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Over the past decade, wearable activity trackers (WATs) have become increasingly popular. However, despite

many research studies in different fields (such as psychology, health, and design), few have sought to jointly

examine the critical aspects of utility (i.e., benefits brought by these devices), privacy, and security (i.e., risks

and vulnerabilities associated with them). To fill this gap, we reviewed 236 studies that researched the benefits

of using WATs, the implications for the privacy of users of WATs, and the security vulnerabilities of these

devices. Our survey revealed that these devices expose users to several threats. For example, WAT data can be

mined to infer private information, such as the personality traits of the user. Whereas many works propose

empirical findings about users’ privacy perceptions and their behaviors in relation to privacy, we found

relatively few studies researching technologies to better protect users’ privacy with these devices. This survey

contributes to systematizing knowledge on the utility, privacy, and security of WATs, shedding light on the

state-of-the-art approaches with these devices, and discussing open research opportunities.

CCS Concepts: • Human-centered computing→ Ubiquitous and mobile computing; • Security and
privacy→ Human and societal aspects of security and privacy; Systems security; Network security.

Additional Key Words and Phrases: wearable activity tracker, fitness tracker, privacy, security, utility, survey,

literature review
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1 INTRODUCTION
Wearable Activity Trackers (WATs) are smart devices that record human activity data. They often

exist in the form of wrist-worn bracelets and watches, such as fitness trackers and smartwatches.
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WATs are becoming extremely popular. In 2020, the market was estimated to be 36.3 billion USD,

and it is projected to grow to 114.4 billion USD by 2028.
1
Due to high sales and market penetration,

many WAT devices, brands, and service providers (SPs), such as the Apple Watch, Fitbit, and

Garmin, have become household names.

There has been extensive research on WATs. Researchers studied WATs from different perspec-

tives, such as design [187], psychology and behavior change [133], health [194], rehabilitation [97],

reliability and accuracy [53], security and privacy [153], usability [159], and sensing technol-

ogy [217]. Three very important aspects of WATs are utility, privacy, and security. Like any other

technology, WATs have benefits but also expose users to risks. On the one hand, they can empower

users to become more self-conscious and improve their well-being. On the other hand, due to the

sensitive nature of the data they collect, they can also endanger users’ privacy. These benefits

and risks are also related to how users perceive the utility and privacy of their WATs. Utility and

privacy are interwoven concepts. According to the privacy calculus theory [17, 137], before using

technology, users usually perform risk-benefit analyses and consider the trade-offs between them.

It is also essential to not overlook the critical dimension of security, as it plays a pivotal role in mit-

igating risks where the data collected by WATs must be protected from unauthorized access. In this

survey, we provide knowledge on the benefits WATs provide, the users’ perception of them, and the

associated security and privacy risks. For additional relevant topics, we cover existing regulations

for the protection of users, security vulnerabilities of WATs, and the existing privacy-enhancing

solutions. The contributions of this survey are threefold:

• We discover the main privacy issues that stem from using WATs.

• We shed light on the utility aspects of WATs; they have implications for privacy and security.

• We review the WATs’ potential security vulnerabilities, attacks on WATs, and the existing

countermeasures.

1.1 Novelty Statement
Numerous literature surveys related to WATs—and wearables in general—have been published. Ta-

ble 1 summarizes these surveys. Several surveys provide valuable insights and in-depth knowledge,

from different perspectives, about wearables. For example, they review applications of wearables

for healthcare [110, 177, 256], rehabilitation [181], occupational safety [179, 232], and activity

recognition [130]. They also review the reliability [81], adoption [117], privacy [52, 206], and

security [56, 216, 223] of wearables. However, these surveys cover various types of IoT devices and

wearables (e.g., eye-worn glasses, EEG devices) that are not specifically designed to track physical

activity, thus making it difficult to determine which findings are specific to WATs. The present

survey focuses solely on WATs in order to reveal related findings and research gaps that are specific

to WATs.

Whereas previous surveys on WATs focused on utility [220], reliability [68, 127], quality [213],

and WATs’ effectiveness for behavior change [231], the present survey takes a holistic approach by

integrating utility, privacy, and security aspects. This is important for three reasons: (i) Research

on WATs is multifaceted, as these devices serve practical purposes by collecting personal data

and exposing users to privacy threats. The comprehensive approach provided by this survey

ensures that readers gain a well-rounded understanding of the benefits and perils of using these

devices; (ii) Utility, privacy, and security are inherently intertwined, where challenges in one domain

inevitably affect the others. The well-documented trade-off between utility and privacy further

illustrates this connection [17, 137]. Also, privacy threats identified for WATs are necessarily

1
https://www.fortunebusinessinsights.com/fitness-tracker-market-103358, last accessed: Feb. 2024.
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Table 1. The summary of the published surveys about the utility, privacy, and security of WATs and generic
wearables.

Device Aspect
Surveys Wearables† WATs Utility Privacy Security Year �

Pantelopoulos and Bourbakis [177] ✓ - 2009

Patel et al. [181] ✓ - 2012

Lara and Labrador [130] ✓ - 2012

Evenson et al. [68] - ✓ 2015

Iqbal et al. [110] ✓ - 2016

Kolla et al. [127] - ✓ 2016

Kalantari [117] ✓ - 2017

Seneviratne et al. [216] ✓ - 2017

Shrestha and Saxena [223] ✓ - 2017

Sullivan and Lachman [231] - ✓ 2017

Georgiou et al. [81] ✓ - 2018

Datta et al. [52] ✓ - 2018

Saa et al. [206] ✓ - 2018

D’Mello et al. [56] ✓ - 2018

Wu and Luo [256] ✓ - 2019

Shin et al. [220]
‡

- ✓ 2019

Schiller et al. [213] - ✓ 2020

Svertoka et al. [232] ✓ - 2021

Pasquale et al. [179] ✓ - 2022

→ This Survey - ✓ 2024

, , , and show roughly the extent to which each survey covered each domain, indicating: Not Covered ;
Minimally Covered ; Moderately Covered ; and Mostly Covered. † These papers cover a wide range of wearable

devices, such as head-mounted displays, biosensor systems, smart glasses, smart watches, fitness trackers, vital signs
monitors, industrial wearables, smart fabrics, EEG devices, and other physiological sensors. ‡ Shin et al. [220] presents a
comprehensive survey about WAT utility for papers published between 2013 and 2017. However, their focus on privacy is
limited, with only half a page devoted to 29 privacy-related papers. This paper does not cover security, nor does it discuss
the tradeoffs between utility and privacy.

connected to the security measures implemented by SPs. Our integrated approach offers valuable

insights into three cardinal dimensions of WAT research; (iii) The holistic approach also allowed

us to draw a research agenda for WATs by identifying six research gaps that researchers might

explore next.

Finally, many research articles on WATs have been published in the past five years but were not

considered in past surveys of wearable technology. Given the speed at which new technologies

in WATs emerge and advancements in sensor technologies (e.g., oximeter sensors added after

COVID-19), updating the survey on WATs research was necessary.

1.2 Survey Method
Figure 1 summarizes our methodology. We conducted a systematic literature review following

Kitchenham et al. [126]’s assessment criteria (e.g., inclusion/exclusion criteria, comprehensive

literature search). To identify relevant papers, we crafted a set of search strings that encompassed

the key terms related to our research focus: [“physical activity data” or “fitness data” or “fitness

tracking” or “wearable activity tracking” or “physical activity tracker” or “fitness tracker” or “wearable

activity tracker”] and [“utility” or “privacy” or “security” or “perception” or “understanding” or “experience”

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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or “expectation” or “sharing”] and [“system” or “device” or “application” or “app” or “service” or “bracelet”

or “wrist-worn”]. We chose these specific keywords, according to previous surveys [220, 223], to

ensure a comprehensive search and to enable us to capture a wide range of relevant literature

while excluding studies that do not directly contribute to our inquiry. For example, we include

‘physical activity data’ and ‘fitness data’, as they are directly related to the topic of WATs. Also,

we used ‘fitness tracker’ and ‘wearable activity tracker’, as they were interchangeably used in

the literature to refer to WATs. We also used terms such as ‘bracelet’ and ‘app’, as they uncover

studies related to the physical form factor of WATs or other entities in the WAT ecosystem. We

searched in ACM DL, IEEE Xplore, AIS library, USENIX, PoPETs, Science Direct, and Springer

Link. We used Google Scholar to include papers from other databases and publishers (e.g., Taylor &

Francis). To update our paper database during the review process, we also kept track of the most

recent and relevant published proceedings (e.g., IMWUT). We identified 688 papers (after removing

duplicates). After retrieving the full articles, we excluded the papers that (i) are not written in

English, (ii) were published in 2012 or earlier, or (iii) are not peer-reviewed (e.g., position papers,

letters, editorials, prefaces, article summaries, theses, patents, or books). We included only the

papers that met both of the following criteria: (i) They are about WATs and/or have implications for

WATs, and (ii) have direct relevance to the utility, privacy, and/or security of WATs. The first author

applied the inclusion and exclusion criteria and later confirmed them with the second and third

authors. Out of 688 papers, 236 were selected to be reviewed (including two papers we added after

the first survey submission).
2
Three authors summarized the papers’ context, methodology, and

findings. The reviews were discussed in weekly meetings. To synthesize the findings, we adhered

to the guidelines provided in the JBI Manual for Evidence Synthesis [13]. First, we reviewed the

summaries of the papers, identifying the common patterns and homogeneity between them. Then

we highlighted aspects of heterogeneity and diversity with regard to their findings.

1.3 Survey Structure
The remainder of the survey is organized as follows. In Section 2, we define WATs and explain

their ecosystem. In Section 3, we discuss several aspects of WATs’ utility, such as their core benefits

and different usage patterns, including social usage and data sharing. In Section 4, we first discuss

the risks of WATs for users’ privacy and the main findings about users’ awareness, attitudes, and

behaviors. We review WATs’ privacy policies, the existing regulations for protecting users, and

the ethical aspects of using WATs for research or health campaigns. In Section 5, we discuss how

utility, privacy, and security are intertwined and how users make trade-offs among these aspects.

In Section 6, we review different types of attacks and security vulnerabilities related to WATs. In

both Section 4 and Section 6, we present the existing work as privacy-enhancing technologies

and security countermeasures. In Section 7, we discuss several open issues concerning WATs and

possible opportunities for future research. We conclude the paper in Section 8.

