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Abstract

This paper introduces the exponentially weighted moving average (EWMA) Heston model, a Marko-
vian stochastic volatility model able to capture a wide range of empirical features related to volatility
dynamics while being more tractable for simulations than rough volatility models based on fractional
processes. After presenting the model and its principal characteristics, our analysis focuses on the use of
its associated Euler-discretization scheme as a time-series generator for Monte-Carlo simulations. Using
this discretization scheme, and on the basis of S&P500 empirical time series, we show that the EWMA
Heston model is overall consistent with market data, making it a credible alternative to other existing
stochastic volatility models.

Keywords: Stochastic volatility model, Heston model, quadratic rough Heston model, Zumbach e�ect,
time-reversal asymmetry, volatility distribution, returns distribution.
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1 Introduction

The modeling of asset price dynamics is one of the most important issues in quantitative �nance and has
resulted in a large body of academic research. It has for long been established that the modeling quality
of a price dynamics model depends to a large extent, on its ability to accurately reproduce the empirical
features of volatility dynamics. Di�erent approaches have been applied to take account of this.

The ARCH (or autoregressive conditional heteroskedasticity) family of models is one of the most important
approaches and includes a wide range of variants able to describe the stylized facts of �nancial time series.
For instance, the famous generalized ARCH or GARCH model (Engle 1982) in which the variance process
depends on an exponential moving average of past squared returns provides a good representation of many of
the empirical features of �nancial data, such as tail heaviness, volatility clustering, and feedback e�ect. More
sophisticated extensions such as the EGARCH (Nelson 1991, Bandt and Jones 2006), NGARCH (Lanne and
Saikkonen 2005), FIGARCH (Baillie et al. 1996, Belkhouja and Boutahary 2011) and QGARCH (Borland
and Bouchaud 2005) models, further improved modeling quality by reproducing other features of �nancial
time series including the leverage e�ect, time-reversal asymmetry, and the feedback e�ect.

Although some of these models have continuous-time counterparts this family of models in its canonical
form adopts a discrete-time approach. However, some �nancial issues require a continuous-time framework
which led to the parallel development of other continuous-time stochastic volatility models.

Among these models, in recent years rough volatility models have emerged as the new standard. These
models allow consideration of the empirical roughness of the volatility, and from a more practical point
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of view allow remarkable reproduction of the shape of the implied volatility surface. However, although
rough volatility models are extremely e�cient for capturing empirical phenomena that occur in derivatives
markets, their use as a tool for Monte Carlo experiments, and especially in a risk or asset management
context, has some limitations. First, these models are founded on non-Markovian and non-semimartingale
processes, which makes unbiased simulations based on such models a tricky task (El Euch 2018). In addition
to the strictly technical issues, some empirical features of the realized volatility are not entirely captured
by this type of model (Blanc et al. 2017, Gatheral et al. 2020).

The present paper introduces a new stochastic volatility model - the EWMA Heston model (HM) - which
aims to address some aspects of these di�erent issues. The aim is to propose a model able to reproduce a
broad spectrum of empirical features related to volatility dynamics while being more tractable for simulations
than rough volatility models based on fractional stochastic processes. We show that, while being Markovian,
the EWMA HM can capture the di�erent dimensions of the Zumbach e�ect and accurately reproduce the
joint dynamics of the asset returns and volatility, as well as the empirical returns and volatility distributions
for di�erent time horizons. Unlike most of the academic literature on stochastic volatility models, the present
paper deals not with the model's application for derivative pricing issues but focuses instead on the model's
use as a tool for Monte Carlo experiments.

The paper is organized as follows. First, we present the EWMA HM and its principal characteristics.
Second, we examine a limit-case of the model with interesting properties. Third, we compare the EWMA
HM with stochastic volatility models based on quadratic Hawkes processes (Blanc et al. 2017, Dandapani
et al. 2019, Gatheral et al. 2020), to highlight their similarities and their di�erences. We then focus on use
of its associated Euler-discretization scheme as a time-series generator for Monte-Carlo simulations. Using
this discretization, and based on S&P500 empirical time series, we show that overall the EWMA HM is
consistent with market data, making it a credible alternative to other stochastic volatility models.

2 The EWMA Heston model

2.1 Presentation of the model

Let us introduce the EWMA HM de�ned by the following stochastic di�erential equations (SDEs) system:

dSt
St

= µtdt+
√
VtdWt

dVt =
1

τ1

(
ν(mt)

2 − Vt
)

dt+ ξν(mt)
√
VtdBt

dmt = Λ1 ·
(

dSt
St
− ηµtdt

)
− Λmtdt

(1)

where {W}t∈T and {B}t∈T are Brownian motions such as
〈
dW, dB

〉
t

= ρ ∈ [−1 : 1], τ1, ξ ∈ R+, η ∈ {0, 1},
1 a d × 1 vector of ones, mt ∈ Rd, Λ a d × d diagonal matrix as ∀j ∈ {1, ..., d},Λj,j ∈ R+, and with
ν : Rd → R+.

The speci�city of this extension of the HM lies in the function ν. Whereas in the standard HM ν2 is a
constant and corresponds to the "long variance" of price, here it is an attraction variance function of the
d-dimensional random vector mt solution of the third SDE of (1)

mt = m0e
−Λt +

∫ t

0

e−Λ(t−u)Λ

(
dSu
Su
− ηµudu

)
.

Therefore, each coordinate ofmt corresponds to an exponential weighted moving average (EWMA) estimator
of the price trend adjusted (i.e. η = 1) or not (i.e. η = 0) by its deterministic component. Due to the
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dependence betweenmt and the attraction volatility νt, the model is able to capture the leverage e�ect, even
if {W}t∈T and {B}t∈T are uncorrelated. More importantly, this property makes the EWMAHM structurally
adapted to capturing the "strong Zumbach e�ect" which corresponds to the fact that "conditional dynamics
of volatility with respect to the past depend not only on the past volatility trajectory but also on the
historical price path" (Gatheral et al. 2020 p.3). The properties of the EWMA HM means that it is
included in the family of path-dependent volatility models (Guyon 2014). Note also that the genericness of
the EWMA HM means that it is able to capture a very wide range of path dependencies through attraction
volatility. For instance, exploiting the results in Bochud and Challet (2007) or Abi Jaber (2019), makes
it possible to use a speci�cation of Λ and ν(.) which enables a memory that decays as a power law to be
mimicked.

After setting out this general framework, we now focus on an EWMA HM where η = 0 and mt depends on
a unique EWMA parameter (i.e. mt is a scalar), de�ned by the following SDE system:

dSt
St

= µtdt+
√
VtdWt

dVt =
1

τ1

(
νt

2 − Vt
)
dt+ ξνt

√
VtdBt

dνt =

(
ψ

νt − ν
− νt + ν + α

)
dt

τ2
− β

τ2

dSt
St

(2)

where V0, ν0, ψ, τ1, ν, β ∈ R+ and α ∈ R. We assume also that ∀ t ∈ T the Feller condition is respected1:

2νt
2

τ1
>
(
ξνt

)2

2

τ1
> ξ2.

At �rst sight, because the attraction volatility is described here by its dynamic through an SDE, membership
of this model in the family of EWMA HMs de�ned above is not obvious. To highlight this and fully
understand the concrete e�ects of the historical price path on the volatility in this EWMA HM, we need to
consider the SDE describing attraction volatility. First, notice that if β = 0, given ν0 > ν, the dynamic of
the attraction volatility is described by an ordinary di�erential equation (ODE) that converges as follows2:

lim
t→+∞

ν? =
ν + α+

√
α2 + 4ψ

2
.

Therefore, in this speci�c case (where β = 0), the EWMA HM converges toward a standard HM. To consider

the dynamics of νt in the general case, we set f
(
νt, t

)
= νte

t
τ2 and apply the Itô lemma:

df
(
νt, t

)
=
e
t
τ2

τ2
νtdt+ e

t
τ2 dνt

=
e
t
τ2

τ2

(
ψ

νt − ν
+ ν + α

)
dt− βe

t
τ2

τ2

dSt
St

.

