
HAL Id: hal-04431103
https://hal.science/hal-04431103v3

Preprint submitted on 19 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uni MS-PS: a Multi-Scale Encoder Decoder
Transformer for Universal Photometric Stereo

Clément Hardy, Yvain Quéau, David Tschumperlé

To cite this version:
Clément Hardy, Yvain Quéau, David Tschumperlé. Uni MS-PS: a Multi-Scale Encoder Decoder Trans-
former for Universal Photometric Stereo. 2024. �hal-04431103v3�

https://hal.science/hal-04431103v3
https://hal.archives-ouvertes.fr


1

Uni MS-PS: a Multi-Scale Encoder-Decoder Transformer for Universal Photometric
Stereo

Clément Hardya,∗∗, Yvain Quéaua, David Tschumperléa
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ABSTRACT

Photometric Stereo (PS) addresses the challenge of reconstructing a three-dimensional (3D) rep-
resentation of an object by estimating the 3D normals at all points on the object’s surface. This
is achieved through the analysis of at least three photographs, all taken from the same viewpoint
but with distinct lighting conditions. This paper introduces a novel approach for Universal PS,
i.e., when both the active lighting conditions and the ambient illumination are unknown. Our
method employs a multi-scale encoder-decoder architecture based on Transformers that allows to
accommodates images of any resolutions as well as varying number of input images. We are able
to scale up to very high resolution images like 6000 pixels by 8000 pixels without losing perfor-
mance and maintaining a decent memory footprint. Moreover, experiments on publicly available
datasets establish that our proposed architecture improves the accuracy of the estimated normal
field by a significant factor compared to state-of-the-art methods. Code and dataset available at:
https://clement-hardy.github.io/Uni-MS-PS/index.html

1. Introduction

Photometric stereo (PS) is a technique for recovering sur-
face normals of an object by capturing multiple images of it
from the same perspective but under varying light conditions.
For decades, traditional image processing methods have fo-
cused on the ideal Lambertian case with a controlled and paral-
lel light beam as well as no ambient light [Woodham (1980)].
Howewer in practice most light effects on real-world objects
deviate from Lambert’s law, exhibiting complex effects such
as specular components or translucency (e.g., transparent ma-
terials). On the other hand, the emergence of deep learning
approaches has enabled significant advancements in managing
more complex geometries and challenging objects that do not
adhere to Lambert’s law.
Three types of approachs are considered in the literature to
adress the PS problem: calibrated, uncalibrated, and Univer-
sal methods. The difference between calibrated and uncali-
brated methods lies in whether we know the light parameters
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(positions, intensities,...). Additionally, most of these meth-
ods (calibrated or uncalibrated) assume the ideal case of per-
fect directional lighting in a dark environment with no external
light. Obtaining this ideal case in real life is challenging, requir-
ing special equipment to capture images under such conditions.
Universal methods overcome this limitation by reconstructing
objects in any lighting conditions, thus largely simplifying the
process from the end-user perspective. They simultaneously
address two major challenges:
• managing non-Lambertian materials, like specular ones;
• handling complex illumination, including ambient.
In our conference paper [Hardy et al. (2023)], we introduced

a multi-scale approach to improve the performance of cali-
brated PS on challenging materials. In the present article, we
extend this multi-scale approach to solve the Universal PS prob-
lem. To this end, we propose a multi-scale architecture com-
bined with an encoder-decoder Transformer architecture. The
multi-scale architecture can process input images of any size
without loss of performance, even when considering very high
resolution images, as presented in Fig. 1. In this example, our
algorithm takes 11 images of size 6000×8000 as input, and it
recovers all details of the scene, whose appearance is mostly
diffuse.
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Fig. 1: Reconstruction of the Marsoulas cave, from images of size 6000×8000 pixels. Our method both accomodates the very high image resolution and preserves
the fine details. PS image credits: A. Laurent 2023 (INPT, UMR 5505 IRIT), C. Fritz and G. Tosello team (CREAP-E.Cartailhac), MSHS-T (UAR 3414).

Fig. 2: Reconstruction of two challenging metallic objects (snail from Voynov et al. (2023) and coin from Wang et al. (2023)), with our proposed method.

Our method is also able to manage more difficult materi-
als such as materials, as illustrated in Fig. 2. Besides, it also
achieves state-of-the-art results in any environment or light-
ing conditions, including directional or non-parallel lighting
beams, as will be demonstrated on real benchmarking datasets.
This last feature constitutes our main improvement over our
previous method [Hardy et al. (2023)] – which was designed
for calibrated PS in a controlled dark environment. To achieve
this, two major changes were made:

1. a Transformer-based approach is chosen for its effec-
tiveness in Universal PS, instead of the CNN approach
in Hardy et al. (2023);

2. a new training dataset is designed and synthetised to better
cope with the Universal context.

The rest of this work is organised as follow. In Section 2, we
present an overview of deep learning methods for photometric
stereo. In Section 3, we describe our multi-scale Transformer
method and our new training dataset. Finally, in Section 4, we
present qualitative and quantitative results on many benchmark
datasets and compare the performance of our method with state-
of-the-art PS methods.

2. Related work

Let us first review the deep learning methods for PS, accord-
ing to their illumination requirements.

Calibrated PS. Santo et al. (2017) first proposed a calibrated
approach based entirely on a fully connected network. How-
ever, light directions must be identical between training and
inference, which makes it impractical. Indeed, the neural net-
work architecture should allow an arbitrary number of images,
to avoid training a different neural network for each possible
number. Two main alternatives have thus been proposed:
• aggregate information from different images using a pool-

ing layer, as in the work of Chen et al. (2018, 2019), Hardy
et al. (2023), Ju et al. (2021, 2020), Lichy et al. (2021)
and Wang et al. (2020);
• project all the per-pixel observations onto a fixed-size

space, as in the work of Ikehata (2018, 2022a), Li et al.
(2019), Logothetis et al. (2021) and Zheng et al. (2019).

Per-pixel and all-pixel methods were also unified within a
graph-based approach [Yao et al. (2020)]. This is particularly
effective under sparse lighting distributions, where Transform-
ers also perform particularly well [Ikehata (2021)].
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Uncalibrated PS. Uncalibrated PS is a category of PS where
the prior light information, such as its direction and intensity,
is unknown. In the context of parallel light beams, a common
practice is to use a first neural network to infer the missing light
information, as presented in [Chen et al. (2019)]. Then, a sec-
ond neural network handles the problem as in the calibrated
case. This approach has also been successfully applied to non-
parallel light beams in [Lichy et al. (2022)]. Another practice
to solve uncalibrated PS is to use an inverse rendering-based
method [Li et al. (2023); Li and Li (2022); Kaya et al. (2021)].
Such methods optimize an image reconstruction loss (between
the reconstructed images and the input images) to get the nor-
mals, reflectance and illumination. However, all these uncali-
brated methods generalize poorly to natural light/ambient light,
because designing a physics-based model for this type of illu-
mination remains difficult. In the traditional (non-deep) con-
text, some attempts towards uncalibrated PS under natural illu-
mination were made, resorting to equivalent directional light-
ing [Mo et al. (2018)] or spherical harmonics [Haefner et al.
(2019)], yet Universal PS methods based on Transformers were
recently shown to provide much better results.

