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Modeling of Brillouin-assisted self-narrowed
photonic oscillator including an optical

phase-locked loop
Romain Agaisse, Gwennaël Danion, Marc Vallet, Pascal Besnard and Mehdi Alouini

Abstract—We propose a theoretical description and experimen-
tal validation of a frequency self-stabilized photonic oscillator.
This photonic oscillator which relies on a solid-state laser and
a nonreciprocal Brillouin fiber resonator (BFR) arranged in an
optical phase-locked loop (OPLL) was recently shown to provide
very narrow linewidth in the Hz range. Special attention is
given to end up with analytical expressions relying on coupled-
mode formalism, of the BFR dynamics in which the non-resonant
configuration for the pump has to be addressed. Furthermore, the
transfer function of the full system is derived from the response
of each component within the OPLL leading to two interleaved
loops, relative to the phase and to the amplitude fluctuations of
the optical field. An experimental setup including a solid-state
Er:Yb laser is detailed and used to test the model predictions,
both for phase noise level and response time. This model opens
the way to the optimization of this new type of photonic oscillator
which can be adapted to any kind of pump laser.

Index Terms—Stimulated Brillouin scattering, optical fre-
quency stabilization, fiber resonator

I. INTRODUCTION

ULTRA narrow linewidth optical sources are useful or
even compulsory in various applications. Among those

applications, one can mention, e.g., time-frequency metrol-
ogy [1] [2], microwave photonics [3] [4], coherent optical
communications [5] [6], high-resolution spectroscopy, atomics
clocks [7] and gravitational antennas [8]. In order to reach
narrow linewidth, or equivalently low phase noise level, several
solutions have been proposed. Diode-pumped solid-state bulk
lasers [9], single-frequency fiber lasers [10], semiconductor
lasers extended with external cavities [11] [12] or stabilized by
means of self-injection locking [13], offer intrinsic linewidth
that can reach a few tens of Hz and compact solutions
for commercial applications (e.g. [14] [15]). To go further,
linewidth narrowing setups can take advantage of external
references provided by ultra-stable cavities [16] or molecu-
lar absorption lines [17]. These solutions can lead to sub-
Hz intrinsic linewidths at the expense of more cumbersome
setups. Another solution for good spectral properties is to
use stimulated Brillouin scattering (SBS) in optical fiber [18].
Indeed, pumping an optical fiber above the SBS threshold
generates a narrow gain, i.e. about 30 MHz-width, that offers a
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solution to use long active resonators. Accordingly the Stokes
wave generated in such long fiber resonator exhibits a narrow
linewidth [19] [20] [21]. However, the length of the resonator
is usually limited to a few meters in order to ensure single
frequency operation [22]. Indeed, for long resonators with
associate free spectral range (FSR) smaller than the Brillouin
gain width, several modes may oscillate, leading to natural
mode hopping. To go beyond this limitation, we have recently
proposed a new architecture based on a long non reciprocal
Brillouin fiber resonator (BFR), i.e. a fiber loop longer than
100 m, coupled to an optical phase-locked loop (OPLL) [23].
The non-resonant configuration for the pump laser avoids the
need of matching and locking the laser frequency to a BFR
resonance [24], while the use of an OPLL provides a stable
single-mode operation during hours. Indeed, as compared to
microresonators [25], a very long BFR resonant for the pump
would be rather difficult to inject due to its low FSR and
to the hysteresis induced by the resonant pump power which
gives rise to thermal and Brillouin refractive index change.
In our architecture, the generated Stokes wave and the pump
laser wave cannot be treated separately. They interact with
each other leading to a spectral self-narrowing of the pump
laser itself [26]. A theoretical description of such photonic
oscillator is required in order to optimize the whole system
and in particular its OPLL.
The aim of the present paper is thus to develop an analytical
and predictive model of the Brillouin-assisted OPLL scheme.
First, the BFR will be modeled using coupled-mode formal-
ism, yielding a set of coupled equations for the three fields.
Second, we represent the whole system behavior by means
of a feedback loop. We will show that this loop, which acts
as an OPLL, consists in two subloops, one for the phases and
one for the amplitudes, interacting through amplitude-to-phase
conversion processes. The paper is organized as follows. In
Section 2, we describe the general principle of the method,
the experimental setup, and the coupled mode model. Section
3 is devoted to the full analytical linearization of the various
transfer functions associated to the OPLL. Section 4 compares
the theoretical predictions with the experimental results ob-
tained with our setup. Finally, the results are summarized and
discussed in Section 5.

II. SYSTEM DESCRIPTION

A. Experimental arrangement
The general architecture of the complete system is depicted

in Fig. 1. It includes a single mode laser whose linewidth will
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narrow down as soon as the OPLL is closed. This laser, is
slightly tunable with an external voltage. The useful output
signal is a part of the laser beam. The remaining part is
amplified using an erbium-doped fiber amplifier (OA) and
acts as a pump for the nonreciprocal BFR which generates a
backscattered Stokes wave. The Brillouin resonator is closed
by an optical circulator enabling oscillation of the counter
propagating Stokes wave while the forward propagating pump
wave is annihilated after one round trip, making the BFR non
resonant for the pump. At the output of the Brillouin fiber
resonator, a fraction of the Stokes beam is mixed with the
pump beam on a fast photodiode.

