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A new approach is proposed to robot path planning that consists of using the viscous fluid equations including external forces. Unlike the majority of potential field techniques, the method is able to cope not only with 2-dimensional binary environments made of obstacles and free space, but also with so-called weighted regions, as well as uneven natural terrain where slope and ground characteristics influence the robot performance. It shows how the viscosity coefficient can be used to control the corridors of navigation, and how the external forces acting on the fluid particles can model the forces due to gravity and to friction between the ground and the vehicle. The planner automatically constructs several routes of equivalent costs, that makes the solutions more robust than those obtained by the search of optimal paths, by allowing reactivity in case of an unexpected local disturbance. Comparisons with the scent diffusion method for a binary universe and with a genetic algorithm for a real natural terrain are presented.

Introduction

This paper describes a method based on a physical analogue to compute sets of smooth paths for a robot vehicle navigating from one location to a destination. The motivation was to get robust solutions and be able to consider not only binary environments (obstacles and free space) but also uneven terrain on which the vehicle performance may vary with the slope and the ground texture.

The first class of approaches based on continuous models consists in the potential field methods pioneered by Khatib [START_REF] Khatib | Dynamic control of manipulators operating in a complex environment[END_REF][START_REF] Khatib | Real-time obstacle avoidance for manipulators and mobile robots[END_REF] for obstacle avoidance of manipulators and vehicles in 2-dimensional (2D) planar environments. Theoretical works on the subject [START_REF] Barraquand | Numerical potential field techniques for robot path planning[END_REF][START_REF] Koditschek | Exact robot navigation by means of potential functions: some topological considerations[END_REF][START_REF] Rimon | Exact robot navigation using cost functions: The case of distinct spherical boundaries in En[END_REF] have further led to construction of navigation functions able to provide the planner with preferential paths, and the robot with on-line reflexive behaviours based on its sensory information.

The main difficulty of the approach using potential methods is related to the avoidance of undesirable steady states which may exist between start and goal points: stable local minima and/or limit cycles. For that reason, analogues of physical behaviour of particles in continuous media have been studied. They are based on the fact that at every point of a Laplacian function there always exists a nonzero component of the gradient field [START_REF] Connoly | Path planning using Laplace's equation[END_REF]. Petridis and Tsiboukis [START_REF] Petridis | An optimal solution to the robot navigation planning problem based on an electromagnetic analogue[END_REF] have used an electromagnetic analogue. Masoud et al. [START_REF] Masoud | Robot navigation using a pressure generated mechanical stress field: The biharmonic potential field approach[END_REF] have considered a mechanical stress field. However, the applications have been limited in practice to 2D structured environments cluttered with polygonal obstacles. They also require long computing times, but have the advantage of being able to consider multiple goal locations within the same algorithm. Another original concept [START_REF] Schmidt | High-speed robot path planning in time-varying environment employing a diffusion equation strategy[END_REF] has been based upon the principle of diffusion and is applicable to the problem of overtaking moving targets in a 2D universe.

Other approaches, following the works of Lozano-Perez [START_REF] Lozano-Perez | An algorithm for planning collision-free paths among polyhedral obstacles[END_REF], have called for a discretisation of the universe and the use of A * -like algorithms in the corresponding valued graph. For mobile robots on flat and homogeneous surfaces, the minimum distance path from start to goal in the obstacle-free space is generally considered. Extensions have been made, which translate the problem from the Cartesian space into a similar one in the "configuration space" where the instantaneous geometrical state of the robot is defined as a point. This latter class of planning suffers from the drawback that a single optimal solution is being computed, when it exists, so that entire replanning is necessary when the robot encounters in its course an unforeseen change of its environment. Significant improvements have then been proposed to obtain robustness of the vehicle's behaviour in respect to environmental changes and uncertainties, that induces changes in the valuations of the edges of the search graph. The corresponding algorithms have been mainly developed in the frame of projects for planetary exploration by robotic vehicles, and experimental evaluations have been performed using real vehicles and complex uneven terrain. The D * algorithm [START_REF] Stentz | Optimal and efficient path planning for unknown and dynamic environments[END_REF] provides the robot with a reflexive replanning capability, while Aε and Genetic Algorithms principles [START_REF] Pinchard | Nondeterministic methods for robot path planning in the presence of uncertainties[END_REF][START_REF] Pinchard | A genetic algorithm for outdoor robot path planning[END_REF] compute several robust sets of near-optimal paths. The latter may be used for multiple vehicles operation [START_REF] Emmanuel | Motion planning for a patrol of outdoor mobile robots[END_REF] and take into account the unevenness of the terrain, the friction between wheels and ground, given also the type of motor (thermal engine or electric motors), and the drive mechanism [START_REF] Liégeois | Terrain-tolerant motion planning of wheeled robotic vehicles[END_REF].

