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In epidemiology, control processes usually rely on some key parameters, such as R0 and the epidemic
threshold over a contact network. Driven by network-based models, knowledge of network structures can
improve the prediction of the epidemic threshold, which is a challenge when using contact network prop-
erties. There are several structural approaches to predicting the epidemic threshold. The common QMF
(Quenched Mean-Field) approach uses the spectral radius as a single parameter. However, prediction
can be improved by using compound diffusion parameters such as node number and Laplacian energy
of graph. In this paper, a new structural and spectral prediction approach of the epidemic threshold
called KSEL (K Spectral Energy of Laplacian) is designed and experimented with at different levels.
Theoretical and formal levels establish mathematical foundations, while the comparative level computes
a descriptive statistics summary. Qualitative and quantitative analysis are achieved at the experimental
level using some data analytic and visualization techniques. Simulations are performed using a large and
heterogeneous dataset with different network types and topologies. Results show that the new approach
further captures the full network structure, connectivity, and network diffusion properties. KSEL is
similar, shares a common rolling trend, and performs really good performance compared to the previous
prediction approaches, including the most used QMF. There is a strong positive correlation and similar
value distribution between KSEL and the previous prediction approaches that accept the null hypothesis
by ANOVA analysis. Therefore, the new approach offers a Laplacian structural and spectral area to
analyse spreading processes over a network. The results can have a practical interest to improve the
control and prediction of spreading processes in networks. Particularly, they can be significant to advise
an effective epidemiological control policy.

Keywords: Network structures; Dynamics on networks; Eigenvalues ; Laplacian energy of graph ;
Epidemic threshold ; Epidemiology
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1. Introduction

Networks are everywhere. Several real phenomena, like disease spreading, and rumour propagation, are
described and understood as a spreading process in the complex system [6, 14, 17, 19]. These processes
are widely modelled using networks or graphs. Therefore, networks are of great interest and become
a fertile and flexible tools for scientific modelling and analysis of complex systems [17, 21] such as
an infectious disease spread. Disease transmission can occur when there is direct or indirect contact
between infected individuals or groups [15, 18] over a contact network.

In the study of infectious disease spread, the basic reproduction number R0 is the average of the
expected secondary infection number caused by a primary infectious individual introduced into a fully
susceptible host population. Critically, R0 depends not only on the disease but also on the host popu-
lation structure [12]. Therefore, network-based models of epidemiological contact have emerged as an
important tool in understanding and predicting the spread of an infectious disease [3, 15, 17]. Under-
standing the network structure improves the control of the micro and macro propagation [1, 12, 19], and
even improves the predictions. As it happens, we need sophisticated tools such as the spectral theory of
graph for analysis and visualization of network structure [2, 3]. So, predicting if a disease will disappear
or become an epidemic refers to the epidemic threshold noted τ .

τ is the incidence level of a disease at which it can be considered as an epidemic. In this sense, τ

describes a fundamental question in epidemiology and related areas [22]. Hence, in the study of infec-
tious diseases on networks, researchers compute epidemic thresholds to help forecast whether or not a
disease will eventually infect a large fraction of a population [4] to be considered as an epidemic. For-
mally, τ is the critical β/γ ratio value beyond which an infection becomes an epidemic [26]. However,
τ depends not only on the transmission and recovery rates of a disease but also fundamentally on the
network structure [26]. Therefore, using contact network properties to predict the epidemic threshold
is a challenge. By using structural and spectral network properties, we can improve the prediction of
the epidemic threshold. So, this paper aims to design and experiment a new structural and spectral
prediction approach of the epidemic threshold called KSEL (K Spectral Energy of Laplacian).

Indeed, the epidemic threshold is closed in the diffusion context. Diffusion is a spreading process
by which information, epidemics, viruses, and any other spreading process occur over networks [18]. In
the literature, to study diffusion or spreading processes in a network like an infectious disease spread,
the Laplacian matrix of a graph and its spectrum have useful features. They can be used to determine the
average path length, degree distribution, connectivity of the graph, number of connected components,
and other determinants of diffusion over a network [2, 5, 7, 18]; these determinants are useful for un-
derstanding and predicting a diffusion process like an infectious disease spread. Related to the previous
works, to improve the prediction of τ as a spreading process, we can use the Laplacian matrix and its
spectrum around the Laplacian energy of graph as a compound global parameter.