2 WAT DEFINITION AND ECOSYSTEM
There is no consensus about the definition of a WAT. However, there are many commonalities

between the various definitions. To create a standardized definition, we took a philosophical

approach [201] by identifying the essential and accidental properties of WATs, according to earlier

studies on WATs [23, 106, 186]. To be a WAT, an object needs to have all of the following essential

properties (e) and can also have accidental ones (a):

• e1. It must be worn on the body

• e2. It must have sensors that record physiological/environmental data

2
The list of the reviewed papers and their summaries are available on OSF at https://doi.org/10.17605/osf.io/7mkre.
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� Search strings were 
defined following Shin et al. 

and Shrestha & Saxena, 
e.g., “privacy”, “bracelet”

� Records identified 
through searching 

ACM DL (n=357)
IEEE Xplore (n=75)

ScienceDirect (n=58)
AISeL (n=12)

USENIX (n=11)
Sciendo/PoPETs  (n=9)
Google Scholar (n=166)

Total (n=688)

� Identification � Screening

� Exclusion, e.g., 
published in 2012 

or earlier 

Records excluded (n=189)

� Inclusion, e.g.,
relevance to the utility, 

privacy, or security 
of WATs

n=499 records assessed

Records included (n=236)

� Reading & � Analysis

 � 1st author summarized n = 73 
records on WAT privacy

 � 2nd author summarized n = 69 
records on WAT utility

 � 3rd author summarized n = 94 
records on WAT security

� The summaries were 
analyzed based on the 

JBI Manual [13]

� 1st, 2nd, & 3rd authors 
met weekly and 

discussed the papers

Fig. 1. Summary of the survey methodology. The full list of search strings are listed in Section 1.2.

• e3. It must be an electronic/digital device

• e4. It can come in various forms (e.g., wrist-worn, strap, clip-on)

• e5. It must provide data analysis that is available to users, without the need for a health

professional

• e6. It must enable users to gain access to actionable information that is derived from the sensor

data

• a1. It can upload data to a server or connected device

• a2. It uses a docking station to sync with a PC or uses WiFi to upload data directly

• a3. It enables users to visualize data in graphical format on a companion app or website

• a4. It enables users to visualize data on the WAT itself

• a5. It can provide immediate feedback

• a6. It can provide general/numerical feedback (after an activity)

The most common sensors used in WATs are accelerometers, photoplethysmograms (used for

measuring heart rate and respiration), pulse oximeters (blood oxygenation), gyroscopes, altimeters,

and GPS. The more advanced and recent models tend to include a compass, thermometer, micro-

phone, magnetometer, ambient light sensor, and an electrodermal activity sensor. Therefore, we

consider smartwatches as WATs, even if they offer more functionalities than some fitness trackers.

We do not consider medical-connected devices (e.g., insulin pumps) and wearable devices with very

specific purposes (e.g., connected shoes) as WATs.

The typical WAT ecosystem is composed of a WAT paired with a connected device (e.g., smart-

phone, tablet) on which a companion app provided by the WAT’s service provider (SP) is installed.

The companion app communicates through the Internet with the SP’s servers (Figure 2a). The

servers store the users’ WAT data and can process raw WAT data and perform various analyt-

ics [113]. The WAT collects data by using different sensors and regularly synchronizes with the

companion app that uses Bluetooth communication (Figure 2b). During this synchronization, the

data is usually uploaded to the SP’s servers. The connected device can store recent data, whereas

older data needs to be downloaded from the server (Figure 2c). The connected device can also

send data to the WAT, such as firmware updates or notifications [242]. A user can also permit

third-party applications (TPAs), such as Strava, to access their data (Figure 2d). The TPA requests

data from the SP’s server by using a dedicated API or, in some cases, it directly accesses data stored

on the connected device (e.g., through Apple’s Health app). The user will then generally be able to

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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Fig. 2. WAT ecosystem, adapted from Velykoivanenko et al. [242].

access their data by using the TPA’s functionalities. The same data-sharing method also works in

reverse, thus permitting the companion app and/or the SP to access the data originally collected by

a TPA [269]. Many existing WATs, such as the Apple Watch
3
, Fitbit and Garmin match this model.

Users can also access their data by using secondary connected devices (Figure 2e) or on the web

dashboard of their SP (Figure 2f).

3 BENEFITS AND UTILITIES
Research shows that WATs can provide users with a variety of benefits:

• Physical Activity (PA). WATs can increase users’ motivation to engage in PA [43, 76, 97,

98, 113, 133, 151, 159, 173, 180, 186, 190, 194, 199, 228, 253]. They can help users to increase

PA [43, 76, 97, 98, 143, 171, 174, 194, 199, 221], improve sports performances, and monitor their

performances [180, 186, 196, 253].
4
However, the increase in PA might not always be sustained

after the users stop using a WAT [131, 171]. Generally, as WAT use increases, users tend to

perceive more benefits [76, 149].

• Health Improvements.WATs can provide the motivation for measurable benefits, such as

weight loss for obese patients [76, 194, 253] and can have a positive effect on users’ perceived

self-efficacy and health behavior [200].

• Medical Benefits.WATs can improve interactions between patients and medical practition-

ers [97, 159] and support patient monitoring [27, 115, 159, 186].

• Social Benefits.WATs can facilitate, support, and strengthen users’ social bonding [94, 174,

194, 196, 199, 202, 211], and can support collaborative fitness goals [203].

• Sleep Quality. Many WATs provide a sleep-tracking functionality. Users see benefits in

having access to their sleep data [197], even if some track their sleep without a specific

goal [202]. However, users might have difficulties using such a functionality, due to not

tracking continuously [145, 242], to not trusting the accuracy of the data [186, 197], and/or to

not being able to easily manipulate or interpret the data [145, 197].

• Others. WATs can help users to teach children to be more independent (e.g., via chore re-

minders) [174]. They can also support scientific research [199, 243, 262]. Some users simply

use WATs as watches [131, 186, 202] and/or to satisfy their curiosity and design tastes [202].

3
Health data collected through Apple devices is end-to-end encrypted and could be accessed through mobile APIs.

4
In one study, Gui et al. [94] found that tracking does not increase PA.
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Next, we review general WAT usage-patterns, data-sharing practices, and the ways WAT use

was found to evolve over time. Finally, we summarize the studies that focus on the usability and

user experience of WATs.

3.1 WAT Usage Patterns and Motivations
Users have unique reasons for (and ways of) using WATs [89, 112, 113, 125, 163]. Various patterns

have been identified based on the profile characteristics of WAT users (see Table 2). Users check

their WATs more often while exercising [10, 92] and prefer to engage in activities that their WATs

can track [76]. Users might use different trackers to track different types of activities (e.g., using

one to track walks and another to track runs) [10, 202]. Users might concurrently use multiple

devices [6, 42, 145]. Next, we list users’ motivations for tracking:

• Logging. Some users use WATs to document their activities [176, 186, 202].
5

• Goal Setting. WATs usually support users in setting daily or weekly PA goals. Most users use

the default 10K steps per day goal [233] , whereas others pursue longitudinal achievements

(e.g., walking 10K steps every day for 30 days in a row) [202]. Users might also have broader

goals that are not directly measured by WATs (e.g., weight loss) [186, 202]. Generally, users

follow defaults set by WATs [76, 133].

• Self-Reflection. Some users do not follow specific goals with WATs [10, 133]. Instead, they

use WATs to reflect and learn about themselves [92]. For this, they mainly refer to their short-

term usage data (e.g., only for the current day) [42, 202, 233]. This analysis helps users to

consider contextual information [209] (e.g., their emotional state [6]). Long-term data are rarely

analyzed [42, 202, 233] , but when it is, it prompts users to reconsider their past behaviors with

regard to their PA [42] (e.g., peaks and extreme data).

• Social Benefits. Some users share data with groups in order to compete with others (e.g.,

challenging others or chatting about PA) [190]. Some users like having access to other people’s

WAT data [94] to give and receive support [94, 139, 141, 190].

• Monetary Incentives. Some users use their trackers to gain financial rewards, such as benefits

provided by health insurance companies [159].

3.2 Social Usage and Data Sharing
The most common way of sharing WAT data is through companion apps on smartphones or, less

frequently, through desktop companion software [71]. Findings on users’ propensity to share WAT

data are varied. Tang and Kay [233] found that about 50% of users use social features. Whereas,

Rooksby et al. [202] found that only a small percentage share their WAT data. To share and compare

data easily, those who share tend to use devices and apps that are similar to those their friends

and family have [94, 139, 196, 211]. Interestingly, Fritz et al. [76] found that sharing with friends

and family is not an effective strategy for increasing motivation, whereas sharing with strangers is.

Sharing could support reaching a common goal and increase motivation. In cooperative tracking,
a group goal must be reached under specific constraints (e.g., only one member of the group

can contribute towards the activity goal at a given time) [199, 203]. This was found to increase

relatedness and boost individual motivation [203]. In general, users find value in comparing

their data with that of others [10, 190, 253]. Sharing enables users to engage in constructive

discussions [190], and to compete with friends, family [159, 209, 221], and strangers [190, 202].

Caregivers can monitor their children’s data to check if they are healthy or to keep track of the

children’s chores [174]. When a child’s tracker does not work correctly, they can feel ‘left out.’

5
To read a survey on personal informatics, see [64].
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Table 2. WAT users identified in the literature with different types of usage patterns.

User Types Differences
Behavior-change trackers vs.
Instrumental trackers vs.
Curiosity-focused trackers [67]

Behavior-change trackers do a lot of research and aim to reach their

goals. Instrumental trackers seek to maximize the benefits of their

tools. Curiosity-focused trackers use WATs out of curiosity.

Technologically-savvy vs.

Non-technologically-savvy users [139, 205]

Technologically savvy users are more likely to find WATs easy to use.

Younger vs. Older users
[122, 139, 188, 205, 211]

Older adults had difficulties with setting up/syncing their trackers

with TPAs [139]; older adults require the support of younger family

members to help them overcome technological barriers [211].

Elite athlete vs.
Amateur athlete users [196]

Elite athletes focus on tracking metrics they consider important

(e.g., HR) and share data to portray a specific image of themselves to

impress their fans and confuse rivals.