Universal PS. Recently, Ikehata introduced the notion of Uni-
versal PS with the UniPS [Ikehata (2022b)] and SDM-UniPS
methods [Ikehata (2023)]. These new methods solve the PS
problem under unknown and arbitrary lighting conditions us-
ing a pure data-driven approach without complex prior light
assumptions. They are based on an encoder-decoder model,
where the encoder extracts a global lighting context from a fixed
‘canonical’ resolution image - resizing the images if needed to
fit this resolution. The idea behind using a global lighting con-
text, rather than a global lighting model, is due to the spatially-
varying light direction. Indeed, intensity could not be encoded
by a few global values.

In practice, the decoder takes as input the original resolution
images and the output of the encoder, i.e., the global lighting
context interpolated to the original resolution. Combining such
downsampling with pixel by pixel inference, very high reso-
lution images can be handled. However, some information is
lost during downsampling, and pixel-by-pixel inference lacks
spatial information. To address this problem, Ikehata (2023) in-
troduced a way to use all available information in a non-local
way, even on very high resolution images. The method is based
on a scale-invariant spatial-light feature encoder, which allows
for a fixed input size without resizing the images. The encoder
splits an image into P2 sub-images, where P is the size of the
input of the model, by taking a single pixel every P × P pix-
els. It then extracts feature maps from these sub-images, which
are eventually merged back to reconstruct one image. During
the encoding phase, spatial information is extracted using Con-
vNeXt layers [Liu et al. (2022)] and information over the light
axis is extracted using Self-Attention Blocks [Lee et al. (2019)].
Afterwards, another pixel sampling strategy is used and several
Transformer layers are applied in both the spatial and light di-
mensions. Finally, the normal map is inferred using two linear
layers.

Inference on very high resolution images. While UniPS [Ike-
hata (2022b)] tends to infer blurry and inaccurate normal maps
with a lack of detail, especially with high resolution images,
SDM-UniPS [Ikehata (2023)] yield much sharper results and
scales better. However, it remains difficult to scale to very high
resolutions without losing accuracy. Indeed, keeping only one
pixel every P pixels is a problem if P is large (for instance if
P ≥ 100). For example, the geometry of a small detail in the
object would be completely invisible in each of the sub-images.
An alternative approach consists in resorting to a multi-scale
approach, as the one we previously introduced for the calibrated
scenario in [Hardy et al. (2023)]. Therein, an architecture based
on the convolution network proposed by Chen et al. (2018) was
considered. It consists of an encoder and a decoder, where each
input image is processed independently by the encoder and the
extracted feature maps are then synthesized using max pooling
to create a single feature map for all images. The decoder takes
this feature map to generate an estimation of the normal map.
In the next section, we will extend this multi-scale approach to
the Universal setup, by relying on Transformers rather than on
CNNs.

Training dataset. In addition to a potential drop in accuracy
when resolution increases, the performances of UniPS [Ikehata
(2022b)] also tend to decrease with the complexity of materials.
Ikehata (2023) explained that this is mostly due to a lack of di-
versity in the shape and appearance of the objects in the training
dataset, and so introduced a new dataset for training UniPS. We
had made similar observations in Hardy et al. (2023), showing
that the more diverse and representative the training dataset is,
the better the results are. Therefore, the present paper also intro-
duces a new dataset which is way more diverse and complete,
for training Universal PS methods. Combining this new dataset
with the the proposed multi-scale network architecture, which
is able to extract both local and global information and thus to
much better cope with complex materials[ Hardy et al. (2023)],
yields state-of-the-art reconstruction results for Universal PS.
The next section provides further details on these two contribu-
tions.

3. Proposed multi-scale method

In order to be able to infer the smallest details on the ob-
ject surface, a model should be able to handle both arbitrary
high resolution images. Therefore, when using, e.g., a CNN
model with a fixed number of convolution layers, this num-
ber may lack sufficient convolutions to effectively synthesize
information across an entire arbitrary large image. To solve this
problematic, we proposed in [Hardy et al. (2023)] a multi-scale
framework that performs equally well on both low-frequency
geometry and high-frequency details, and can process any size
of images. This multi-scale approach progressively refines the
estimated normal map as the spatial scale increases. It starts by
focusing on the global aspect of the object and then progres-
sively refines details such as holes, cracks, or slight bumps as
shown in Fig. 4. Let us start by recalling the global framework
of this multi-scale architecture, before specifying it for the Uni-
versal case by resorting to Transformers.
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Fig. 3: Global architecture of the proposed multi-scale method. The network at each scale level is an encoder-decoder Transformer detailed in Fig. 5. Let us
emphasize that in this architecture, the first scale is independent from the others, which all share the same parameters.

Scale 1 Scale 2 Scale N

Fig. 4: Detail recovery along with scale level. Contrast is optimized in the zoom
area (second line) for visual purpose.

3.1. Global multi-scale architecture

Our overall architecture is presented in Fig. 3. Therein, the
first scale is separated from the others. A first network takes as
input the downsampled images at the resolution 32×32 pixels
and estimates a first normal map at the same resolution. This
serves as an initialization prediction for a second network, used
for the remaining scales. It iteratively refines the normal map
estimation each time by a factor of 2, until the original resolu-
tion is reached. Thus, it takes as input an upsampled version
of the normal map estimated at the lower resolution, as well
as images downsampled to the same resolution, and refines the
normal map. Both networks (i.e., for first scale and other scales)
have exactly the same architecture, but with different weights.
It is indeed necessary to have two independent architectures be-
cause the first network takes as input only the images, while the
other also considers the normals. Nevertheless, the weights of
the second network are identical for every scale.

3.2. Transformers-based backbone
Each scale of our architecture involves a network which is

essentially an encoder-decoder composed of Pyramid Vision
Transformer (PVT) blocks [Wang et al. (2021)], Self Attention
Blocks (SAB) [Lee et al. (2019)] and Pooling by Multihead
Attention (PMA) blocks [Lee et al. (2019)]. Fig. 5 presents
the overall architecture of this network. Depending on which
scale is considered, the input to the network is either the im-
ages alone, or the images concatenated with the normal maps
upsampled from the previous scale. In contrast, our previous
work [ Hardy et al. (2023)] resorted to CNNs for the backbone,
yet this was limited to the calibrated setup and we empirically
found out that CNNs generalize poorly to the Universal setup.

