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Abstract

Information diffusion models on networks are at the forefront
of AI research. The dynamics of such models typically fol-
low stochastic models from epidemiology, used to model not
only infections but various phenomena, including the behavior
of computer viruses and viral marketing campaigns. A core
question in this setting is how to efficiently detect the most
influential vertices in the host graph such that the infection sur-
vives the longest. In processes that incorporate re-infection of
the vertices, such as the SIS process, theoretical studies iden-
tify parameter thresholds where the survival time of the pro-
cess rapidly transitions from logarithmic to super-polynomial.
These results contradict the intuition that the starting config-
uration is relevant, since the process will always either die
out fast or survive almost indefinitely. A shortcoming of these
results is that models incorporating short-term immunity (or
creative advertisement fatigue) have not been subjected to
such a theoretical analysis so far.
We reduce this gap in the literature by studying the SIRS
process, a more realistic model, which besides re-infection
additionally incorporates short-term immunity. On complex
network models, we identify parameter regimes for which
the process survives exponentially long, and we get a tight
threshold for random graphs. Underlying these results is our
main technical contribution, showing a threshold behavior for
the survival time of the SIRS process on graphs with large
expander subgraphs, such as social network models.

1 Introduction
Various phenomena at the forefront of AI research focus on
information diffusion models on graphs, e.g, (Sun, Cautis,
and Maniu 2023; Jiang, Ren, and Ferrara 2023; Liu et al.
2023; Sun et al. 2022; Razaque et al. 2022; Sharma et al.
2021). The underlying graph processes come from a plethora
of contexts, such as, spread of infections (Pastor-Satorras
et al. 2015; Leskovec et al. 2007a) and computer viruses
(Berger et al. 2005; Borgs et al. 2010), social influence and
the spread of ideas (Kempe, Kleinberg, and Tardos 2003),
and viral marketing campaigns (Agarwal and Liu 2008). A
central question in this area is to find influential vertices, the
ones that maximize the spread of the process (Babay et al.
2022; Ohsaka et al. 2014; Kimura, Saito, and Motoda 2009).
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The foundation for analyzing such processes goes back
to epidemiology (see (Pastor-Satorras et al. 2015) for an
extensive survey). Epidemiology models each vertex of the
host network to be in one of various states, such as infected or
susceptible, and transitions between these states occur based
on certain events.

The underlying epidemic models considered in AI re-
search are diverse. A large portion of research is based on
the stochastic models where each vertex gets infected only
once in this process (Kempe, Kleinberg, and Tardos 2003;
Leskovec et al. 2007a; Babay et al. 2022). However, as ar-
gued by Kimura, Saito, and Motoda (2009) there exist sit-
uations where individuals get re-infected. This can happen
for example with diseases that do not grant immunity such
as tuberculosis and gonorrhea (Newman 2003) or with blog-
gers who can post repeated messages about the same topic
(Leskovec et al. 2007b).

Phenomena with re-infection are captured well by the SIS
epidemic model—a fundamental model in epidemiology. The
SIS process is a continuous-time Markov chain where each
vertex is either susceptible or infected. Each infected vertex
becomes susceptible at a normalized rate of 1 and infects each
of its susceptible neighbors independently at an infection
rate λ (see left-hand side of Figure 1). Note that this is a
model of endemic disease and, therefore, it can happen that
the infection will survive for an extremely long time for some
parameter regimes with respect to the host graph G and λ.
Thus, one of the most basic questions one can ask about the
SIS process is how long it takes until the infection dies out,
known as the survival time (sometimes also referred to as the
extinction time).

Due to its importance and its nice mathematical properties,
the SIS process is well understood from a mathematical point
of view on many relevant networks. On Erdős–Rényi graphs,
Nam, Nguyen, and Sly (2022) show that the survival time
of the SIS process exhibits a threshold behavior (from loga-
rithmic to super-polynomial) with respect to λ. This is also
the case for scale-free networks1 (Berger et al. 2005; Borgs
et al. 2010). More generally, Ganesh, Massoulié, and Towsley
(2005) connect the survival time to the spectral radius and the
isoperimetric constant of the host graph, which immediately

1Generated by the preferential-attachment model (Barabasi and
Albert 1999).
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Figure 1: State transitions in the SIS model (left) and the
SIRS model (right), with associated transition rates. The
letters represent the states of being susceptible (S), infected
(I), or recovered (R). Arrows with solid lines indicate that the
transition is driven by one Poisson clock with the respective
rate per vertex. The arrows with dashed lines between the
susceptible and infected states indicate that there is one clock
per edge. In the latter case, a susceptible vertex is infected if
it has an infected neighbor and the clock that corresponds to
their shared edge triggers.

translates to a variety of threshold values for simple graphs.
An interesting observation from the theoretical investiga-

tions of the SIS process is that, once beyond the threshold,
the infection survives, in expectation, for a very long time in
the network regardless of which vertices are initially infected.
In most cases, even a single initially infected vertex is enough
to result in a pandemic situation. These results showcase that
the general structure of the network is far more important in
the long survival of an infection than its starting state. This
makes determining the relation between network structure
and the survival time such an important topic.