Coupler

Coupler

Local
oscillator IF

RF
LO Loop

filter Laser

Coupler 

Useful signal

BFR

Photodiode OA

Coupler

τ'

τ

Fig. 1. Schematic of the photonic oscillator. Orange: optical fields. Grey:
electrical signals. OA: optical amplifier. BFR: Brillouin fiber resonator not
resonant for the pump. The beatnote between the Stokes and the pump is
compared to a local oscillator to servo-control the laser frequency. τ , τ ′:
delay times. (see text for details).

The beating electrical signal at the output of the photodiode
is at a frequency corresponding to the Brillouin frequency shift
with respect to the laser, here 11 GHz in our silica fiber.
The wave mixing on the photodiode therefore results in a
first frequency downshifting process from the optical domain
to the radio frequency domain. The pump/Stokes beat note
signal is then mixed with a local oscillator provided by a RF
synthesizer set to the Brillouin frequency shift. This second
down-conversion process from the radio frequency domain
leads to a near DC signal. The resulting signal goes through an
analog loop filter before being fed back to the laser which acts
as a voltage controlled optical oscillator (VCOO). By freezing
the frequency difference between the laser and the Stokes
wave, this architecture forbids any mode hopping of the Stokes
wave [23]. More importantly, the architecture will copy the
inherent high spectral purity of the Stokes wave to that of the
laser. Finally, the non-reciprocal nature of the Brillouin fiber
resonator will naturally annihilate the oscillation of superior
order Stokes waves. Such a system has been implemented
and precisely described in Ref. [26]. We here briefly recall
the main parts of our setup, while Table 1 lists the relevant
parameters used in the numerical calculations.

We choose to use an Er,Yb solid-state laser as the free
running linewidth of such laser is in the 10 kHz range which
releases the constraint of realizing a large bandwidth PLL.
Moreover, the PLZT ceramic inside the laser cavity does
not limit the frequency tuning bandwidth (VCO effect) as
compared to mechanical or thermal tuning.

The single-mode laser is a 6.8 mm-long diode-pumped
solid-state Er:Yb laser. It emits 6 mW at λ = 1536 nm ,

when pumped with 400 mW at 980 nm. An intracavity PLZT
ceramic allows us to tune the optical frequency νL, with
a VCOO tuning rate dνL/dV equal to 20 MHz/V and a
bandwidth of 2 MHz. We choose to use an Er,Yb solid-state
laser because i) the free running linewidth of such laser is in
the 10 kHz range which releases the constraint of realizing a
large bandwidth PLL and ii) the PLZT ceramic does not limit
the frequency tuning bandwidth as compared to mechanical
or thermal tuning. 50% of the laser power is amplified by
a homemade Erbium doped fiber amplifier (EDFA), resulting
in a typical 110 mW pump power. 90% is injected into our
BFR through the intracavity circulator. The BFR consists in a
110 m-long polarization-maintaining fiber coil molded in resin.
The 10% port of the intracavity coupler provides the output
Stokes power of around 10 mW. The beating signal is delivered
by a fast InGaAsP fibered photodiode PD, whose bandwidth
and transimpedance gain are respectively equal to 11 GHz
and 440 V/W. The Stokes and pump power impinging on PD
are set to 1 mW. The beatnote signal from the photodiode is
then mixed with a 7 dBm local oscillator, provided by a RF
synthesizer (Keysight Technologies N5183B) whose frequency
is set at 10.998 GHz. Finally, the mixer output is sent into a
proportional-integrator active filter.

B. Analytical description of the Brillouin resonator

As proposed by Loh et al. [27], a good starting point
to model SBS resonators is to write the three wave mixing
equations. However, our BFR has a peculiar architecture,
since the pump field is not resonant with respect to the fiber
resonator and the derivation of the field equations must thus
take into account the non-reciprocal behavior of the resonator.

TABLE I
NUMERICAL VALUES OF THE PARAMETERS USED IN THE CALCULATIONS

n0 refractive index of the BFR fiber 1.47

nP
loss Loss coefficient for the pump wave 2, 90.10−9

nS
loss Loss coefficient for the Stokes wave 1, 72.10−9

γe Electrostrictive constant 1, 50

Scf Mode field section inside BFR 7, 85.10−11m2

Γ Damping coefficient of the acoustic wave 1, 80.10−6 m2/s

v Velocity of sound 5968 m/s

ωS Stokes optical angular frequency 1, 23.1015 rad/s

ωP Pump optical angular frequency 1, 23.1015 rad/s

β Fraction of Stokes wave 0, 78

ρ0 Mean value of the density 2.2 kg/dm3

L Length of the BFR 110 m

For a sake of clarity, we first recall the formalism used
in [27]. The three waves describing the stimulated Brillouin
scattering in the BFR correspond to the pump electric field, the
backward Stokes electric field and the density wave amplitude
noted respectively EP , ES and ρ. They are written as [28]
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EP =
1