Thus, the solution of the SDE is

νt = ν0e
− t
τ2 +

1

τ2

∫ t

0

e
1
τ2

(u−t)
(

ψ

νu − ν
+ ν + α

)
du− β

τ2

∫ t

0

e
1
τ2

(u−t) dSu
Su

.

Therefore, we have:

lim
t→+∞

νt = α+ ν +
1

τ2

∫ t

0

e
1
τ2

(u−t) ψ

νu − ν
du− β 1

τ2

∫ t

0

e
1
τ2

(u−t) dSu
Su︸ ︷︷ ︸

mt

.

1The fact that the Feller condition ∀ t ∈ T is respected implies that v stays strictly positive (as in the standard Cox-
Ingersoll-Ross (CIR) processes) but has yet to be demonstrated.

2See appendix A.
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This equation further explains the relationship between the historical price path and attraction volatility.
First, we can see that this relationship goes through mt an EWMA of the past returns of {S}t∈T clarifying
membership of the model of (1). This EWMA is the solution of the following SDE when m0 = 0

dmt =
1

τ2

(
dSt
St
−mtdt

)
.

Further, from a statistical point of view, this process has a theoretical foundation since it can be considered
the Kalman �lter estimator of an unobservable trend (Harvey 1990, Bruder and Gaussel 2011, Jusselin et
al. 2017). The sensitivity of the attraction volatility to this trend estimator is de�ned by the parameter
β. Since β is positive, the model is able to capture the leverage e�ect, even when {W}t∈T and {B}t∈T are
uncorrelated. This aspect of the EWMA HM makes it more appropriate to model stock market dynamics
where the empirical leverage e�ect is stronger than in other markets such as foreign exchanges which have no
leverage e�ects. Another important and related element is the asymmetry between the positive and negative
trends in attraction volatility. The fact that the repulsion force approaches in�nity when the attraction
volatility tends toward ν, means attraction volatility cannot fall below ν. Therefore, ν constitutes the �oor
attraction volatility value which means that a long period of a strong positive trend leads to a period where
attraction volatility remains around ν. Conversely, long periods of a strong negative trend make ν converge
toward an a�ne relationship of mt. Indeed, a negative trend increases attraction volatility which decreases
the repulsion force produced by ψ

νt−νdt. Consequently, the more negative mt, the closer dνt becomes to

−βdmt. The speed of the convergence depends on the parameter ψ. All other things being equal, the
lower the value of ψ, the greater the rate of convergence toward this situation. Furthermore, similar to the
parameter α but related less directly, the value of ψ shows a positive relation to the expected attraction
volatility.

These features of the attraction volatility process allow a better speci�cation of the variance process. Based
on the above results, the spot variance can be written as:

Vt = V0e
−t
τ1 +

1

τ1

∫ t

0

e
1
τ1

(u−t)νu
2du+ ξ

∫ t

0

e
1
τ1

(u−t)νu
√
VudBu,

νt = ν0e
−t
τ2 +

1

τ2

∫ t

0

e
1
τ2

(u−t)
(

ψ

νu − ν
+ ν + α

)
du− β

τ2

∫ t

0

e
1
τ2

(u−t) dSu
Su

.

Also, the variance process can be written such that it more clearly demonstrates the impact of the past
trend on the variance:

Vt = V0e
−t
τ1 +

1

τ1

∫ t

0

e
1
τ1

(u−t)(zu − βmu)2du+ ξ

∫ t

0

e
1
τ1

(u−t)(zu − βmu)
√
VudBu,

zt = ν0e
−t
τ1 +

1

τ2

∫ t

0

e
1
τ2

(u−t)
(

ψ

νu − ν
+ ν + α

)
du.

The above expression emphasizes that the strong Zumbach e�ect is encoded by the model since the volatility
is a function of past price trends throughmt. It shows also that the model reproduces the quadratic feedback
of the price trends on volatility. Additionally, note that {v}t∈T exhibits a very interesting mathematical
property related to its dependence on the past. We see that in contrast to rough volatility models (El Euch
2018) the variance process in the EWMA HM is Markovian. This Markovian property makes the model
very tractable for Monte-Carlo simulations based on a discretization scheme of the associated SDE system.

2.2 The thresholded version of the model as a limit-case

Following our presentation of the EWMA HM, in the remainder of the article we focus on the case 2 where
ψ tends toward zero while remaining strictly positive. In this limit case, attraction volatility is given by:

νt = ν + (α− βmt)+. (3)
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Thus, the SDE system associated with the EWMA HM can be rewritten as:

dSt
St

= µtdt+
√
VtdWt

dVt =
1

τ1

(
νt

2 − Vt
)

dt+ ξνt
√
VtdBt

dmt =
1

τ2

(
dSt
St
−mtdt

)
,

where νt is equal to (3).

Since β is strictly positive, there exists a threshold value of m below which the attraction value of the
volatility follows an a�ne relation with mt (see �gure 1). This critical point is reached when α − βmt is
zero. Thus, this value is de�ned by

m̄ =
α

β
.

Using m̄, we can rewrite the attraction volatility as follows:

νt = ν + β(m̄−mt)+.

Equivalently, the attraction variance is equal to

νt
2 = ν2 + 1{mt<m̄}

(
β2(m̄−mt)

2 + 2νβ(m̄−mt)
)
.

Thus, when the past trend of the asset measured by an EWMA of its past returns is below the threshold
value m̄, all variations of this EWMA result in a proportional change in its attraction volatility:

dνt
dmt

=

{
0 for mt ≥ m̄
−β else.

This result also allows us to deduce the occurrence of a reversal e�ect if the past market trend is negative. Let
us assume that the market portfolio price dynamics follow the SDE system associated with the thresholded
version of the EWMA HM, and the trend parameter of the price is given by the following a�ne relationship:

µt = r + λ
√
Vt,

where r is the free-risk rate. To determine the type of relationship linking the respective dynamics of m
and µ, we consider the following simpli�ed case:

lim
τ1,ξ→0

Vt = νt
2.

Under this hypothesis, we have

dµt
dmt

=

{
0 for mt ≥ m̄
−βλ else.

Consequently, in this simpli�ed framework, if mt < m̄, the joint dynamics of m and µ are negatively
correlated even if the two Brownian motion {B}t∈T and {W}t∈T are independent (i.e. ρ = 0). More
generally, this relation remains true if τ1 is strictly positive and ρ ∈ [−1 : 0]. In �nancial terms, this
relationship can be viewed as a reversal e�ect, in the sense that a negative past trend (such as mt < m̄)
increases the actual price trend. However, note that unlike the assumption in behaviorist explanations
(Dissanaike 1997), this model reversal e�ect is not a market anomaly. Indeed, the increase in the returns
trend of a given asset following a strong fall in its price is due not to the correction of a market overreaction
but to a pure market premium e�ect. In addition, this reversal e�ect emerges only if mt < m̄ which causes
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an asymmetry depending on the type of trend. Thus, positive trends such as mt > m̄ do not produce this
type of reversal e�ect which results from a movement in the attraction volatility.

Figure 1: The relationship between the attraction volatility process and the trend parameter mt in the
thresholded EWMA Heston model.

2.3 Comparison with volatility models based on quadratic Hawkes processes

The EWMA HM has some links to the quadratic volatility models introduced by Blanc et al. (2017) and
developed by Dandapani et al. (2019). To highlight the similarities between these models, we focus on the
case of the thresholded version of the EWMA HM where µ, ξ, τ1 = 0. In this speci�c case, we have:

dSt
St

=
√
VtdWt

Vt = ν2 + 1{mt<m̄}
(
β2(m̄−mt)

2 + 2νβ(m̄−mt)
)

mt =
1

τ

∫ t

0

e
1
τ (u−t) dSu

Su
.