While the SIS process is relevant, it makes the limiting
assumption that once a vertex heals, it immediately becomes
susceptible to re-infection. However, in various air-borne
infections, such as the influenza or COVID-19, individu-
als become immune (or very resilient) to the infection for
some period. This can also happen in the spread of computer
viruses, when the infected servers get taken down for mainte-
nance. Furthermore, studies have also shown that in digital
marketing individuals may experience creative fatigue and
ignore advertisements after a period of exposure (So, Kim,
and Cohen 2017; Abrams and Vee 2007).

Phenomena that include temporary immunity are com-
monly modeled in epidemiology with the SIRS process, an-
other continuous Markov chain where now each vertex is
either susceptible, infected, or recovered. Each infected ver-
tex becomes recovered at a normalized rate of 1 and infects
each of its susceptible neighbors independently at an infec-
tion rate λ, while each recovered vertex becomes susceptible
at a deimmunization rate ϱ (see right-hand side of Figure 1).
Thus, with a grain of salt, the SIS process can be viewed as a
special case of the SIRS process in which recovered vertices
turn immediately susceptible (that is, the deimmunization
rate ϱ is infinite).

Due to the relevance of the SIRS process, its survival time
has been studied extensively in various aspects. This includes
empirical results (Wang et al. 2017; Kuperman and Abramson
2001; Ferreira, Sander, and Pastor-Satorras 2016), mean-field
approaches (Bancal and Pastor-Satorras 2010; Prakash et al.
2012), and results that consider deterministic variants of the
process (Saif 2019) or generalized models (Prakash et al.
2012). However, surprisingly, to the best of our knowledge,

no rigorous theoretical results for the SIRS process exist that
do not directly follow from established results for the SIS
process. That is, we are lacking deep mathematically rigorous
insights that already exist for the SIS model.

Main Contribution
We conduct the first rigorous, mathematical study of the ex-
pected survival time of the SIRS process on a large spectrum
of graph classes, containing many models for social networks.
Our results show that the network structure of the host graph
is highly important whereas the set of initially infected ver-
tices is not. Further, we uncover drastic differences between
the SIS and the SIRS process but also large similarities.

Our key technical result (Theorem 5) shows that the ex-
pected survival time of the SIRS process on expander graphs
is at least exponential in the number of vertices if the infec-
tion rate is greater than the inverse of the expander’s average
degree. Combining this with results for the SIS process that
carry over to our setting (Ganesh, Massoulié, and Towsley
2005, Theorem 3.1) gives an almost tight threshold behavior
of the SIRS process on expanders at λ. In other words, we
pinpoint very precisely at which infection rate the survival
time suddenly shifts from logarithmic to exponential.

In addition, we prove our result for expanders to carry over
to supergraphs, which implies respective expected survival
times for other well known graph classes, such as Erdős–
Rényi graphs (Corollary 10) and complex networks exhibit-
ing real-world properties (see, e.g., Corollary 14 for hyper-
bolic random graphs), which we discuss in Section 5.

Last, for star graphs, we prove an entirely different behav-
ior of the SIRS process, further highlighting the immense
importance of the network structure on the survival time. No
matter the infection rate, the SIRS process on stars has at
most a polynomial expected survival time (Theorem 1) if the
deimmunization rate is constant. This is in strong contrast to
the SIS process, where already very low infection rates result
in a super-polynomial survival time (Ganesh, Massoulié, and
Towsley 2005). Hence, being temporarily immune makes a
drastic difference here.

Due to space limitations, for the complete proofs and all
of the technical details, we refer the reader to the full version
of the paper (Friedrich et al. 2022).

2 Preliminaries
The SIRS process is a continuous-time Markov chain on
graphs in which the vertices change between different states,
following events triggered by Poisson processes. We analyze
how this process behaves asymptotically in the number of
vertices n of the graph. Especially, when we use big-O no-
tation or refer to variables as constants, this is with respect
to n. When we use big-O notation in a term of a relation,
this means that there exists a function from the big-O expres-
sion such that the relation holds, for example, the equation
a = 2Ω(n) means there is a function f ∈ Ω(n) such that
a = 2f(n). If not stated otherwise, all variables we consider
may depend on n. Whenever we talk about Poisson processes,
we refer to one-dimensional Poisson point processes that out-
put a random subset of the non-negative real numbers.



We first define our infection models and some related terms
that we use throughout the paper.