Following the above analysis of the abilities and limitations of existing planning methods, the work presented below aims at using models of fluid mechanics, including viscosity and friction, in order to (i) take advantage of the Laplacian methods, (ii) include the terrain unevenness and the vehicle capabilities, (iii) obtain multiple path feasible solutions applicable to multiple vehicle missions, (iv) include multiple initial and final positions.

The paper is organised as follows. The principles of the method and of the computations are given in Section 2. Two-dimensional simulations in a binary environment illustrate the main properties in Section 3, and the fluid method is compared to the method based on the diffusion model. Finally, Section 4 considers a real terrain and compares genetic algorithm solutions with the flows obtained by the method based on viscous fluid equations with external forces.

The Equations

THE NAVIER-STOKES EQUATIONS FOR AN INCOMPRESSIBLE VISCOUS FLUID

Decuyper and Keymeulen [START_REF] Decuyper | A reactive robot navigation system based on a fluid dynamics metaphor[END_REF] have used a fluid dynamics metaphor for generating paths between two points in a 2D factory-like environment. A "pump" between the points allows a fluid to flow from start to goal, then the best route is computed as the streamline following the pressure gradient when the stationary state of the fluid is attained. There cannot exist local extrema in the pressure field since the Laplace's equation is satisfied: every point of the medium is at a saddle point which is always unstable. The above work has led to a massively parallel implementation on a computer using a software developed by the specialists of fluid dynamics. It allows the rapid replanning in case of changes of goals and obstacles. However, it does not consider planning trajectories on uneven and nonhomogeneous surfaces.

To handle the problem of path planning for vehicles on uneven natural terrain, some external force is to be taken into account, representing the friction between vehicle and ground and the local slope in the direction of motion. By this way, we will be able to find not only the main streamline, but also the minimum energy one, or the minimum-time one. Furthermore, considering a viscous fluid will lead naturally to pass far from obstacles where the velocity of the fluid particles is zero. The general fluid dynamics equations for viscous incompressible fluids are the Navier-Stokes equations [START_REF] Ryhming | Dynamique des Fluides, Presses Polytechniques Romandes[END_REF] which are written as

𝜌 𝑑𝑣 ⃗ 𝑑𝑡 = 𝑓 -∇ ⃗ ⃗ 𝑝 + 𝜇∆𝑣 (1) 
∇ ⃗ ⃗ . 𝑣 = 0, (2) 
where: 𝜌 is the mass per unit volume, 𝑣 is the velocity vector of the considered fluid particle, 𝑡 is the time, 𝑓 is the external force acting on the particle, 𝑝 is the pressure, µ is the viscosity coefficient, ∇ ⃗ ⃗ is the spatial derivation vector (the gradient operator), ∆ represents the Laplace operator, and • symbolises the scalar product.

THE SIMPLIFIED EQUATIONS

In the left-hand side of Equation ( 1), the absolute acceleration of the fluid particle may be written as

𝑑𝑣 ⃗ 𝑑𝑡 = 𝜕𝑣 ⃗ 𝜕𝑡 -𝑟𝑜𝑡 ⃗⃗⃗⃗⃗⃗ . 𝑣 × 𝑣 (3) 
The second term in this equation allows rotation of particles to appear in the fluid behaviour, which is not admissible for a robot. Furthermore, we are interested in the stationary flow. Thus, the Stokes equations suffice to our purpose. Finally, the fluid density is of no concern to us since we can consider the model as an analogue and normalise the parameter values, so that ρ = 1. Finally, one gets

𝜇∆𝑣 = ∇ ⃗ ⃗ 𝑝 -𝑓 (4) 
together with Equation ( 2) which specifies that the fluid is incompressible. When the viscosity coefficient µ is high (low Reynolds numbers), there is not any vortex having closed streamlines because of the dissipation of energy. Moreover, there cannot exist stable attractors others than the goal points since Equation ( 2) tells us that all the fluid entering a domain must exit. The only limit case corresponds to parts where the liquid remains at rest, but no additional particle can then enter.

The selected fluid model can be expressed by two equations and two boundary conditions. The equations are

𝜇∆𝑣 (𝑥 ) = ∇ ⃗ ⃗ 𝑝(𝑥 ) -𝑓 (𝑥 ) ∇ ⃗ ⃗ . 𝑣 (𝑥 ) = 0 , (5) (6) 
where the unknowns are the velocity vector 𝑣 (𝑥 ) and the pressure 𝑝(𝑥 ), 𝑥 is the absolute position vector.