2
ÃP (t, z) exp

i(ωP t−kP z) +c.c. , (1a)

ES =
1

2
ÃS(t, z) exp

i(ωSt+kSz) +c.c. , (1b)

ρ = ρ0 +
1

2
ρ̃(t, z) expi(ωt−kz) +c.c. . (1c)

In these expressions ˜AP,S represent the complex amplitudes
and ωP,S the optical angular frequencies, kP,S the wave vec-
tors for the pump and Stokes fields respectively. ρ0 accounts
for the mean value of the density, ρ̃ the amplitude, ω the
angular frequency and k the wave vector for the density wave.
The total optical field in the resonator E = EP +ES and the
density wave ρ are derived from the following d’Alembert and
acoustic wave propagation equations:

∆E − n2

c2
∂2E

∂t2
=

1

ε0c2
∂2PNL

∂t2
, (2a)

∂2ρ

∂t2
− Γ∆(

∂ρ

∂t
)− v2∆ρ = div

(−−→
grad

(
− ε0γe

2

〈
E2

〉))
.

(2b)

In these equations, PNL stands for the nonlinear part of the
electric polarization, n is the refractive index of the fiber, c is
the celerity of light, ϵ0 is the dielectric permittivity of vacuum,
Γ is a parameter specifying the damping of the acoustic wave,
v the velocity of sound in the fiber and γe the electrostrictive
constant. Moreover, energy conservation and phase-matching
for the counterpropagating pump and Stokes waves impose
ω = ωP − ωS and k = kP + kS . The nonlinear part of the
polarization reads [28]:

PNL =
ε0γe
ρ0

ρE . (3)

Combining the previous sets of equations and calculating all
the spatial and temporal derivatives for the three waves under
consideration, one ends up with the following system of three
equations describing the evolution of the complex amplitudes:

∂ÃP

∂t
+

c

n0

∂ÃP

∂z
= −nlossωP

n0
ÃP − iγeωP

4ρ0n2
0

ÃS ρ̃ , (4a)

∂ÃS

∂t
− c

n0

∂ÃS

∂z
= −nlossωS

n0
ÃS − iγeωS

4ρ0n2
0

ÃP ρ̃
∗ , (4b)

∂ρ̃

∂t
+

v2k

ω

∂ρ̃

∂z
=−

(Γk2
2

+ i
ω2 − Ω2

b

2ω

)
ρ̃− ik2ε0γe

2ω
ÃP ÃS

∗
,

(4c)

where a complex refractive index n2 = n2
0 − 2in0nloss has

been introduced to take the propagation losses into account. Ωb

is the acoustic angular frequency corresponding to the highest
SBS gain. Here, the transverse mode-overlap is assumed to
be perfect inside the fiber, i.e. equal to unity, and we have
also supposed that the complex amplitudes fulfill the slowly
varying amplitude approximation.

The peculiar architecture of our resonator combined with
the fact that the pump wave is going to be phase locked to
the Stokes wave leads us to use appropriate hypotheses. First,
as the fiber resonator is long, we keep the space variable

z in order to model rigorously the Stokes optical power at
the output of the resonator. Moreover, the phase-locked loop,
which is designed to avoid mode hopping, will automatically
position the Stokes wave frequency at the maximum Brillouin
gain so that ω = Ωb. Finally, and most importantly the fiber
resonator is non-reciprocal so that it is not resonant for the
pump wave, but resonant for the Stokes wave leading to
peculiar boundary conditions. To solve the previous system of
equations taking into account both distributed and localized
losses, we introduce two different effective time constants τP
and τS for the pump and Stokes waves inside the resonator:

τP,S =
n0

nP,S
lossωP,S

. (5)

This strategy enables to push up the analytical description of
the system without relying on numerical simulation. In practice
the pump wave experiences propagation losses in the fiber
before being abruptly evacuated by the optical circulator. The
time constant τP encompasses distributed losses as well as
the fact that the remaining pump wave after one round trip is
evacuated by the circulator. Its value is inversely proportional
to an effective complex refractive index denoted nP

loss. In the
same way, we introduce the effective time constant τS for the
backward Stokes wave which accounts for propagation losses
and localized losses at the output coupler and circulator. It is
inversely proportional to an effective complex refractive index
denoted nS

loss. In architectures using resonant pumping the
time constants for the pump and Stokes waves are nearly equal.
In our case the fact that pump and Stokes waves encounter
significantly different losses implies that τP is possibly orders
of magnitude lower than τS . Considering all the previous
hypotheses, Eqs. (4) become:

∂ÃP

∂t
+

c

n0

∂ÃP

∂z
= − ÃP

τP
− iγeωP

4ρ0n2
0

ÃS ρ̃ , (6a)