Power users† [76, 143, 151, 163, 233]
With regard to use consistency, they exemplify the simplest use

pattern by having consistent and intense tracker use.

Long-phase users† [76, 143, 163] They track without major disruptions for long periods of time.

Consistent users† [76, 163] They track with moderate consistency.

Intermittent users† [76, 163]
They have consistent but sparse usage; they do not want complete

logging; instead, they have other reasons for tracking.

Inconsistent users† [143, 233]
They go through periods of varying length (daily use) and take

breaks of varying lengths.

Experimenters† [163]
They use WATs frequently but for short periods of time (e.g., only

while exercising).

Hop-on hop-off users
†
[163, 233] They frequently take long breaks yet regularly resume use.

Quantified-selfers† [113] They never lose interest in the information provided by WATs.

† These usage patterns emerge after long-term WAT use.

Families in low-income neighborhoods could have limited engagement with WATs, as they often

prioritize their children’s education over their physical health [209]. But WATs can promote social

mindfulness in high-crime areas, where users feel a sense of safety and community support [208].

Users’ willingness to share WAT data depends on the type of data shared and with whom it is

shared [78, 190]. Users mainly shareWAT data with people they know [78, 94, 190] , and with people

who are similar to them (e.g., same gender, goals, activities, and/or interests) [190, 211, 228]. Pevnick

et al. [183] found that male and young healthcare workers are more willing to share WAT data

with healthcare providers. Users share data with friends and strangers to compete and/or to show

a positive image of themselves, whereas they share data with family members to encourage and

motivate one another to be healthier [7].

Users can also share data to increase their social status [159, 196, 253]. Some might even ma-

nipulate their data for entertainment/presentation purposes [94, 196], which can be perceived as

bragging [202]. Furthermore, some users might feel intrusive looking at WAT data belonging to

people that they do not know [190]. Finally, other research has identified groups of users who

prefer to not share their WAT data [76, 202].

3.3 Evolution Over Time
The way users use their WATs changes over time [76, 233]. We identified four categories of usage

duration:

• First evaluation (0–1 month). WAT use is generally consistent over time [163] and users

explore and experiment with different features [121]. During this initial phase, they begin to

experience most of the previously discussed benefits (e.g., increases in PA, strengthening of
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social bonds). During this phase, users typically decide whether WATs bring value to their

lives [188], or if they will stop using them [143].

• Short-term use (1–6 months). Users accommodate WATs into their lives [121]. During this

phase, the frequency of use was found to vary: from short periods of time to almost every

day [143, 163].

• Medium-term use (6–12 months). Users integrate WATs into their lives, benefiting from

improved well-being, lifestyle changes, noticeable physiological changes (e.g., weight loss),

reinforced PA awareness, and greater social reach [194].

• Long-term use and fading of interest (>12 months). Some users integrate WATs more
deeply into their lives, whereas others lose their initial enthusiasm yet still continue to use

them for their routine activities [76].

Over time, users’ habits were found to change: they change their motivations [10] and goals [186,

233] to use WATs. Interestingly, WAT data utility becomes less meaningful and relevant over time,

as users correlate it with their routines [113]. After long-term use, distinct usage patterns emerge.

These usage patterns are summarized in the second half of Table 2.

Several studies have identified patterns of engagement with WATs, more specifically around

adoption, adherence, and abandonment. Table 3 summarizes various elements that were found to

positively or negatively influence users’ decisions to adopt, adhere to, or abandon their WATs.

Adoption. Research has identified several factors that can either motivate users to adopt WATs or

can hinder their adoption [173]. Examples of these factors: curiosity and trust can act as nudges for

adoption, whereas lack of interest and privacy concerns can be hindersome. Understanding how

users typically acquire WATs helped us better understand WAT adoption. Most often individuals

were found to have purchased the WATs themselves [47]. Specific WAT models might be selected

based on friends’ recommendations [151, 202]. However, they can also be acquired indirectly as

part of a wellness program [47, 102], as a gift, or as a prize [47].

Adherence. Users’ adherence to WATs is influenced by a variety of factors. For example, users’

perceived benefits of using WATs [25], convenient access to health information [32], and expert

advice in companion apps [255] positively affect users’ decisions for adherence. Also, when a user

feels invested in a WAT, they are more likely to use it [47]. Once WAT-use becomes routine, users

continue using it, purely out of habit, even if they no longer perceive any benefits [115, 131, 204].

On a different note, Tang et al. [234] defined different thresholds for assessing users’ level of

adherence, as follows: (i) strictly, more than 0 steps on a given day, (ii) more than 500 steps on

a given day, (iii) more than 10 hours of data recorded on a given day, and (iv) activity logged in

the morning, afternoon, and evening (or so-called “3-a-day”). They showed that the step-related

thresholds (items i & ii) are more effective and lead to similar adherence features when they are

used to include/categorize participants in research studies. In contrast, the “more than 10 hours” and
“3-a-day” thresholds (items iii & iv) have diverse effects on participant inclusion/categorization.

Abandonment. After a certain time, most users were found to abandon their WATs. During the

first 30 days after acquisition, if a user does not use their WAT weekly, they are more likely to stop

using it [70]. Past research identified the following proportions of users who churn after initial

setup:

• A small portion of users abandon their WATs within the first week [47];

• Many users abandon during the first three months [47, 131];

• Others abandon within six months [47, 57, 163];

• The remainder abandon within the first three years [70].
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Table 3. Different factors that can positively or negatively influence adoption, adherence, and abandonment.

Factor Adop. Adhe. Aban.
To get benefits (increasing PA [43, 67] and keeping motivation [43, 76, 176]) ↗ - -

Perception of WATs as useful and beneficial [25, 193] ↗ ↗ -

To gain utility (customization [266], fashion and ergonomic [54, 253], and design trends [44]) - ↗ -

Trusting SPs [2] ↗ - -

For curiosity [131, 202] ↗ - -

Social influence [79, 124, 198] and intergenerational motivations [174, 209, 211] ↗ - -

To continue sharing data with friends and family [94] - ↗ -

Constructs of Self-Determination Theory (SDT): Relatedness, Competence, and

Autonomy [266]

- ↗ -

Convenient access to health information [32] and expert health advice [255] - ↗ -

Being offered financial incentives for sharing WAT data, e.g., through corporate wellness

programs [43, 159, 176]

↗ - -

Feeling financially invested in a WAT [47] - ↗ -

Habituation: When usage becomes routine [115, 131, 204] - ↗ -

Collecting data for the future when more advanced analysis techniques are available

[113, 131]

- ↗ -

A lack of interest [43, 47] or willingness to become overly focused on WAT data [43, 209] ↘ - -

Lack of alignment with users’ personal fitness goals or using another WAT and not

wanting to switch, in the context of employer-sponsored wellness programs [43]

↘ - -

A misalignment between expectations and the experienced reality of using WATs

[47, 131, 194]

- - ↗

After accomplishing initial goals [14, 47, 65] - - ↗
Internalizing PA goals and habits [89] - - ↗
Contextual changes such as changes in life circumstances [14], participating in activities

that their WAT cannot track [47, 65] (e.g., a new fitness program), and changing jobs/schools

if the new workplace/school does not allow tracking on their premises [47]

- - ↗

Changes in initial intrinsic motivations [14] and after the sense of curiosity is fulfilled

[47, 113, 121, 131]

- - ↗

Health-related reasons, such as injuries [14, 47, 65] or physical inability to engage in PA

[47, 91, 98, 115]

- - ↗

Lack of utility [14, 66, 131], technical barriers [43], and issues with data [14, 131],

e.g., lack of accuracy [14, 65, 102, 131, 171], and/or feeling uncertainty about data [6, 102]

↘ - ↗

Physical discomfort (e.g., skin irritation) [14, 47, 102, 115, 131, 159, 186, 242] - - ↗†

Unpleasant aesthetics [102] - - ↗
Too much investment of time and effort for tracking (e.g., having to sync the device)

[14, 43, 65, 131]

↘ - ↗

Privacy concerns [14, 43, 65, 79, 124, 137, 173, 176, 198, 215, 242] ↘ - ↗†

Lack of social engagement [102], inability to compare data with others [47, 102],

or losing interest in comparisons with others [14]

- - ↗

Charging the WAT [102, 242] - - ↗†

Hygiene reasons [242] - - ↗†

Being forced to (e.g., during security checks) [242] - - ↗†

After seeing negative results (e.g., not wearing the WAT on days with low PA) [180] - - ↗†

Negative emotions, e.g., guilt for not meeting daily PA goals

[6, 14, 65, 66, 89, 91, 97, 98, 115, 171]

- - ↗

Forgetfulness [14, 67, 242] - - ↗
↗ and↘ indicate positive and negative impacts, respectively. † indicates that the abandonment could be temporary.

The reasons for abandoning WATs vary greatly: tracking is no longer feasible or necessary, WATs

do not provide sufficient utility, and the cost of using WATs is perceived to be too high (see Table 3).

Sometimes users suspend usage of their WATs temporarily [163]. In Table 3, we report factors

that can cause temporary vs. permanent abandonment. Epstein et al. [65] found that users who
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abandon their WATs can feel: guilty when the abandonment is due to factors beyond their control,

frustrated when they realize they could not achieve their initial goals, and relieved if they realize

they no longer need to invest the time and effort to maintain the device active. When users were

found experiencing negative emotions in relation to the usage of their WAT, removing it could

reinstate a feeling of control [89].

3.4 Usability and User Experience
Overall, interfaces of WATs are perceived as easy to use [159, 186, 188]. In general, users perceive

the immediate feedback provided byWATs as useful, because it helps them achieve their goals [173],

and to become more aware of their body image [29]. However, past research has identified sev-

eral usability issues with different types of WATs.
6
Matt et al. [159] found that the onboarding

experience might be overwhelming for some users. Furthermore, users were found to have issues

with basic tasks, such as synchronizing their WATs with their online accounts [167, 174]. With

many types of WATs, the user interface tends to lack customization, personalization, and language

(localization) support [167]. Additional issues were identified with navigation, text entry, and voice

recognition [26, 167], and also with insufficient accessibility support [167]. New users of WATs

were found to have trouble making sense of the numerical and visual representation of their PA

data [10, 121], which could lead to frustration with their WATs [6, 188].