Infection Processes
Let G = (V,E) be a graph with vertex set V and edge set
E. Further, let λ, ϱ ∈ R>0. In the SIRS process, for each
edge e ∈ E, we define a Poisson process Me with parameter
λ, and for each vertex v ∈ V , we define the two Poisson
processes Nv with parameter 1 and Ov with parameter ϱ.
We refer to these processes as clocks, and when an event
occurs in one of them, we say that the relevant clock trig-
gers. We use Z to denote the set of all of these clocks, that
is, Z =

(⋃
e∈E {Me}

)
∪
(⋃

v∈V {Nv, Ov}
)
. Let P denote

the stochastic process in which all of the clocks in Z evolve
simultaneously and independently, starting at time 0. Note
that almost surely there is no time point at which two clocks
trigger at once. There are almost surely a countably infinite
number of trigger times in P , which we index by the increas-
ing sequence {γi}i∈N≥0

, where γ0 = 0.
A SIRS process C = (Ct)t∈R≥0

has an underlying graph
G = (V,E), an infection rate λ, a deimmunization rate ϱ,
and an initial partition of V into susceptible, infected, and
recovered vertices with the respective sets S′

0, I ′0, and R′
0.

Note that we do not need to specify a healing rate as we nor-
malized that to 1. At every time t ∈ R≥0, the configuration
Ct is a partition of V into S′

t, I
′
t, and R′

t. The configuration
only changes at times in P . Let i ∈ N>0. We consider the
following configuration transitions in γi:

• If for some e = {u, v} ∈ E we have γi ∈ Me, u ∈ I ′γi−1
,

and v ∈ S′
γi−1

, then S′
γi

= S′
γi−1

\{v}, I ′γi
= I ′γi−1

∪{v},
and R′

γi
= R′

γi−1
. We say that v gets infected at time point

γi by u.
• If for some v ∈ V we have γi ∈ Nv and v ∈ I ′γi−1

then
S′
γi

= S′
γi−1

, I ′γi
= I ′γi−1

\ {v} and R′
γi

= R′
γi−1

∪ {v}.
We say that v recovers at time point γi.

• If for some v ∈ V we have γi ∈ Ov and v ∈ R′
γi−1

, then
S′
γi

= S′
γi−1

∪ {v}, I ′γi
= I ′γi−1

and R′
γi

= R′
γi−1

\ {v}.
We say that v gets susceptible at time point γi.

If none of the above three cases occurs, the configuration of
C at γi is the same as the configuration of C at γi−1. Note
that at all times between γi−1 and γi, C retains the same
configuration as in γi−1.

In our proofs, we only consider the time points in P at
which the configuration changes. To this end, let P ′ = {γ0}∪
{γi | i ∈ N>0 ∧Cγi

̸= Cγi−1
}. We index the times in P ′ by

the increasing sequence {τi}i∈N. For all i ∈ N, we call τi
the i-th step of the process.

If at any point in time no vertex is infected, then from that
point onward, no vertex is infected. We say that the infection
dies out or goes extinct at the first (random) time T with
I ′T = ∅. We call T the survival time of the SIRS process.

We only keep track of the number of vertices in each of
the sets. To this end, we define for all t ∈ R≥0 the random
variables St = |S′

t|, It = |I ′t|, and Rt = |R′
t|. These random

variables change depending on the clocks in P . We say that
an event happens at a rate of r ∈ R>0 if and only if the set

of clocks that cause this event when they trigger has a sum
of rates equal to r.

We define the projection C ′ of C onto a subgraph G′

of G as the process on G′ such that, at each point in time,
each vertex of G′ in C ′ is in the same state as it is in C.
When considering such a projection, we use St, It, and Rt

to only count the vertices of C ′ in the corresponding state.
Also {τi}i∈N only contains times at which the state of a
vertex in C ′ changes. The survival time of a projected process
is the first point in time that the projected process has no
infected vertices. Note that the survival time T ′ of C ′ is a
lower bound for the survival time T of C, as all infected
vertices of C ′ are also infected in C.

We use stochastic domination to transfer results from one
random variable to another. We say that a random variable
(Xt)t∈R dominates another random variable (Yt)t∈R if and
only if there exists a coupling (X ′

t, Y
′
t )t∈R in a way such that

for all t ∈ R≥0 we have X ′
t ≥ Y ′

t .

3 Expected Survival Time on Stars
While stars might seem to be a mundane graph class to study,
they proved to be an essential building block in key results
for the survival time of the SIS process on far more complex
networks, such as social networks (Berger et al. 2005; Borgs
et al. 2010) and Erdős–Rényi graphs (Bhamidi et al. 2021).
The reason is that a star of sufficiently high degree already
lets the SIS process survive for a super-polynomial time for
very low infection rates. In more detail, on stars with n leaves,
an infection rate of Ω

(
n−1/2+ε

)
leads to a super-polynomial

expected survival time. This immediately translates to a lower
bound of the expected survival time for more complex graphs
that contain a star of suitable size.

Due to this importance of stars for the SIS process, we ex-
plore whether this proof strategy applies to the SIRS process
as well. It turns out that this is not the case, as the SIRS pro-
cess behaves significantly differently on a star. The following
result shows that the SIRS process only survives on stars for a
polynomial time in expectation, no matter the infection rate.