The layout of this paper is organised as follows: Section 2 presents the concept definitions and
previous structural approaches of prediction. Section 3 describes the proposed Laplacian spectral and
structural prediction approach of the epidemic threshold with its root concepts and mathematical foun-
dations. Section 4 is dedicated to the experimentations, results, and discussions. We conclude in Section
5.
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2. Concepts definition and Previous structural approaches of prediction

2.1 Concepts definition

DEFINITION 2.1 (Overview of general concepts) In Table 1 bellow, we define some basic concepts used
as notations in this work.

Table 1. Notations
Symbol Short description
G A connected graph G = (V,E) with n nodes in V and m edges in E.
A Adjacency matrix of the graph.
⟨k⟩,⟨k2⟩ Respectively the first moments (average connectivity), and the second mo-

ments (connectivity divergence) of the degree distribution.
λmax Spectral radius (largest eigenvalue) of the matrix A.
β Infection rate. It’s the rate of infection or transmission from an infected

individual to a susceptible individual per effective contact.
γ Recovery rate. It’s the rate that an infected individual will recover per unit

time (in continuous-time models) or per time step (in discrete-time models).
τ Epidemic threshold, scaled by γ−1 so that τ = β/γ .
τc Critical epidemic threshold.

DEFINITION 2.2 (Laplacian energy of graph) The original version of graph energy is based on the
eigenvalues of A [9]. The graph energy concept has many variants including the Laplacian energy of
graph. Giving a Laplacian matrix L, the Laplacian energy of graph is given by equation (2.1):

LE(G) =
n

∑
i=1

|µi −
2m
n
| (2.1)

where µi is the ith eigenvalue of L. Nevertheless, the energy of graph concept found unexpected large
applications in areas of engineering and science [10] such in [16], [11] with the epidemiological appli-
cations.

DEFINITION 2.3 (Epidemic threshold) An epidemic threshold τ is the incidence level of a disease at
which it can be considered as an epidemic. In other words, τ is the minimum level of virulence to
prevent a viral contagion from dying out quickly, and determining. Formally, τ is the critical β/γ ratio
value beyond which an infection becomes an epidemic [26].

2.2 Previous structural approaches of prediction

In the literature, there are many successful structural prediction approaches of the epidemic threshold.
We denote various benchmarks widely used to structurally predict spreading dynamics in real networks.
This includes the Mean-Field (MF), Degree-Based Mean-Field (DBMF) or Heterogeneous Mean-Field
(HMF), Quenched Mean-Field (QMF) also called Individual-Based Mean-Field (IBMF), and K Spectral
Energy (KSE).

2.2.1 Mean-Field The Mean-Field (MF) approach is based on the works of Kephart and White who
adopted a modified homogeneous approach where directed graphs model the communication among
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nodes or persons [13]. Formally, in a homogeneous network, the epidemic threshold is denoted by
equation (2.2):

τ
MF
c =

1
⟨k⟩ (2.2)

where ⟨k⟩ is the first moment of degree distribution. The MF assumes that all nodes in the network are
statistically equivalent; the interaction probabilities between any two nodes are the same. Therefore, the
contact network structure is not considered. This approach can be inaccurate when the network degree
distribution is asymmetric and heterogeneous.

2.2.2 Heterogeneous Mean-Field To better capture network structure, [20] improved the homoge-
neous MF approach to obtain the Heterogeneous Mean-Field (HMF) by making the assumption of the
inability of a node (or person) to infect the node that infected it. Here, the epidemic threshold is given
by equation (2.3):

τ
HMF
c =

⟨k⟩
⟨k2⟩−⟨k⟩ (2.3)

where ⟨k2⟩ is the second moment of degree distribution. The HMF is more used for uncorrelated net-
works [8]. This approach is useful under the mean-field assumption of independence between node’s
infectious states. Nevertheless, the HMF neglects dynamic correlations among neighbour states. Due to
its parameters and assumptions, HMF can be inaccurate for quenched connections among the nodes.