To be able to compare Transformers against CNNs, we
also designed a variant of the Transformers-based backbone,
adapted to the calibrated problem. The only difference is the
first convolutional embedding layer of the network, which is
modified to take either only the images for Universal PS, or the
images concatenated with the lighting directions for calibrated
PS. In all cases, each network is composed of the same encoder
and decoder architectures, which are detailed hereafter.

Scales architecture of the encoder part. The encoder part com-
bines three modules: the first one extracts the spatial informa-
tion for each image independently, the second one extracts the
lighting information for all images at each pixel location, and
the third one ultimately pools the information for the skip con-
nections.

The spatial extractor module is based on the PVT (Pyramid
Vision Transformer) [Wang et al. (2021)]. Indeed, this kind
of architecture generates high resolution features and also fea-
tures at different scales, allowing us to consider problems at
the pixel level. The main advantage is the ability to take in in-
put images of different sizes while keeping moderate computa-
tion times. This last point is very important for the photometric
stereo problem, because it is necessary to consider the full size
of the images to get a better reconstruction of the normal map.
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Fig. 5: Detailed architecture of one network scale. The input can be either images alone (for the first network scale), or images concatenated with the upsampled
previous normal map (for the other scales). We process images at pixel level in order to catch all geometric details. SAB mean Self Attention Block [Lee et al.
(2019)], PMA mean Pooling by Multihead Attention [Lee et al. (2019)], and PVT mean Pyramid Vision Transformer [Wang et al. (2021)]

Then, the lighting extractor module extracts light informa-
tion at the pixel level. To do so, we use a Self Attention Block
(SAB) module. Indeed, at a fixed pixel location, we concatenate
the pixel value of each image in order to merge the information
at this location. Therefore, we can apply the attention block
at each pixel location independently. Finally, we use a Pool-
ing by Multihead Attention (PMA) module in parallel with the
SAB module to aggregate the information given by the PVT
block. The aim is to create a feature map and use it for the
skip connection in the decoder part. This way, the decoder can
utilize information from different extraction levels, helping it
retain maximum detail. Additionally, using a pooling layer al-
lows for a variable number of input images as shown in Chen
et al. (2018).

Scales architecture of the decoder part. Once the four encod-
ing blocks are processed, the normal maps are reconstructed
with the decoder, which is mainly composed of regression mod-
ules. We considered three transposed convolutions with skip
connections to the PMA map. Indeed, at each step, we concate-
nate the PMA map obtained in the encoder with the output of
the transposed convolution, and so on until we have the desired
resolution. The final step consists of a 3×3 convolution to fuse
the first PMA map with the output of the last transposed con-
volution without changing the shape of the feature map, and to
create the final normal map.

Network size. In total, our proposed multi-scale architecture
has 79, 151, 174 parameters, each of the first and second net-
work having around 39.5 millions parameters. Table 3 details
the number of parameters for each block.
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Block name input size output size nb params
emb layer 1 3/6 64 1,920/3,648

PVT 1 64 64 944,064
SAB 1 64 64 87,936
PMA 1 64 64 166,592

emb layer 2 64 128 74,112
PVT 2 128 128 1,862,144
SAB 2 128 128 347,904
PMA 2 128 128 529,280

emb layer 3 128 256 295,680
PVT 3 256 256 6,372,864
SAB 3 255 256 1,383,936
PMA 3 256 256 1,844,480

emb layer 4 512 512 1,181,184
PVT 4 512 512 9,513,984
PMA 4 512 512 6,834,176

Conv T 1 512 512 4,194,816
Conv T 2 768 256 3,145,984
Conv T 3 384 128 786,560

Conv 192 3 5,187

Table 1: Input, output size and number of parameters for each block of the
network. Note that the first embedding layer has two possible input size: 3 for
the first network and 6 for the second one.

3.3. Training dataset
To obtain the best normal map reconstruction possible, a

proper dataset needs to be used for the training stage. Most
available training datasets are built for photometric stereo in
dark environments with parallel light beams [Chen et al. (2018),
Ikehata (2018)]. For Universal PS, Ikehata introduced the PS-
Wild training dataset [Ikehata (2022b)]. Unfortunately, this
dataset has some issues, such as a lack of diversity in geom-
etry, materials, and environments (see Table 2). This appears to
be not enough to calibrate a neural network properly to be able
to handle all possible materials and geometries.

Training database samples shapes materials ambient environments
PS-Wild 10 099 410 926 31

Our training database 100 000 11 000 200 000 1 100

Table 2: Comparison beetween our training dataset and PS-Wild. Our training
dataset proposes more objects with a larger variety of geometries, shapes and
environment than PS-Wild [Ikehata (2022b)].

To solve these issues, we create a new training dataset. To do
so, we render 14,000 diverse objects from the “Scan the world”
and “Sketchfab” websites, using the Blender software. To com-
plete the lack of smooth surfaces that can exist on these types of
objects, we also generate 3,000 distinct objects using the sum of
random Gaussian potentials and the Marching Cubes algorithm
[Lorensen and Cline (1987)] to extract isosurfaces.

Each time we render a scene, we apply a random mate-
rial to the object. For materials, we use more than 1,100
“real” materials taken from the “Ambientcg” website, as well
as around 200,000 materials from Deep-materials [Deschain-
tre et al. (2018)]. Moreover, we generate random materials to
complete all possible materials. These random materials were
created with the BRDF layer of the Cycle rendering engine in
Blender, choosing random values as inputs of this layer.

Fig. 6: Examples of training images generated by our pipeline.

For each combination of shape and material, we render 50
images with random light distribution over the hemisphere. To
ensure that our model can handle different types of lights, we
use directional lights and non-parallel lights. Each time the
non-parallel light type is chosen for the scene, the size of the
bulb and other light parameters are also chosen randomly. On
the contrary, the power of the light varies between each image,
regardless of the type of lamp chosen. In addition to these active
illuminations, an ambient lighting environment was introduced,
by considering 1,100 360° HDR (High Dynamic Range) im-
ages from diverse sources, such as “Polyhaven”, “Ambientcg”
and Alexandre Duret-Lutz’s Flickr webpage. In total, we gen-
erate 100,000 samples. But as we create a generation pipeline
of synthetic images, the total number of samples could have
been much larger, as we can create as many samples as needed
for our model. A comparison between our training dataset and
PS-Wild is shown in Table 2. Examples of training images gen-
erated by our pipeline are also given in Fig. 6, highlighting the
diversity of materials, shapes, geometries and environments.