Theorem 1. Let G be a star with n ∈ N>0 leaves, and
let C be a SIRS process on G with infection rate λ and
with deimmunization rate ϱ. Let T be the survival time of C.
Then for sufficiently large n, it holds that E[T ] ≤

(
ln(n) +

2
)
(4nϱ + 1) ∈ O(nϱ ln(n)).

Note that this bound is independent of λ and that it results
in a polynomial expected survival time as long as ϱ is at
most constant with respect to n. Although we only prove an
upper bound, our bound matches, up to a logarithmic fac-
tor, empirical investigations of the star (Ferreira, Sander, and
Pastor-Satorras 2016), suggesting that our bound is almost
tight. Note that these experimental results consider the in-
fection rate λ to be constant in terms of n, while our results
apply for any λ. Our results also show a behavior similar to
the deterministic variant of the process considered by Saif
(2019).

The detailed proof of Theorem 1 can be found in the full
version of the paper (Friedrich et al. 2022), however, we
give a high-level overview of our proof in the following. The



analysis mainly relies on the method of investigating inde-
pendent phases in which the center is not infected, bounding
the probability of the infection process dying out during that
time, as is common (Borgs et al. 2010; Berger et al. 2005). A
phase lasts at most until all leaves triggered their recovery at
least once, which occurs in expectation after a time of about
ln(n). Thus, if the center just recovered, it needs to become
susceptible more quickly than that bound, as otherwise all
leaves are recovered. Since deimmunization triggers at rate ϱ,
the probability that the center does not become susceptible in
this time interval is about e−ϱ lnn, resulting in a probability
of about n−ϱ that the infection dies out. Since these phases
are independent, the infection process survives, in expecta-
tion, about nϱ of these trials, each lasting about ln(n) time
in expectation. By Markov’s inequality, this bound on the
survival time also holds with high probability.

Note that the deimmunization rate and the state recovered
are important for this argument to hold. Without this addi-
tional state, that is, in the SIS process, it is quite likely that
the center becomes quickly reinfected before all leaves are
not infected, which leads to an exponential expected survival
time once λ ≥ n−1/2+ε in this setting (Ganesh, Massoulié,
and Towsley 2005), for all positive constants ε.

4 Expected Survival Time on Expanders
Expander graphs find numerous application in a broad range
of domains (Hoory, Linial, and Wigderson 2006; Krivele-
vich 2019), but perhaps the most relevant for our setting is
their usage in the design of reliable communication networks.
There are many notions of how to define expander graphs.
For our main theorem we use algebraic expanders in which
all but one of the eigenvalues of the normalized Laplacian of
the graph are very close to 1. These graphs have some nice
properties that let us bound the number of edges between in-
fected and susceptible vertices. Formally, let G = (V,E) be
a graph with n vertices {vi}ni=1, and let L be its normalized
Laplacian, which is defined for all i, j ∈ [n] as

Li,j =


1 if i = j,

− 1√
deg(vi)deg(vj)

if vi and vj are adjacent,

0 otherwise.

Let L have eigenvalues λ1 ≤ ... ≤ λn. The spectral expan-
sion of L is defined as δ = maxi≥2 |1 − λi|. We call G an
(n, (1± εd)d, δ)-expander if and only if it has n vertices, a
spectral expansion of δ and only vertices with degree between
(1− εd)d and (1 + εd)d.

For two vertex sets X,Y ⊆ V , let E(X,Y ) denote the
number of edges between X and Y . For a vertex set X , let
ν(X) denote the sum of the vertex degrees of all vertices
in X and let X denote the complement of X . Using this
notation, we have the following theorem
Theorem 2 ((Chung 1997, Theorem 5.2)). Let G = (V,E)
be a graph with spectral expansion δ and let X,Y ⊆ V .
Then∣∣∣∣|E(X,Y )| − ν(X) · ν(Y )

ν(V )

∣∣∣∣ ≤ δ

√
ν(X)ν(X)ν(Y )ν(Y )

ν(V )
.

Applying Theorem 2 to expanders, we get the following
two corollaries.

Corollary 3. Let G = (V,E) be a (n, (1±εd)d, δ)-expander,
and let X ⊆ V . Then

|E(X,X)| ≥ (1− δ)(1− 3εd)d
|X| · |X|

n
.

Corollary 4. Let G = (V,E) be a (n, (1±εd)d, δ)-expander,
and let X,Y ⊆ V . If εd ≤ 1/5, then∣∣∣∣|E(X,Y )| − d

|X| · |Y |
n

∣∣∣∣
≤ 4εdd

|X| · |Y |
n

+ 2δd
√
|X| · |Y |.

Due to lack of space, the detailed proofs of Corollaries 3
and 4 are included in the full version of the paper (Friedrich
et al. 2022).

As noted above, in contrast to stars, expanders feature
many edges between arbitrary subsets of vertices. The key
property we require for our results from (n, (1 ± εd)d, δ)-
expanders is that the number of edges between any two sets X
and Y of vertices is close to d

n |X||Y | (see Corollaries 3
and 4).