Past research also identified issues with WATs’ activity detection and notification. Several types

of WATs were found to incorrectly identify context (e.g., WATs giving prompts to walk while

the user is on an airplane) [167]. WAT notifications were also found to be disruptive, interfering

with concentration (e.g., by distracting the user by vibrating/flashing), and can reduce sports

performances [10].

Identified issues also concerned the accuracy of measurements of WATs. Data collected by WATs

was found to not always represent actual PA (e.g., steps were recorded when none were taken [159]).

Accuracy issues can elicit negative emotions in users (e.g., mistrust and annoyance) towards their

WATs [76, 98]. Users were found to have differing requirements for accuracy [186, 261]. Some

categories of users were found to care about the accuracy ofWAT data [26, 65, 145, 167, 176, 188, 202,

253], whereas other types of users were not very interested in the accuracy of their WAT data [94].

More specifically, past research identified that users tend to perceive the accuracy of their WAT data

in three ways: accurate and reliable [196]; partially accurate, but still useful [6, 26, 186, 196, 202];
and inaccurate and unreliable [26, 65, 98, 159, 167, 186, 202].

Finally, many issues identified in past research are related to the ergonomics and form factors of

WATs:

• physical discomfort [102, 145, 159, 196];

• insufficient battery life [26, 145, 167];

• fragility [26];

• not being waterproof [159, 167];

• readability of the display under direct sunlight [167];

• insufficient feedback (e.g., weak vibration, lack of alerts, and presentation issues) [167].

4 PRIVACY
We begin by discussing the types of information that can be derived from WAT data and whether

this information poses any threats to user privacy. Machine-learning (ML) models using WAT data

can be used to infer the following information about users:

6
It is important to note that many of these usability issues may have been addressed or resolved over time.
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• Health Metrics.WAT data can be used to monitor ECG waveforms [37], post-surgery compli-

cations [264], symptoms of multiple-sclerosis [95], SARS-COV-2 infections [105], mental-health

states, such as stress resilience [3], and it can be used to predict the readmission of cancer

patients [15]. Combining WAT data with other resources can help build a health persona [111].

In an edge case, WAT data could help specialists better understand the social engagements

between autistic children who have difficulties with non-verbal communication [251].

• Activities. Studies about human activity recognition (HAR) show how activities can be inferred

using WAT data. The most frequently inferred activity types are eating and drinking [28, 236,

252]. Also, in relation to consumption, a model to detect users’ drunkenness in real-time was

developed [99]. Shoaib et al. [222] use WAT data to detect smoking events. WAT data can also

be used for other purposes: for example, tracing the geometric motion of a user’s arm [217],

recognizing objects moved by users and the identity of the users who moved them [195],

and preventing pedestrian distractions [245]. Several novel algorithms and frameworks were

developed for HAR (e.g., [1, 144]). Dietrich and van Laerhoven [55] propose a typology for

classifying the different contexts of WAT usage. Activities can be successfully recognized, even

for short-duration data (i.e., short and quick movements) [240]. Such inferences are generally

more efficient than with other common devices’ data (i.e., smartphones) [53]. This is because

WATs, unlike phones that are usually in users’ purses or pockets, are close to the body (i.e.,

wrist-worn).
7

• Personal Characteristics. Users’ WAT movements, when using NFC payment terminals, can

help infer their height [229]. Information shared by users on social media in a WAT context can

be used to infer personal information, such as weight [250]. Under certain conditions, users’

handwriting can also be recognized with WAT data, where inference is made not only to detect

the event but also to infer the written letters and words [254, 257]. For example, WAT data can

be used to recognize air-writing gestures (and words) [11], finger-writing gestures [259], and

gestures of writing on a whiteboard [12]. WAT data can also be used to predict users’ moods
and subsequently to recommend music [138]. More recently, Zufferey et al. [268] showed

that WAT data can be used to infer users’ personality traits, particularly, three of the Big Five

personality traits (i.e., openness, extraversion, and neuroticism).

• Location. A few studies focus on location inference. Hassan et al. [103] studied bypassing

endpoint privacy zones (EPZs) to infer WAT users’ locations; they could infer more than

four-fifths of the locations. EPZ is a mitigation technique that consists in defining a private

zone within which some data are not revealed. Meteriz et al. [162] also showed that location

inference is possible, with certain previous knowledge and by using the elevation profile.

Are WATs Risky for Users’ Privacy? A large majority of research on WAT inferences show that

WAT data can also be used in adversarial settings, with potentially negative consequences for

user privacy. For example, all information about consumption (e.g., eating, drinking, smoking),

activities (e.g., sport), location (e.g., city name), traits (e.g., personality), and disease (e.g., cancer),

can be directly used by adversaries (e.g., health insurers, employers, and advertisers) to target their

customers and/or even to discriminate against them.

4.1 WAT Users Privacy Awareness, Knowledge, Concern, Attitude, and Behavior
Awareness and Knowledge. Most users tend to have a limited understanding of how WATs

and their ecosystem work (i.e., how their data is processed and analyzed). Users are not aware of

7“The hand is the visible part of the brain.” — a quote attributed to Immanuel Kant by David Katz,

see https://web.archive.org/web/20240203213122/https://www.gutefrage.net/frage/aus-welcher-quelle-von-kant-kommt-

das-zitat-die-hand-ist-das-aeussere-gehirn-des-menschen, last accessed: Feb. 2024.
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who has access to their data, and of how their data are transmitted, stored, and used [45, 49, 253].

They also cannot judge the difference between storing data on a cloud and on a device [35].

Velykoivanenko et al. [242] showed that only a small proportion of users understood correctly

how data is transferred between their WAT and the SP’s servers. These findings are supported by

Wieneke et al. [253] research, which found that users do not understand how SPs use their data, and

by Zufferey et al. [269] who show that users lack knowledge about the data-sharing ecosystem—in

particular, users’ understanding of TPAs. The mental models of most WAT users do not correspond

with the WAT ecosystem, and they become confused about which data they really shared with

TPAs [269]. Users’ lack of awareness might be due to a lack of interest in learning about how WAT

data is used [253].

Users also have limited knowledge about the privacy policies of SPs [45, 246]. Vitak et al.

[246] found that, after they were asked to read the relevant part of the terms of service, most users

were not aware of what they had given consent to and were surprised about the extent of access

they provided to SPs.

Several misconceptions have been identified, including overconfidence in privacy knowl-

edge [147]. Some users mistakenly believe that WATs are secure due to their lack of conventional

“input” methods, such as a keyboard. Hence they assume that sensitive information (e.g., a pass-

word) is not saved [147]. As people tend to use the same code for diverse applications and devices

(e.g., ATM PIN codes), the risk of such attacks increases [148]. Users’ beliefs depend on the type of
information collected byWATs. Most users recognize only sensors that they can see and verify [191].

They think that sensitive information not directly related to a specific sensor cannot be inferred

from their data [242]. Users tend to believe that most privacy risks are unlikely to materialize [78].
They first consider the likelihood of being subject to privacy risk, and only then do they contemplate

its severity [30]. As a result, not knowing the likelihood of such threats prevents them from thinking

about their severity.
8
Many users consider privacy only from a ‘social privacy’ point of view and

do not think how their data could be used by third parties [152].

Privacy Concerns. Most users express only minor privacy concerns [7, 30, 123, 134, 147, 267].

The majority perceive their WAT data as harmless, innocuous, and not sensitive [134, 147, 267].

They report that they would share their data without requiring that the privacy boundaries be

managed [147, 267]. Lidynia et al. [142] found that their study participants did not consider storing

data on the SP’s server (compared to their device) as a critical issue. Many users had mainly utility-

related concerns (e.g., to have a better self-image from data sharing) rather than privacy-related

ones [7].

Aktypi et al. [4] highlight that multiple factors reassure users about their privacy, especially

the fact that they tend to trust WAT companies. However, there is no consensus about this trust.

Although some studies show that users trust companies to handle their data [267] and believe in

companies’ technical capabilities to prevent privacy breaches [134], others [22, 147, 242] do not.

Given the huge amount of data collected from millions of individuals, some users cannot see how

their data can be used against them: “... the information that would come from my device would be
just a drop in the ocean” [4, p. 8]. For some users, privacy concerns can evolve over time. Some start

being concerned if their data is misused or after their privacy is violated [123]. In the workplace

context (for more details, see Sec. 4.3), at first, some users perceive their data as harmless. But over

time, they report different concerns, as their data creates many inter-colleague discussions that

reveal their private-life activities and create social pressure [87]. Interestingly, with the participants

of research experiments, those who usually are unconcerned about privacy expressed their concerns

about WATs, after being confronted with questions about their private life [147, 253]. This could be

8
Gerber et al. [83] show that users perceive privacy risk scenarios as likely if they are written in an abstract form.
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due to the well-known privacy paradox [82], where users report having privacy concerns, but then

they behave as if they do not have these concerns. Finally, Vitak et al. [246] shows that the more

value users place on their WAT data, the more privacy concerns they have.

The minority of users who are aware of privacy risks tend to be more concerned about their

privacy. Concerned users use coping mechanisms [19], implement stronger privacy safeguards to

protect their information [35, 147, 267], and contemplate abandoning their devices [198]. Three

types of concerns are recognized:

• Data Collection and Storage. Concerns about the anonymization of data [22] and the location

of the data storage [22, 142].

• Control over Data. Concerns about the data being used for purposes other than the predefined
purpose or being shared with third parties [22, 147]. Some users think they have limited control

over the disclosure of their own data [147, 159, 172]. They also mention the forced-choice
dilemma, where they have to decide between using the device (and facing the consequences)

and not using it. Lastly, they mention the post-purchase lock-in effect where privacy policies

might change after agreeing to them.

• Storage Security. Some users are concerned about their devices or the SPs’ platforms being

hacked. They think that security breaches could lead to negative consequences [172, 175].

Attitudes. Overall, users who are unaware of privacy risks tend to share more [184]. However,

users’ willingness to share WAT data is strongly related to the type of data and to the targeted

audience [78, 214]. They perceive location data to be the most sensitive data type [77, 132, 142, 185,

267] and are concerned about the associated negative consequences, such as home burglary and

bike theft [185]. Also, users are more reluctant to share movement data, other than step data [123].