3.4. Training process
To train our multi-scale netwok, we use images with a res-

olution of 128 by 128 pixels. To reach the resolution of 128
pixels, 3 stages are necessary: 32 by 32 pixels, 64 by 64 pixels,
and 128 by 128 pixels. Because of the small resolution of our
training images, we are able to give 23 images per view dur-
ing the training process. A batch size of 2 is enough for the
training. Therefore, we are able to use a single A100 (80G0)
to train our method, and it takes roughly three days to train it.
The Adam optimizer is used with a learning rate of 10−4. The
three stages are trained together, and the cosine similarity loss
is used, which measures the angular difference between the es-
timated 3D normals and the ground truth normals. Everything
was implemented with the Pytorch framework.
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3.5. Inference on very high resolution images

As mentioned previously, our method can be used for any
size of input image. However, performing inference on very
high resolution images is challenging, because even with a
batch size of 1, the image may not fit on a single graphics card.

Therefore, to run our network on very high resolution im-
ages, we embed our multi-scale approach in a patch-based
heuristic. For images up to 256x256 pixels (i.e., 32 by 32, 64
by 64, 128 by 128, and 256 by 256), we use the full resolution.
For larger images, we cut each image and its corresponding pre-
dicted normal map into 256x256 patches with an overlap of 64
pixels. We then process each patch independently. Finally, we
merge all patches together using a spatial weighted average, us-
ing Gaussian weights with a standard deviation of 25 (this value
has been chosen empirically).

This method allows us to avoid computing the attention map
on the full resolution image. Indeed, computing the attention
map can significantly increase the memory requirement in the
PVT module when the image size increases. However, the re-
sults in Table 3 show that performance can degrade if the patch
size is too small. Therein, we tested our network combined with
the proposed patch-based inference on DiLiGenT102 [Ren et al.
(2022)] at the full image resolution with 30 images per object.
In view of these results, we chose a patch size of 256 pixels as it
offers a reasonable compromise between memory usage and ac-
curacy.Indeed, increasing the patch size from 256 to 512 pixels
improves performance on DiLiGenT102 by only 1.7%, while
requiring six times more memory. Furthermore, the visual dif-
ferences between these two patch sizes are not perceptible, even
on a highly specular material that requires the full context of the
image to understand the light beams’ paths (see Fig. 7).

Patch size (px) Overlap (pixels) Memory usage (Go) MAE (◦)
128 32 3.5 15.52
256 64 21 13.19
512 128 130 12.96

Table 3: Memory usage and mean angular error of the proposed patch infer-
ence method on the full image resolution of DiLiGent102 with 15 images as
inputs. A patch size of 256 pixels seems to be a good compromise between
performance and memory cost.

The memory footprint and processing time also depend on
the number of input images. Table 4 illustrates this dependency
for a patch size of 256 by 256 pixels on 1000 by 1000 pixel im-
ages, indicating the GPU memory footprint and time required
for inference for various numbers of input images.

Number of images Memory usage (Go) Time computation (seconds)
3 4.27 66
6 7.5 120
9 12.3 173

15 21 280
32 34 560

Table 4: Memory usage and time computation on the full image resolution of
DiLiGent102 with a patch size of 256 pixels.

Patch size: 256 pixels Patch size: 512 pixels

Fig. 7: Comparison of our universal method between a patch size of 256 pixels
and a patch size of 512 pixels. Visually, the difference between the two is slight;
however, inference with a patch size of 512 uses six times more GPU memory.
Both the bunny and the turbine are in a very specular material, aluminium for
the bunny and brass for the turbine.

4. Experiments

Our approach was compared against all state-of-the-art meth-
ods, including calibrated [Ikehata (2018); Chen et al. (2022);
Honzátko et al. (2021); Logothetis et al. (2021); Ju et al. (2022);
Lichy et al. (2022); Logothetis et al. (2023); Hardy et al.
(2023)], uncalibrated [Chen et al. (2019); Li and Li (2022);
Lichy et al. (2022)] and universal ones [Ikehata (2022b, 2023)].

4.1. Description of the testing datasets

This comparison was carried out on the three publicy avail-
able dataset with directional light DiLiGenT [Shi et al. (2016)],
DiLiGenT102 [Ren et al. (2022)] and DiLiGenT-Pi [Wang et al.
(2023)]. We also test the generalization capacity of our method
on a dataset with non-parallel light directions named Luces
[Mecca et al. (2021)]. Examples of images of each dataset are
presented in Fig. 8.
•DiLiGenT [Shi et al. (2016)] (Table 5) is a real-world image

dataset containing 96 images from the same viewpoint captured
under known light directions and light intensities. It contains 10
objects with ground truth normal maps, obtained by scanning
objects with a 3D scanner.
• DiLiGenT102 [Ren et al. (2022)] (Tables 6 and 7) contains

10 objects, each manufactured in 10 different materials. The di-
versity of materials in this dataset is quite large. Indeed, diffuse,
moderately specular, metallic materials with anisotropic re-
flectance, and translucent materials are all present. The ground
truth is also available, but it was obtained using 3D digital mod-
els and not by a 3D scanner as in the DiLiGenT dataset.
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(a) DiLiGenT [Shi et al. (2016)] (b) DiLiGenT102 [Ren et al. (2022)] (c) DiLiGenT-Pi [Wang et al. (2023)] (d) Luces [Mecca et al. (2021)]

Fig. 8: Examples of images from the four benchmarking datasets.

type Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading average
PS-FCN [Chen et al. (2022)] C 2.67 7.72 7.52 4.75 6.72 7.84 12.39 6.17 7.15 10.92 7.39

CNN-PS [Ikehata (2018)] C 2.2 4.6 7.9 4.1 8.0 7.3 14.0 5.4 6.0 12.6 7.2
OB-Cnn [Honzátko et al. (2021)] C 2.49 3.59 7.23 4.69 4.89 6.89 12.79 5.10 4.98 11.08 6.37

PX-NET [Logothetis et al. (2021)] C 2.03 3.58 7.61 4.39 4.69 6.90 13.10 5.08 5.10 10.26 6.28
NormAttention-PSN [Ju et al. (2022)] C 2.93 5.48 7.12 4.65 5.99 7.49 12.28 5.96 6.42 9.93 6.83

Our previous method, MS-PS [Hardy et al. (2023)] C 2.05 4.24 7.03 3.9 4.00 7.57 11.01 4.94 5.22 8.47 5.84
SDPS-Net [Chen et al. (2019)] UC 2.8 6.9 9.0 8.1 8.5 11.9 17.4 8.1 7.5 14.9 9.5
SCPS-NIR [Li and Li (2022)] UC 1.24 3.82 9.28 4.72 5.53 7.12 14.96 6.73 6.50 10.54 7.05

UniPS [Ikehata (2022b)] UC/Uni 4.9 9.1 19.4 13.0 11.6 24.2 25.2 10.8 9.9 18.8 14.7
SDM-UniPS [Ikehata (2023)] UC/Uni 1.5 3.6 7.5 5.4 4.5 8.5 10.2 4.7 4.1 8.2 5.8