This system of equations can be compared with the system of equations satis�ed by di�erent quadratic
volatility models. First, let us focus on the pure quadratic case of the volatility model introduced by Blanc

et al. (2017), where the kernel function takes the following exponential form k(t) =
√

2
τ e
−τt. For simplicity,

we describe this model as the pure quadratic volatility model (PQVM). Notice that both the PQVM and
the EWMA HM satisfy the following equations:

dSt
St

=
√
VtdWt

Vt = ν2 + bt
(
bt(m̄−mt)

2 + 2σ(m̄−mt)
)

mt =
1

τ

∫ t

0

e
1
τ (u−t) dSu

Su
.
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with respectively

Pure Quadratic Volatility Model EWMA Heston Model

bt

√
2
τ 1{mt<m̄}β

m̄ 0 α
β

σ 0 ν

such as τ, β, ν ∈ R+, γ ∈ [0 : 1[.

Using this formulation, we can see that these two models present several similarities. The most impor-
tant one is that, in both models, the variance is a quadratic function of an EWMA of past returns. Note
however that, in contrast to the PQVM, in the EWMA HM the linear term in mt is non-zero. This dif-
ference stems from the linear sensitivity to mt of the volatility (if mt < m̄) in the EWMA HM, while in
the PQVM, it is the variance that is linearly sensitive to mt. Another important speci�city of the model
which constitutes one of the main di�erences with the various quadratic volatility models discussed in the
literature (Blanc et al. 2017, Dandapani et al. 2019, Gatheral et al. 2020) is the switching behavior caused
by the indicator function 1{mt<m̄}. This is con�rmed if we consider the quadratic rough HM (QRHM). In
contrast to the PQVM, the QRHM encodes the empirical asymmetry of the feedback e�ect. However, this
asymmetry is not captured in exactly the same way as in the EWMA HM. To highlight this point, note
that both the EWMA HM considered and the QRHM described in section 4 in Gatheral et et al.'s (2020)
article respect the following equations:

dSt
St

=
√
vtdWt

Vt = θ̄ + bt
(
bt(m̄−mt)

2 + 2σ(m̄−mt)
)

mt = m0 −
∫ t

0

f(t− s)msds+

∫ t

0

f(t− s)ηdSu
Su

,

with respectively:

Quadratic Rough Heston Model EWMA Heston Model

bt a 1{mt<m̄}β

σ 0 p

η ν 1

f(u) uα−1 λ
Γ(α) τ

such as ν, a, λ, τ, p ∈ R+, α ∈ [0.5 : 1].

Again, one of the main di�erences between the two models concerns the parameter bt, and the related
switching behavior of the EWMA HM considered. Whereas in the QRHM this parameter is a positive con-
stant, in the EWMA HM it is the product of a constant and an indicator function. This di�erence implies
an alternative way to capture the empirical asymmetry between positive and negative trends in volatility.
In the QRHM, this asymmetry is covered only by the parameter m̄. In concrete terms, this means that
even though positive and negative trends have asymmetric impacts on the volatility, a strong positive trend
such as mt > m̄ increases volatility in the QRHM. However, since mt > m̄, the trend measured by mhas
no impact on the volatility in the EWMA HM considered. In addition, while in the QRHM the variance is
an a�ne function of the squared di�erence between mt and m̄, the variance depends also on the absolute
value of this di�erence. At the same time, unlike in the PQVM, the trend parameter min the QRHM is
not an EWMA of past returns. In this case the kernel used to model the dependency between past price
trends and spot volatility, is a rough one. This change has several important implications. First, the model
is no longer Markovian in terms of its variables (S, V ). Second, an important consequence of this choice is
that the "memory" of m decays as a power law in the QRHM, while in the EWMA HM the memory decays
exponentially. Note however that in both cases, m is highly sensitive to recent returns. Third, the reasons
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for the emergence of irregular behavior of the volatility over short time scales are di�erent between the
QRHM and the general EWMA HM. In the QRHM, the roughness of the volatility paths stems from the
characteristics of its power law kernel whereas in the EWMA HM, this erratic volatility process behavior
emerges under certain conditions due to antagonist e�ects produced on the one hand by the reversal e�ect
of the variance process, and on the other hand by the volatility of this variance.

2.4 Model discretization scheme

As referred to in the introduction, a major strength of the EWMA HM compared to rough volatility models
is its ease of use for Monte-Carlo simulations. The simplest way to run discrete-time simulations of the
thresholded version of the EWMA HM is to use a Euler-type discretization scheme (Maruyama 1955),
analogous to a full truncated Euler scheme for the standard HM (Lord et al. 2010). We thus propose the
following simple discretization scheme 3:

St+1 = St + St
(
µt∆t+

√
(Vt)+Zt+1

)
mt+1 = mt +

1

τ2

(
St+1 − St

St
−mt∆t

)
νt+1 = ν + max(0, α− βmt+1)

Vt+1 = Vt +
1

τ1

(
νt+1

2 − (Vt)+

)
∆t+ ξνt+1

√
(Vt)+

(
ρZt+1 +

√
1− ρ2Xt+1

)
,

where Xt and Zt are i.i.d. random variables associated with the Gaussian distribution N (0,∆t).

Regarding the trend component of {S}t∈T , for the following simulations we assume µt = λ
√
Vt. This

implies replacing µt with λ
√

(Vt)+ in the discretization scheme. In addition, to simulate future potential
volatility trajectories for an asset from a given date t, requires mt to be estimated. The natural estimator
of this parameter is given by the following discrete EWMA:

mt =
1

τ2

n∑
i=1

e−
i∆t
τ2

St−i∆t − St−(i+1)∆t

St−(i+1)∆t
.

To �x the value of n, we can write that:

1

τ2

∫ t

t−n∆t

e
1
τ2

(u−t)du = 1− e−
τn∆t
τ2 .

Consequently, for a given proportion γ of the total weighting of the EWMA (in a continuous framework),
we have:

γ = 1− e−
τn∆t
τ2

n = −τ2
log(1− γ)

∆t
.

The above equation allows us to �x n, given τ2,∆t and γ.

3The convergence of this discretization scheme is still to be demonstrated.
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3 Consistency of the model with market data

To assess the e�ectiveness of the model for capturing empirical �nancial phenomena, we use as market data
the price and volatility dynamics of the S&P500 for the period July 23, 2001, to July 23, 2021. To estimate
the volatility, we use the square root of the realized variance computed from 5-min samples provided by
the Oxford-Man Institute of Quantitative Finance4. We compare these market data with a set of synthetic
data comprised of 1000 simulations for each of 20 years, generated from the Euler scheme of the thresholded
version of the EWMA HM, using a time step equal to 1

25200 expressed in years. To �t the model, we use
the ad-hoc estimation procedure presented in appendix B. This restults in the following parameters:

λ ρ τ1 ξ τ2 ν α β

0.5575 -0.465 0.0013 42.95 0.276 0.0595 0.1033
√

2τ
π

Table 1: The parameters obtained from the calibration procedure.

These parameter values need some explanation. First, let us consider the value taken by λ which is setting
the long-term drift. To obtain an order of magnitude for the expected value of the drift (i.e. E[µt]), we can
use the product of the mean of the realized volatility of the S&P500 by this parameter λ as a proxy. The
mean of the realized volatility is 13.1%, so the value obtained is 7.3% (0.5575× 0.131 ≈ 7.3%). This rough
estimation of E[µt] is consistent with the annualized empirical daily mean of the returns which is equal
to 7.3% (the S&P500 empirical mean of daily returns is equal to 0.028%: thus (1 + 0.028%)252 ≈ 7.3%).
Also interesting is that the value of τ1 is extremely low compared to the range of values it takes in the
standard HM �tted on market data (Mrázek 2017). Since the unit of τ1 is in years, τ1 equal to 0.0013
means that the average duration of the deviation of the variance from this attraction value is of the order of
0.5 days

(
0.0013 × 365 ≈ 0.5

)
. In other words, the reversion of the variance process toward the attraction

variance is a short term phenomenon. This should understood in the context of the very high value taken
by ξ, implying that over very short time scales the variance process is dominated by randomness. The
combination of these two e�ects - high randomness of Vt at the time scale dt and short time reversion
toward νt

2 - results in erratic volatility behavior over the short term, and allows the roughness of empirical
volatility paths to be mimicked. Consequently, while in the standard HM the volatility serial correlation
is highly dependent on τ1, here, it depends almost exclusively on the attraction variance νt

2. As a result
and given the value of τ2, the autocorrelation of the volatility depends on a medium-term price trend of the
order of 3.3 months

(
0.276 × 12 ≈ 3.3

)
, and not directly on past endogenous volatility movements. Thus,

there is a decoupling between the short and the longer-term behavior of the volatility, a property whose
importance was emphasized notably by Bennedsen et al. (2016).

