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Well-Posedness of evolution variational
inequalities with applications

Charles Castaing* Christiane Godet-Thobie’ Manuel D.P. Monteiro Marques * Lionel Thibault

May 8, 2022

Abstract

We are concerned in the present work with the existence and uniqueness
of absolutely continuous solutions to a class of evolution problems governed
by time-dependent subdifferential operators of the form

£(8) + Bult) — A1) € Dplt, %o (1)

with various applications.

1 Introduction

In this work we are concerned with the existence and uniqueness of absolutely
continuous solution to an evolution inclusion in a separable Hilbert space H in

the form
du

£(0) + Bu(t) — A% (1) € D, %(t)),t € [0, 7). (1.1)

Above f :1]0,T] — H is a continuous mapping, B : H — H is an operator, A :
H — H is a linear continuous coercive and symmetric operator, ¢ : [0,7] x H —
] — 00, +00] is a normal lower semicontinuous convex integrand, and d¢(t, .) is the
subdifferential of ¢(t,.). Problem (1.1) is interpreted as an evolution variational
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inequality (EVI) with the velocity inside the subdifferential. Generally, the model
for parabolic evolution inclusion is a differential inclusion of the form

Bt u(t)) € %(t) b AMU() + Op(t,u(t)), € [0,T], (1.2)

where A(t) is a time dependent maximal monotone operator, B(t,u) defined for
(t,u) € [0, T]x H is Lipschitz with respect to u. Then the existence and uniqueness
of absolutely continuous solution to (1.2) is known in some particular cases in the
literature, see e.g [4, 19] and Barbu and Rascanu in [7] dealing with existence
of generalized solutions for parabolic variational inequalities with singular inputs
and operators of the form

£+ 20 € S0 + Au(t) + Dp(u(t),

where A is a linear coercive operator and ¢ is a lower semicontinuous convex
function. There is an increasing activity around problem (1.2) since it contains
several new applications such as sweeping process, relaxed problem and Skorohod
problem etc. In this framework, problem (1.1) constitutes a new variational evolu-
tion inequality with the velocity inside the subdifferential in constrast to problem
(1.2). Likewise problem (1.2), the study of (1.1) leads to several applications
in a new setting such as the sweeping process, Skorohod problem, second order
evolution and fractional differential equation [19]. Although (1.1) deals with the
deterministic case, it is a step towards the Skorohod problem in the stochastic set-
ting, see the recent articles by Castaing-Raynaud de Fitte [18, 20], Rascanu [38],
and L.Maticiuc, A. Rascanu, L. Slominski and M.Topolewski [27] for references
on this stochastic subject. Let us mention the current situation of problem (1.1)
in the literature. In [19] it was dealt with the existence of absolutely continuous
solutions to variational evolution inequalities in separable Hilbert space H of the
forms

du

(1) ~ Au(t) € dp(t, W) (1.9
(1) — Aut) € Nogo (o (1), (1.4)

where f:[0,7] — H is a continuous mapping, A : H — H is a linear continuous
coercive symmetric operator, ¢ : [0,7] x H —| — 00, +00| is a normal convex
integrand, and N¢ () (7) denotes the normal cone to a closed convex moving set
C(t) ¢ H. Some related variants of problem (1.4) dealing with two positive
operators A and B are given in a series of papers by Adly et al [1, 2, 3]. We note
that there is a new variant of problem (1.1) in a recent work by Bacho, Emmrich
and Mielke [8] dealing with the following inclusion

Blt,u(t) € dy(t, (1)



or more generally with two subdifferentials, namely

B{t,ult)) € dplt, o (1)) + 0u(t, (1)),
where B is a continuous mapping. In Mielke’s paper, in order to solve the problem,
it is proposed an algorithm due to De Giorgi combined with regularization of
subdifferentials. Consult also a recent article by Migorski, Sofonea and Zeng [29]
dealing with the inclusion of the form

~ (1) € Neq (A% (1) + Bu(t)

where B : H — H is Lipschitz continuous. Note that in [29] B is not assumed to
be a positive operator in contrast to the results obtained by Adly et al [1, 2, 3].

Our aim in the present paper is to develop several variants of problem (1.1)
along with diverse applications via some related variational limits.