Our (K=30) C 1.93 2.64 5.88 3.05 3.76 6.40 10.44 3.85 4.32 7.31 4.96
Our (K=96, all images) UC/Uni 1.92 3.14 6.16 3.60 4.04 6.35 8.84 4.08 4.88 7.09 5.01

Our (K=30) UC/Uni 1.84 3.14 6.04 3.45 3.99 6.49 8.9 4.12 4.7 7.0 4.97
Our (K=15) UC/Uni 1.93 3.05 6.31 3.97 4.06 7.0 9.27 4.25 4.9 7.41 5.22
Our (K=6) UC/Uni 2.4 3.7 7.14 4.52 4.7 8.06 12.43 5.32 5.84 9.4 6.35
Our (K=3) UC/Uni 3.58 4.83 11.46 7.13 6.68 17.8 18.05 8.79 7.75 15.65 10.17

Table 5: Mean angular error (in degrees) on the DiLiGenT benchmark [Shi et al. (2016)]. The type C means calibrated PS, UC is uncalibrated PS and Uni is Universal
PS as defined in Ikehata (2022b). The best result is indicated in bold, and the second best one is underlined. The proposed method gives best state-of-the-art results.

• The last dataset with directional light is DiLiGenT-Pi
[Wang et al. (2023)] (Table 8). This dataset was created to test
photometric stereo methods on near-planar surfaces with rich
details, such as coins and badges. It contains four groups of
materials: metallic, specular, rough, and translucent surfaces.
In addition, the dataset contains 30 objects, each with 100 pho-
tographs provided. As with the DiLiGenT dataset, the ground
truth normals were obtained using a scanner.

• Finally, Luces [Mecca et al. (2021)] (Table 9) is a dataset
with non-parallel and near-lighting. It contains 14 objects and
52 images per object, with known light locations and intensities.
As with the other datasets, the ground truth normal maps are
available and were obtained using a scanner.

All of these datasets offer the opportunity to test our method
on a wide variety of object shapes, materials, contexts, and so
on. However, to complete our evaluation and test the perfor-

mance of our method on different types of light, environments,
and cameras, we also visually test the performance on pub-
licly available datasets where no ground truth is given, such as
Skoltech3D [Voynov et al. (2023)], Shape and Material [Lichy
et al. (2021)], UniPS, [Ikehata (2022b)], and SDM-UniPS [Ike-
hata (2023)]. The image acquisition setup varies from dataset
to dataset. In Skoltech3D [Voynov et al. (2023)], an industrial
camera is used and images are captured in the dark with direc-
tional light. In UniPS [Ikehata (2022b)], an 8-bit smartphone
camera is used with near light (within 30 cm of the object) to
have spatially varying lighting effects. In SDM-UniPS [Ike-
hata (2023)] a digital camera is used, and in Shape and Material
[Lichy et al. (2021)] an iPhone is used. The variety in the acqui-
sition setup is important for testing the generalization capability
of our method to any setup or environment.
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4.2. Quantitative comparison
We first evaluate our methods on DiLiGenT in Table 5. We

compare the performance of both our Universal and calibrated
Transformer methods with calibrated, uncalibrated, and Univer-
sal state-of-the-art methods for PS. Our Universal method out-
performs all other methods by at least 16% on all objects. Inter-
estingly, it reaches results comparable to its calibrated variant.
In addition, we test our proposed Universal method with differ-
ent numbers of images (K=3, 6, 15, 30, and 96). With as few as
6 images, our method obtains results that are close to the state-
of-the-art using all the available images. Moreover, the results
are already the best with only 30 images.

Then, we compare our methods on a more challenging
dataset, DiLiGenT102 [Ren et al. (2022)], in Table 6. On this
dataset, we can see that our Universal method still achieves
state-of-the-art results. It improves the state-of-the-art results
by 13%, from 14.96◦ to 13.19◦. On difficult geometries, like
Turbine, the improvement is significant, and we also obtain
good results on specular material like aluminium (AL), brass
(CU) or steel. Our transformer calibrated method is however
the best performer on this dataset (see Table 7). We note that
all multi-scale methods get much better results than non-multi-
scale methods like CNN-PS [Ikehata (2018)] which is the best
performer of the non-multi-scale methods.

(a) SDM-UniPS [Ikehata (2023)] (Universal)

(b) Our Universal transformer

Table 6: Mean angular error (in degrees, lower is better) on the DiLiGenT102

benchmark, with the results of SDM-UniPS [Ikehata (2023)] indicated for com-
parison. Our Universal method gives best state-of-the-art results.

(a) CNN-PS [Ikehata (2018)] (calibrated)

(b) Our previous method, MS-PS [Hardy et al. (2023)] (calibrated)

(c) Our calibrated transformer

Table 7: Mean angular error (in degrees, lower is better) on the DiLiGenT102

benchmark, with the results of CNN-PS [Ikehata (2018)] and our previous
multi-scale CNN [Hardy et al. (2023)] indicated for comparison. Our calibrated
Transformer method gives best state-of-the-art results.
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Type Astro Bagua-R Bagua-T Bear Bird Cloud-R Cloud-T Crab Fish Flower Lion-R Lion-T Lions Lotus-R Lotus-T averageLung Ocean Panda-R Panda-T Para Queen Rhino Sail Ship Sun TV Taichi Tree Wave Whale

NormAttention-PSN [Ju et al. (2022)] C 7.2 12.0 16.5 7.4 6.9 13.4 17.3 4.4 4.4 4.6 16.4 21.0 4.4 10.8 13.7 9.27.8 5.8 13.9 16.6 4.2 4.9 5.1 5.2 4.9 5.6 7.6 9.7 9.6 6.1 8.7

PS-FCN [Chen et al. (2018)] C 7.2 13.0 16.8 7.4 7.2 14.3 17.8 5.3 4.6 4.6 18.4 21.2 4.5 11.8 13.6 9.859.7 5.8 14.8 17.2 4.7 4.7 5.3 5.1 6.1 6.7 8.0 10.2 10.6 6.8 12.2

CNN-PS [Ikehata (2018)] C 6.0 12.2 16.4 7.4 6.8 14.6 17.2 4.5 4.2 4.7 15.8 20.3 4.7 10.9 13.5 9.165.7 4.6 14.2 16.6 3.9 5.4 4.9 5.2 4.9 5.8 8.3 7.8 11.3 5.3 11.6

Our previous method, MS-PS [Hardy et al. (2023)] C 5.96 11.32 15.1 6.9 7.69 13.28 14.74 4.58 4.68 5.43 14.37 15.71 5.5 11.92 12.8 8.787.51 4.97 14.75 14.72 4.09 6.37 5.18 5.26 5.14 6.46 8.63 9.91 8.22 5.29 7.09