2.2.3 Quenched Mean-Field Because neither the MF nor HMF approaches can capture enough of
the contact network structure, the Quench Mean-Field (QMF) approach is developed using an adja-
cency matrix A. In [26], authors proposed a discrete-time formulation to predict the epidemic threshold
problem with any assumption of homogeneous connectivity. Thus, the epidemic threshold is given by
equation (2.4):

τ
QMF
c =

1
λmax

(2.4)

where λmax is the largest eigenvalue of A. The QMF approach depends only on network structures. It’s
commonly used to study spreading dynamics in a network [25]. QMF is an advanced approach that is
more accurate than MF and HMF [25]. It has many variants, such as the N-intertwined approach [23],
the Dynamical Message-Passing (DMP) using the non-backtracking matrix, and the Simplified DMP
(SDMP). Nevertheless, in some specific situations, some research doubts the accuracy of the epidemic
threshold value predicted using the QMF approach [8].

2.2.4 K Spectral Energy Because neither the MF, HMF, nor QMF approaches capture enough of the
full contact network structure, the K Spectral Energy (KSE) approach is developed using A, node num-
ber, spectral radius, and energy of graph. The KSE approach is commonly used to study the spreading
process over a network [11]. Here, the authors propose a discrete-time formulation to predict the epi-
demic threshold problem without any assumption of homogeneous connectivity. Hence, the epidemic
threshold is given by equation (2.5):

τ
KSE
c =

kn
E(G)

e−1/λmax (2.5)
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where E(G) is the graph energy, and k is a real parameter. The KSE prediction approach depends only
on network structures.

As it happens, in the literature, there are many structural prediction approaches of the epidemic
threshold. However, we are interested in the development of a new general structural and spectral
prediction approach of the epidemic threshold. This should better capture the full network structure
using network structural and spectral properties such as a node number, Laplacian matrix, spectral
radius, and the Laplacian energy of graph. The new approach should be substantially similar to the
previous structural approaches of prediction. Moreover, it should also be accurate. The new approach
should offer a new general and spectral approach to analyse spreading processes in a network.

The adjacency matrix used in QMF [26], also in KSE [11] captures the network structure. However,
the Laplacian matrix is closely related to the adjacency matrix but differs in some additional significant
features that can also tell us much about network structure [18]. In the literature, a diffusion context
takes into account some significant features, like the Laplacian matrix L. Hence, we can investigate the
eigenvalues of L that include the Laplacian energy of graph.

3. Proposed approach for predicting the epidemic threshold

3.1 Epidemic threshold and the spectral theory of graph

The spectral theory of graph and network science are used to understand how network structure predicts
dynamic processes [10] such as the epidemic threshold. This theory analyses the relationships between
the graph structure and its eigenvalues. It playing a key role in the fundamental understanding of net-
works [3, 5, 7]. However, a large literature on the spectral graph theory and its applications is available
in several surveys, books, and monographs, including [5, 7].

3.1.1 Largest eigenvalue of graph The eigenvalues analysis allows to get useful information about a
graph that might otherwise be difficult to obtain [7]. Indeed, eigenvalues have a strong relationship with
the graph structures [5]. The largest eigenvalue of graph λ1 or λmax is called the spectral radius of A.