2 Preliminaries

Throughout the paper, H is a real separable Hilbert space and E is a separable
Banach space with B as its closed unit ball centered at zero.

If I is an interval of R the spaces L*(I, E, dt) (LL(I), for short) and L>(I, E, dt)
(LF (1), for short) denote the usual spaces with respect to the Lebesgue measure
endowed with their canonical norms ||-||; and |- || respectively. Similarly, C(I, E)
or Cp(I) will be the space of continuous mappings from I into E. For any subset
@ C I the function 1¢ is defined by 1g(¢t) = 1if t € Q and 1g(t) = 0 otherwise.

Given a convex function ¢ : H — R U {—00, 400}, its effective domain dom ¢
is the set
domyp:={z € H : p(x) < +o0},

so the function ¢ is proper whenever dom ¢ # () and ¢ does not take the value
—o0. At any x € H where ¢ is finite its subdifferential dp(z) is defined by

Op(z) :={C € H:((,y—z) —p(z) <p(y), Yy € H}.

If f(x) is not finite dp(x) = 0. Considering the Legendre-Fenchel conjugate
©*: H = RU{—00, 400} with

©*(y) == sup{(y,z) — f(z) 1 v € H},

it is known that, when ¢ is a proper lower semicontinuous convex function, ¢* is
also proper lower semicontinuous and

y € 0p(z) & (y,7) = p(z) + ¢*(y).



Given a nonempty closed convex subset S of H, its indicator function (-, S) :
H — R U {+o0} is defined by 6(z,5) = 0if z € S and §(z,5) = 40 if z €
H\ S. Clearly, 6(-,S) is a proper lower semicontinuous convex function. Its
subdifferential is called the normal cone of S, and obviously

Ng(z)={C€eH:({(,y—x)<0,VyeS} ifzes (2.1)

and Ng(z) = 0 if x € H\ S. The Legendre-Fenchel conjugate 6*(-,S) : H —
R U {400} coincides with the support function of S, that is,

0*(y,S) =sup(y,x) forally e H.
z€S

If S,8" are both nonempty closed bounded convex sets of H, the Hausdorff dis-
tance between S and S’ can be defined by

haus (Sa S,) = Sup |dS(:E) - ds’(x)‘a
xcH

and it is known that (see, e.g., [24, 41])

haus (S, 5") = sup [6%(u,S) — 6*(u, S")], (2.2)
luf<1
which entails
|6%(y, S) — 6*(y,S")| < |ly|| haus(S,S’) for ally € H. (2.3)

We recall and summarize two useful results, see for example [6, Corollary 2.9,
Corollary 2.10]. Remind that a linear operator A : H — H is coercive if there is
a real w > 0 such that

(Az,2) > w||z||® for all z € H. (2.4)

Proposition 2.1. Let A: H — H be a linear continuous and coercive operator.
(a) If p : H— [0,00] is a proper lower semicontinuous convex function, then for
each f € H the problem f € Ay + 0p(y) admits a unique solution y.

(b) If K is a closed convex subset in H, then for each f € H the problem f €
Ay + Nk (y) admits a unique solution y.

3 Preparatory variational limit theorems

Proposition 3.1. Let H be a separable Hilbert space and I = [0,T]. Let C : [ =
H be a closed convex valued scalarly measurable multimapping for which there
is some real r > 0 such that C(t) C rBy for allt € I. Let A be a continuous
symmetric coercive linear operator on H and let B be a continuous compact linear



operator on H. Let (0,)nen be a sequence of measurable functions from I into
I such that for each t € I one has 0,(t) — t and haus (C(6,(t)),C(t)) — 0 as
n — 00.

Let (fn, [)nen be a bounded sequence in Ly (1) with || fn(t)|| < B,]|f(t)]] < B
(8 > 0) for all n € N such that (f,(t))n converges to f(t) for eacht € I.
Let (v, v)nen be a bounded sequence in L35 (I) with ||v,(t)]] < v, [lv@®)|| <~
(v > 0) for all n € N such that (vy(t))n converges weakly to v(t) for each t € I.
Let (Co)nen be an integrable sequence in L (I) such that (,(t) € C(0n(t)) for all
t € I and such that (Cy)nen o(LY, L) converges in Ly (I) to ¢. Assume that

fu(t) + Bon(t) — ACu(t) € Noo, 1)) (Cn(t))  foralln €N, ae. tel.
Then for a.e. t € I one has
¢(t) € C(t) and f(t)+ Bu(t) — AC(t) € Neg)(C(1)-

Proof. We first verify that ((t) € C(t) a.e.t € I. Indeed, for every measurable set
Z C I and for any « € H, the function 1z € L3 (I). By the inequality

(x,Gn(t)) < 6% (x, C(On(t)))

integrating on Z gives

/1 (g, o), )t = /Z (Gl < /Z 5 (2, C(0n (1)) .

