Omega (X,Y ) = tr\Delta [\theta X , \theta Y ] - tr\Delta \theta [X,Y ].

The term tr\Delta \theta [X,Y ] is a coboundary. Let us calculate tr\Delta [\theta X , \theta Y ] . For this, we remark
that \sigma (\theta X) = \sigma +(X) thus

tr\Delta [\theta X , \theta Y ] =  - i

2\pi 
res\sigma +(X) [\sigma +(Y ), log\Delta ] .

The last term thus can be identified with the pull-back of the Kravchenko-Khesin-Radul
cocycle on Cl(S1, V ) so that it has the same cohomology class as the Schwinger cocycle
following [19].

If tr\Omega was a coboundary on PDO(S1, V ), it would also be a coboundary on Cl(S1, V ).
So that, tr\Omega has non-trivial Hochschild cohomology class on PDO(S1, V ). \square 

We have here to remark that the full comparison of tr\Omega with 1
2cs remains an open

question, because the correspondence is only established on Cl(S1, V ).

4. Conclusion

The family of cocycles on PDO(S1, V ) that we produced show that there can exist
some 2k - cocycles on PDO(S1, V ). Beside the 2-cocycle tr\Omega which is cohomologous to
the well-known Schwinger cocycle on Cl(S1, V ) we get the following open question:

Prove that there exists other non-trivial cocycles in our family.

More generally and algebraically, the full description of the Hochschild cohomoloy of
various Lie subalgebras of PDO(S1, V ) (especially those with some unbounded operators)
needs to be investigated. From a geometric viewpoint, the meaning of the higher Chern-
Weil forms that we describe here, intrinsically liked with the sign of the Dirac operator,
carry interpretations that can be only heuristic since the classical differential geometry
(with atlases) fail to apply, but the seem intrinsically linked with the integrable almost
complex structure described in [25] in the context of formal classical pseudo-differential
operators.
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