3.1 The relationship between EWMAs of returns and the volatility

If the EWMA HM is consistent, the market data should exhibit an a�ne relationship between the EWMA
of past returns and realized volatility when the EWMA of past returns is signi�cantly negative. However, if
the EWMA of past returns is signi�cantly positive, these two variables should be fairly independent. These
relationships are con�rmed in �gure 2. Another remarkable fact that emerges in relation to the optimal
slope coe�cient β (optimal in the least square sense) of the regression of the form

√
Vt = ν+(α−βmt)+ +εt

is that for di�erent past EWMAs of the returns (with di�erent values of τ), the optimal slope coe�cient is

very close to5:
√

2τ
π .
√

2τ occurs because it corresponds to the inverse of the asymptotic standard deviation

of an EWMA with parameter τ of a Brownian motion6. The rationale for
√
π, is more ambiguous. Although

we do not formulate an explicit hypothesis in the present paper, this value could be related directly to the
fact that

√
π corresponds to 1

Γ(0.5) , with Γ(.) the gamma function. However, the fundamental reason for

this relationship has yet to be explained.

4The data are available at: https://realized.oxford-man.ox.ac.uk/data.
5For other examples of this empirical relationship, see appendix D.
6See appendix C.
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(a) τ equal to 0.15 (in years) (b) τ equal to 0.3 (in years)

(c) τ equal to 0.45 (in years) (d) τ equal to 0.6 (in years)

Figure 2: The empirical relationship between the realized volatility of the S&P500 and the EWMAs of
its past returns for di�erent values of τ expressed in years. The red lines are regressions of the form
√
Vt = ν + (α − βmt)+ such as the associated regression lines have all a slope coe�cient equal to

√
2τ
π .

These regressions are respectively associated with the following R-squared: 0.558,0.547, 0.523, 0.498.

3.2 The dynamics of price and volatility

Let us begin our comparison of the synthetic data produced by the EWMA HM and the S&P500 empirical
data, by focusing on the joint price and volatility dynamics. A general observation that emerges from this
comparison (see �gures 3 and 4) is that the simulated price and volatility trajectory features resemble those
of the empirical data. In particular, in both cases, volatility spikes immediately after large negative returns
of the index and then decreases gradually. Also, in each case the long positive price trends are periods
where volatility is relatively stable and low. If we consider the volatility dynamics more speci�cally, we
see that the model is able also to capture the empirical coexistence of long periods of low volatility with
other periods when volatility is very high. Also, we can see that the empirical roughness of the volatility
path understood as irregular behavior over short time scales is accurately reproduced by the model7. These
general observations require completion by a more in-depth comparison between the features characterizing
the volatility dynamics produced by the model and the features of the realized volatility. We next focus on
two features of the volatility: its autocorrelation function (ACF) and its roughness.

7Here the focus is not on the roughness understood according to its rigorous mathematical de�nition (Bennedsen et al.

2016) but on the visual features of the volatility paths.
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Figure 3: Empirical joint evolution of the S&P500 and its annualized daily realized volatility (5 min samples
estimator) over 20, 3 and 1 years.
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Figure 4: Joint evolution of the S&P500 and its associated volatility over 20, 3 and 1 years simulated from
the �tted EWMA Heston model.
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3.2.1 The autocorrelation function of the volatility process

The serial correlation of the volatility is an important feature of its dynamics. In �gure 5 we observe that
the ACF of the simulated volatility paths is generally consistent with the market data. However, the short-
medium term (between 1 and 60 trading days) and the longer-term must be analyzed separately. In the case
of small lags (less than 60 trading days), the autocorrelations associated with the volatility paths generated
by the model are very close to their empirical counterparts. Over this time horizon, not only are all empirical
autocorrelations within the model's estimated con�dence intervals8, they are also close to their expected
values. In the case of longer lags, the situation changes slightly. The ACF exhibits faster decay in the model
compared to the empirical data. However, this di�erence between the empirical and the model data should
be tempered by the fact that the empirical autocorrelations are within the 95% con�dence interval of the
model. Consequently, it is di�cult to be de�nitive about the capacity of the model to account accurately
for the ACF in the real volatility process. However, the academic literature (Ding et al. 1993, Cont 2001)
tends towards the hypothesis that the model ACF decays too rapidly compared to the market data. This
fast decay is due to the fact that the ACF of the volatility is determined primarily by an exponential kernel
through the trend process mt. A possible modi�cation of the thresholded version of the EWMA HM model
allowing a volatility process with a more �exible memory structure would involve using a linear combination
of several EWMAs of past returns rather than a unique EWMA. In these cases, mt is replaced by m̄t de�ned
as follows:

m̄t =

d∑
k=1

wk

∫ t

0

e−τk(t−u) dSu
Su

In this framework, the model still belongs to the family of EWMA HMsl introduced previously (1), but no
longer corresponds to the speci�c case of (2).

(a) Short/Medium term autocorrelation (b) Medium/Long term autocorrelation

Figure 5: Autocorrelation of the volatility in the short and longer-term.

3.2.2 The question of volatility roughness

Although visually the EWMA HM would seem to capture the empirical roughness of the volatility paths,
this requires deeper investigation. First, note that the EWMA HM is not a rough volatility model. Indeed,
the EWMA HM is not based on a fractional process similar to a fractional Brownian motion. Rather, it
is a di�usion model whose two sources of randomness are standard Brownian motions which by de�nition

8This con�dence interval is estimated using the 2.5% and 97.5% simulation quantiles.
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both have a Hurst exponent equal to 0.5. However, Rogers (2019) and more recently Cont and Das (2022)
show that Brownian di�usion models may mimic some of the features of rough models of interest for volatil-
ity modeling. Cont and Das emphasize also that the empirical roughness of the volatility paths might be
caused not by the volatility process but by a microstructure noise. Here, we leave aside consideration of the
origins of the empirical rough behavior of realized volatility and adopt a phenomenological approach aimed
at evaluating how well the EWMA HM mimics the empirical roughness of the volatility paths. To do this,
we measure the roughness of both the empirical and model volatility time series using two di�erent methods.

The �rst method is the most popular in the academic literature. It consists of estimating a roughness
index by running an ordinary least square (OLS) regression of the form:

log
(
γ(k∆, 2)

)
= c+ a · log(k∆) + εk, k = 1, ...,m

where ∆ is the time step between observation of the volatility process, m is a bandwidth parameter, and
γ(k∆, 2) is the empirical second order variogram de�ned as follows:

γ(k∆, 2) =
1

N − k

N−k∑
i=1

| log(σ(i+k)∆)− log(σ∆i)) |2,

where N is the number of observations in the sample considered. Due to the nature of the data used,
sampling in ∆ is conducted daily, and not on a logarithmic scale. In order to remove the bias induced by
this sampling, we weight each observation k by

wk = log(k + 1)− log(k).

The slope coe�cient â obtained from the regression is used to estimate a roughness index, denoted Ĥ, equal
to 0.5â. In the case of a rough process, Ĥ can be considered a Hurst exponent estimator (Gatheral 2018).
However, in the present case, Ĥ is treated only as a metric to compare the behaviors of the real and the
EWMA HM volatility processes.

The second method used to measure the roughness of time series was proposed by Bennedsen et al. (2016).
Unlike the �rst method described, it has the advantage of being able to capture a possible non-a�ne
relationship between γ(k∆, 2) and log(k∆). The method consists of a non-linear least squares (NLLS)
regression of the form

γ(k∆, 2) = c+ b(k∆)2a+1 + εt, k = 1, ...,m

The index Ĥ is equal to â+ 0.5.

Table 3 reports the roughness index Ĥ of the S&P500 and simulated volatilities obtained using OLS and
NLLS methods with di�erent bandwidth parameters.