Passing to the upper limit in this inequality we obtain

/ (17, ¢(0))de < limsup / 5% (z, C(O (1)) )dt
A

/hmsupé (x,C(0 /(5* x,C(t
Z

This being true for any Lebesgue measurable set Z C I we deduce that for every
xeH
(x,u(t)) < 6" (x,C(t)) a.e. t € 1.

By the separability of H and the weak compactness and convexity of C(t) (see,
e.g., Castaing-Valadier [24, Proposition III- 35]), we get the desired inclusion
Ct)yeC(t)ae tel

For each t € I keeping in mind that v,(t) — v(t) weakly in H and B is a
continuous compact linear operator, we see that Buv,(t) — Buv(t) strongly in H,
so that Buy(.) — Buv(.) weakly in L (I). Indeed, let any h € L39(I). Then we
have

T T T
| thio). Buaone - [ <h<t>,Bv<t>>dt\s | a0, Bew(®) - Bote)ae
0 0 0

T
< Bl /0 | Bua(t) — Bu(t)||dt.



As fOT || Bup (0,(t))—Bo(t)||dt — 0 as n — oo (by Lebesgue dominated convergence
theorem), our assertion follows. Similarly as A is symmetric, we note that A(, —
A(¢ weakly in L}, (I). As a main consequence f,+Buv, —A(, — f+Bu—A( weakly
in L}_I (I). Then given any Lebesgue measurable subset Z C I we may apply the
lower semicontinuity of convex integral functional ([22], Theorem 8.1.16) to deduce
that

/ §(F(£)+ Bu(t)— AC(t), C(#))dt < lim inf /Z 5 (Fu(t) + Bup () — ACa (1), C(2))dt.

(3.1)
This need a careful look. Indeed, we note that (¢,2) — §*(x,C(t)) is a nor-
mal lower semicontinuous convex integrand defined on [0,7] x H and §*(f,(t) +
Bu,(t) — A(,(t),C(t)) is measurable and bounded by an integrable function in-
dependent of n € N since taking some real constant o with || f,(t) + Bun(t) —
AGu(t)|| < a for all n € N and ¢ € T we have

107 (fn(t) + Bun(t) — AGu(t), C(1))| < 7| fa(t) + Bun(t) — AG(#)]] < ar.
Then writing

’5*(fn(t) + an(t) - A(n(t)v C(t)) - 5*(fn(t) + an( ) ACn(t)v C(‘gn(t)))‘
< [[fa(t) + Bun(t) — AGu(t))]| haus(C(t), C(6a(t)))
< ahaus(C(t), C(0,(t))),

we can see that

imgint | 8°(/,(6) + Bon(t) = A6, (0). ClO.(0))dt
> lim inf / 5*(fu(t) + Bun(t) — ACa(), C(1))dt
/ 5 (f(8) + Bu(t) — AC(1), C(1))d. (3.2)

Let us set Y(x) = (Az,x) if x € rBy and ¢a(x) = +oo if © ¢ rBy. Then it is
clear that 14 is a positive lower semicontinuous convex integrand. Apply again
the lower semicontinuity of the convex integral functional ([22], Theorem 8.1.6)
associated with the positive normal convex integrand 14 we obtain

lim in /Z Ba(Cal®))dt = /Z a(C(t))dt
that is,
lim inf /Z (ACa(), Ca(1))dt > /Z (AC(H), C(b)dt. (3.3)

Since we already saw that Buvy(t) — Buv(t) strongly in H for each ¢t € I, we also
have by the Lebesgue dominated convergence theorem

tim [ (B (0).Gu(0)at = [ (Bo(e).c)ar (3.4)
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Further, by the Lebesgue dominated convergence theorem again the inequality