3.2 New structural and spectral prediction approach

Some research doubts the accuracy of prediction values by the QMF approach [8]. Also, neither the MF,
HMF, QMF, nor KSE approaches capture enough of the full contact network structure; the K Spectral
Energy of Laplacian approach is developed using the laplacian matrix L, node number, spectral radius,
and the Laplacian energy of graph. For any undirected connected network, we focus to develop a new
structural and spectral prediction approach of the epidemic threshold. However, in the epidemic thresh-
old study, one of the challenges is to capture the essence of the full network structure with accuracy,
connectivity, and flexibility. The new prediction approach does not assume homogeneous connectivity
or any particular topology at a discrete time. We assume that during each time interval, an infected node
i tries to infect its neighbours with probability β . At the same time, i may be cured with probability γ .
So, the new epidemic threshold approach τKSEL

c is given by equation (3.1):

τ
KSEL
c =

kn
LE(G)

e−1/λmax (3.1)

Here, LE(G) is the Laplacian energy of graph, n is the node number, λmax is the spectral radius, and k
is a specific real scale parameter. τKSEL

c means K Spectral Energy of Laplacian prediction approach of
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the epidemic threshold. Regarding the mathematical foundations of the new τKSEL
c prediction approach

of the epidemic threshold, we can show that τKSEL
c is related to the context of diffusion processes like

an epidemic on networks. In fact, diffusion processes are sometimes used as a simple model of spread
over a network, such as the spread of an idea or an infectious disease [18]. This process is described
as a process by which information, epidemics, viruses, and other processes spread over a network. It’s
known that a diffusion context takes into account some significant features, like the Laplacian matrix
L [18] used in τKSEL

c . In a simple undirected connected network, think about a quantity of substance φi
(heat) at each node i at time t, the diffusion of heat over a network is given by the equation (3.2) [18]:

dφi

dt
= c∑

j
Ai j(φ j −φi) (3.2)

In the matrix notation,

dφ

dt
+ cLφ = 0, φ(0) = φ0 (3.3)

Whose solution is,

φi(t) = φi(0)e−cλit (3.4)

An initial condition for the system can be specified by the quantity φ(0). We can solve the equation
(3.4) for the state at any later time. Thus, the new prediction approach of the epidemic threshold τKSEL

c
is based on the solution of the diffusion equation (3.4). The epidemic threshold is closed to the diffusion
context.

In the other point of view, related to the mathematical foundations of the new τKSEL
c prediction

approach, it is proven that the more highly connected a network is, the larger is λmax [24], and the
smaller is 1/λmax as an epidemic threshold. This can exhibit a basic exponential decay model φ(t),
where:

φ(t) = e
−1

λmax
t (3.5)

with the single parameter λmax. φ(0) = 1. To consider each eigenvalue, we are interested to the Lapla-
cian energy of graph according to its definition and diffusion features. So, about the fraction of the
Laplacian energy of graph on each node, we define:

∆ =
LE(G)

n
(3.6)

According to the salient features like critical or threshold values of the reciprocal model, we consider
the simple reciprocal model y= k( 1

x ), where x is a variable and k is a constant or scale parameter. Hence,
the reciprocal of ∆ is:

k
(

1
LE(G)

n

)
=

kn
LE(G)

(3.7)

Related to this reciprocal, the intuition to observe the rate of φ(t) at t = 1 leads to:

kn
LE(G)

× e−1/λmax = τ
KSEL
c (3.8)
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Thus, the new prediction approach of the epidemic threshold τKSEL
c is an application that associates each

Laplacian matrix to a specific decay relative composition eigenvalues µi relating to ∆ .

Furthermore, we can observe that the new τKSEL
c has some specific structural and spectral features:

(i) Spectral: by using parameter λmax, LE(G) as a compound of different eigenvalues. This should
further capture the full network structure.

(ii) Connectivity: by using the Laplacian matrix L related to the clustering coefficient, average path
length, degree distribution, connected components, and diffusion over a network.

(iii) Diffusion over network: similar to the solution of heat diffusion process over the network that is
ai(t) = ai(0)e−Cλit , where C is a constant called the diffusion constant [18].

(iv) Flexibility: by using of {λmax, LE(G),n,k} structural and spectral parameters in strong relation-
ship.

(v) General: to a contact network of an undirected connected graph G.

4. Experimentation, results and discussions

The simulations have been carried out to answer the question of how the new approach τKSEL
c is sub-

stantially similar and performs in real a good performance than the previous prediction approaches,
including the most commonly used QMF. This is performed through various data analytic, and data
visualisation techniques on the experimental heterogeneous dataset in Fig. 1. Then, different sets of
predicted values of MF, HMF, QMF, KSE, and the new KSEL prediction approach of the epidemic
threshold are computed, analysed, visualised, and discussed. To evaluate the new approach, we achieve
some qualitative, quantitative, and comparative analysis.