Our results hold for any expander G′ that is a subgraph
of a graph G that hosts a SIRS process C. In order to derive
such a result, we define the projection C ′ of C onto G′ to
be the process on G′ such that, at each point in time, each
vertex of G′ in C ′ is in the same state as it is in C. The
survival time of a projected process is the first point in time
that the projected process has no infected vertices. Given
these definitions, our main result follows.

Theorem 5. Let G be a graph, and let G′ be a subgraph of
G that is an (n, (1 ± εd)d, δ)-expander such that d → ∞
and δ, εd → 0 as n → ∞. Let C be the SIRS process on G
with infection rate λ and with constant deimmunization rate
ϱ. Further, let C start with at least one infected vertex in G′

and no recovered vertices in G′. Last, let C ′ be the projection
of C onto G′, and let T be the survival time of C ′. If λ ≥ c

d
for a constant c ∈ R>1, then for sufficiently large n, it holds
that E[T ] = 2Ω(n).

We note that Theorem 5 is almost tight with respect to the
range of λ. Ganesh, Massoulié, and Towsley (2005, Theo-
rem 3.1) show that the survival time of the SIS process is at
most logarithmic in n when the spectral radius of a graph
is less than 1/λ. Note that the spectral radius of a graph is
bounded from above by the maximum degree of the graph.
This results in a logarithmic expected survival time of the pro-
cess on (n, (1± εd)d, δ)-expanders when λ ≤ 1−ε

d , for some
constant ε. Note that every SIRS process can be coupled to an
SIS process on the same graph with the same infection rate
such that at each point in time all infected vertices in the SIRS
process are also infected in the SIS process. This is achieved
by coupling all healing and infection clocks. Therefore, the
expected survival time of the SIS process is an upper bound
of the expected survival time of the SIRS process. Hence, the
expected survival time of the SIRS process for λ ≤ 1−ε

d is at
most logarithmic in n on (n, (1± εd)d, δ)-expanders.



Once again, due to space limitations, the technical details
of the proof of Theorem 5 and all related lemmas are in the
full version of the paper (Friedrich et al. 2022). What follows
is a high-level explanation of our proof.

The proof of Theorem 5 consists of two main parts. First,
we prove that a linear number of vertices in G′ becomes
infected with polynomial probability. Then, we show that
the number of infected vertices stays linear for an expected
exponential amount of time. For both parts, we make use
of potential functions, which map the configuration of the
process to a single real number that allows us to quantify how
likely the process is to die out. In order to get the result on the
projection of the process, we use that the influence of G \G′

only increases the rate at which vertices in G′ get infected.
In the considered configurations, this rate increase only helps
the process get into the desired region of the potential.

First Part: Reaching a Linear Number of Infected Ver-
tices For the first part, our key lemma shows that the pro-
cess reaches a configuration with at least εn infected ver-
tices with probability at least 1

n+2 . To this end, let Iτt be
the number of infected vertices after the t-th change of the
configuration of the process.

Lemma 6. Let G be a graph, and let G′ be a subgraph of
G that is an (n, (1 ± εd)d, δ)-expander. Let d → ∞ and
δ, εd → 0 as n → ∞. Let C be a SIRS process on G with
infection rate λ and with constant deimmunization rate ϱ.
Further, let C start with at least one infected vertex in G′ and
no recovered vertices in G′. Consider the projection C ′ of C
onto G′. If λ ≥ c

d for a constant c ∈ R>1, then there exists
an ε ∈ R>0 such that for sufficiently large n, the probability
that there exists a t ∈ N with Iτt ≥ εn is at least 1

n+2 .

Note that if this event does not occur, then the infection
might die out fast. As the probability of the infection dying
out in the first step is roughly 1/2, the event of Lemma 6
does not have a high enough probability to give us super-
polynomial survival time with high probability. To obtain
the probabilistic lower bound of Lemma 6, we use a fairly
simple potential Ht expressing the difference in the number
of infected vertices minus ε times the recovered vertices. We
show that Ht is a submartigale and then apply the optional-
stopping theorem to Ht to conclude the proof of Lemma 6.

Second Part: Retaining a Linear Number of Infected Ver-
tices for Exponential Time For showing that the infection
survives exponentially long once at least εn vertices have
been infected, we define a more involved potential func-
tion Ft than before, which increases when the number of
infected vertices reduces. Our definition of Ft is based on a
Lyapunov function f used by Korobeinikov and Wake (2002),
which they utilize in order to derive results on the global sta-
bility of the SIRS process via mean-field theory. We briefly
overview this approach before we explain how we adjust it to
our setting. To this end, let Sτt and Iτt denote the number of
susceptible and of infected vertices, respectively, of the t-th
change of the configuration of the process.