[(fr(t), (@) — (), Ga(EN] < 7l fn(t) — F()]

gives [, ((fu(t), Cal(t)) — (f(t),Cn(t)))dt — 0. Also as n — oo

[ o.catnas - [ (s
Z Z

since ¢, — ¢ weakly in L}, (I). Tt ensues that

tim [ (fult), Ca(0))dt = /Z (). C(0))dt. (3.5)

n 7

Now putting g, (t) := fn(t) + Bon(t) — A, (t) and integrating on Z C [0,77] the
inequality ( here measurability and integrability are guaranted)

5*(Qn(t)v C(en(t))) + <_fn(t) - an(t)a gn(t)> + <A<n(t)v Cn(t» <0

gives

/Z 5% (gu(t)., C(0n(t)))dt + /

Z

(Avp(t), Cu(t))dt —i—/Z(—fn(t) — Bup(t),Ca(t))dt <0,

so passing to the limit as n — oo in this equality and using (3.1)—(3.5) yield
/Z [07(f(t) + Bu(t) — AC(t), C(#)) + (AC(t) — Bu(t) — f(t),((t))]dt < 0.

As t— 0*(f(t) + Bu(t) — A((t),C(t)) + (AC(t) — Bo(t) — f(t),((t)) is integrable
and as the latter inequality holds true for any Lebesgue measurable set Z C I, it
follows that for a.e. t € I

5 (f(t) + Bu(t) — AC(t), C(1)) + (AC(t) — Bu(t) — f(),¢(t)) < 0.
This and the inclusion ¢(t) € C(t) a.e. ¢ € I allow us to conclude that
() + Bo(t) — AC(t) € Nowy(C(t)) ae. teT
according to the description (2.1) of the normal cone. O

An easy adaptation of the arguments in the above proposition furnishes the
following variant.

Proposition 3.2. Let H be a separable Hilbert space and I =[0,T]. Let C : [ =
H be a closed conver valued scalarly measurable multimapping for which there is
some real v > 0 such that C(t) C rBy for all't € I. Let A be a continuous
symmetric linear operator coercive on H and let B : H — H be a Lipschitz



mapping. Let (6,)nen be a sequence of measurable functions from I into I such
that for each t € I one has 0,(t) — t and haus (C(6,(t)),C(t)) = 0 as n — occ.
Let (fn, [)nen be a bounded sequence in LY (I) with || fn(t)|| < B,]|f(t)]] < B
(8> 0) for all n € N such that (f,(t))n converges to f(t) for eacht € I.
Let (vn,v)nen be a bounded sequence in LS5 (I) with ||v, ()] < v, |lv(t)]] < v
(v > 0) for all n € N such that (v, (t)), converges to v(t) for each t € I. Let
(Cn)nen be an integrable sequence in L, (I) such that ¢, (t) € C(0,(t)) for allt € I
and such that (Cn)nen o(LY;, L) converges in L (I) to . Assume that

fa(t) + Bun(t) — Aa(t) € Neo, 1) (Cu(t))  for alln € N,t € 1.

Then for a.e. t € I one has

((t) € C(t) and f(t) + Bu(t) = AC(t) € Neg)(C(1))-

Another variant of Proposition 3.1 is available with the gradient Vg of a convex
function ¢ in place of the mapping B.

Proposition 3.3. Let H be a separable Hilbert space and I = [0,T]. Let C : [ =
H be a closed convexr valued scalarly measurable multimapping for which there is
some real v > 0 such that C(t) C By for allt € I. Let A be a continuous
symmetric linear coercive operator on H and let g : H — R be a convex function
Lipschitz on bounded sets and continuously differentiable on H. Let (6,,)nen be a
sequence of measurable functions from I into I such that for each t € I one has
0, (t) = t and haus (C(6,(t)),C(t)) — 0 as n — oco.