The dataset described in Fig. 1 contains various real networks of infectious disease spread, small-
world, random, and regular networks in spreading processes overall. There are 31 different types and
topologies of networks: 17 real social networks, 9 generated social networks, 3 random networks, and 2
regular random networks. Related to the network, Id refers to the identifier, kmax refers to the maximum
node degree, k denotes the first moment of degree, k2 the second moment of degree, den refers to the
density, and cc the clustering coefficient.

Fig. 2 emphasises the shape distribution of each prediction approach of the MF, HMF, QMF, and
KSE. Also, their common quantitative values that are distributed across the [0.005,0.977] range. Those
previous approaches share a similar peak around 0.106; this helps track their approximative central
values and also displays where overall different values are concentrated over the interval [0.04,0.16].
However, the shape of KSE shows a specific sharp peak compared to other approaches. This reflects
some relative outlier values concentrated in [0.04,0.16]. Hence, there must be some weaknesses and
worrying prediction cases with the KSE approach; therefore, the new KSEL approach will overcome
these weaknesses.

Figure 3 highlights how, at a given network Id, the prediction values of the epidemic threshold are
similar to each other in relative amplitude. There is a strong relationship and few differences in predicted
values. Overall, this emphasises similar or near-predicted values through different approaches. This
shows no significant glance changes among different predicted values of the epidemic threshold.

For another visualization layout and features, Fig. 4 shows the similar trend and shape of different
predicted values of the epidemic threshold using area visualization. The different areas overlap each
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Figure 1. The summary of structural information about networks in the dataset

other. There is a strong relationship between the different predicted values of the epidemic thresholds
MF, HMF, QMF, KSE, and the new KSEL. There is a particular similar trend, a common shape, and
a strong correlation between the commonly used QMF, KSE, and the new KSEL prediction approach.
This highlights the similarity of the different prediction approaches, including the new KSEL. Therefore,
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Figure 2. The shape and value distribution of MF, HMF, QMF and KSE prediction approach of the epidemic threshold, using
scaled density visualization

Figure 3. The relative comparison and relationship between MF, HMF, QMF, KSE and the new KSEL prediction approach of the
epidemic threshold, using bar visualization

the sets of these prediction approaches are related to each other.
Moreover, Fig. 5 emphasises that the quantitative predicted values are distributed across a common
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Figure 4. The trend and correlation on MF, HMF, QMF, KSE and the new KSEL prediction approach of the epidemic threshold,
using area visualization

Figure 5. The shape and value distribution of MF, HMF, QMF, KSE and the new KSEL prediction approach of the epidemic
threshold, using scaled density visualization

quantitative [0.005,0.977] range. Every predicted value of the epidemic threshold shares a similar peak
relatively around 0.106. This helps to track their approximative central values and to display where over-
all different predicted values are concentrated over the interval [0.03,0.16]. Overall, there is a common
shape and value distribution that overlap each other too much between [0.03,0.16] that characterises the
relatively similar peak, central values, and value distribution of the different prediction approaches.

Using descriptive analysis techniques, the Fig. 6 provides a concise summary of descriptive statis-
tics that highlights some main features of a dataset. There are particular similar patterns and strong
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relationships between predicted values using QMF, KSE, and KSEL.