Korobeinikov and Wake (2002) assume a fully mixed
graph, which roughly corresponds to a clique for our process.
In order to show global stability, the authors show a negative

drift towards an equilibrium configuration with I∗ infected
and S∗ susceptible vertices. To this end, they use an auxiliary
function f : R2

>0 → R that satisfies for all x, x∗ ∈ R>0 that
f(x∗, x) = x∗( x

x∗ − ln x
x∗ − 1

)
. For a fixed x∗, the func-

tion has a global minimum at x∗ and a derivative of 1− x∗

x ,
which is important for calculating the drift. They then define
a Lyapunov function F ′(Pτt , Iτt) = f(P ∗, Pτt)+f(I∗, Iτt),
where Pτt = Sτt +

ϱ
λ and P ∗ = S∗ + ϱ

λ . Note that they use
Pτt instead of Sτt in order for the drift not to be too large
when Sτt is small. This function results in non-positive drift
everywhere, which is enough for the setting of Korobeinikov
and Wake (2002).

The potential function of Korobeinikov and Wake (2002)
is not sufficient for our purposes, as its resulting drift is 0
for some configurations, whereas we require a constant neg-
ative drift in order to derive a rigorous lower bound for the
expected survival time. Hence, we adjust the potential func-
tion of Korobeinikov and Wake (2002) such that it creates a
region in the potential that has a sufficiently large negative
drift. We note that we do not need negative drift everywhere
but only in configurations with less than εn infected vertices.
We achieve this by changing the target of susceptible vertices
from the equilibrium point to n. Further, we use a slightly
different shift in our setting to adjust for the base graphs be-
ing expanders instead of cliques. Letting n′ = n+ P ∗ − S∗,
we define the potential

Ft = F (Pτt , Iτt) = f(n′, Pτt) + f(I∗, Iτt).

By the definition of f , the potential Ft has a global minimum
for n′ = Pτt and I∗ = Iτt , which roughly models the ideal-
ized (and impossible to reach) configuration of all vertices
being susceptible while the number of infected vertices is as
in the equilibrium.

For this new potential, we show that there is a region in
which higher infection rates decrease the drift and, for a
sufficiently high infection rate, the process is a strict super-
martingale with a constant negative drift. This is formally
stated in the following two lemmas. For a time t, Dt refers
to the expected change of the potential in the next step, so
Dt = E[Ft+1 − Ft]. The rates rir,t and rrs,t denote the rate
at which vertices recover and lose their immunity respec-
tively.
Lemma 7. Let G be a graph, and let G′ be a subgraph of G
that is an (n, (1±εd)d, δ)-expander. Let C be a SIRS process
on G with infection rate λ and with constant deimmunization
rate ϱ. Consider the projection C ′ of C onto G′. Let E(I, S)
be the amount of edges between the infected and the suscep-
tible vertices at time t, and let r′t =

c
dE(I, S) + rir,t + rrs,t.

If λ ≥ c
d for a constant c ∈ R>1, then there exists a constant

ε ∈ R>0 such that, for all t ∈ N and sufficiently large n, if
2 ≤ Iτt ≤ εn, then

r′t ·Dt ≤
c

d
E(I, S) · (F (Pτt − 1, Iτt + 1)− F (Pτt , Iτt))

+ rir,t · (F (Pτt , Iτt − 1)− F (Pτt , Iτt))

+ rrs,t · (F (Pτt + 1, Iτt)− F (Pτt , Iτt)).

Lemma 8. Let G be a graph, and let G′ be a subgraph of
G that is an (n, (1 ± εd)d, δ)-expander. Let d → ∞ and



δ, εd → 0 as n → ∞. Let C be a SIRS process on G with
infection rate λ and with constant deimmunization rate ϱ.
Consider the projection C ′ of C onto G′. Let t ∈ N and
ε0, ε ∈ (0, 1) be sufficiently small constants. Assume that
ε0n ≥ Iτt ≥ εn. If λ ≥ c

d for a constant c ∈ R>1, then
there exists a constant a ∈ R>0 such that Dt ≤ −a for
sufficiently large n.

We use the expansion properties of the base graph that
guarantee that the infected vertices always have enough sus-
ceptible neighbors such that new vertices get infected and
the potential decreases in expectation. This allows us to ap-
ply a concentration bound by Oliveto and Witt (2011) for
strict supermartingales, known as negative-drift theorem. The
negative-drift theorem results in the lower exponential bound
of the expected survival time.

5 Random Graphs and Complex Networks
The generality of Theorem 5 makes it applicable to a broad
range of graph classes, as the only requirement is for the base
graph to contain a large expander as a subgraph. We illustrate
this by considering the SIRS process on Erdős–Rényi graphs
as well as models of real-wold networks.

Erdős–Rényi Graphs
The first random-graph model we are interested in is Gn,p —
the classical random-graph model of Erdős and Rényi (1959).
The expansion properties of this model have been previously
studied in literature.
Theorem 9 ((Coja-Oghlan 2007, Theorem 1.2)). Let G ∼
Gn,p be an Erdős–Rényi graph with (n− 1)p ≥ c1 ln(n) for
a sufficiently large constant c1 ∈ R>0. Then asymptotically
almost surely, for the spectral expansion δ of the Laplacian
of G holds δ ∈ O

(
(p(n− 1))−1/2)

)
.