The boundary conditions are: Since the fluid is incompressible, the output flow is naturally equal to the input one.

Viscous Fluid Behaviour in a 2D Environment

THE DISCRETE MODEL

The environment is modelled by a regular grid covering obstacles and free space. A standard finite difference method based on a constant step h, is used for solving the equations. Stokes' equations on each node i,j of the grid are discretised as follows:

, ( 9 
)
where 𝑣 is the velocity vector and 𝑓 represents the external forces

𝑣 = 𝑣 𝑥 𝑥 + 𝑣 𝑦 𝑦 (10) 
𝑓 = 𝑓 𝑥 𝑥 + 𝑓 𝑦 𝑦 (11) 
In this section, the external forces 𝑓 are null.

First, the simulations confirm (Figure 1) that the flowlines do not enter blind alleys and that no vortex is present. Secondly, when the external forces are set to zero, the fluid velocity increases when one goes far from obstacles (because of viscosity), so that the fastest particle stream is as far as possible from obstacles, i.e., in the middle of corridors.

COMPARISON WITH THE DIFFUSION METHOD

In order to illustrate advantages of the fluid method, we consider here a simple 2D binary environment. To be more specific, we propose a comparison between the fluid method and another typical potential field method: the scent diffusion method. The latter has no local minimum and includes other classical potential field methods based on Laplace's equation. The scent diffusion method, proposed by Schmidt [START_REF] Schmidt | High-speed robot path planning in time-varying environment employing a diffusion equation strategy[END_REF], assumes that the goal point G emits some gaseous substance. While concentration at point G is kept constant, scent diffuses steadily into the surrounding space. Substance reaching obstacles is supposed to be absorbed immediately. To model this phenomenon, the scent concentration vanishes on the obstacle boundaries. The unique path between the starting point and the goal point follows concentration gradient. The diffusion process can be modelled by a dynamic equation

, ( 12 
)
where 𝐶(𝑡, 𝑥 ) is the concentration function, a the diffusion coefficient and g the substance disintegration rate.

The study presented here consider a time invariant workspace where 𝜕Ω represents the obstacle boundaries, where [START_REF] Pinchard | Nondeterministic methods for robot path planning in the presence of uncertainties[END_REF] An initial concentration function is also needed for 𝑥 ≠ 𝑥 𝐺 , ( 14) .

The value of substance disintegration rate g needs however to be carefully chosen. There is a relation between the maximum distance of scent diffusion and the disintegration rate. If the value of g is too high, the concentration reduction is too quick, and then the scent concentration around the starting point remains practically equal to zero.

By using the same finite difference method as before (based on a constant spatial step h and sampling period τ), the scent diffusion equations can be discretised on each grid node as follows: 𝐶 𝑡+1,𝑖,𝑗 = 𝑘(𝐶 𝑡,𝑖+1,𝑗 + 𝐶 𝑡,𝑖,𝑗+1 + 𝐶 𝑡,,𝑖-1,𝑗 + 𝐶 𝑡,𝑖,𝑗-1 ) + (1 -4𝑘)𝐶 𝑡,𝑖,𝑗

𝑘 = 𝑎 2 𝜏 ℎ 2 , 0 < 𝑘 ≤ 1/4 4 (condition of convergence). ( 15 
)
Because of the diffusion process, there will be a minimum time delay before the scent reaches the starting point (Figure 2). So a minimum of Tmin time steps is required before the algorithm is able to find a path between the starting and the arrival point and each iterative required to solve N linear equations (N is the number of grid nodes). So, to find a path, a minimum of T * N linear equations have to be solved. For each feasible solution, a unique trajectory between the two points is found (Figure 3). The solution converges to an equilibrium state of the scent concentration. This steady-state solution is the same as the one calculated by using the Laplace equation.

COMPARISON AND CONCLUSION

Unlike the diffusion method, the fluid method does not compute a unique trajectory but instead many corridors (Figure 1). All corridors join the starting point to the arrival. In each corridor, the middle streamline is the fastest particle stream. By following the middle of corridors the robot security is guaranteed. As many paths are proposed, we can select one which satisfies another performance index. If N is the number of grid points, the computation of the fluid method requires solving a set of 3N sparse linear equations compared with the T * N linear equations needed to solve the scent model. Another advantage is that corridors shape can be controlled by using external forces as it is demonstrated below.

When compared to the other physical analogues our method incorporates the viscosity and the external forces, giving the following advantage.