Weight and sleep data [142], as well as any data related to personally identifiable information (PII)

and financial information [7], are perceived as particularly sensitive. If users sell their data, they

would ask for significantly more money for their location data than for health-related data [77].

However, even for the most sensitive data, users change their sharing decisions, based on the

intended recipients. They generally seem willing to share their location with their friends, whereas

they do not want to share it with online advertisers [78]. Schneegass et al. [214] found that users’

willingness to share is inversely proportional to the size of the recipient group they share the

data with. This finding is in line with other studies [7, 78, 134, 142, 269], wherein users would be

willing to share their data with small groups of people, such as their family, friends and colleagues,

and/or with health practitioners if they ask for it; but they would not share with the general public,

employers, insurance companies, banks, and advertisers.

In the context of sharing WAT data with family, parents are interested in monitoring their

children’s health and activity levels, but not to the extent that it would compromise their rela-

tionships or prevent children from developing self-sufficiency [129]. However, usage of WATs by

parents for monitoring their children can deteriorate trust in both directions [116]. Li et al. [139]

find that younger users worry about their family members’ opinions about them, based on their

WAT data. Potapov and Marshall [187] reveal children’s concerns about their data being misused

by their teachers in a school context. In a different context, Leitão [136] shows that WATs can be

used by abusive partners for stalking, threatening, and harassing (a.k.a. intimate-partner abuse).

Behaviors. Overall, users take two types of privacy-related actions:

• Preventive Actions before Privacy Violation. Few users report adjusting the privacy

settings of their WATs, immediately after setting up their device (i.e., after unboxing),
9
whereas

9
Some users find privacy settings complex and that they have difficulties adjusting them [185, 267].
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others could not remember when they changed them, and yet others thought they were using

the default settings [267]. In the context of the workplace, users might consider partial sharing

if they could exclude specific parts of their data related to private situations [123]. Almost

one-third of users usually do not revoke the WAT data access they granted to TPAs, as they

forget that they installed them on their devices [269]. A minority of users consider removing

WATs for privacy-related reasons (e.g., before engaging in sexual activity) [242].

• Mitigating Actions after Privacy Violation. Users use two main coping mechanisms [18–

20]: (i) emotion-focused coping when the perceived level of threat is high and the level of

efficacy is low, and (ii) problem-focused coping when the perceived level of threat is low and

the level of efficacy is high. Therefore, in the event of a privacy breach, users will likely not

be able to show rational behavior and will instead seek emotional support. Although users’

privacy perceptions do not have an effect on their preventive actions [30], their perceptions can

affect their mitigating actions [18]: Higher privacy concerns increase users’ threat perception

that it has an effect on an individual’s coping behavior. Surprisingly, when users were asked

what they would do if their SP had a security breach, none mentioned that they would stop

using their WAT; however, they said this might affect their future WAT purchases [134].

Individual differences play an important role in users’ privacy awareness, concerns, attitudes,

and behavior. For example, older users tend to be more relaxed with data sharing [214] and give

more value to theirWAT data [246]. Women tend to share more data thanmen do [214]. The findings

of studies about the differences between users from different regions are rather inconsistent. Ilhan

and Fietkiewicz [109] find significant differences, regarding their level of concern and awareness,

between users from the US and those from Germany. Whereas, the same group of researchers

did not observe any differences between users from the US and from Europe [74]. Earlier studies

categorized users into different classes:

• Non-sensitive and Sensitive users [142]

• Unconcerned, Somewhat Concerned, and Highly Concerned users [147]

• Data Protectors (i.e., those concerned with privacy), Benefit Maximizers (i.e., those concerned

with utility), and Fact Enthusiasts (i.e., those most concerned with motivational design) [35]

• Users, Former Users, and Non-users [74]

The last item, helps us to understand individuals’ reasons for using technology or abandoning

it and if they would contemplate using such technology in the future. Previous studies [60, 74]

show that non-users of WATs are more concerned than users about the collection of WAT data.

Surprisingly, former users are less concerned about privacy than actual users [74]. In contrast,

Bélanger et al. [25] do not find any significant difference between the privacy concerns of users

and non-users.

4.2 Privacy Policies, Regulations, and Ethics
4.2.1 Privacy Policy. As a means of communication between SPs and users, privacy policies are

used to inform users about the data collection and usage practices and to obtain their permission.

However, their usability and compliance with users’ privacy needs and data-protection regulations

is still under debate. Many studies have reviewed WAT-related privacy policies and identified two

main issues:

• A Lack of (Legal) Accountability. Braghin et al. [31] argue that privacy policies are of

“dubious validity.” Users report a lack of accountability in cases of privacy breaches [4]. Paul

and Irvine [182] found many statements that have the potential to violate user privacy in
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the privacy-policy content of four market leaders in 2012.
10
Several studies present heuristic

frameworks for evaluating privacy policies. Katurura and Cilliers [118] showed that both

Fitbit and Apple did not provide minimal protection for choice or consent: Before they collect

data, these companies ask for consent; but after the collection, the users were not permitted

to enforce how their data is used. Hutton et al. [108] compared the privacy policies of self-

tracking apps in different domains and show that apps related to WATs generally met fewer

heuristics, compared with apps related to other types of tracking (e.g., time management, cost

management). Becker et al. [24] showed that the type of statements used in privacy policies

can influence users’ decisions about disclosing their health information (e.g., policies framed

positively).

• Usability Problem. Privacy policies are lengthy, complex, and annoyingly profuse, thus users

often do not read them to avoid cognitive load. Furthermore, users perceive their acceptance

as a binary choice (i.e., forced-choice dilemma): a necessary condition to use the device [185].

Researchers propose several solutions. Gluck et al. [85] show that shortening the privacy policies

to some extent can be an effective way to increase user awareness. Guo et al. [96] propose a

visualization tool, called ‘Poli-see’, for helping users understand WAT privacy policies. Drozd and

Kirrane [58] present CURE, a consent-collection system that obtains users’ partial consent in a

more usable fashion and that provides the users with a better explanation of the consent they have

given. Murmann et al. [168] study the adoption of privacy notifications (e.g., notifying users when

their data is stored on a cloud or when it is transferred to another country) and show that most

of their respondents perceived notifications as useful. Masuch et al. [158] show that confidence-

building mechanisms (i.e., statements by SPs about how data will be treated securely) resulted in

an increase of the users’ expectations about the security of the service. However, users observed a

large discrepancy between expectation and reality. This negatively influenced their satisfaction

and intentions to continue using their WATs. Thuraisingham et al. [237] propose a (hypothetical)

privacy-aware data-management framework to enable users to manage the collection, storage,

sharing, and analysis of their own data.

4.2.2 Protective Laws for Users. Most of the works about existing regulations, laws, and policies

studied regulations in the US and in Europe. In the US, there are several relevant regulations.

However, none are effective [33, 34, 128, 135]. More specifically, users are not affected by federal

legislation, such as the Health Insurance Portability and Accountability Act (HIPAA) or the Health

Information Technology for Economic and Clinical Health Act (HITECH Act), as they are not

expansive enough to address WAT data. WAT data is not counted as protected health information

(PHI) because SPs are not covered entities, unlike hospitals or clinics [157]. In the case of WAT data

being stored by a covered entity, HIPAA is applicable only for data processing and disclosure and

not for data collection [75]. Similarly, the Food and Drug Administration (FDA) classifies WATs

as low-risk wellness products [128, 239]. As a result, WAT data is not protected by the US Federal

Food, Drug, and Cosmetic (FD&C) Act [33, 34]. The Privacy Act of 1974 is another relevant law

that regulates the collection, usage, and disclosure of personally identifiable information (PII).

But the definition of PII in this act is rather limited [33], as it includes only information such as

names, e-mail addresses, and social security numbers. Similarly, WAT data is not protected by the

Electronic Communication Privacy Act (ECPA) [33, 34], as the ECPA does not include devices that

use radio frequency identification (RFID).

10
Note these findings are from almost a decade ago. Some of these products are no longer sold, and some policies might

have been amended.
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Researchers advocate for new WAT regulations, recommend including WAT data in existing

frameworks, such as the Privacy Act of 1974 [33], and the expansion of terminologies such as

“covered entities” and “third parties” to include SPs [128]. Brinson and Rutherford [33] also developed

a portal to help users and data brokers interact and determine the use of their data.

Several studies on legislation in other countries have been conducted. Daly [50] discusses that

the most important source of WAT regulation in Australia is the Therapeutic Goods Administration

(TGA). However, the TGA’s regulations can be easily avoided if WAT manufacturers do not intend

for their WATs to be classified as medical devices (as defined by the TGA). Similarly, Katurura and

Cilliers [118] showed that the Protection of Personal Information Act (POPIA) in South Africa cannot

force foreign manufacturers to comply. Compared to other countries, in the European Union (EU),
the General Data Protection Regulation (GDPR) provides better protection for users [75, 135, 156].

The GDPR has several advantages. First, it forbids processing personal data, except in far-reaching

conditions (i.e., if they are anonymized) [135]. Second, it forbids the processing of data concerning

health, unless the patient has explicitly consented.
11
This affects the collection of health-related data,

such as heart-rate data. Third, it is an enforceable law and is applicable to foreign manufacturers

who export their products to the EU [75, 156].
12
This is further supported by the Privacy Shield

2.0.
13
Fourth, it permits the use of anonymized data for science and research purposes and for the

sake of technological development and demonstration [135].

4.2.3 Use ofWATData in Investigations. WAT data can be used as evidence in forensic investigations
regarding, for example, suspicious deaths, airplane crashes, malpractice [241], and even detecting

police brutality [241], especially in cases of racial injustice [166]. WAT data integrity can also be

assessed, for example, insurance companies can check whether a reported activity was created

artificially [225]. Several studies present software tools for forensic science [101, 225] and guidelines

for investigators [5, 101]. Other studies [5, 101, 263] show the forensic soundness of their tools or

guidelines by using existing WATs. Only one study fails to recover information, after a forensic

analysis [160]. It used a real-life scenario instructing a participant (with a Fitbit) to walk to a

specific location and hit the ground several times then to return to their point of departure.

Future studies should use similar real-life scenarios to validate the reliability of forensic methods.