Bandwidth parameter
10 20 60 125 250 500 750

Ĥ of S&P500 data (OLS regression) 0.137 0.136 0.137 0.135 0.13 0.126 0.124

Ĥ of model data (OLS regression) 0.112 0.121 0.142 0.15 0.149 0.14 0.134

Ĥ of S&P500 data (NLLS regression) 0.082 0.078 0.116 0.072 0.046 0.091 0.07

Ĥ of model data (NLLS regression) 0.054 0.126 0.283 0.173 0.042 -0.071 -0.118

Table 2: Roughness index Ĥ of both S&P500 and simulated volatilities computed from OLS and NLLS
methods with di�erent bandwidth parameters.

First, when considering theĤ exponents obtained from both estimation methods, while the realized volatility
Ĥ depends only slightly on the bandwidth parameters used, this parameter has a more signi�cant in�uence
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on the value of Ĥ for the volatility generated by the model. The reason for this di�erence becomes clearer
when looking at �gure 6. In terms of the empirical data, the relationship between log

(
γ(k∆, 2)

)
and log(k∆)

is captured very well by an OLS model, regardless of the time scale considered. However, the relationship
between these two variables is s-shaped in the case of the volatility process generated by the model: it is
convex up to about 50 trading days and then turns concave. Therefore, the model does not capture the
empirical relationship linking the log expected value of the increments of log-volatility and the log time scale.
This is quite important because this empirical relationship is a feature which characterizes volatility behavior
regardless of the type of asset considered (Gatheral 2018). The signi�cance of this model limitation requires
some quali�cation insofar as over reasonable time scales the distribution of the log-volatility increments
generated by the model remain close to the empirical increments, as shown in �gure 7. This is re�ected in
the fact that the distributions are close to Gaussian for both the empirical and simulated data. Furthermore,
the low (but signi�cant) divergence between the variances in the model log-volatility increments and their
empirical counterparts over di�erent time scales explains a relatively similar order of magnitude of the OLS
estimators of the Hurst coe�cient. In contrast, the more important divergence of the exponent Ĥ obtained
using NLLS is explained by the fact that this regression captures the nonlinearity of the relationship linking
γ(k∆, 2) and log(k∆). In addition, it should be noted that Ĥ takes negative values, which emphasize that
in the present context it is not relevant to consider Ĥ as a Hurst exponent estimator (see Mandlebrot 2003).
Nevertheless, in the same way as a volatility process with a long-range autocorrelation, this model limitation
could be �xed by replacing mt with a linear combination of multiple EWMAs of past returns.

Figure 6: The relationships between log
(
γ(k∆, 2)

)
and log

(
k∆
)
(left plot) and between γ(k∆, 2) and k∆

(right plot): S&P500 data vs EWMA Heston Model.
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(a) 1 trading day (b) 5 trading days

(c) 10 trading days (d) 60 trading days

(e) 250 trading days

Figure 7: Log-volatility increments distribution for di�erent time horizons: S&P500 data vs EWMA Heston
Model.
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3.3 Volatility and log-returns distributions for di�erent time horizons

In what follows we focus on the ability of the model to reproduce the empirical log-returns and average
volatility distributions for di�erent time horizons. First, it should be pointed out that assessing the quality
of the model on these criteria using standard statistical tools is not straightforward. These probability
distributions do not originate from i.i.d. samples but from realizations of a path-dependent process. The
practical implications of this are that more often than not, the results of a Kolmogorov-Smirnov test on log-
returns or volatility distributions from two di�erent simulations of the �tted model (thus with the same set of
parameters) reject the null hypothesis at a 99% con�dence level. Consequently, rather than proceeding with
this type of statistical test based on the i.i.d. data assumption, it is better to check whether the di�erent
moments of the distributions from the market data are in the same range as those emerging from the �tted
EWMA HM simulations. To do this, we use the already mentioned synthetic set of 1000 simulations for
each 20 years. These simulations allow us to compute the mean as well as the 1st and the 9th deciles of the
�rst four moments of the log-returns distributions and the average volatility distributions for di�erent time
horizons. Tables 3 and 4 report these metrics and the corresponding empirical moments.

Figure 8: Empirical daily log-returns time-series of the S&P500 between July 23, 2001, to July 23, 2021.

Figure 9: Example of daily log-returns time series from the �tted EWMA Heston model over 20 years.
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3.3.1 The log-returns distributions

The log-returns distributions generated by the model are mostly in line with those based on the empirical
data. For example, with the exception of the 1 trading day time horizon, the four �rst moments of the
empirical log-returns distributions are between the corresponding 1st and the 9th deciles of the model for
all the other time horizons considered 9. In addition, the relationships between the moments of the log-
returns distribution and the time-horizon are generally well reproduced by the model. In particular, as
per the market data, in the short-medium terms, the log-returns distribution becomes more and more
negatively skewed as the time horizon lengthens. This increasing asymmetry emerges clearly in �gure
for both the empirical and model distributions. However, the relationship is not monotonic and beyond a
certain time-horizon threshold (approximately 65 trading days for the synthetic data), the skewness of the
log-returns distribution decreases and in the long run tends to zero. In the case of the fourth moment of
the log-returns distributions, the negative convex relationship between the value of the kurtosis and the
time-horizon produced by the model is coherent also with the market data. Another characteristic of the
empirical log-returns distributions is their heavy tails. Again, the tails of the log-returns generated by the
model are mostly consistent with the empirical data, as shown in �gure 13. This means that the model is
able to capture the possibility of large price swings, a sign of the "wild randomness" of �nancial markets
(Mandelbrot and Hudson 2005). However, despite these model qualities, it should be noted that unlike
the log-returns distributions associated with longer time horizons, the model daily log-returns distributions
exhibit signi�cant divergence from the empirical distribution (see �gure 13). This divergence is demonstrated
in the too low standard deviation and a too negative skewness associated with the model distribution
compared to the counterpart empirical data. This raises the question of the possibility of a normal source
of randomness to accurately capture price �uctuations over short time scales.

3.3.2 The volatility distributions

We now consider the average volatility distributions for di�erent time-horizons (see table 3 and �gure 14),
and observe a consistency between the model and the market data similar to that observed for the log-returns
distributions. Thus, for all the time horizons considered, the �rst four moments of the average volatility

Figure 10: Distribution of the volatility process.

distributions computed using the market data are
between the corresponding 1st and the 9th deciles
of the model and are close to their expected val-
ues. In addition, in the case of both the empirical
data and the data generated by the model, the stan-
dard deviation, skewness, and kurtosis of the aver-
age volatility distribution adopt a decreasing con-
vex relationship with the time horizon considered.
More generally, the shapes of the model and empiri-
cal distributions are very similar particularly in the
case of the daily annualized volatility distribution
generated by the model which almost exactly repli-
cates the empirical distribution associated with the
S&P500 data. Although the divergence between the
empirical and the model average volatility distribu-
tions increases slightly for longer time horizons, the
goodness of �t remains acceptable. In addition we
observe that the distribution of the volatility pro-
cess generated by the model is very close to both
the log-normal and inverse gamma distributions, as
shown in �gure 10.