By Chernoff bounds, it holds that the vertex degrees in
Erdős–Rényi graphs are tightly distributed around the av-
erage degree d if d ∈ ω(lnn). Therefore, Erdős–Rényi
graphs satisfy with high probability our definition of an
(n, (1± εd)d, δ)-expander. Combining this with Theorem 5,
we obtain the following threshold behavior.
Corollary 10. Let G ∼ Gn,p be an Erdős–Rényi graph with
(n− 1)p ∈ ω(lnn). Consider the SIRS process C on G with
constant deimmunization rate ϱ, and let T be the survival
time of C when the process starts with at least one infected
vertex. If λ ≥ c

d for a constant c ∈ R>1, then E[T ] = 2Ω(n)

asymptotically almost surely with respect to G. If λ ≤ c
d for

a constant c ∈ (0, 1), then E[T ] ∈ O(log n) asymptotically
almost surely with respect to G.

Comparing Corollary 10 with the respective result for the
SIS process (Ganesh, Massoulié, and Towsley 2005, Theo-
rem 5.5) shows that the two processes, SIS and SIRS, behave
similarly on Erdős–Rényi graphs.

Complex Networks
A variety of random-graph models that exhibit properties
found in real-world networks has appeared in network sci-
ence (Boguna et al. 2021). Such network models provide a
highly relevant structure for studying the survival time of the

SIRS process. We focus our attention on three such complex
network models that exhibit key properties required for apply-
ing Theorem 5. These models are Chung–Lu graphs (Aiello,
Chung, and Lu 2001), hyperbolic random graphs (Krioukov
et al. 2010), and geometric inhomogeneous random graphs
(Keusch 2018).

A common characteristic shared by these three network
models is that the degrees of the vertices follow a power-law
distribution. The exponent of the power-law is controlled by a
parameter γ. The interesting parameter range is γ ∈ (2, 3), as
beyond this range, these models lose key properties present
in real-world networks. When γ ∈ (2, 3), two key properties
hold on all three models. The first one is that their diameter
is at most poly-logarithmic with respect to the total number
of vertices n.

Theorem 11 ((Friedrich and Krohmer 2018, Theorem 1)).
Let G be a hyperbolic random graph with n vertices that
follows a power-law degree distribution with exponent γ ∈
(2, 3). Then the diameter of the giant component of G is
O
(
(log n)2/(3−γ)

)
with probability 1−O

(
n−3/2

)
.

The second property is that they contain a clique with
polynomial size.

Theorem 12 ((Friedrich and Krohmer 2015)). Let G be a hy-
perbolic random graph with n vertices that follows a power-
law degree distribution with exponent γ ∈ (2, 3). Then the
size of the largest clique of G is in Θ

(
n(3−γ)/2

)
with high

probability.

Note that similar statements hold for Chung–Lu graphs
(Chung and Lu 2003) and geometric inhomogeneous random
graphs (Keusch 2018). We proceed with illustrating how
Theorem 5 can be used to show a superpolynomial survival
time on hyperbolic random graphs.

We first use the poly-logarithmic diameter to show that the
infection reaches the largest clique with a sufficient probabil-
ity when the process starts with at least one infected vertex.

Lemma 13. Let G be a hyperbolic random graph with n
vertices that follows a power-law degree distribution with
exponent γ ∈ (2, 3), and let C be an SIRS process on G
with infection rate λ and with constant deimmunization rate
ϱ. Further, let C start with at least one infected vertex in
the giant component and no recovered vertices in the giant
component. If λ ≥ cn(γ−3)/2 for a constant c ∈ R>0, then
the probability that the infection reaches a configuration in
which a vertex in the largest clique is infected is at least
exp

(
−(lnn)3/(3−γ)

)
for sufficiently large n.

Proof. Let v be a vertex that starts infected, and let d be the
shortest distance from v to any vertex of the largest clique.
Note that d is bounded from above by the diameter of the
giant component. Therefore, by Theorem 11, there exists a
constant a ∈ R>0 such that for sufficiently large n with a
probability of at least 1

2 , it holds that d ≤ a(lnn)2/(3−γ).
For all i ∈ N, let Ei be the event that C reaches a con-

figuration with an infected vertex that has a distance of i
to the largest clique. Consider for all i ∈ N<d the proba-
bility Pr[Ei | Ei+1 ]. Each vertex with a distance of i + 1
to the largest clique has a neighbor that has a distance of i



to the clique. With a probability of λ
1+λ , an infected ver-

tex infects a specific neighbor before recovering. There-
fore, Pr[Ei | Ei+1 ] ≥ λ

1+λ ≥ c
2n

(γ−3)/(2) for sufficiently
large n.

With a probability of at least 1
2 , it holds that d ≤

a(lnn)2/(3−γ). This yields for sufficiently large n that

Pr[E0] =

d−1∏
i=0

Pr[Ei | Ei+1 ] ≥
d−1∏
i=0

c

2
n

γ−3
2

=
( c

2
n

γ−3
2

)d

≥
( c

2

)d(
n

γ−3
2

)a(lnn)
2

3−γ

= e
γ−3
2 a(lnn)

5−γ
3−γ +d ln(c/2) ≥ e−(lnn)

3
3−γ

.