When the external forces are set to zero, the viscous fluid velocity increases when one goes far from obstacles, so that the streamlines following the gradient of the field are close to parts of the generalised Voronoï diagram of a 2D binary environment. This will provide the robot with a great safety margin with respect to obstacles and impassable steeps.

INFLUENCE OF THE FRICTION FORCE

In the above sections, external forces were set to zero. Let us study any fluid particle during its travel from the starting point to the arrival. The total potential energy of any particle is equal to the pressure difference between the starting and the arrival point (Figure 4). , [START_REF] Rimon | Exact robot navigation using cost functions: The case of distinct spherical boundaries in En[END_REF] where: S is the starting point G is the goal point 𝑇 ⃗ is the trajectory tangent vector 𝑃 = 𝑝 𝐺 -𝑝 𝑆 is the difference of pressure between G and S.

Let us introduce a friction force 𝐹 in our model. This force is opposite to the velocity vector and remains constant all over the domain (Figure 5). In this case, energy is always dissipated by viscous forces as well as friction forces.

, [START_REF] Ryhming | Dynamique des Fluides, Presses Polytechniques Romandes[END_REF] . ( 18)

The mechanical work L • F of the friction force (Equation ( 18)) depends on the length of the fluid particle trajectory L. Adding a constant friction force F suppresses those flow lines which correspond to mechanical works greater than the potential energy due to the difference of pressure P. If the friction force is high, and viscosity work negligible, [START_REF] Stentz | Optimal and efficient path planning for unknown and dynamic environments[END_REF] all fluid trajectories in the solution have a bounded length .

(20) In practice, setting the external friction force at a very high value at the boundaries of the obstacles leads to the required null velocities. By using a constant external force, the length of streamlines can be bounded. Figure 6, where the arrows are roughly proportional to the velocity, gives an example of results in a 2D environment, when a single goal is given. It illustrates the robustness of the planner since several paths are generated, which allows the robot to alter its route in case of unexpected disturbances. Obtaining several paths allows also to consider multiple robot missions.

Then, adding friction suppresses those of the flowlines which correspond to mechanical works greater than the potential energy due to the difference of pressure (Figure 7). Increasing friction restricts the admissible flowlines in a narrow domain about the near-minimum-distance path. Furthermore, it will be shown in Section 4 that a fluid particle can be easily recognised as a robot navigating on an uneven terrain, taking into account the slope and the friction between the wheels and the ground.

Figure 8 shows the same environment with three goal points. Here the pressure drops are adjusted in order to get almost equal flows in the three sinks.

Path Planning on a Real Terrain

THE TERRAIN MODEL

Let us now consider a robotic vehicle navigating on an uneven natural terrain. Whatever the performance index is distance, energy, time one must take into account the terrain model and the corresponding interface between the wheels and the ground (elevation and friction), as well as the vehicle power and force. In this section, the GEROMS experimental site [START_REF] Delail | First campaigns on the GEROMS mobile robot test site[END_REF] is considered.

The navigation area dimensions of the test site are about 60 m × 100 m. The ground represents a part of a planet surface including smooth hills, but also impassable rocks and canyons (Figure 9). A digital elevation model is available, the best resolution of which is 0.1 m. Figure 10 shows some contours of the terrain. The rocks and the steeps will be considered as obstacles.

THE VEHICLE MODEL

A four-wheeled electric vehicle can be used for the tests. A detailed model has been developed [START_REF] Emmanuel | Motion planning for a patrol of outdoor mobile robots[END_REF] which allows us to compute the relationship between motor force and speed, taking into account the motor and gear efficiency. Here, we just need the resistant force, due to the terrain unevenness, in order to include it in the fluid equations. It can be simply modelled as where m is the vehicle mass, g is the gravity, θ is the angle representing the slope in the direction of motion, 𝐾 𝑓 is friction coefficient between the wheels and the ground.

𝑓 = 𝑚𝑔(𝑠𝑖𝑛𝜃 + 𝐾 𝑓 𝑐𝑜𝑠 𝜃), (21) 
The slope and, thus, θ can be computed from the digital elevation model, given the direction of motion of the vehicle.

THE RESULTS USING THE MODEL OF FLUID MECHANICS

A point-to-point planning of the robot on the GEROMS site is illustrated on Figures 11 and12. In this example, the viscosity coefficient is constant over the area of the map, while the friction coefficient is adjusted following Equation ( 21), where for simplicity the sine function is replaced here by its absolute value: no energy recovery is assumed in the descents, then the cost per unit displacement is the same as when climbing. Of course, finer models are available. The pressure drop between source and sink is accordingly chosen for retaining families of paths the overall cost C of which does not exceed a predetermined threshold above the minimum cost 𝐶 * : 𝐶 * ≤ 𝐶 ≤ 𝐶 * (1 + 𝜀).