Let (fn, f)nen be a bounded sequence in L35 (I) with || fr(t)| < B, f)| < B
(8 >0) for all n € N such that (f,(t)), converges to f(t) for each t € I.
Let (up, u)nen be a sequence of absolutely continuous mappings

un () = uo +/0 Un(8)ds, uny(t) € C(t)

u(t) = ug —I—/O u(s)ds, u(t) € C(t)

such that (up), converges to u uniformly on I and (), conveges to i weakly in
Li(I). Assume that for every n € N

fn(t) + Vg(un(t)) — Aun(t) S Nc(gn(t))(un(t» a.e.t e l.
Then for a.e. t € I one has
u(t) € C(t) and f(t)+ Vg(u(t)) — Au(t) € Now(u(t))-

Proof. First, we justify that u(t) € C(t) a.e. t € I. We proceed as in the proof of
Proposition 3.1. Take any measurable Lebesgue set Z C I and any x € H. The
function 17z € Ly(I). Writing

(@, in (1)) < 6% (2, C(On(1))),



we see that
Z(lzx,un(t),>dt:/Z<x,un(t)>dt§ /Zé*(x,(](ﬁn(t)))dt.

Passing to the upper limit we obtain

/<lzx a(t))dt < hmsup/ 5% (z, C (O (1)) )dt
A

/hmsupé (z,C(0 /(5* z,C(t
Z

This being true for any Lebesgue measurable set Z C I we deduce that for every
reH
(x,a(t)) < o0*(x,C(t)) texta.e. t € 1.

By the separability of H and the weak compactness and convexity of C(t), we get
the desired inclusion u(t) € C(t) a.e. t € I.

Now let v > 0 be a Lipschitz constant of g on (||ug|| +r"T)By for some ' > r.
Take any Lebesgue measurable set Z C I. Since (f,), is uniformly bounded and
pointwise converges to f, we have

im [ (0 i)t = [ (10 i) (3:6)

Also by integrating on Z (we are ensured that the functions given are measurable)
the inequality

" (fn(t) + Vg(un(t)) — Atin(t), C(en(t))) + (At () =V g(un(t)) — fu(t), in(t)) <0
it ensues that with ¢, (¢) := fn(t) + Vg(un(t)) — Aty (t)

[ 57,0000+ [ (A0 Fa), O}t~ [ (Tgtun))in(0)ar <0
z z A (37
We claim that Au,(-) — Au(-) weakly in L} (I) and Vg(un(-)) = Vg(u(-)) weakly
in LL(I), so
4n() = fu() + Vg(un(-)) = Atin(-) = q() == f() + Vg(u(-)) — Au()

weakly in L}, (I). Indeed, for any h € LOO(I ) the weak convergence in L}, (1) of
(p)pn, to U says that fOT<Ah(t) n(t))dt — fo (Ah(t),u(t))dt, which means

T T
/ (h(t), A (1)) dt — / (h(t), Au(t))dt.
0 0

This property for every h € LS9(I) translates the weak convergence in L, (I) of
(At ) to At Concerning (Vg(un(+)))n it converges strongly in L}, (1) to Vg(u(+))



(by Lebesgue convergence theorem) since Vg(un(t)) — Vg(u(t)) for each t € I
and |[Vg(un(t))|| <~ (by the y-Lipschitz property of g on (|lug|| + 7'T)Bg). The
desired weak convergence in L}, (1) of (g,), to ¢ is justified. Let us consider now
the term (Vg(uy,(t), 0, (t)). The Lipschitz property of g on (||ug||+rT)By assures
us that g o u,, and g o u are absolutely continuous on I and at any ¢t € I where u
and all u,, are derivable and are derivable (by classical chain rule)

d d

(Vg(u(®), a(t) = Lo(®) and (Vg(un(t),in(t)) = 5

29 (un(1))-

From this we deduce that

T
/0 (Vg (u(t)), at))dt

T
— /0 %g(u(t))dt:g(u(T))—g(u(O)):lim (9(un(T)) — g(un(0)))

T T
~tim [ Zaen(®)at = tim [ (Vgtun0). (0t (3.8)

Regarding fOT(AiLn(t),iLn(t»dt let us set ¥4 (t,z) = (Az,z) for all x € H. Tt is
clear that 14 is a positive lower semicontinuous convex normal integrand. By the
lower semicontinuity of convex integral functional (see [22, Theorem 8.1.6]) we
obtain

T T
hmnlnf/0 Q,Z)A(t,un(t))dtz/o Ya(t,u(t))dt,

that is,

n

T T
Jim inf / (At (1), i (£)) . > / (Au(t), a())dt. (3.9)
0 0
The last step is concerned with fOT 0*(qn(t),C(t))dt. Note that |g,(t)|| <
B+~ +r||Al, hence §*(gn(t), C(t)) > —r(B+~y+r||Al|). Using this and the lower

semicontinuous convex normal integrand (¢, z) — §*(z,C(t)) we obtain by [22,
Theorem 8.1.6] again that