Courts and forensic investigators can face several challenges that reduce the objectivity of judicial

decisions [128, 241]:

• WAT Accuracy. To ensure the accuracy of measured metrics, in particular, if a non-standard

WAT was used.

• Data Integrity. To ensure data integrity by confirming that the data were not changed after

an incident and that the WAT was not worn by other individuals.

• Data Handling. To handle massive amounts of data and still create precise statistical/inference

models, even if part of the data is missing.

• User Privacy. To maintain users’ privacy during forensic investigations; in particular, in

interdependent privacy situations [107]. Hassenfeldt et al. [104] show that, using web scraping

and leaderboard information from Strava, they can access other users’ information, regardless

if their data is private or public. Kumari and Hook [128] argue that courts should try to obtain

11
Other exceptions include when the processing is necessary to protect the vital interests of the patient or of another person,

to perform another contract for the patient, to carry out a task of public interest or of other legitimate interests, except

when such interests are overridden by the interests and personal data protection rights of the patient. For details, see Art. 6

GDPR: https://gdpr-info.eu/art-6-gdpr/, last accessed: Feb. 2024.

12
Here, the product includes all equipment and covers mobile devices, applications, services, and wearable devices.

13
EU–US Privacy Shield framework, see https://www.privacyshield.gov, last accessed: Feb. 2024.
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data from the users themselves, or from their acquaintances. Accordingly, asking SPs to share

data should not be the first option.

4.2.4 Ethics. Several studies analyze the ethical implications of usingWATs for users [150, 227, 239].

Lupton [150] use the term “dataveillance” (i.e., digital surveillance of individuals) to explain how

WAT use can lead to “function creep” (i.e., using data for purposes other than living a healthy

and active lifestyle). Tuovinen and Smeaton [239] define the term “wearable intelligence” as the
convenience and simplicity of using WATs. They discuss that, unlike in the context of a black

box, users need to know that the information presented to them is an approximation generated

by computational models and not absolutely accurate. Also, they warn about a potential power
imbalance between non-expert users and expert data-analyst entities; as this imbalance can cause

further privacy and trust issues. Steinberg [227] discuss the fairness of insurance companies that

use WATs as incentive programs, where users can receive a discount on their premiums if they

choose to share their data with insurers.

In addition to taking ethics into consideration for users, researchers should also be mindful

of research ethics. The collection of WAT data can serve in the development of ML models to

infer users’ states and propose proper interventions for them. It has become common practice to

collect such datasets and to share them with the public to support open science. Publicly sharing

such a large dataset has privacy risks for the data owners and ethical risks for designers (i.e.,

designing interventions based on biased datasets). Lee et al. [132] conduct a risk-benefit assessment

with WAT data owners and show that financial compensation was the main incentive for data

owners. Some data owners accept to provide even more data in order to receive even more money.

Among those who refused the offer, some mentioned they would accept only if the compensation

amount was higher. Less than half of the data owners thought they were subject to surveillance.

Some also mentioned a lack of trust about how data would be handled by researchers. Given these

vulnerabilities, it is important to protect WAT data owners after data collection. We recommend that,

beyond routine practices, such as using informed consent and anonymization, researchers should

consider data sharing with restricted access. Among the FAIR
14
open science repositories, Zenodo

provides an option for restricted access,
15
where data can be stored privately on the platform, and

researchers can share access to it only after certain agreements.
16

4.3 ‘Health@Work’ or Workplace Surveillance?
In the context of workplaces, existing studies show that employers have a vested interest in

promoting the use of WATs for their employees [75, 123]. This creates a profitable business for WAT

manufacturers, as they can sell more of their products (and additional services) to companies.
17

Companies intending to adopt WAT-based wellness programs follow either a wellness model or a
performance management model [156]. Whereas the former is used to promote healthy lifestyle

habits and to enhance the well-being of the employees, the latter aims to increase efficiency,

productivity, and safety.
18
The concern with the first model is for employees’ privacy. Whereas, the

second is more serious, as data can be used to monitor and detect misconduct, and it can negatively

affect employees’ careers.

Most studies focus on the first model [43, 87, 88]. Many employees report perceiving wellness

programs positively. They usually participate in such programs in order to improve their awareness

14
https://www.go-fair.org/fair-principles/, last accessed: Feb. 2024.

15
https://about.zenodo.org/policies/, last accessed: Feb. 2024.

16
For example, a data recipient must agree to not make data public and not infer data owners’ identities.

17
https://healthsolutions.fitbit.com/corporatewellness/, last accessed: Feb. 2024.

18
To read comprehensive surveys on the use of wearables for safety at work, see [179, 232].
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of their activity levels, to become more physically active [43], or to socialize [87]. During the

campaigns, employees can become concerned about the erosion of the boundary between their

work and personal lives. However, they also tend to discuss their WAT data with colleagues (as

an ice breaker for conversations during breaks). In the workplace, discussions about step counts

or activities can increase social pressure, breach privacy boundaries, hence raise tensions. Studies

show that not all employees are happy to join such campaigns and some decide to not join [43, 87].

Given the lack of evidence of the long-term benefits of wellness campaigns and the social distance

created between participants and non-participants, Gorm and Shklovski [88] suggest reconsidering

the notion of “success” in such campaigns. Marassi and Collins [156] discuss the privacy and

autonomy concerns of wearing WATs in the workplace and express many reservations, especially

about the employees’ “right to bodily integrity”, “life-work boundaries”, and the “power imbalance”
between employers and employees. In the US, there is no legislation that protects employees’

privacy [34].
19
In the EU, the GDPR does not permit employers to monitor their employees. To

address these issues, previous studies recommend: (i) clarifying the terms and implications of

information disclosure to employees [34]; (ii) proposing new laws that limit data collection by

employers [34]; and (iii) using a coaching-based approach, where employers use third-party services

that provide health advice to their employees [156].

4.4 Privacy-Enhancing Technologies (PETs)
Users, in general, are open to using PETs [269]. Therefore, designing useful solutions could be a

promising approach to preserving users’ privacy. As an addition to Alqhatani and Lipford [8]’s

work that reviews existing PETs provided by known WAT brands, our work reviews the PETs

proposed by the literature.
20

• Anonymization Techniques. Given the high dimension and sequential time-series nature of

WAT data, anonymizing such data-sets is challenging. Na et al. [169] showed that accelerom-

eter data can be de-anonymized with high accuracy. Multiple studies focus on methods for

effectively anonymizing WAT data. Parameshwarappa et al. [178] used a multi-level clustering

anonymization technique to prevent the re-identification of users. Gong et al. [86] propose a

theoretical framework for federated learning that preserves individuals’ privacy and trains an

ML model by using multiple WATs’ data. Garbett et al. [80] designed ‘ThinkActive’: an activity-

sharing platform for classrooms with the aim of enabling students to use pseudonymized

avatars.

• Limited Sharing and Data Minimization.Wang et al. [249] studied user preferences and

sharing behavior related to partial-data release. Epstein et al. [63] investigated if fine-grained

step-count sharing can help users preserve privacy while they share activities. Velykoivanenko

et al. [242] assessed users’ utility perceptions to inform future PET design. They also show that

there is a high potential for implementing data minimization that can avoid certain privacy

risks.

• Pedagogical Solutions. Torre et al. [238] modeled the complexity of WATs and TPAs in order

to compute the probabilities of inferring different information from WAT data. They show

that users can protect their privacy by not sharing certain data. Aktypi et al. [4] designed a

pedagogical tool that informs users of the risks they are exposed to when sharing certain WAT

data (e.g., running route), together with other information (e.g., the information available their

social media). Alvarez et al. [9] show that watching a video about privacy and security risks

19
For example, there was a case in California where an employee’s claim that their employer violated their privacy by

linking their Apple account to a work-related device was rejected by a court [39].

20
PETs for usable and effective privacy policies [58, 96, 237] are already discussed in Section 4.2.1.
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of collecting and sharing WAT data can significantly improve attitudes toward cybersecurity,

whereas a text version of the information has no significant effect. Sanchez et al. [212] modeled

the privacy preferences of users and developed a system for recommending personalized

privacy settings to users.

• Others. Data integrity is critical for healthcare providers and insurance companies that are

interested in users’ WAT data. du Toit [59] designed ‘PAUDIT’, a decentralized data architec-

ture that enables users to store their WAT data in a personal online data store and permits

healthcare providers to read data and audit the logs (i.e., changes made to the access control

list). Ghazinour et al. [84] propose an access-management tool that enhances users’ decision-

making by enabling them to share their WAT data after considering four aspects: purpose

(why), visibility (who), granularity (how), and retention (when).

5 JOINT ANALYSIS OF UTILITY AND PRIVACY
According to privacy calculus theory [17, 137], technology users always weigh the perceived

benefits and (privacy) risks. Perceived utility and privacy concerns affect users’ intentions to use

their devices [137, 215]. Several studies [25, 27, 175, 267] found that users prefer to take a utilitarian
approach and that the perceived benefits can outweigh their privacy concerns. They usually perceive

a fairly positive effect from data sharing [7, 24]. However, some users (e.g., older adults [62]) do

not make rational trade-offs by ignoring or underestimating the risks [253]. Furthermore, some

users often willingly share data, despite compromising their privacy, as they find the health and

social benefits worth the risk [147]. They sacrifice privacy to receive immediate financial benefits,

such as a reduction in insurance fees [185] or a higher wage [132]. Although users tend to express

concerns when they carefully read previously-agreed-to data-collection policies, they would not

change their usage behavior [49].

Although the utility-privacy trade-off is often imbalanced towards the side of utility, users can

still gain privacy if they can turn off a particular feature that they do not use. This is a privacy-by-

design approach known as data minimization; it limits data collection and transfers to only that

which is essential for a specific purpose. Similarly, using PETs can increase privacy, possibly at

the expense of utility. Some PETs (e.g., privacy checkup reminders) have no effect on utility. To

understand if users are willing to pay in terms of utility to protect their privacy, a few papers studied

user attitudes or behaviors toward such strategies. For example, Velykoivanenko et al. [242] reveal a

potential for storing heart rate and sleep data, only locally on users’ primary connected devices and

not on Fitbit’s website. They also showed that data aggregation (i.e., having less granular data) was

well received by the users. Similarly, Zufferey et al. [269] show that users are generally inclined

to use PETs when exposed to the privacy risks related to the use of WAT TPAs. For example, the

majority of their respondents reported that they would be (slightly to extremely) likely to use PETs

such as reminders or data minimization techniques that reduce time or spatial granularity.