When the infection reaches the largest clique of a hyper-
bolic random graph, Theorem 5 yields an exponential ex-
pected survival time for a sufficiently large infection rate.
Corollary 14. Let G be a hyperbolic random graph with n
vertices that follows a power-law degree distribution with
exponent γ ∈ (2, 3), and let C be the SIRS process on G with
infection rate λ and with constant deimmunization rate ϱ.
Further, let C start with at least one infected vertex in the
giant component and no recovered vertices, and let T be the
survival time of C. Then there exists a constant c ∈ R>0

such that if λ ≥ cn(γ−3)/2, then E[T ] = 2Ω(n(3−γ)/2).

Proof. Let k be the size of the largest clique of G. By
Theorem 12, there exists a constant a ∈ R>0 such that
with high probability it holds that k ≥ an(3−γ)/2. Let
c = a−1 + 1 such that with high probability it holds that
λ ≥ 1+a

k . Let E be the event that there exists a configuration
in which a vertex in the largest clique of G is infected. By
Lemma 13, it holds that Pr[E] ≥ exp

(
− (lnn)3/(3−γ)

)
for

sufficiently large n. Note that a clique with k vertices is an
(k, (1± k−1)k, (k − 1)−1)-expander. Hence, by Theorem 5,
it holds that E[T | E ] = 2Ω(k), as the infection survives that
long on the clique alone after its first vertex gets infected.

By the law of total expectation and that with high proba-
bility k ≥ an(3−γ)/2, we conclude

E[T ] ≥ Pr[E] · E[T | E ]

≥ e−(lnn)
3

3−γ · 2Ω(n(3−γ)/2)

= 2Ω(n(3−γ)/2).

Following this line of argumentation, similar statements
can be proven for Chung–Lu graphs and geometric inho-
mogeneous random graphs for an appropriate choice of the
respective parameters of these models.

6 Conclusions and Future Work
To the best of our knowledge, we provide the first mathemati-
cally rigorous analysis of the expected survival time of the
SIRS process. Our results hold for a substantial amount of
graph classes that have been considered in the last decades of
research for similar processes, most notably the SIS process.
Our main contribution shows for graphs with expander sub-
graphs an exponential survival time threshold, which covers

a great amount of established graph classes, such as scale-
free graphs, Erdős–Rényi graphs, and cliques. Our resulting
threshold is almost tight for Erdős–Rényi graphs and gives a
threshold for many social network models, like hyperbolic
random graphs or geometric inhomogeneous random graphs.
We complement our findings by showing that, for star graphs,
the expected survival time of the SIRS process can never
become super-polynomial, indicating that single vertices can-
not be influential enough to lead to long survival on their
own. This marks a significant difference compared to the
previously studied SIS process.

Overall, our results provide deep insights into how the
network structure impacts the expected survival time of the
SIRS process. In contrast to the SIS model, it is not a single
star that is important but good expansion instead. On stars,
the SIRS process dies out quickly because once the center
of the star (which is its only vertex with a high degree) is
recovered and thus temporarily immune to re-infection, the
infection has no way of spreading. During this time, many
vertices can recover, thus drastically reducing the number of
infected vertices. On graphs with sufficient expansion, this
situation is entirely different. Due to the expansion, each
vertex is sufficiently well connected in the network. Thus,
even if a fair amount of its neighbors is recovered, there
remain enough connections to other vertices that are either
already infected or can easily be infected. This leads to an
exponentially long survival of the SIRS process.

Although our results cover already a great range of inter-
esting and important graph classes, this article is just the first
step to understanding the SIRS process more thoroughly. Our
analyses pose exciting new challenges for different scenarios,
which we briefly delineate in the following.

Combined, our results for stars (Theorem 1) and expanders
(Theorem 5) show that adding edges to a graph leads, even-
tually, from a polynomial expected survival time to an ex-
ponential one. However, it is not clear so far when this tran-
sition happens. An interesting next step is to look into con-
nected stars instead of single stars. Connected stars appear
as subgraphs in important real-world network models, most
prominently, the preferential-attachment model (Barabasi
and Albert 1999), but also in Chung–Lu graphs (Chung and
Lu 2003), for which our initial results could be improved,
motivating this research question.

A different extension of our results is to consider deimmu-
nization rates that are dependent on the graph size. Compar-
ing the behavior of the SIS and the SIRS process on stars
suggests that an increased deimmunization rate leads to far
longer expected survival times. Thus, an interesting question
is whether the survival time exhibits a threshold behavior
with respect to the deimmunization rate.

While the re-infection makes the topology much more
important than the starting configuration, finding the best set
of initially infected vertices to achieve the longest survival
time is still an interesting question. Analyzing this question
in the SIS or SIRS model could yield some new insights into
influence maximization.
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