∂ÃS

∂t
− c

n0

∂ÃS

∂z
= − ÃS

τS
− iγeωS

4ρ0n2
0

ÃP ρ̃
∗ , (6b)

∂ρ̃

∂t
+

v2k

Ωb

∂ρ̃

∂z
= −Γk2

2
ρ̃− ik2ε0γe

2Ωb
ÃP ÃS

∗
. (6c)

First, we solve the previous system of equations in the
steady state, i.e. all temporal derivatives are set to zero.
According to [27], the derivative of ρ̃ over the direction z can
also be dropped, leading to the acoustic amplitude expression:

ρ̃ = −i
ε0γe
ΩbΓ

ÃP ÃS
∗

(7)

At this step the expression of ρ̃ is injected in the equations
representing the evolution of ÃP and ÃS leading to the
coupled equations for the pump and Stokes powers PP,S =
n0ε0cScf |AP,S |2:

dPP

dz
= − n0

cτP
PP − γ2

eωP

4ΩbΓρ0c2n2
0Scf

PPPS , (8a)

dPS

dz
=

n0

cτS
PS − γ2

eωS

4ΩbΓρ0c2n2
0Scf

PPPS , (8b)
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where Scf is the mode field section. These equations are
solved numerically taking in consideration the non reciprocal
geometry of the resonator whose boundary conditions are:

PP (z = 0,m) = PP0 , (9a)
PS(z = 0,m) = βPS(z = L,m− 1) , (9b)

where m accounts for the mth roundtrip inside the resonator.
L is the length of the fiber and β the fraction of the Stokes
wave being fed back. Figure 2 shows the comparison between
the model prediction and measurements performed with our
setup. The considered pump and backward Stokes powers are
measured at z = L and at z = 0, respectively. As expected
the Stokes wave grows with the injected pump power above
the threshold. However, the behavior of the pump wave is
peculiar. Indeed, above the Brillouin threshold we observe a
decrease of the transmitted pump power. The numerical model
taking the variable z into account is well suited to describe the
transmitted pump decrease, unlike usual models which assume
the transmitted pump power to be constant above the Brillouin
threshold. This numerical simulation enables us to determine
precisely the photon lifetimes τB and τF that will be injected
in the following analytical model. It is worthwhile mentioning
that in our case τB and τF are different and that this aspect
has to be considered in the model .

Fig. 2. Stationary state evolution of the Stokes (red) and pump (blue) powers
at the cavity output as function of input pump power. Full line: model. Dotted
line: experiment.

The following sections are devoted to the modeling of
the whole system in terms of amplitude and frequency noise
starting with the BFR.

III. FULL TRANSFER FUNCTION OF THE SYSTEM

The aim of this section is to determine the response of
the system to the pump field fluctuations. Moreover, for the
sack of simplicity, we want our model to rely on an analytical
description. Accordingly, we are going to consider two transfer
functions, one describing the amplitude and one describing the
phase. These transfer functions are coupled due to amplitude
to phase conversion occurring. The two loops that we consider
are schematized on Figure 3.

The phase loop (in blue) is closed and fed by two noise
sources, namely δφLO and δφL corresponding to the phase

rAPin0

rAPin0

rAS0

AS0

τ

δUPD

UPD

δAPinδφPin

Fig. 3. Scheme of the two-loop transfert model, consisting of seven elements:
Erbium doped fiber amplifier (EDFA), Brillouin fiber resonator (BFR), pho-
todiode (PD): KR stands for the product of responsivity by load, local RF
oscillator (LO), mixer, pure delay (τ ), loop filter, laser. Blue loop: phase
variations. Red loop: amplitude variations. Dark: mean values. Light color:
optical fields. Dark color: electric signals.

fluctuations of the local oscillator and pump laser wave re-
spectively. Conversely, the amplitude loop (in red) is open. The
amplitude fluctuations of the local oscillator the laser δALO

and δAL, act as noise sources. The transfer function of each
element, i.e. BFR, EDFA, PD, mixer, loop filter, delay and
laser (see Fig. 3), can be obtained from a linearization of their
time response, as it will now be discussed.

A. Brillouin fiber resonator

The time response of BFR is governed by the set of coupled-
mode equations (Eqs. 6). As we focus on a precise location
inside the fiber resonator, the spatial derivatives are set to
zero. A pumping term proportional to the input pump complex
amplitude ˜APin has then to be added to the pump wave
evolution equation (Eq 6a). A phenomenological time τext is
introduced to take into account the input coupler transmission.
The pumping term then reads ÃPin/τext. Finally, we separate
scalar amplitudes and phases:

ÃP,S,P in = AP,S,P ine
iφP,S,Pin , ρ̃ = ρeiφ , (10)

and we consider small variations around the steady-state
values:

AP,S,P in = AP0,S0,P in0 + δAP,S,P in , (11a)
φP,S,P in = φP0,S0,P in0 + δφP,S,P in , (11b)

ρ = ρ00 + δρ , (11c)
φ = φ0 + δφ . (11d)

The steady state solutions can be retrieved from Eqs. (6).
In particular, one gets:

φP0 − φS0 − φ0 =
π

2
. (12)

Moreover, assuming that φPin0−φP0 = 0, we end up with
the following equation system:
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Fig. 4. Theoretical pump to Stokes amplitude noise transfer function of the
Brillouin fiber resonator

∂δAP

∂t
= −δAP

τP
− ωP γe

4ρ0n2
0

(AS0δρ+ δASρ00) +
δAPin

τext
,

(13a)
∂δAS

∂t
= −δAS

τS
+

ωSγe
4ρ0n2

0

(AP0δρ+ δAP ρ00) , (13b)

∂δρ

∂t
= −Γk2

2
δρ+

k2ε0γe
2ω

(AP0δAS +AS0δAP ) , (13c)

∂φP

∂t
=

ωP γeAS0ρ00
4ρ0n2

0AP0
(δφP − δφS − δφ)

+
APin0

τextAP0
(δφPin − δφP )

, (13d)

∂φS

∂t
=

ωSγeAP0ρ00
4ρ0n2

0AS0
(δφP − δφS − δφ) , (13e)

∂φ

∂t
=

k2ε0γeAS0AP0

2ωρ00
(δφP − δφS − δφ) . (13f)

showing that the amplitude and phase fluctuations are uncou-
pled. Thus, we can write the set of Eqs.(13) as:



∂δAP

∂t

∂δAS

∂t

∂δρ

∂t

 = MA


δAP

δAS

δρ

 +


δAPin

τext

0

0

 , (14)



∂δφP

∂t

∂δφS

∂t

∂δφ

∂t

 = Mφ


δφP

δφS

δφ

+


APin0

τextAP0
δφPin

0

0

 , (15)

where the matrices MA and Mφ are equal to

MA =



−
1

τP
−C1ωP ρ00 −C1ωPAS0

C1ωSρ00 −
1

τS
C1ωSAP0

C2AS0 C2AP0 −
1

τB


, (16a)

Mφ =


−K4 −K1 −K1

K2 −K2 −K2

K3 −K3 −K3

 , (16b)

with the parameters defined as

C1 =
γe

4ρ0n2
0

, C2 =
k2ε0γe
2ω

, τB =
1

Γk2
,

K1 =
ωP γeAS0ρ00
4ρ0n2

0AP0
, K2 =

ωSγeAP0ρ00
4ρ0n2

0AS0
,

K3 =
k2ε0γeAS0AP0

2ωρ0
, K4 =

APin0

AP0τext
−K1 .

(17)

Both systems (14) and (12) can be solved in the frequency
domain, leading to the variations of the Stokes wave versus
pump fluctuations. This leads to the amplitude and phase

transfer functions, labelled HA−BFR(s) =
δAS(s)

δAPin(s)
and

Hφ−BFR(s) =
δφS(s)

δφPin(s)
respectively.

s stands for the Laplace variable s = i2πf . These transfer
functions write as:

HA−BFR =
AS0

τSτextAP0

s+ C3

s3 + C4s2 + C5s+ C6
, (18)

and

Hφ−BFR = K2(K1 +K4)
s+K3

s3 +K5s2 +K6s+K7
, (19)

with

C3 =
2

τB
, C4 =

1

τP
+

1

τS
+

1

τB
,

C5 = (
1

τS
+

1

τB
)(

1

τP
+

ωPA
2
S0

τSωSA2
P0

) , C6 =
4ωPA

2
S0

τBτ2SωSA2
P0

,

K5 = K2 + 2K3 +K4 ,

K6 = (K2 + 2K3)(K1 +K4) +K1K2 ,

K7 = K3(K2 +K3)(K1 +K4) .
(20)

Figure 4 illustrates the Bode diagram corresponding to
the magnitude |HA−BFR| of the amplitude transfer function.
The numerical values of the relevant parameters have been
extracted from table 1. This Bode diagram shows that BFR acts
as a second-order low-pass filter for the amplitude fluctuations.
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Fig. 5. Theoretical pump to Stokes phase noise transfer function of the
Brillouin fiber resonator.

Figure 5 shows the Bode diagram associated with the ampli-
tude of the phase transfer function |φA−BFR|. The Brillouin
resonator also responds to phase fluctuations of its pump as
a second order low pass filter which rejects high frequency
perturbations whatever their nature. The Stokes signal out
of the resonator is then naturally less noisy than its pump
regarding all types of noises above the cut-off frequency, here
at around 2 MHz.