9The 1st and 9th deciles can be considered proxies for the lower and upper bounds of the 80% con�dence intervals of the
moments of the model.
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Time horizon
1 5 10 20 60 125 250 500 750

Mean of market data 0.0003 0.0013 0.0026 0.0051 0.0154 0.0321 0.0641 0.1282 0.1923

Avg. mean of sim. 0.0002 0.001 0.0019 00038 0.0114 0.0237 0.0474 0.0949 0.1423

1st decile of mean of sim. -3e-6 -1e-5 -3e-5 -5e-5 -0.0002 -0.0003 -0.0007 -0.0013 -0.002

9th decile of mean of sim. 0.0004 0.0018 0.0035 0.007 0.0211 0.0439 0.0878 0.1757 0.2635

Std. dev. of market data 0.0113 0.0245 0.0338 0.0476 0.0789 0.1178 0.1673 0.2102 0.2341

Avg. of st.deviation 0.0088 0.0233 0.0333 0.047 0.0791 0.1098 0.1479 0.1974 0.2304

1st decile of std. deviation of sim. 0.0074 0.0193 0.0272 0.0373 0.0581 0.0751 0.0931 0.1168 0.1287

9th decile of std. deviation of sim. 0.0105 0.028 0.0407 0.0581 0.103 0.1502 0.2132 0.3011 0.3631

Skewness of market data -0.39 -0.97 -1.46 -1.7 -1.49 -1.71 -1.51 -1.52 -1.2

Avg. skewness of sim. -1.12 -1.19 -1.35 -1.55 -1.77 -1.64 -1.25 -0.79 -0.55

1st decile of skewness of sim. -1.77 -1.93 -2.22 -2.62 -2.9 -2.72 -2.24 -1.58 -1.24

9th decile of skewness of sim. -0.63 -0.61 -0.66 -0.78 -0.92 -0.8 -0.48 -0.12 0.08

Kurtosis of market data 9.32 7.77 8.65 8.42 5.25 5.57 3.3 2.66 0.72

Avg. kurtosis of sim. 13.23 10.6 9.87 9.04 7.03 4.81 2.3 0.53 -0.09

1st decile of kurtosis of sim. 5.08 3.51 2.89 2.51 1.69 0.81 -0.1 -0.7 -0.97

9th decile of kurtosis of sim. 24.96 19.96 19.16 17.68 14.49 10.88 6.13 2.33 0.86

Table 3: The �rst four moments of log-returns distributions for di�erent time horizons in trading days:
S&P500 data vs synthetic data generated from the �tted EWMA HM.

Figure 11: Evolution of the four �rst moments of the log-returns distributions in the function of the
considered time-horizon: S&P500 data vs synthetic data generated from the �tted EWMA HM.
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Time horizon
1 5 10 20 60 125 250 500 750

Mean of market data 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131

Avg. mean of sim. 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129

1st decile of mean of sim. 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115

9th decile of mean of sim. 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145

Std. dev. of market data 0.0999 0.0903 0.0869 0.0829 0.0732 0.0651 0.057 0.047 0.0403

Mean of std.dev. of sim. 0.0887 0.0795 0.0771 0.0741 0.0657 0.0559 0.0439 0.0317 0.0253

1st decile of std. dev. of sim. 0.0669 0.0581 0.0557 0.0528 0.0449 0.0366 0.0272 0.0182 0.0139

9th decile of std. dev. of sim. 0.1163 0.1065 0.1038 0.1009 0.0909 0.0796 0.0651 0.0488 0.0402

Skewness of market data 3.42 3.18 3.04 2.88 2.41 2.05 1.55 1.21 0.93

Average skewness of sim. 2.27 2.4 2.32 2.23 1.98 1.67 1.26 0.78 0.54

1st decile of skewness of sim. 1.83 1.53 1.45 1.34 1.12 0.85 0.48 0.07 -0.12

9th decile of skewness of sim. 3.79 3.53 3.49 3.34 3.08 2.72 2.21 1.58 1.24

Kurtosis of market data 19.53 15.47 13.65 11.82 7.97 5.33 2.5 0.7 -0.37

Avg. kurtosis of sim. 12.95 9.64 8.79 7.84 5.75 3.8 1.8 0.27 -0.28

1st decile of kurtosis of sim. 5.1 3 2.49 1.94 1.01 0.14 -0.57 -0.99 -1.18

9th decile of kurtosis of sim. 23.4 18.67 17.78 16.2 12.29 8.78 5.46 2.16 0.64

Table 4: The �rst four moments of average annualized volatility distributions for di�erent time horizons:
market data vs synthetic data generated from the �tted EWMA HM.

Figure 12: Evolution of the �rst four moments of average annualized volatility distributions in the function
of the considered time-horizon: S&P500 data vs synthetic data generated from the �tted EWMA HM.
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(a) 1 trading day (b) 5 trading days

(c) 10 trading days (d) 20 trading days

(e) 60 trading days

Figure 13: Log-returns distributions for di�erent time intervals with logarithmic y-axis: S&P500 data vs
EWMA Heston Model.
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(a) 1 trading day (b) 5 trading days

(c) 10 trading days (d) 20 trading days

(e) 60 trading days

Figure 14: Annualized average volatility distributions for di�erent time intervals with logarithmic y-axis:
S&P500 data vs EWMA Heston Model.
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3.4 The time-reversal asymmetry

Finally, we examine the ability of the model to reproduce the empirical time-reversal asymmetry (TRA) of
�nancial time series highlighted Zumbach (Zumbach and Lynch 2001). To assess this aspect of the model,
we use the methodology in Blanc et al. (2017), and consider the following time asymmetry ratio (TAR) for
di�erent lags:

ζ(l) =

∑l
l′=1 C(l′)− C(−l′)

2
∑l
l′=1 max(|C(l′)| − |C(−l′)|)

where C is the cross-correlation function of the realized volatility and absolute returns

C(l) =

∑n
t=1

(
σRt − σ̄R

)(
|rt−l| − ¯|r|

)√∑n
t=1

(
|rt| − ¯|r|

)2
√∑n

t=1

(
σRt − σ̄R

)2
,

where |rt| and σRt are respectively the absolute return and the realized volatility at time t, σ̄R is the mean
of the realized volatility, and ¯|r| is the mean of the absolute returns.

Table 5 reports the TARs for both the empirical and synthetic data for di�erent lags:

Lag (in trad. days)
1 2 3 4 5 10 20 60

TAR S&P500 data 0.072 0.047 0.044 0.038 0.032 0.019 0.011 -0.007

Average TAR of sim. data 0.074 0.04 0.026 0.018 0.013 0.004 -0.000 -0.002

Table 5: The TARs for di�erent lags: S&P500 data vs EWMA HM.

The numbers show that the EWMA HM provides a good representation of the empirical TRA. Indeed,
as in the case of the S&P500 data, the TAR of the data simulated by the model follows a convex de-
creasing trend as a function of the lag size. Moreover, the order of magnitude of the TRA generated by
the EWMA HM matches the empirical data, and the empirical TAR is within the estimated 95% con-
�dence interval of the model for all considered lags. More broadly, the positive value of the TRA for
small lags of these synthetic data con�rms that the EWMA HM is able to capture the following aspect

Figure 15: TAR: S&P500 data vs EWMA HM.

of the Zumbach e�ect: past absolute
returns used to forecast future volatili-
ties are more e�ective than use of past
volatilities to forecast future absolute re-
turns. This must be emphasized be-
cause it contradicts the idea that "mod-
els that use Brownian SDEs are TRS by
construction and cannot reproduce this
asymmetry" (Blanc et al. 2017 p.17).
Note also that TAR becomes slightly
negative after about 20 trading days for
the synthetic data and after about 35
trading days for the empirical data. In
the case of our empirical �nancial time
series, we cannot say whether or not this
is a structural e�ect. However, for the
data generated by the EWMA HM, the
number of lags before the sign of TAR
changes depends on the set of parame-
ters used. For instance, for higher values
of τ2, TAR remains positive for longer
lags.
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4 Conclusion

In this article, we proposed a EWMA HM, a Markovian model which is very tractable for Monte-Carlo
simulations and is generally consistent with market data. The model is based on a speci�c empirical re-
lationship between the EWMA of returns and the realized volatility, which structure makes it naturally
adaptable to accounting for a "strong Zumbach e�ect". We have shown that this model presents some sim-
ilarities with stochastic volatility models based on quadratic Hawkes processes, models originally conceived
to capture this e�ect (Blanc et al. 2017, Dandapani et al. 2019, Gatheral et al. 2020). Besides these
theoretical aspects, we show that based on simulations using a Euler discretization scheme, several aspects
of the model are consistent with empirical stock market data. First, it generates realistic evolutions of an
asset price combined with its associated volatility, reproducing the empirical irregular behavior of volatility
paths occurring over short time scales. We show also that both log-returns and the model volatility distri-
butions are consistent with the empirical results. In particular, the model is able to capture the respective
deformations of these distributions in the function of the time horizon. Finally, the simulations show that
the model also reproduces the empirical time-reversal asymmetry of �nancial time series.