Figure 6. The box plots visualization of MF, HMF, QMF, KSE and the new KSEL prediction approach of the epidemic threshold

Concerning QMF as a common-use approach in the literature, Fig. 7 emphasises a relative com-
parison and strong relationship; Fig. 8 shows the overall similar rolling trend and relative pattern; and
Fig. 9 shows the common shape and value distribution of QMF, KSE, and the new KSEL prediction
approach. The predicted values of the KSEL approach are more similar to those of QMF compared to
the predicted values of the KSE approach related to the QMF approach. Overall, of these 3 structural
and spectral approaches, there is an emphasis on an overall rolling particular similar trend, a common
shape, a relative curve, and a common large range of value distribution over predicted values by different
network Id. This highlights no significant glance changes among these different prediction approaches.
So, the results above mean that the new KSEL approach is substantially similar and shares major fea-
tures related to the previous structural prediction approaches, specifically with the widely used, accurate
QMF. Theoretically, those results come from the eigenvalues concept at the root of the QMF, KSE, and
KSEL approaches. At the conceptual level, the new KSEL approach offers an insight into a relationship
between three important and useful concepts in graph spectral theory: the spectral radius, Laplacian
energy of graph, node number, and a specific scale parameter.

Furthermore, we can analyse an overview of the gaps or differences between previous prediction
approaches of the epidemic threshold related to the new KSEL. The summary of the descriptive statistics
of these gaps is shown in Table 2. Here, for any p, q epidemic threshold approach, e p q means the
Euclidian gap or difference of p to q: p - q.

In Table 2, the standard deviation of the gap between the most used QMF and KSEL is 0.0530; the
gap between the most used QMF and KSE is 0.0544 as all the gaps are relatively low. Here, the term
relatively low is related to the previous prediction approaches, particularly lowest with the most com-
monly used QMF and KSE. Once again, this underlines the fact that the new KSEL prediction approach
is similar to the previous. It shares major common features with the previous approach, specifically with
the most accurate QMF, KSE.
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Figure 7. An emphasis on the relative comparison and relationship between QMF, KSE and the new KSEL prediction approach
of the epidemic threshold, using bar visualization

Figure 8. An emphasis on the trend and correlation on QMF, KSE and the new KSEL prediction approach of the epidemic
threshold, using area visualization

Besides those precedent results, we analyse the Pearson’s correlation coefficient between MF, HMF,
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Figure 9. An emphasis on the shape and value distribution of QMF, KSE and the new KSEL prediction approach of the epidemic
threshold, using scaled density visualization

Table 2. Summary of the descriptive statistic values of the gaps or differences between MF, HMF, QMF, and KSE approach related
to the new KSEL prediction approach of the epidemic threshold

e MF KSEL e HMF KSEL e QMF KSEL e KSE KSEL
count 31.0000 31.0000 31.0000 31.0000
mean 0.0770 0.0834 0.0355 0.0579
std 0.0845 0.1579 0.0530 0.0544
min -0.0314 -0.0313 -0.0314 -0.0000
25% 0.0186 0.0076 0.0014 0.0201
50% 0.0401 0.0307 0.0116 0.0644
75% 0.1292 0.0692 0.0582 0.0813
max 0.3091 0.7893 0.1881 0.2899
IQ 0.1106 0.0616 0.0569 0.0612
range 0.3404 0.8206 0.2195 0.2899

QMF, KSE, and KSEL.

Table 3. The Pearson’s matrix correlation coefficient between MF, HMF, QMF, KSE and the new KSEL prediction approach of
the epidemic threshold, with emphasis on the density and clustering coefficient

MF HMF QMF KSE KSEL den cc
MF 1.000
HMF 0.885 1.000
QMF 0.902 0.796 1.000
KSE 0.655 0.346 0.534 1.000
KSEL 0.838 0.818 0.902 0.485 1.000
den -0.204 -0.200 -0.198 -0.126 -0.171 1.000
cc -0.583 -0.505 -0.674 -0.404 -0.728 0.502 1.000
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In Table 3, the new KSEL is more strongly and positively correlated to the most used QMF, even
to the previous prediction approaches, including the KSE in [11]. Particularly, the correlation between
KSE and QMF is 0.5340, for 0.9020 between KSEL and QMF. All the prediction approaches, including
the new KSEL, are strongly and positively correlated. Moreover, by definition, an epidemic threshold
in a contact network should be negatively correlated with density and clustering coefficient. Table 3
highlights that all prediction approaches of the epidemic thresholds, including the new KSEL, are sig-
nificantly correlated with a negative sign to the density (den). Also, Table 3 highlights that all prediction
approaches, including the new KSEL, are significantly correlated with a negative sign to the clustering
coefficient; this is with a greater negative value of −0.7280 for the new KSEL approach.