SDPS-Net [Chen et al. (2019)] UC 37.7 22.5 28.9 30.7 17.6 27.4 27.5 20.5 23.6 12.8 20.8 23.6 19.6 21.7 26.5 25.9340.2 31.4 21.8 23.7 19.8 16.5 24.9 16.7 19.0 31.5 26.9 34.1 41.1 39.1 29.8

SDM-UniPS [Ikehata (2023)] UC/Uni 37.8 14.6 17.1 23.8 26.5 17.1 19.2 25.4 24.5 15.2 15.9 16.2 9.2 11.8 13.6 23.3446.6 34.6 17.1 17.6 23.2 10.6 17.0 10.5 22.0 26.2 36.6 47.2 34.4 34.9 33.8

Our (k=30) C 6.03 9.57 11.75 6.72 6.55 12.61 11.01 5.75 4.11 4.85 13.12 11.43 5.37 10.17 8.09 7.755.41 5.44 12.98 11.39 4.73 5.69 5.22 6.66 6.25 5.9 10.24 7.26 6.08 5.48 6.71

Our (k=100, all images) UC/Uni 7.58 10.19 11.12 12.49 8.14 12.45 11.63 6.0 8.32 5.88 12.66 11.24 6.63 11.29 10.38 11.3542.1 6.35 13.5 11.9 7.2 7.43 6.69 7.2 5.35 6.54 10.39 8.54 47.27 6.11 7.84

Our (k=30) UC/Uni 7.14 10.43 11.69 14.09 7.35 13.08 11.92 5.32 5.96 5.14 12.73 11.2 6.16 11.51 10.39 11.3841.98 5.91 13.28 12.22 7.13 9.54 6.68 6.62 5.65 6.05 11.5 8.95 47.15 5.93 8.77

Our (k=15) UC/Uni 10.93 10.46 13.44 12.16 8.21 12.71 14.04 8.23 8.76 8.02 14.19 12.2 7.31 11.79 11.19 12.5443.73 10.46 13.81 12.65 7.34 7.68 6.83 8.2 5.99 8.05 11.37 10.45 48.9 7.49 9.49

Table 8: Mean angular error (in degrees) on the DiLiGenT-Pi benchmark [Wang et al. (2023)]. Best results are in bold, and the second best ones are underlined. The
type C means calibrated PS, UC is uncalibrated PS and Uni is Universal PS. The proposed method gives best state-of-the-art results.

Ball Bell Bowl Buddha Bunny Cup Die Hippo House Jar Owl Queen Squirrel Tool average
Fast-PS (v1) [Lichy et al. (2022)] C 8.55 6.20 7.0 12.69 8.63 17.28 5.16 8.01 29.00 5.32 12.32 12.90 13.00 12.33 11.32

L22 [Logothetis et al. (2023)] C 8.84 7.51 5.95 11.59 7.06 15.35 5.19 5.60 22.97 6.19 8.89 9.97 11.77 11.64 9.90
Fast-PS (v2) [Lichy et al. (2022)] UC 6.59 7.17 10.17 14.50 11.75 18.98 8.63 10.64 31.00 9.14 15.92 18.39 15.97 18.61 14.11

UniPS [Ikehata (2022b)] UC/Uni 11.012 24.12 23.84 27.90 23.51 28.64 16.24 21.41 35.93 14.53 32.87 28.36 25.36 19.03 23.77
SDM-UniPS [Ikehata (2023)] UC/Uni 13.30 12.76 8.44 18.58 8.53 19.67 7.25 8.86 26.07 8.30 12.67 15.97 16.01 12.54 13.50

Our (K=52, all images) UC/Uni 10.20 10.52 6.98 12.83 9.60 13.68 6.19 8.33 25.29 6.30 11.47 12.45 11.36 11.79 11.21
Our (K=30) UC/Uni 10.29 10.51 6.79 12.57 9.6 13.35 6.27 8.44 25.46 6.10 11.38 15.97 11.37 12.22 11.10
Our (K=15) UC/Uni 10.47 10.8 7.91 13.14 9.90 13.96 6.52 8.54 25.30 6.49 11.82 12.49 11.64 11.89 11.50
Our (K=6) UC/Uni 10.94 11.40 9.38 13.75 11.029 15.38 7.80 9.41 26.68 7.37 12.62 12.85 12.79 12.47 12.42
Our (K=3) UC/Uni 10.93 15.95 12.07 16.78 14.53 16.09 9.09 11.06 31.61 10.49 15.73 14.99 15.67 15.69 15.05

Table 9: Mean angular error (in degrees) on the Luces benchmark [Mecca et al. (2021)]. The proposed method provides the best results among uncalibrated methods.

The second challenging dataset is DiLiGenT-Pi [Wang et al.
(2023)]. Again, our Universal method outperforms all other
Universal and uncalibrated methods, see Table 8. Compared
to the calibrated methods, our Universal method tends to have
slightly lower performance on near-flat objects, but it still
achieves competitive results. We note that the average is not
necessarily the best metric to compare the performance of cal-
ibrated and uncalibrated methods. Indeed, for some objects all
uncalibrated or Universal state-of-the-art methods predict an in-
verted normal map compared to the ground truth (for example,
see Fig. 9). This is likely because uncalibrated methods are un-
able to determine the direction of incoming light and tend to as-
sume that it is coming from the opposite direction to the actual
direction. As shown in Fig. 9a, it is difficult to tell if the light
is coming from above or below. Both possibilities are equally
plausible, but would result in opposite normal maps. Our meth-
ods are way more robust to this problem than other uncalibrated
and Universal methods, as we only have 2 objects inverted com-
pared to 11 for SDM-UniPS [Ikehata (2023)] and 8 for SDPS-
NET [Chen et al. (2019)]. Indeed, as shown in Fig. 10, our un-
calibrated methods is able to predict correctly the normal map
contrary to SDM-UniPS [Ikehata (2023)] and UniPS [Ikehata
(2022b)]. In this dataset, our calibrated Transformer gives also
very good results. Overall, our calibrated Transformer method
gives a significant improvement of 12% compare to the second
best. And again, all our multi-scale architectures obtain the best
results in their categories.

Finally, our Universal method is also able to manage non-
parallel light beam as shown in Table 9. It reaches results
close to the best calibrated results Lichy et al. (2022), yet our
proposed approach relaxes the need for the tedious calibra-
tion of the various illumination parameters (location, intensi-
ties, anisotropy, etc.) involved in calibrated methods.