Finally, following Nissenbaum [170]’s definition of privacy (a.k.a. contextual integrity), earlier

studies [25, 36, 159] show that users’ utility–privacy trade-off depends on context. Ebert et al.
[60] show that WAT users are concerned about privacy marginally more than loyalty-card users

are. Lehto and Miikael [134] discuss that individuals consider their health data (collected by their

doctors) as private/sensitive, unlike data collected from WATs. Furini et al. [77] show that, when

given a strong altruistic motivation (e.g., sharing data for contact tracing for COVID-19), users tend

to agree to share their data. Similarly, research participants might be willing to share their data, as

they consider it a donation and contribution to science [132]. Finally, Velykoivanenko et al. [242]

argue that users’ concerns about the inference of certain types of information (e.g., religion and
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Table 4. All articles about Bluetooth security and WATs. For each paper, we indicate the considered types of
attacks.
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“Active”, as opposed to “Passive” relates to an attack where the adversary must interfere with the communication protocol.

sexual orientation) are heavily dependent on the social norms and conditions in their country of

residence.

6 WAT SECURITY
We first review the security vulnerabilities of WATs, including attacks on WATs’ Bluetooth commu-

nications,
21
and various vulnerabilities related to companion apps, and discuss ways WAT data can

be used to bypass security systems. Next, we review security countermeasures, including security

protocols and threat assessments Lastly, we review different WAT authentication methods for

enhancing user security.

6.1 WAT–Phone Communication
A large amount of research has been conducted on WATs and Bluetooth security. Multiple attacks,

privacy issues, and mitigation techniques were identified. Table 4 shows all the studies related to

Bluetooth and Bluetooth Low Energy (BLE) security and WATs. By analyzing these studies, we

identified six main types of attacks:

• Tracking.22 Several studies [31, 51, 93, 161] analyzed how WATs, from multiple vendors,

communicate with their companion apps (generally installed on a smartphone). They show

that all of the tested WATs use permanent BLE addresses, which makes them vulnerable to

tracking attacks. Although these previous studies state that using address randomization should

mitigate the tracking attack, recent studies [40, 270] have shown how generic attribute (GATT)

profiles
23
can be used to build unique fingerprints. Becker et al. [21] developed a method to

track BLE devices by using features extracted from the payload of advertising messages.

21
Note that the multiple attacks that we review are not necessarily specific to WAT devices (e.g., attacks on Bluetooth or

HTTP communications).

22
Tracking is about being able to locate or identify the presence of a specific device.

23
GATT profiles are available without any authentication and contain basic information about features and services.
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• Eavesdropping and Injection Attacks.24 Except for one of them, all the analyzed studies

describing eavesdropping attacks are also about data-injection attacks. Both types of attacks

can be performed using similar techniques, such as a man-in-the-middle (MitM) attack. Several

studies [31, 146, 265, 270] show that multiple WATs use unencrypted communication, either

while already paired or during the pairing process with a smartphone. They even permit

pairing without authentication. Therefore, an attacker can retrieve information about the

devices. Rahman et al. [192] reverse-engineered two WATs (Fitbit and Garmin) and built a

framework that can perform various attacks, such as injecting data into the devices. Other

studies [46, 90, 248] performed attacks that force a device to be paired with a fake companion

app that grants access to all transmitted data before redirecting it; the fake companion app

was also able to inject data and commands. Mendoza et al. [161] analyzed a Fitbit WAT and

show that its communication with a paired smartphone does not follow the BLE security

specifications and that the device accepts connections from unknown smartphones. Casagrande

et al. [38] reverse-engineered Xiaomi devices and firmware; they show that a large amount of

information (including the pairing keys) was not properly encrypted during the communication,

thus enabling an attacker to not only eavesdrop on communication but to also alter data.

• Denial of Service (DoS).25 Goyal et al. [93] performed a DoS attack on a Fitbit Charge by

spamming it with requests that prevent it from communicating with the companion app on a

paired smartphone. Rahman et al. [192] developed two different DoS attacks against Fitbit and

Garmin devices. They show that it is possible to quickly drain theWATs’ batteries by spamming

them with BLE requests. Zhang and Liang [265] also show that attackers can conduct DoS by

continuously sending fake commands. Classen et al. [46] demonstrate that DoS attacks can

be performed on Fitbit WATs by injecting commands to enable the alarm clock or disable the

WAT’s functionalities, such as pairing and data synchronization.

• Traffic Analysis.26 Das et al. [51] analyzed BLE traffic patterns and found that it is possible

to identify individual users, with high accuracy. Fafoutis et al. [69] used BLE to analyze the

correlation between activity levels and the received signal strength (RSS), in the context of

a WAT communicating with a smart home system. The results show that the RSS and the

unencrypted data are strongly correlated. Finally, Barman et al. [16] reported that a large

amount of information can be inferred from encrypted Bluetooth traffic between a WAT and

its paired smartphone, such as the type of device, actions, and the type of data.

• Firmware Modification.27 Shim et al. [219] analyzed a WAT and its companion app’s APK.

Using reverse engineering, they analyzed the BLE communication when the companion app

attempts a firmware update of the WAT. This enabled them to create a fake gateway for

injecting malicious firmware updates. Similarly, Classen et al. [46] reverse-engineered Fitbit’s

firmware to study how to modify it in order to build custom firmware. They show that attackers

can use unencrypted BLE communication to flash modified firmware onto Fitbit devices. As

explained above, most WATs use unencrypted communication.

Hale et al. [100] developed an open-source platform that aims to be used by researchers to facilitate

wearable security investigations. The platform could be used to collect data, conduct attacks, and

24
An eavesdropping attack consists of intercepting data communication between two devices, whereas an injection attack

consists of sending additional (i.e., fake) data to a specific device.

25
DoS attacks occur when access to a service is temporarily blocked by overloading the host machine or network with

requests.

26
Traffic analysis consists of trying to bypass encryption by usingmeta-data and signal treatment to infer some characteristics

of the unencrypted message.

27
Firmware modification is about inserting malicious code into a device’s firmware update.
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identify security vulnerabilities. They used their platform to analyze BLE communications of

multiple WATs and observed that all of them use encryption protocols to communicate with their

companion apps.

In conclusion, WATs tend to not use any protection mechanisms, such as basic cryptographic

schemes [100]; and they send unencrypted traffic, mainly for optimization reasons (e.g., to save

battery life). As a result, the public attributes of the transmitted packets can be used to track

WATs. Not using encrypted communication can lead to eavesdropping, data injection, and/or

firmware modification. MitM attacks can be performed to bypass (basic) encryption mechanisms.

An attacker can inject fake commands to conduct DoS attacks. Traffic analysis can disclose sensitive

information, even if the communication between a WAT and its paired smartphone is encrypted.

Finally, whereas some studies proposed mitigation techniques, only a few of them actually evaluated

these techniques.

6.2 Phone–Server Communication and Data Storage
Several studies analyzed the security of WAT companion apps. Goyal et al. [93] analyzed the code

of the companion apps, how the data is stored on the paired smartphone, the apps’ privacy policies,

and the communication between the app and the SPs’ servers for two types for two WAT models.

They showed that for both WATs the data stored on the smartphone is not encrypted and some of it

is even shared with third parties. Rahman et al. [192] analyzed the HTTP communication between

Fitbit and Garmin devices and their servers. They showed that the data was not encrypted, including

the user’s credentials for Fitbit. Fereidooni et al. [73] considered users as potential adversaries.

Users might want to send fake data to their SP’s cloud for financial gain.
28
They analyzed multiple

WATs and used MitM attacks to inject fake data into their servers. By reverse-engineering the

companion apps, they showed that multiple companion apps do not encrypt the data stored on the

smartphone, which makes it easily readable and writable.

To inject fake data, Fereidooni et al. [73] also conductedMitM attacks between the companion app

and the SP. They performed a new attack directly on the WAT by reverse-engineering the hardware

system and directly accessing the device’s memory to inject fake data [72]. After synchronization,

the fake data was correctly encrypted and registered by the companion app.

Mendoza et al. [161] analyzed how the Fitbit companion app communicates with Fitbit’s servers

by sniffing HTTP/HTTPS communication and how TPAs can access data using Fitbit’s API. They

showed that authentication credentials are sent unencrypted and that the OAuth 2.0 protocol
29
is

not correctly implemented. This creates vulnerabilities that an attacker can use to gain access to or

modify the data. Classen et al. [46] reverse-engineered the Fitbit companion app to study how to

modify it. Modifying the app could enable attackers to associate it with another account in order to

download a user’s data. Finally, Kazlouski et al. [119] analyzed the communication between two

well-known (yet anonymized) WAT companion apps and servers. They collected ground truth by

using a MitM setup and sniffed the encrypted packets by using Wireshark. Then they computed

correlations of the size and frequency of the packets with the activities, heart rate, and step count.

They show that activities and meta-data of encrypted packets are strongly correlated and that it is

possible to use meta-data to identify the occurrence and duration of several activities and even

to estimate other information (e.g., estimating the heart rate). In conclusion, multiple devices
do not implement adequately secure phone storage and communication with the SP’s
servers, which can lead to serious threats, such as eavesdropping and/or data injection.

28
This applies to cases where users participate in financially incentivized data-sharing schemes, such as corporate wellness

programs.

29
OAuth 2.0 is used to enable TPAs to access some of the data.
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6.3 Side-Channel Attacks
Side-channel attacks are a type of security attack that are conducted based on extra available

information, instead of using vulnerabilities of security protocols. As the main purpose of WATs is

to track users’ movements, it is possible to use the sensor data to infer sensitive information, such

as the words a user writes, their typing on a keyboard, or even, their biometrics.

Maiti et al. [153] studied how WAT sensor-data can be used to recognize typing patterns on a

computer keyboard. Such attacks can be used by adversaries to collect passwords for bypassing

authentication systems. Similarly, Maiti et al. [155] used smartwatch sensor data to infer which

keys are typed on a 10-digit keypad and a QWERTY keypad on a smartphone. They reached an

accuracy of 74% for the 10-digit keys and had a mean accuracy of 30% for the QWERTY keypad.