Additionally, using ANalysis Of VAriance (ANOVA), we analyse the statistical difference among
different experimental sets of MF, HMF, QMF, KSE, and KSEL predicted values of the epidemic thresh-
old. We have used the univariate ANOVA test through the Ordinary Least Squares (OLS) model and the
Bioinfokit Python package. Then, Table 4 summarizes the output of ANOVA F and p-value, where sumsq
denotes the sum of squares, df denotes the degree of freedom, F the F-statistic, and PR the P-value.

Table 4. The ANOVA F and p-value using the Ordinary Least Squares to MF, HMF, QMF, KSE related to KSEL prediction
approach of the epidemic threshold

df sum sq mean sq F PR(> F)
C(τ) 4.0000 0.1431 0.0358 2.7161 0.0320
Residual 150.0000 1.9755 0.0132 nan nan

In Table 4, p-value 0.0320 < 0.05. Thus, there are statistically significant differences overall in dif-
ferent sets of predicted values of the epidemic threshold. However, related to the previous results that
showed similar features between MF, HMF, QMF, KSE, and KSEL, particularly from QMF, KSE, and
KSEL, we are interested in studying why the overall p-value 0.0320 < 0.05. This leads to an exami-
nation of multiple pairwise differences (post hoc comparison) analysis for all unplanned comparisons
using Tukey’s honestly significantly differenced (HSD) test summarizes in Table 5.

Table 5. The Tukey’s honestly significantly differenced (HSD) using Bioinfokit Python package to MF, HMF, QMF, KSE, KSEL
prediction approach of the epidemic threshold

ID group1 group2 Diff Lower Upper q-value p-value
0 MF HMF 0.0065 -0.0740 0.0870 0.3136 0.9000
1 MF QMF 0.0415 -0.0390 0.1220 2.0124 0.5991
2 MF KSE 0.0191 -0.0614 0.0996 0.9259 0.9000
3 MF KSEL 0.0770 -0.0035 0.1575 3.7346 0.0683
4 HMF QMF 0.0479 -0.0325 0.1284 2.3261 0.4723
5 HMF KSE 0.0255 -0.0549 0.1060 1.2396 0.9000
6 HMF KSEL 0.0834 0.0029 0.1639 4.0482 0.0381
7 QMF KSE 0.0224 -0.0581 0.1029 1.0865 0.9000
8 QMF KSEL 0.0355 -0.0450 0.1160 1.7221 0.7147
9 KSE KSEL 0.0579 -0.0226 0.1384 2.8086 0.2779

In Table 5, except the pairwise (MF, KSEL) and (HMF, KSEL), all other pairwise predicted values of
the epidemic threshold accept the null hypothesis since p-value ∈ [0.2779,0.9000] is greater than 0.10.
This indicates globally that there is ”not significant” statistical difference between different predicted
values set of the epidemic threshold, except for pairwise (MF, KSEL) and (HMF, KSEL).
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The potential advantages and benefits of the KSEL new approach compared to the previous
We established an analytical comparative study in Table 6. Here, the term relatively is related to the
context and dataset of this study. This term refers to possible suggestive theoretical interpretations or
missing formal proofs. Moreover, contextually in Table 6, the criteria accuracy refers to the quality to
capture the full network structure; transparency is the quality to assess the rule and function of each
parameter in the formula, even the assessment of the parameters in a relationship; flexibility refers to
the ability to change or be real scale easily; and parameter refers to the quality of parameter(s), their
number, and also their meaning in a relationship.

Table 6. The potential advantages and benefits of the new approach related to the previous: a qualitative comparison between MF,
HMF, QMF, KSE and the new KSEL prediction approach of the epidemic threshold

Model Accuracy Transparency Flexibility Parameter
MF Relatively poor

fit: network
structure isn’t
considered.

Relatively easy:
single parameter
⟨k⟩.