(a) Gamma corrected image

(b) UniPS [Ikehata (2022b)] (c) SDM-UniPS [Ikehata (2023)]

(d) Our calibrated Transformer (e) Our Universal Transformer

Fig. 9: Normal prediction of our methods, SDM-UniPS [Ikehata (2023)] and
UniPS [Ikehata (2022b)] on the Lung object of Wang et al. (2023). We can
see that this material is challenging for uncalibrated and Universal approaches
because of the light reflection. Indeed, normal maps are inverted.
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Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading average

Without mask SDM-UniPS [Ikehata (2023)] 4.42 4.21 8.54 5.59 7.24 10.37 14.92 5.44 6.72 12.97 8.04
Our Universal 11.46 4.64 7.46 4.11 7.80 7.14 10.34 5.27 5.59 7.93 7.17

With mask SDM-UniPS [Ikehata (2023)] 1.5 3.6 7.5 5.4 4.5 8.5 10.2 4.7 4.1 8.2 5.8
Our Universal 1.84 3.14 6.04 3.45 3.99 6.49 8.9 4.12 4.7 7.0 4.97

Table 10: Mean angular error (in degrees) on the DiLiGenT benchmark [Shi et al. (2016)] without masking the background before processing. For comparison the
results with background is also shown.

Ball Bell Bowl Buddha Bunny Cup Die Hippo House Jar Owl Queen Squirrel Tool average

Without mask SDM-UniPS [Ikehata (2023)] 10.45 14.27 10.94 21.29 11.91 10.69 7.56 9.34 27.47 7.33 13.69 16.23 17.16 15.37 13.84
Our Universal 14.6 13.95 8.29 12.5 8.81 9.19 8.54 9.78 25.52 9.61 12.49 12.26 12.44 16.95 12.49

With mask SDM-UniPS [Ikehata (2023)] 13.30 12.76 8.44 18.58 8.53 19.67 7.25 8.86 26.07 8.30 12.67 15.97 16.01 12.54 13.50
Our Universal 10.20 10.52 6.98 12.83 9.60 13.68 6.19 8.33 25.29 6.30 11.47 12.45 11.36 11.79 11.21

Table 11: Mean angular error (in degrees) on the Luces benchmark [Mecca et al. (2021)] with and without masking the background before processing.

(a) Gamma corrected image

(b) UniPS [Ikehata (2022b)] (c) SDM-UniPS [Ikehata (2023)]

(d) Our calibrated Transformer (e) Our Universal Transformer

Fig. 10: Normal prediction of our methods, SDM-UniPS [Ikehata (2023)] and
UniPS [Ikehata (2022b)] on the Whale object of Wang et al. (2023). Our
Universal method gives the correct normal orientation. The other uncalibrated
and Universal approaches fail, inverting the normals orientations.

4.3. Inference with no mask

One advantage of SDM-UniPS of Ikehata (2023) compared
to the other PS methods is its ability to solve the PS prob-
lem without using any object mask. This is a novel feature
for deep learning-based methods, as common deep learning PS
methods require to mask the background to work properly. To
test this type of inference only the quantitative datasets DiLi-

GenT [Shi et al. (2016)] and Luces [Mecca et al. (2021)] are
suitable for use, as the backgrounds in the other datasets are
completely dark or cropped. We infer the normal map with-
out masking the background and then compute the normal error
only on the object part. This technique allows us to test the im-
pact of masking the background for our Universal method. The
performance decreases without masking the background (see
Tables 10 and 11), but our method still maintains really good
results and outperforms SDM-UniPS [Ikehata (2023)], the only
one so far able to manage inference with no mask.

In Fig. 11, we show an example on two objects: the Reading
object from DiLiGenT [Shi et al. (2016)] and the Alligator from
SDM-UniPS [Ikehata (2023)]. We can see that our Universal
method not only generates a proper normal map for the desired
object, but also reconstructs the background correctly, which
is not necessarily the case for SDM-UniPS [Ikehata (2023)].
For example, the carpet is reconstructed much better with our
Universal method.

SDM-UniPS [Ikehata (2023)] Our

Fig. 11: Comparison on the Alligator object of SDM-UniPS [Ikehata (2023)]
and the Reading objet of DiLiGenT [Shi et al. (2016)] without masking back-
ground. We can see that considering the background does not degrade recon-
struction of normals, and that we reconstruct more accurate details than SDM-
UniPS [Ikehata (2023)].
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4.4. Qualitative evaluation
Next, to test the robustness of our Universal method in the

most diverse contexts and environments, we use several avail-
able qualitative datasets. We compare our Universal method
only to SDM-UniPS [Ikehata (2023)] as all other methods are
not Universal, except UniPS [Ikehata (2022b)] which is known
to be less accurate than SDM-UniPS. Note that in this section,
we only focus on inference with masked backgrounds.

Overall, the results seem good for both methods, but our Uni-
versal method outperforms SDM-UniPS on surface details (see
Figures 12 and 13). In the Owl object in Fig. 12, the results
seem similar, but when zooming on the talons, artifacts appear
on the prediction of SDM-UniPS [Ikehata (2023)] which is not
the case with our Universal method. Finally, with our multi-
scale method, the results remain good regardless of the resolu-
tion. For example, in Fig. 14, the images resolution are really
high and our Universal method obtains excellent results. Our
method performs better than SDM-UniPS [Ikehata (2023)]. Al-
though SDM-UniPS should in theory be used directly on the
whole image, an alternative to manage really high resolution
images could be to divide the whole images in patches (1024
by 1024 pixels by example) with overlapping pixels. As shown
in Fig. 14, such an ad hoc procedure fails on objects with light
interaction on the whole image, which further highlights the
benefits of the multi-scale approach.

4.5. Limitations
The main limitation of Universal/Uncalibrated methods is the

normal map reconstruction on translucent material like acrylic.
None of the state-of-the-art methods give accurate reconstruc-
tion. Indeed, as the material is translucent, it is very difficult
to know from which side the light is coming. For example, in
some objects like acrylic balls, the light passes through the ball.
So it is actually really hard to determine if the light source is
located on the left or the right of the ball. Another example is
shown in Fig. 9a. Without any prior knowledge of the object
shape, it is difficult to find out precisely where the light is com-
ing from. This greatly impacts methods for uncalibrated PS,
as the two opposite incoming light directions would lead to the
perfectly opposite normals. So, our Universal method can be
improved on this type of material, and further experiments on
specifically designed datasets such as [Guo et al. (2024)] would
be worthwile.

5. Conclusion

To conclude, we proposed a new multi-scale approach based
on Transformers with encoder and decoder for each scale. Our
method gives excellent results over a large panel of benchmark
datasets with a large diversity of acquisition setups and envi-
ronments, which show its robustness. Our method also shows
its capacity to manage very high resolution image to get the
smallest details of the geometry and to keep very high normal
reconstruction performance.

Acknowledgment. This work was granted access to the HPC
resources of IDRIS under the allocation 2022-AD010613775
made by GENCI.