B. Erbium-doped fiber amplifier
The use of an Erbium-doped fiber amplifier (EDFA) is

mandatory when the pump laser power is lower than the
Brillouin fiber laser threshold which corresponds to 90 mW
in our setup. The EDFA having a low phase-noise figure, we
neglect its additional contribution to the full system phase
noise [29]. Accordingly we consider that:

Hφ−EDFA = 1 , (21)

Conversely the EDFA response to amplitude fluctuations
must be carefully taken into account due to coherent popula-
tion oscillations (CPO) effect [30]. Indeed, under saturation,
the optical gain varies with the input optical power at low
frequency. Low power fluctuations will experience a high gain
while high input power fluctuations will experience low gain.
Then, under a cut-off frequency f1 given by the upper level
lifetime, the intensity variations of the incoming beam will
be almost annihilated. Conversely, above a second cut-off
frequency f2 given by the upper level lifetime and the gain
compression coefficient, the intensity variations are amplified
[31]. The EDFA will then act as a high pass filter. Regarding
the response of the EDFA can be modeled as a limited
derivator transfer function that reads:

HA−EDFA(s) = Gopt
f1
f2

1 +
s

2πf1

1 +
s

2πf2

, (22)

where f1 and f2 are measured experimentally. Figure 6 shows
the experimental response of our EDFA from which f1 =
350Hz, f2 = 20kHz and the optical gain Gopt = 20 are
extracted.
Although the main goal of the optical amplifier is to exceed
the Brillouin threshold, it is noticeable that it will also provide
significant amplitude noise attenuation at low frequencies.

Fig. 6. Transfer function of the EDFA relative to amplitude noise. Blue:
Model. Red: Experiment.

C. Photodiode

An AC fast photodiode PD, here 10 GHz cut-off frequency,
is used to generate the pump/Stokes beatnote signal. Intro-
ducing r, the ratio of pump impinging on PD, the produced
photocurrent can be written as iPD = K|

√
rEPin+ES |2 with

K a constant coefficient.
Neglecting second order terms, the output voltage reads

uPD = (UPD0+δUPD0)cos((ωP−ωS)t+φPin−φS) , (23)

with
UPD0 =

√
rRKAPin0AS0 , (24)

and

δUPD0 =
√
rRK(APin0δAS +ASδAPin0) . (25)

R is the effective output load at the beating frequency. In our
setup, r, K and R are equal to 0.1, 0.95 and 50 Ω, respectively.
We point out that uPD is the OPLL output signal. Its phase
noise is the difference of the Stokes and pump waves phase
noises while its amplitude noise is a linear combination of the
Stokes and pump amplitude noises weighted by their mean
amplitudes.

D. Mixer

A mixer is used to compare the pump/Stokes beatnote to
the frequency reference provided by a RF local oscillator. The
voltage input reads

uLO = (ULO + δULO)sin(ωLOt+ φLO) , (26)

The output of the mixer umix corresponds to the PLL error
voltage which is proportionnal to the phase difference φPD −
φS − φLO:

umix =Kcomp(UPD0 + δUPD0)(ULO + δULO)

× (φPD − φS − φLO) .
(27)

Kcomp was measured to be 0.71 V −1. This result has been
obtained after considering the locking of the PLL, that is
ωP −ωS = ωLO and (φPD −φS)−φLO ≪ π. Moreover, the
terms at frequencies higher than 1 MHz have been neglected.
Eq.(27) shows that the error signal is also impacted by
amplitude fluctuations of the photodiode and local oscillator
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voltages, leading to amplitude-to-phase conversion. This may
increase the pump laser phase noise. Consequently, in order
to maximize the system efficiency, the pump laser amplitude
noise must be limited.

E. Loop filter and delay

The baseband signal coming out of the mixer goes through
an electronical loop filter. This filter ensures the system
stability while globally improving the PLL performances. We
choose to design a filter with two poles and two zeros. The
transfer function HLF of the loop filter is given by:

HLF (s) = Gelec

1 +
s

2πf3

1 +
s

2πf4

1 +
s

2πf5

1 +
s

2πf6

. (28)

In this expression Gelec is the steady state electrical gain.
Figure 7 presents both theoretical and experimental magnitude
of the transfer function of our filter.

Fig. 7. Bode diagram of the loop filter. The poles frequencies are f3 =
3.12kHz and f5 = 32.7kHz whereas the zeros frequencies are f4 =
2.08kHz and f6 = 188.6kHz. Blue: Model. Red: Experiment.

We also introduce in the model a pure-delay line accounting
for the total length of the loop (optical and electrical parts),
corresponding to a transfer function:

Hdelay(s) = e−τs , (29)

where τ = 1.66.10−7 s.

F. Pump laser as a VCOO

We remind that the pump laser is acting as a VCOO. The
voltage out of the loop filter is applied on an intra-cavity Kerr
electro-optical crystal to slightly change the cavity length and
consequently the pump laser frequency. The crystal response
can be considered to be linear, due to the low value of voltage
corrections. It leads to a modification of the instantaneous
optical angular frequency ωL = KV COOVLF + ω0 with ω0

the laser angular frequency without correction. Considering the
phase as the signal of interest out of the VCOO, the transfer
function reads:

HV COO(s) =
KV COO

s
. (30)

In our setup, KV COO was measured to be equal to
80π106rad.s−1.V −1. Finally, we also introduce two inputs

δφL and δAL accounting for the pump laser phase and
amplitude fluctuations in free running.