Relatively poor:
due to its as-
sumptions.

The use of a sin-
gle parameter ⟨k⟩.

HMF Relatively poor
fit: due to its
parameters can
be inaccurate.

Relatively
medium: can
assess the role of
⟨k⟩, ⟨k2⟩.

Relatively
medium: due
to its assump-
tions.

The use of 2
parameters ⟨k⟩,
⟨k2⟩.

QMF Relatively
medium fit:
captures network
structure using
only λmax

Relatively easy:
due to it single
parameter λmax.

Relatively good:
due to its assump-
tions.

The use of a
single parameter
λmax.

KSE Relatively high
fit: captures the
full network
structure using
{λmax, E(G), n, k
}.

Relatively
medium: param-
eter assessment
in relationships
can be complex.

Relatively im-
proved: due
to its assump-
tions, using
{λmax,E(G),n}
and a scale k.

The use of {λmax,
E(G),n,k} struc-
tural and spectral
parameters in re-
lationship.

KSEL Relatively high
fit: captures the
full network
structure using
{λmax, LE(G), n,
k }.

Relatively
medium: param-
eter assessment
in relationships
can be complex.

Relatively better:
due to its as-
sumptions, using
{λmax,LE(G),n}
and a scale k.

The use of {λmax,
LE(G),n,k}
structural and
spectral param-
eters in strong
relationship.

Nevertheless, no model or approach is perfect; the new KSEL can have interesting potentials and an
attractive balance in terms of accuracy, transparency, and flexibility.

Overall experimentation, we use various data analysis and data visualisation techniques to anal-
yse and evaluate the new structural and spectral prediction approach of the epidemic threshold KSEL.
Therefore we deliver various views and filters for specific analysis, visualisation, and comparison of
KSEL related to the previous structural prediction approaches. As it happens, the results show that
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KSEL is similar and shares a common rolling trend, shape, curves, and range of distribution values
related to the previous structural approaches, specifically more similar with the most accurate QMF
[25]. KSEL constitutes a new general and spectral area to analyse the spreading processes in a network
using the network’s structural and spectral properties. Besides, concerning the results in [11, 25, 26],
these results contribute to highlight the relationship between network-based models and mathematical
modelling approaches, which could be useful for computing or predicting the epidemic threshold τ and
the reproduction number R0. This highlights the usefulness of a network-based structural approach for
the prediction of some key epidemiological parameters such as τ , R0.

5. Conclusion

In the context of the spreading process, we address the problem of epidemic threshold prediction over a
contact network. Network structures fundamentally influence spreading processes with boundary con-
ditions like the epidemic threshold. To address this issue and improve prediction approaches, a new
structural and spectral prediction approach called KSEL has been designed and experimented. The new
approach is based on the node number, spectral radius, and Laplacian energy of graph. KSEL has been
analysed and evaluated at theoretical, formal, and experimental levels using some qualitative and quan-
titative analysis and visualization techniques on a large heterogeneous dataset. The results show that
KSEL is similar and shares a common rolling trend, shape, and range of distribution values related to
the previous prediction approaches, specifically more similar to the most used QMF. KSEL performs
really good performance compared to the previous approaches, including the most-used QMF. It fur-
ther captures the full network structure, connectivity, network diffusion properties, and flexibility but is
not limited over there. Furthermore, we observe a high positive and strong correlation between KSEL
and the previous prediction approaches, as well as a negative correlation between different prediction
approaches, including KSEL and the network density, or the clustering coefficient. The ANOVA anal-
ysis shows that all the different sets of epidemic threshold predicted values accept the null hypothesis.
Therefore, KSEL is a new approach to predicting the epidemic threshold. It offers a new structural
and spectral approach to analyse spreading processes in a network. Pragmatically, these results can
have a practical interest to improve the control and prediction of spreading processes in networks.
Particularly meaningful to decision-makers in public health who can use these results to improve the
control of an infectious disease spread in order to advise policy for successful mitigation strategies. Fu-
ture research could examine the full dynamic network constraints in the epidemic threshold prediction.
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