Sabra et al. [207] and Wang et al. [247] showed how similar attacks can be conducted to infer ATM

PIN codes. The former obtains an accuracy of 80% for 6-digit PIN codes; this increases to 93% with

five attempts. Lu et al. [148] aimed to infer PIN codes and Android pattern lock (APL) patterns.

They find that it is possible to infer the APL pattern two-thirds of the time, within the first 20

guesses. Maiti et al. [154] studied the inference of rotary combination lock passcodes and show

that WAT sensor data (especially gyroscope data) can be used to greatly increase the likelihood of

inferring the lock combination. Eberz et al. [61] studied impersonation attacks. They show that

WAT sensor data can be used to mimic an individual’s biometrics (e.g., gait), which would enable

bypassing biometrics-based authentication systems.

In general, we can affirm that using WAT sensor-data to bypass a security system is a
potential threat that should be considered by vendors. Several mitigation techniques are

proposed. For example, WATs could deactivate sensors when they detect real-time activities such

as typing [153]. Alternatively, WATs could add fine-grained noise to sensor data, in such a way

that activities such as walking or swimming are still recognized, but fine hand movements, such as

typing, are not recognized [247]. Or, users can simply remove their devices when they type.

6.4 Security Protocols, Countermeasures, and Threat Assessment
Although a large number of studies related to security are about weaknesses, attacks, and privacy

leaks, some of them are about new protocols and tools that can help preserve the security of

systems. To protect against different attacks, Rahman et al. [192] propose an encryption protocol

based on symmetric keys. They show that their solution has little effect on the device’s performance.

Using a system of tagged packets, Skalka et al. [226] developed a framework to manage and filter

private data at the edge-router level. Yan et al. [260] propose an ML-based method that uses received

signal strength indicators (RSSI) to detect spoofing attacks from peripheral devices (e.g., additional

sensors worn on the foot) with high accuracy. Finally, Xin et al. [258] showed that their new

framework is effective at detecting when data is injected in WAT sensor-data streams through

specific data variations.

A few studies aimed to identify and assess the different types of existing attacks. To classify

attacks, Mnjama et al. [164] developed a conceptual WAT threat assessment framework based on

the CIA triad (i.e., confidentiality, integrity, availability) and on Microsoft STRIDE (i.e., spoofing,

tempering, repudiation, information disclosure, denial of service, the elevation of privilege). They

analyzed different phases of WAT-data transmission and storage and the current health-wearable

literature. Moganedi and Pottas [165] identified all known vulnerabilities affecting WATs and dis-

cussed these vulnerabilities with regard to their corresponding parts of the WAT ecosystem and the

ways they are classified according to various existing standards. To classify the different currently

known vulnerabilities, they identified five main components in the WAT ecosystem (the WAT,

Bluetooth, smartphone companion app, WiFi, and cloud storage) and six control families (access
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Table 5. Summary of authentication methods Using WAT for security applications.

Authors Authentication Method Results/Key Findings
Cola et al. [48] and

Johnston and Weiss [114]

Gait as an authentication factor Low error-rates (2% – 3%)

Vhaduri and Poellabauer [244]

Physiological and activity data

from WATs

High accuracy in user recognition

Tehranipoor et al. [235] Electrocardiogram (ECG) data ECG-based keys can effectively identify users

Chen et al. [41] Keypad simulation with biometrics Effective and resilient authentication method

Li et al. [140]

Movement data from WATs and

IoT device usage input

Robust authentication for IoT devices

Shen et al. [218]

Protocol based on handshaking

patterns

Secure communication channel without

transmitting encryption keys between

two WATs

Shrestha and Saxena [224]

Wrist movements and web service

usage-data comparison

Authentication for web service accounts

Sturgess et al. [230] and

Sturgess et al. [229]

NFC payments with smartwatches

Prevents unauthorized payments with

smartwatches

control, audit and accountability, identification and authentication, system and communication

protection, system and information integrity, and PII processing and transparency).

6.5 WAT-Based Authentication for Security
WAT data can be used to enhance security systems by using the collected data to authenticate

users, and by either substituting or complementing other credentials. Table 5 provides a concise

summary of various authentication methods utilizing WATs for security-related applications.

Notably, gait-based authentication was found to exhibit low error rates [48, 114]. Vhaduri and

Poellabauer [244] demonstrate high accuracy in user recognition by using physiological and activity

data collected by WATs. Tehranipoor et al. [235] show the effectiveness of ECG-based keys for user

identification. Chen et al. [41] introduce a resilient authentication system that combines credentials

and biometrics by using a virtual twelve-key keypad on a user’s fingers. Sturgess et al. [230]

developed an authentication system for NFC payments with smartwatches. This system detects the

intent to pay and then authenticates the user when they want to proceed with payment by using

their smartwatch and an NFC terminal. This system prevents attackers from paying with stolen

devices or from executing unwanted payments with unlocked devices worn by the user. However,

in another study, the same authors show that an attacker of approximately the same height as

the user has a 20.6% higher likelihood of impersonating the user [229]. In summary, WATs are
equipped with multiple sensors that enable them to be used for biometric authentication:
The WAT’s firmware could use the biometric data to ensure that the device is activated
only when used by its rightful owner; third-party services could also use the collected
biometric information for user authentication.

7 OPEN ISSUES AND RESEARCH AGENDA
In our survey, we provide comprehensive information about the utility, privacy, and security of

WATs. We reveal several open issues. In this section, we review and categorize these open issues

and then make recommendations regarding future research for researchers and opportunities for

designers and policymakers.

Defining ‘WATs’. One of the first findings from our survey is that there is no clear definition of

WATs and that research onWATs is scattered across different overlapping categories (e.g., wearables,

IoT). The lack of a clear definition leads to difficulty in identifying related literature, inconsistent
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research findings, and ineffective privacy regulations. A first step would be to properly define a

‘WAT’ and to delimit research on the topic for more focused, consistent, and comparable research.

This survey makes the first step in this direction.

Designing Privacy Enhanced WATs. The literature shows that privacy risks are huge, diverse,

and widespread, in terms of the information that can be inferred and of the consequences. Part

of these risks stem from the behaviors of the users; this is due to their lack of knowledge and/or

awareness of the WAT ecosystem and the privacy risks. When users are not concerned about

privacy, they tend to behave carelessly. Also, as users often choose utility when considering the

utility-privacy trade-offs of WATs, PETs must be particularly effective and desirable for users. To

achieve this goal, we believe that future research should focus on the following: designing PETs

that use the specificities of WAT data (e.g., numerical time series, third-party applications), as is

done for location data [189]; and on pedagogical solutions to increase users’ understanding of

WAT ecosystems. To do so, a user-centered approach should be taken (e.g., participatory design

or co-design [120]). However, the following topics are sufficiently covered in the current research

landscape: usage patterns, habits, the underlying reasons for adoption, adherence, and abandonment,

and users’ privacy concerns.

Improving Privacy for WAT Data. Another issue identified in this survey is related to the

policies governing the collection of user data via WATs. SPs enact policies that provide them many

opportunities to develop business intelligence and to offer additional services to users. However,

this often comes at the expense of diminished privacy for the users whose data was collected. More

importantly, informed consents are often presented through long, complex, and tedious-to-read

legal text, which induces users to accept the terms without understanding their implications. A

few studies propose alternative solutions (e.g., abstractions or visualizations) to improve privacy-

policy legibility, but unfortunately, none are yet used in practice. Future studies should further

investigate this aspect. And, competent authorities should create regulations that would require

SPs to use easy-to-understand privacy policies. A related issue is the lack of protective regulations

for users. The main limitation of the current legislation is that WAT data are not classified as health

information. Consequently, WAT SPs are not obliged to adhere to specific legislation, which could

offer better protection for users’ data (e.g., ECPA and HIPAA). We believe that legal scholars and

policymakers should re-work existing regulations to better protect WAT users.

Increasing WAT Security. Our survey shows that WATs are vulnerable. Many communications

and storage protocols are vulnerable to attacks such as eavesdropping or side-channel attacks.

There could be several factors contributing to these vulnerabilities: the low computational power of

some WATs, the costs required to implement higher security standards, and/or the characteristics,

which are typically not associated with identifiable information, of WAT data. Another interesting

perspective to consider is that SPs are typically not considered adversaries in security research, as

we noted in our survey. When they are considered adversaries, they are generally considered as

honest-but-curious. This survey reveals that many types of inference are possible with WAT data

and that SPs should be modeled as adversaries. Future research should therefore focus on raising

WAT security standards and on studying business models and data management plans typically

associated with WATs.

Studying Privacy Risks of WATs More Extensively. We also reviewed many studies on human

activity recognition (HAR) and inference. Most of the HAR papers are functionality-oriented,

wherein they mainly highlight HAR benefits and focus on achieving high performance. Most

privacy-oriented inference papers do not consider activities or specific personal information (e.g.,

health), as most of them study the inference of data, such as passwords or other types of information
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that could be used for authentication. We believe that future research should investigate privacy

risks more systematically by finding inspiration from inference studies published on location and

smartphone data (e.g., religion, political views, or consumption habits), as done recently by Zufferey

et al. [268].

Conducting Meta-Analyses and Replication Studies. We identified studies of WATs’ utility,

privacy, and security that reported heterogeneous and sometimes opposite findings. Meta-analyses

could be useful for comparing these diverse and sometimes conflicting findings. Similarly, studies

comparing users vs. non-users, as well as some cross-cultural studies, have reported inconsistent

findings. This underlines the need for replication studies in WAT research. To enable replication

(and reproducibility), researchers should follow transparency and openness practices (e.g., see [210]

for guidelines on research transparency and openness).

8 CONCLUSION
In this survey paper, we have meticulously reviewed 236 peer-reviewed published paper, with a

primary focus on WATs’ utility, privacy, and security. In our survey, we have delved into diverse

aspects of WATs, highlighting their associated benefits, while addressing the associated risks. This

work shows that WATs are particularly vulnerable to multiple types of attacks. For instance, the

data they collect can be used to infer sensitive personal information. After presenting the current

state of research, we have provided a discussion highlighting multiple opportunities for research.

This constitutes an essential step in future research into the utility, privacy, and security of WATs.
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