In brief, the aim of this section was to theoretically de-
scribe the whole setup as a series of amplitude and phase
transfert functions. We point out that our model allows one to
explore the fundamental limits of the photonic oscillator as it
includes the noise contributions of the different components.
For instance, the model predicts that the amplitude noise of
the pump laser has an important role as it impacts directly the
frequency noise of the oscillator. The frequency noise of the
local oscillator has also a contribution but its impact is less
important. In order to ensure the validity of our approach,
we now compare the model prediction with measured transfer
functions, as will be discussed in the next section.

IV. EXPERIMENTS VS MODEL

The transfer function of the full setup can be measured by
opening the loop, e.g., after the mixer. The elements succes-
sively encountered are the time delay, the loop filter, the laser,
the photodiode, the Brillouin resonator for associated part of
the signal, the photodiode and the mixer. The theoretical open
loop transfer function is:

Hopen(s) =
√
rRKKcompHLF (s)(1−Hφ−BFR(s))

× KV COO

s
e−τs .

(31)

However, the characterization of the corresponding experi-
mental open loop transfer function is fairly difficult because
while the loop is open, the system experiences mode-hops. It
is thus mandatory to keep the loop physically closed during
the measurements.

A. Open loop transfer function measurements

To measure the open loop transfer function, a small con-
trolled voltage perturbation P (ω) at angular frequency ω is
added right after the mixer, as shown on Figure 8. It induces
a small signal ε1 out of the mixer. We write ε2 = ε1 +P and
ε3 = HLF ε2. Provided that P is the dominant perturbation
in the system, one gets:

Hopen(ω) ≃ −ε1
ε2

,
Hopen(ω)

HLF (ω)
≃ −ε1

ε3
. (32)

Local
oscillator IF

RF
LO Loop

filter

Photodiode

+
+

P( )

1( ) 2( ) 3( )

Fig. 8. Principle of the open loop transfer function measurement. P (ω) :
small controlled perturbation ; εi: induced signals.
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We then monitor ε1(ω) and ε2(ω) using a lock-in ampli-
fier synchronized to the input perturbation P (ω). We also
monitor ε3(ω) to get the open loop transfer function of the
system without filter (see Eq.32). This last transfer function
is particularly interesting because it permits to evaluate the
behavior of the system independently of the loop filter. We
remind that in our setup the loop filter is used as the adjustment
parameter. Comparison between the model prediction and an
actual measurement of the open loop transfer function without
filter is reported in Figure 9. It shows a very good agreement
from 8 kHz to 3 MHz, that is over more than 2 decades.

Fig. 9. Open loop transfer function measurement and model prediction. Blue:
Model. Red: Experiment.

Notice that ε3 stands for a perturbation divided by the loop
gain. Due to the extremely high gain at low frequencies, the
measurement of ε3 below a few kHz was out of reach. More-
over for frequencies higher than 3 MHz, the assumption that
the introduced perturbation dominates was not valid anymore.
Figure 9 shows that our setup behaves as an integrator, i.e. gain
slope of −20dB/dec and phase shift of −90 deg. Around 1
MHz the phase drops due to the loop delay τ . Measurements
led to estimate τ = 175 ns which corresponds to propagation
over 35 m. This length corresponds to the path followed by the
reference pump signal going directly to the photodiode without
entering the BFL, (see Figure 3). Then, we have inserted
optical fibers of different lengths between the input coupler
and BFR, thus varying the delay time τ ′ depicted on Figure 1
from 5 to 500 ns. We always observed the same experimental
transfer function which does not depend on any delay time
associated to BFR. As the relevant delay is only linked to the
shortest path, it limits the impact of the delay on the global
system stability. These results demonstrate that the Brillouin
resonator transfer function does not have any impact on the
open loop transfer function. Consequently and as expected, the
BFR acts as an optical reference with a high spectral purity.

B. Frequency response to a step perturbation

In linear systems, the open-loop transfer function and the
response to a step perturbation are theoretically equivalent.
However, we have made assumptions when measuring the

open-loop transfer function. In order to confirm our results,
we now study how the laser optical frequency reacts to a
frequency step of the LO. In practice, the frequency of our
syntheziser can switch by 300 kHz step within 200 ns. This
switch-time can fairly be considered as instantaneous com-
pared to the system time constant. Thus when the synthesizer
switches by 300 kHz we expect the pump laser frequency to
also shift by 300 kHz. In addition relevant information about
the system is contained in the transient response. To study
such transient response, we used an unbalanced fibered Mach-
Zehnder interferometer schematized in Figure 10.

Coupler Coupler

2200 m

Laser

Photodiode

(b)(a)

ω1 ω2

Fig. 10. Unbalanced Mach-Zehnder interferometer. Short arm: 1 m. Long
arm: 2200 m. Insets. (a) Output angular frequencies for a step variation; ω1

(blue) and ω2 (brown) are associated to the short and long arms, respectively.
(b) Corresponding output voltage.