However, despite all these strong qualities, the model has some shortcomings. First, in the model se-
rial correlation of the volatility process seems to decay much too quickly compared to the empirical data.
Relatedly, the type of relationship linking the expected log-volatility increments and the considered time
scale di�ers between the model generated data and the market data. These two limitations both stem from
the exponential memory of the volatility process in the model compared to an empirical volatility process
based on a power-law memory (Gatheral et al. 2018). However, these shortcomings could be overcome by
using a combination of several EWMAs of returns in order to mimic a long-memory property. This potential
extension could be conducted using the more general EWMA HM framework and should be the focus of
future work.

Another limitation is that we focus only on use of the EWMA HM as a time series generator for Monte
Carlo simulations. Its use for pricing issues needs investigation along with deeper study of the model's
mathematical properties. We also identi�ed a statistical regularity related to the slope coe�cient between
the EWMAs of past returns and realized volatility, a statistical regularity which might indicate the mi-
crostructural foundation of the EWMA HM. This is also worthy of further investigation and substantive
consideration. Thus, our paper o�ers some directions for further research and a new volatility modeling
agenda.

5 Acknowledgments

I would like to thank Jean-Paul Laurent and Thierry Roncalli for useful comments and fruitful discussions.

24



References

[1] Maruyama G. (1955). Continuous Markov processes and stochastic equations. Rendiconti del Circolo
Matematico di Palermo, 4:48�90.

[2] Engle R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United
Kingdom in�ation. Econometrica: Journal of the econometric society, 987-1007.

[3] De Bondt W. F., & Thaler R. H. (1987). Further Evidence on Investor Overreaction and Stock Market
Seasonality. Journal of Finance, 42(3), 557-581.

[4] Harvey A.C. (1990). Forecasting, Structural Time Series Models and the Kalman Filter., Institute of
Mathematical Statistics.

[5] Nelson D.B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica:
Journal of the Econometric Society, 347-370.

[6] Heston S.L. (1993). A Closed-Form Solution for Options with Stochastic Volatility with Applications to
Bond and Currency Options. The Review of Financial Studies, 6(2), 327-343.

[7] Ding Z., Granger C.W., and Engle R.F. (1993). A long memory property of stock market returns and a
new model. Journal of empirical �nance, 1(1), 83-106.

[8] Bollerslev T., Engle R.F., and Nelson D.B. (1994). ARCH models. Handbook of econometrics, 4, 2959-
3038.

[9] Baillie R.T., Bollerslev T., and Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregres-
sive conditional heteroskedasticity. Journal of econometrics, 74(1), 3-30.

[10] Dissanaike G. (1997). Do Stock Market Investors Overreact? Journal of Business Finance & Account-
ing, 24(1), 27-50.

[11] Hobson D.G., and Rogers L.C. (1998). Complete Models with Stochastic Volatility. Mathematical Fi-
nance, 8(1), 27-48.

[12] Zumbach G., and Lynch P. (2001). Heterogeneous Volatility Cascade in Financial Markets. Physica A:
Statistical Mechanics and its Applications, 298(3-4), 521-529.

[13] Cont R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative
�nance, 1(2), 223.

[14] Dr�agulescu A.A., and Yakovenko V.M. (2002). Probability Distribution of Returns in the Heston Model
with Stochastic Volatility. Quantitative �nance, 2(6), 443-453.

[15] Mandelbrot B.B. (2003). Heavy tails in �nance for independent or multifractal price increments. In
Handbook of heavy tailed distributions in �nance (pp. 1-34). North-Holland.

[16] Lynch P.E., and Zumbach, G.O. (2003). Market heterogeneities and the causal structure of volatility.
Quantitative Finance, 3(4), 320.

[17] Lanne M., and Saikkonen P. (2005). Non-linear GARCH models for highly persistent volatility. The
Econometrics Journal, 8(2), 251-276.

[18] Mandelbrot B.B., and Hudson R. L. (2005). The (mis)behavior of markets: a fractal view of risk, ruin,
and reward. Basic Books.

[19] Borland L., and Bouchaud J. P. (2005). On a multi-timescale statistical feedback model for volatility
�uctuations. arXiv preprint physics/0507073.

[20] Brandt M.W. and Jones C.S. (2006). Volatility forecasting with range-based EGARCH models. Journal
of Business & Economic Statistics, 24(4), 470-486.

25



[21] Brockwell P., Chadraa E., and Lindner A. (2006). Continuous-time GARCH processes. The Annals of
Applied Probability, 16(2), 790-826.

[22] Bochud T. and Challet D. (2007). Optimal approximations of power laws with exponentials: application
to volatility models with long memory. Quantitative Finance, 7(6), 585-589.

[23] Albrecher H., Mayer P., Schoutens W., and Tistaert J. (2007). The Little Heston Trap. Wilmott, (1),
83-92.

[24] Maller R.A., Müller G. and Szimayer A. (2008). GARCH modelling in continuous time for irregularly
spaced time series data. Bernoulli, 14(2), 519-542.

[25] Corsi F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial
Econometrics, 7(2), 174-196.

[26] Zumbach G. (2009). Time Reversal Invariance in Finance. Quantitative Finance, 9(5), 505-515.

[27] Zumbach G. (2010), Volatility Conditional on Price Trends. Quantitative Finance 10.4 (2010): 431-442.

[28] Lord R., Koekkoek R., and Dijk D.V. (2010). A comparison of biased simulation schemes for stochastic
volatility models. Quantitative Finance, 10(2), 177-194.

[29] Bruder B., and Gaussel N. (2011). Risk-Return Analysis of Dynamic Investment Strategies. Available
at SSRN 2465623.

[30] Belkhouja M., and Boutahary M. (2011). Modeling volatility with time-varying FIGARCH models.
Economic Modelling, 28(3), 1106-1116.

[31] Chicheportiche R., and Bouchaud J.P. (2014). The �ne-structure of volatility feedback I: Multi-scale
self-re�exivity. Physica A: Statistical Mechanics and its Applications, 410, 174-195.

[32] Guyon J. (2014). Path-dependent volatility. Risk Magazine

[33] Bennedsen M., Lunde A., and Pakkanen M.S. (2016). Decoupling the short-and long-term behavior of
stochastic volatility. arXiv preprint arXiv:1610.00332.

[34] Blanc P., Donier J., and Bouchaud J.P. (2017). Quadratic Hawkes Processes for Financial Prices.
Quantitative Finance, 17(2), 171-188.

[35] Goutte S., Ismail A., and Pham H. (2017). Regime-Switching Stochastic Volatility Model: Estimation
and Calibration to VIX Options. Applied Mathematical Finance, 24(1), 38-75.

[36] Jusselin P., Lezmi E., Malongo H., Masselin C., Roncalli, T., and Dao T.L. (2017). Understanding
the Momentum Risk Premium: An In-Depth Journey Through Trend-Following Strategies. Available at
SSRN 3042173.

[37] Mrázek M., and Pospí²il J. (2017). Calibration and simulation of Heston model. Open Mathematics,
15(1), 679-704.

[38] El Euch O., (2018). Quantitative Finance under rough volatility, PhD diss., Sorbonne université.

[39] Gatheral J., Jaisson T., and Rosenbaum M. (2018). Volatility is Rough. Quantitative Finance, 18(6),
933-949.

[40] El Euch O., and Rosenbaum M. (2018). Perfect Hedging in Rough Heston Models. Annals of Applied
Probability, 28(6), 3813-3856.

[41] El Euch O. and Rosenbaum M. (2019). The Characteristic Function of Rough Heston Models. Mathe-
matical Finance, 29(1), 3-38.

[42] Abi Jaber E. and El Euch O. (2019). Multifactor approximation of rough volatility models. SIAM
Journal on Financial Mathematics, 10(2), 309-349.

26



[43] Abi Jaber E. (2019). Lifting the Heston model. Quantitative Finance, 19(12), 1995-2013.

[44] Dandapani A., Jusselin P., and Rosenbaum M. (2019). From Quadratic Hawkes Processes to Super-
Heston Rough Volatility Models with Zumbach E�ect. arXiv preprint arXiv:1907.06151, 2019.