SDM-UniPS [Ikehata (2023)] SDM-UniPS [Ikehata (2023)] Our Universal Transformer

Fig. 12: Comparison on objects without ground truth from Ikehata (2022b,
2023). The first column is the RGB images, the second one is the SDM-UniPS
method [Ikehata (2023)] and the last one is our method. Then, for all object,
we present the full image and a zoom part. For all objects, we reconstruct more
accurate details than SDM-UniPS [Ikehata (2023)].
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SDM-UniPS [Ikehata (2023)] SDM-UniPS [Ikehata (2023)] Our Universal Transformer

Fig. 13: Comparison on objects without ground truth from [Voynov et al. (2023); Lichy et al. (2021)]. The first column is the RGB images, the second one is the
SDM method [Ikehata (2023)] and the last one is our method. Then, for all object, we present the full image and a zoom part on the next line. For all objects, we
reconstruct more accurate details than SDM [Ikehata (2023)].
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SDM-UniPS + patch-based method [Ikehata (2023)]

SDM-UniPS [Ikehata (2023)] Our

Fig. 14: Visual comparison beetween the SDM-UniPS [Ikehata (2023)] method and our Universal method on the Sweet object of Ikehata (2023). The image
resolution is 4 000 by 4 000 pixels. We can see that our method can manage very high resolution images and outperforms SDM-UniPS [Ikehata (2023)] in terms of
normal map reconstruction.
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Honzátko, D., Türetken, E., Fua, P., Dunbar, L., 2021. Leveraging Spatial and
Photometric Context for Calibrated Non-Lambertian Photometric Stereo, in:
3DV.

Ikehata, S., 2018. CNN-PS: CNN-based Photometric Stereo for General Non-
Convex Surfaces, in: ECCV.

Ikehata, S., 2021. PS-transformer: Learning sparse photometric stereo network
using self-attention mechanism, in: BMVC.

Ikehata, S., 2022a. Does Physical Interpretability of Observation Map Improve
Photometric Stereo Networks?, in: ICIP.

Ikehata, S., 2022b. Universal photometric stereo network using global lighting
contexts. CVPR .

Ikehata, S., 2023. Scalable, detailed and mask-free universal photometric
stereo, in: CVPR.

Ju, Y., Dong, J., Chen, S., 2021. Recovering Surface Normal and Arbitrary
Images: A Dual Regression Network for Photometric Stereo. TIP 30, 3676–
3690.

Ju, Y., Lam, K., Chen, Y., Qi, L., Dong, J., 2020. Pay Attention to Devils: A
Photometric Stereo Network for Better Details, in: IJCAI.

Ju, Y., Shi, B., Jian, M., Qi, L., Dong, J., Lam, K.M., 2022. Normattention-
psn: A high-frequency region enhanced photometric stereo network with
normalized attention. IJCV 130, 3014–3034.

Kaya, B., Kumar, S., Oliveira, C., Ferrari, V., G., V., 2021. Uncalibrated Neural
Inverse Rendering for Photometric Stereo of General Surfaces, in: CVPR.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W., 2019. Set trans-
former: A framework for attention-based permutation-invariant neural net-
works, in: ICML, pp. 3744–3753.

Li, J., Li, H., 2022. Self-calibrating photometric stereo by neural inverse ren-
dering, in: ECCV, pp. 166–183.

Li, J., Robles-Kelly, A., You, S., Matsushita, Y., 2019. Learning to Minify
Photometric Stereo, in: CVPR.

Li, Z., Zheng, Q., Shi, B., Pan, G., Jiang, X., 2023. Dani-net: Uncalibrated pho-
tometric stereo by differentiable shadow handling, anisotropic reflectance
modeling, and neural inverse rendering, in: CVPR.

Lichy, D., Sengupta, S., Jacobs, D., 2022. Fast light-weight near-field photo-
metric stereo, in: CVPR.

Lichy, D., Wu, J., Sengupta, S., Jacobs, D., 2021. Shape and Material Capture
at Home, in: CVPR.

Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S., 2022. A
convnet for the 2020s. CVPR .

Logothetis, F., Budvytis, I., Mecca, R., Cipolla, R., 2021. PX-net: Simple and
efficient pixel-wise training of photometric stereo networks, in: ICCV.

Logothetis, F., Mecca, R., Budvytis, I., Cipolla, R., 2023. A CNN based ap-
proach for the point-light photometric stereo problem. IJCV 131, 101–120.

Lorensen, W., Cline, H., 1987. Marching cubes: A high resolution 3D surface
construction algorithm. SIGGRAPH .

Mecca, R., Logothetis, F., Budvytis, I., Cipolla, R., 2021. LUCES: A dataset
for near-field point light source photometric stereo abs/2104.13135.

Mo, Z., Shi, B., Lu, F., Yeung, S.K., Matsushita, Y., 2018. Uncalibrated photo-
metric stereo under natural illumination, in: CVPR, pp. 2936–2945.

Ren, J., Wang, F., Zhang, J., Zheng, Q., Ren, M., Shi, B., 2022. DiLiGenT102:
A Photometric Stereo Benchmark Dataset with Controlled Shape and Mate-
rial Variation, in: CVPR.

Santo, H., Samejima, M., Sugano, Y., Shi, B., Matsushita, Y., 2017. Deep
Photometric Stereo Network, in: ICCV Workshops.

Shi, B., Wu, Z., Mo, Z., Duan, D., Yeung, S., Tan, P., 2016. A Benchmark
Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric
Stereo, in: CVPR.

Voynov, O., Bobrovskikh, G., Karpyshev, P., Galochkin, S., Ardelean, A.T.,
Bozhenko, A., Karmanova, E., Kopanev, P., Labutin-Rymsho, Y., Rakhimov,
R., Safin, A., Serpiva, V., Artemov, A., Burnaev, E., Tsetserukou, D., Zorin,
D., 2023. Multi-sensor large-scale dataset for multi-view 3d reconstruction,
in: CVPR.

Wang, F., Ren, J., Guo, H., Ren, M., Shi, B., 2023. DiLiGenT-Pi: Photomet-
ric Stereo for Planar Surfaces with Rich Details - Benchmark Dataset and
Beyond, in: ICCV, pp. 9477–9487.

Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P.,
Shao, L., 2021. Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions, in: ICCV, pp. 568–578.

Wang, X., Jian, Z., Ren, M., 2020. Non-Lambertian Photometric Stereo Net-
work Based on Inverse Reflectance Model With Collocated Light. TIP 29.

Woodham, R.J., 1980. Photometric Method For Determining Surface Orienta-
tion From Multiple Images. Opt. Eng. 19.

Yao, Z., Li, K., Fu, Y., Hu, H., Shi, B., 2020. GPS-Net: Graph-based Photo-
metric Stereo Network, in: NIPS.

Zheng, Q., Jia, Y., Shi, B., Jiang, X., Duan, L., Kot, A., 2019. SPLINE-Net:
Sparse Photometric Stereo Through Lighting Interpolation and Normal Es-
timation Networks, in: ICCV.