This interferometer consists in one 1 m-long arm and one
2200-m long arm sandwiched by two 50/50 couplers. We
checked that the optical losses in the two arms are negligeable.
The optical field inpinging on the photodiode then reads:

Ein =
E0

2

(
eiω1t + eiω2(t−τi)

)
. (33)

ω1 and ω2 are the instantaneous angular frequencies at the end
of the short and long arms, respectively. τi = ∆L/c refers to
the interferometer delay time between the two arms, where
∆L is the optical path difference. E0 is the input optical field.
The output voltage delivered by the photodiode is then:

vout = V0 (1 + cos ((ω1 − ω2) t+ ω2τi)) + Voff , (34)

with V0 a constant voltage and Voff an offset voltage. Figure
10 illustrates the expected time interferogram for a frequency
step of 300 kHz if the system response is instantaneous, that
is, angular frequencies ω1 and ω2 variations consist in two
perfect steps. The output voltage is constant when ω1 = ω2

and varies at 300 kHz when ω1 ̸= ω2. The information we
intend to retrieve will be in the transient signal added to this
waveform due to the system response. Figure 11 shows both
theoretical and experimental interferograms.

As expected, the voltage before frequency switch is con-
stant. The little oscillation is due to the relaxation oscillations
of the laser. Then we recognize a transient behavior followed
by a new constant signal. The transient signal differs from
the one presented in Figure 10 due to the system time re-
sponse. The step response predicted by the model is computed
numerically because of its complexity. Nevertheless, a good
approximation can be made by neglecting the BFR impact, the
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Fig. 11. Interferogram resulting from a 1 MHz frequency step on the local
oscillator. Blue: Model. Red: Experiment.

delay τ and using a pure G0 gain loop filter. The open loop
transfer function of Eq. (31) then writes Hopen(s) = K0/s
with K0 =

√
rRKKcompG0KV COO. This leads to the step

response for the close loop:

f(t) = 1− e−K0t . (35)

At the end of the interferometer arms the instantaneous
frequencies are:

ω1(t) = ω0 +∆ω(1− e−K0t)H(t) , (36a)

ω2(t) = ω0 +∆ω(1− e−K0t)H(t− τi) , (36b)

with ω0 the initial angular frequency of the laser, ∆ω the
amplitude of the angular frequency step imposed to the local
oscillator and H(t) the Heaviside function. Introducing the
expression (34) into Eq.(36) leads to the theoretical fit of
Figure 11. Once again, the model predictions are in fairly
good agreement with the experimenatl observations.

C. Phase noise

We now aim to compare the experimental phase noise level
with the model predictions. In the simulations, we considered
three possible noise sources, namely the pump laser, the
local oscillator and the Brillouin resonator, the contribution
of other noise sources being supposed to be negligible. First,
the optical phase noise spectrum of the free running laser,
i.e. δφLO, is retrieved experimentally from the output signal
of the unbalanced MZM using the self-heterodyne technique
[32] (see Fig. 12).

From this spectrum and the phase noise of the local os-
cillator δφL0, one can compute the closed-loop phase noise
of the difference φPin − φS corresponding to an estimate of
the phase noise associated to the beat note between the laser
and the Stokes wave, the added noise due to the EDFA being
supposed to be negligible (Eq. 21).

Fig. 13 compares this predicted closed loop phase noise
to the recorded experimental phase noise spectrum showing
again a good agreement. Note that the efficiency of the OPPL
can be assessed on the closed-loop optical spectrum of Fig.12,
which shows a significant reduction of the phase noise over the
20 kHz bandwidth of the feedback loop. Notice that the PPL
bandwidth is not really an issue in the current configuration as

Fig. 12. Optical phase noise of the laser. Red: free running; Blue: closed-
loop. See text for details

Fig. 13. Relative phase noise spectrum of the laser/stokes beat note at 10.998
GHz. Red: Model. Blue: Experiment.

it is larger than the free running linewidth of the pump laser.
If the pump is replaced by a laser with a larger linewidth,
such as a semiconductor laser, then the PLL bandwidth must
be increased, at the expense of its gain.

V. CONCLUSION

In conclusion, we have developed a theoretical model
describing the self-narrowed photonic oscillator including an
OPLL as recently proposed. This model relies on two inter-
leaved feedback loops. A good agreement is obtained between
our model predictions and the experimental measurements,
both for frequency response and phase noise level. Moreover,
we show that the long Brillouin fiber loop acts as a local
oscillator and that the delay associated to this loop does
not enter into play in the photonic oscillator servo-locking
bandwith. As our model is based on a full-analytical analysis
of the whole transfer functions, it is an efficient tool for
defining and optimizing the different parts of the system, using
well established servo-loop calculations. This model applies to
any pump laser that can be turned to a VCOO, such as, e.g.,
fiber DFB lasers [33], or electrically-driven semiconductor
lasers by including the Henry factor in the model. Moreover
this model can be extended to more sophisticated fiber SBS
resonators. Finally this model will be employed to optimize
more compact configurations based on silicon [34] and Si3N4
[35] integrated circuits, which is the next step of this work.
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