[45] Rogers L.C.G. (2019). Things we think we know. Preprint, available at https://www. skokholm. co.
uk/lcgr/downloadable-papers.

[46] Gatheral J., Jusselin P., and Rosenbaum M. (2020). The Quadratic Rough Heston Model and the Joint
S&P500/VIX Smile Calibration Problem. arXiv preprint arXiv:2001.01789.

[47] Cont R., and Das P. (2022). Rough volatility: fact or artefact?. arXiv preprint arXiv:2203.13820.

27



Appendix A Convergence of the attraction volatility when β is 0

Let us consider the following di�erential equation

dνt =

(
ψ

νt − ν
− νt + ν + α

)
dt

τ2

such as ψ, τ2, ν ∈ R+, α ∈ R, and ν > ν.

If this di�erentiel equation converges as lim
t→+∞

νt = ν? < +∞, thus
dν?

dt
= 0. Let us start by noticing

the following equalities:

0 =
dν?

dt

0 =
ψ

νt − ν
− νt + ν + α

0 = ν2
t −

(
2ν + α

)
νt + ν + αν − ψ

Therefore:

ν? =
2ν + α±

√
α2 + 4ψ

2

Moreover, because ν0 > ν, the following inequalities must be respected:

2ν < 2ν + α±
√
α2 + 4ψ

−α < ±
√
α2 + 4ψ

Since ψ, τ ∈ R+, therefore (±) = +. It follows:

ν? =
2ν + α+

√
α2 + 4ψ

2

Moreover,
dν?

dt
is a continuous function positive on

]
ν : ν?

]
and negative on

[
ν? : +∞

[
. Consequently:

lim
t→+∞

νt =
2ν + α+

√
α2 + 4ψ

2

It follows that if β is 0, the EWMA HM degenrates into the following standard HM:
dSt
St

= µtdt+
√
VtdWt

dVt =
1

τ1

(
ν2
t − Vt

)
dt+ ξ̄

√
VtdBt,

with θ =

(
2ν + α+

√
α2 + 4ψ

)2

4
ξ̄ = ξνt.
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Appendix B The model calibration procedure

To obtain numerical results and enable comparison with empirical data, we need to �t the model from H,
the daily empirical time-series of the S&P500 and its realized volatility from July 23, 2001, to July 23 2021.
This involves identifying the following parameters

θG = (λ, ρ, τ1, ξ, τ2, ν̄, α, β).

Due to the relative complexity of the model, obtaining these parameters using standard statistical methods
such as maximum likelihood estimation is tricky. For this reason, to calibrate the model we use an ad-
hoc procedure involving a neural network (NN), with NN denoted P. This NN, which is used to provide
an estimator of the vector of the parameters, takes as its input a vector encoding the index path and its
volatility. In other words, the market data matrix H passes through an encoder denoted E which transforms
it into an input vector E, and the elements of this vector then constitute the input layer of P which passes
through the network to provide an estimate of θG . In summary:

P
(
E(H)︸ ︷︷ ︸

E

; θP
))

= θ̂G

with θP the parameters of P, and θ̂G the estimator of θG .

More speci�cally, the encoder E extracts from the time-series the following features:

- the 4 �rst moments of the log-returns for the following lags in trading days: 1, 5, 20, 60, 125,

- the 4 �rst moments of the average volatility over the following time intervals in trading days: 1, 5, 20,
60, 125,

- the serial corellation for the following lags expressed in trading days: 1, 2, 3, 4, 5, 10, 20, 60, 125, 250.

Thus, the dimension of E is thus equal to 1× 30.

Obviously, the NN responsible for providing the model parameters derived from the encoded market data
requires to be calibrated from a learning set. For this purpose, we randomly generated 20 000 parameter
vectors such that each parameter was obtained using a uniform distribution within the bounds de�ned in
table 6:

λ ρ τ1 ξ τ2 ν̄ α β

Lower bound 0.2 -1 0.0008 0.05ν
√

2
τ1

0.15 0.01 0.01 0.9
√

2τ
π

Upper bound 0.5 0 2 ν
√

2 2
τ1

1 0.1 0.15 1.1
√

2τ
π

Table 6: The respective bounds of the uniform distributions used to generate the training set of parameter
vectors.

The bounds of ξ allow that all generated vectors of parameters respect the Feller condition.

With each of the 20 000 vectors of parameters obtained, we generate a sample path of the index and its
volatility from G. We thus pass through the encoder E each of the 20 000 synthetic time-series, in order to

obtain the following set
{
E(i)

}
1≤i≤20000

. This step provides we have our learning set
{(
E(i), θ

(i)
G

)}
1≤i≤20000

necessary to �t P. The loss function used for this purpose is:

L
(
θ

(i)
G , θ̂

(i)
G

)
=
∥∥∥w � (θ(i)

G − θ̂
(i)
G

)∥∥∥2

2
,
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where w is a weighting vector, such that the value of the kth coordinate is equal to the inverse of the

standard deviation of
{(
θ

(i)
G

)
k

}
1≤i≤20000

.

Given that, P is �tted by solving the following optimization problem:

θ?P = arg min
θP∈ΘP

20000∑
i=1

∥∥∥w � (θ(i)
G − P

(
Ei; θP

))∥∥∥2

2

The NN being �tted, we calibrate �nally θG from market data:

P
(
E(H); θ?P

))
= θ̂G

We obtain the following parameters10:

λ ρ τ1 ξ τ2 ν α β

0.5575 -0.465 0.0013 42.95 0.276 0.0595 0.1033
√

2τ2
π

Table 7: The parameters obtained from the calibration procedure.

Appendix C Standard deviation of an EWMA of a Brownian

motion

The asymptotic variance of the EWMA of a Brownian motion is given by the following equalities:

Var

(
1

τ

∫ t

−∞
e

1
τ (u−t)dWu

)
=

1

τ2

∫ t

−∞
e

2
τ (u−t)du

=
1

τ2

[
τ

2
e

2
τ (u−t)

]t
−∞

=
1

2τ

It follows that the asymptotic standard deviation of the EWMA of a Brownian motion is equal to
√

1
2τ .

10The exact value of β obtained from the neural network was equal to 0.422. This result is approximated in table 7 by√
2τ2
π
.
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Appendix D Complementary results

The type of relationship between the EWMA of past returns and the volatility described by the EWMA
HM is not unique to the S&P500 and can apply also to Nasdad and Euro Stoxx 50 data11. Also, the optimal

slope coe�cient β is very close to
√

2τ
π as in the S&P500. The presence of this speci�c value coe�cient in

di�erent market data sets would seem to suggest a fundamental reason underlying this statistical regularity.
Thus, it is reasonable to consider that the EWMA HM might have microstructural foundations based on
the interactions of the market participants at the high-frequency scale.

(a) τ equal to 0.15 (in years) (b) τ equal to 0.3 (in years)

(c) τ equal to 0.45 (in years) (d) τ equal to 0.6 (in years)

Figure 16: The empirical relationship between the realized volatility of the S&P500 and the EWMAs of
its past returns for di�erent values of τ expressed in years. The red lines are regressions of the form
√
Vt = ν + (α − βmt)+ such as the associated regression lines have all a slope coe�cient equal to

√
2τ
π .

These regressions are respectively associated with the following R-squared: 0.476, 0.434, 0.405, 0.384.

11As in the S&P500 example, the data sets cover the period July 23 2001 to July 23 2021, and as an estimator we use
volatility, and the square root of the realized variance computed from 5-min samples provided by the Oxford-Man Institute of
Quantitative Finance.
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(a) τ equal to 0.15 (in years) (b) τ equal to 0.3 (in years)

(c) τ equal to 0.45 (in years) (d) τ equal to 0.6 (in years)

Figure 17: The empirical relationship between the realized volatility of the S&P500 and the EWMAs of
its past returns for di�erent values of τ expressed in years. The red lines are regressions of the form
√
Vt = ν + (α − βmt)+ such as the associated regression lines have all a slope coe�cient equal to

√
2τ
π .

These regressions are respectively associated with the following R-squared: 0.476, 0.466, 0.445, 0.427.
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