(

) 22 
The corresponding paths are labelled as acceptable in respect to the given performance criterion.

COMPARISON WITH PATH GENERATION BASED ON THE PRINCIPLES OF GENETIC ALGORITMS

Previous research [START_REF] Pinchard | Nondeterministic methods for robot path planning in the presence of uncertainties[END_REF][START_REF] Pinchard | A genetic algorithm for outdoor robot path planning[END_REF] has pointed out the advantages of using the genetic algorithms versus the computational burden and sensitivity of the classical A * and Aε algorithms when searching the optimal and near-optimal paths in a valued graph associated with the terrain and vehicle models. In relation with path planning, a path is considered as an individual in the genetic algorithm vocabulary, and a set of paths as a population. The cost of a path is taken as opposite to the performance value. An initial population is first obtained by a stochastic gradient method (or by a Metropolis algorithm) from start to goal via randomly computed intermediate points in the discrete search space. Then, the genetic algorithm operators are called for improving the performance of the population:

Selection. The individuals are classified following the performance criterion, and the best ones are more likely to be selected in the following operations for obtaining the next generation, while the unacceptable ones are rejected. If Cmin is the cost of the best individual of the population, the unacceptable paths have costs Cout which satisfy Cout > Cmin(1 + ε).

(23)

Cross-over. Two individuals (the parents) are selected at random in the population, the best ones having a greater chance according to the weights attributed during the selection process. The method is analogous to a roulette wheel where the area of an individual is proportional to its performance rate. Then two via points are randomly computed on each parent path, including the start and goal points, and the two crossing paths are obtained by the stochastic linking method used in the initialisation step. We thus obtain four new paths (the children) which are added to the population for future selection according to their costs. Mutation. Since cross-over tends to generate families ("schemata") converging to neighbour paths, we frequently use a mutation operator to explore new areas in the environment. A path is chosen at random, and two points on it, using the same methods as in the previous operators. Then a point is selected at random (with a uniform distribution) elsewhere in the environment, and is linked to the two points. Suppressing the original subpath between the two points then generates a new path between start and goal. In practice, the original path is duplicated before the mutation and is not deleted.

Figure 13 shows the results on the GEROMS site, using the same extremities and criterion as for experimenting the fluid method. However, the terrain has been triangulated, to reduce the cardinality of the search graph. One can observe, by comparing Figures 11 and13, that the model of fluid mechanics provides similar topological solutions, and an additional family which has not been obtained by mutation in the genetic method within the specified number of generations (60). Furthermore, the triangulation requires a further trajectory smoothing [START_REF] Pinchard | Generalized polar polynomials for vehicle path planning[END_REF] while the fluid method does it naturally.

Conclusion

This paper has revealed the new advantages provided by the addition of viscosity and friction to the classical implementations of well-known harmonic functions. The proposed model, similar to the Stokes equations of the fluid mechanics, allows one to get a set of admissible paths and is applicable to multi-goal problems for robotic vehicles on uneven terrain. The latter planning is obtained without additional computation. The basic advantages have been pointed out through 2-dimensional examples.

A point-to-point application on a real terrain has been compared to the genetic algorithms principles applied to the computation of near-optimal routes and gives similar results, while directly adding continuity in the velocities and accelerations without additional trajectory smoothing. The method is also an interesting way to get preferential routes for indoor industrial robots and motorised aids for the disabled.

Further research will include optimising the terrain meshing in order to reduce the number of equations, and experiments on the site with the robot. The planned routes are also currently under investigation for multiple-robot behaviour optimisation, following the multiple-agent theories with communication.

  (a) zero velocity on the obstacle boundaries and on the limits of the closed fluidtight universe, (b) a pressure gradient normal to obstacle boundaries. { 𝑣 (𝑥 𝐹 ) = 0 ⃗ 𝑥 𝐹 ∈ 𝜕Ω 𝜕𝑝(𝑥 𝐹 ) 𝜕𝑛 ⃗ = 0 ⃗ , 𝑛 ⃗ is the external normal to obstacle boundary ∂Ω (7) To generate a fluid movement, a difference of pressure is applied between the starting position of the vehicle 𝑥 𝑆 (the source of fluid) and its destination point 𝑥 𝐺 (the sink). Without loss of generality, we can write (8) .
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