T T
lim nf /0 5*(qn(t), CH))dt > /O 5*(g(t), C (1)) dt.
Since
1% (n(£), C(Bn())—6 (gn(1), C(1))| < (B+y+r]| All) haus(C(0a(£)), C(1)) = en(t)

with fOT en(t) = 0 as n — oo, we are ensured that

liminf/T §*(gn(t),C(t))dt > /T5*(g(t),C(t))dt. (3.10)

n 0 0

10



Putting together (3.37)—(3.39) yields

T T
/0 5 (f(£)+ Vg u(t))— Ai(t), C ()t + /0 (— F () + Vg(u(t) + Ai(t), a(t))dt < 0.
(3.11)
On the other hand, the inclusion u(t) € C(t) says that for a.e. t € I

5 (f(t) + Vg(u(t)) — Au(t), C(t)) = (f(t) + Vg(u(t)) — Ai(t), u(t)).
Taking this into account in (3.40) we deduce for a.e. t € I

0" (f(t) + Vg(u(t)) — Au(t), C(t)) — (f(t + Vg(u(t)) — Au(t),u(t) <0
The latter inequality and the inclusion u(t) € C(t) guarantees that for a.e. t € I

f() +Vg(u(t)) — Au(t) € Nog)(u(t))

according to the description (2.1) of the normal cone. 0
Remark 3.1. Concerning the chain rule for gou and gowu, above, one can more
in Moreau-Valadier [35] under weaker assumptions for the convex function g.

When 0,,(t) =1t (i.e., C(0,(t)) = C(t)) in Proposition 3.1 the uniform bound-
edness condition C(t) C rBy can be relaxed as shown in the next proposition.
Let us prove first a lemma.

Lemma 3.2. Let H be a separable Hilbert space and I = 1[0,T]. Let C : I = H
be a scalarly measurable multimapping with closed convexr weakly locally compact
values which contain no line. Let (Cn)nen be sequence in L, (I) such that ¢, (t) €
C(t) for allt € I andn € N and such that ((n)nen o(Ly, L) converges in L, (1)
to (. Then ((t) € C(t) for a.e. t € 1.

Proof. Let (ep)pen be a dense sequence in H. Take any measurable set Z C I and
any p € N, and note that the mapping 1ze, € L3 (I). Considering the inequality
(due to the inclusion (,(t) € C(t))

(ep; Cn(t)) < 6" (ep, C(1))
and integrating on Z ensure that

Jazencwa = [ encma < [ 5 cm

Passing to the limit in the latter inequality assures us that

/ (1zep,C(t))dt < / 5*(ep, C'(t))dt.
Z Z

11



This being true for any Lebesgue measurable set Z C I, it follows that for every
peN
(ep, C(1)) < 6*(ep, CO(t)) ace. t € 1.

As H is separable and C(t) is closed convex weakly locally compact and con-
tains no line, by ( Castaing-Valadier [24, Proposition III- 35]), we get the desired
inclusion ((t) € C(t) a.e. t € I. O

Proposition 3.4. Let H be a separable Hilbert space and I = [0,T]. Let C : I =
H be a scalarly measurable multimapping with closed convex weakly locally compact
values which contain no line and for which there exist r € L2 (I) such that
Ct)Nr(t)By #0 forallt € I. Let A: H — H be a continuous symmetric linear
coercive operator and let B : H — H be a continuous compact linear operator. Let
(fn, f)nen be a bounded sequence in L9 (I) with ||f,(t)|| < B,[|f(t)]] < B (8 > 0)
for all n € N such that (fn(t))n converges to f(t) for each t € I.

Let (vn,v)nen be a bounded sequence in L33 (I) with |lvn(t)] < 7, [|v(t)]] < v
(v > 0) for all n € N such that (v,(t)), converges weakly to v(t) for each t € I.
Let (Cn)nen be an equi-integrable sequence in L} (I) such that ¢, (t) € C(t) for
allt € I and n € N and such that (C,)nen (LY, LSY) converges in LY, (I) to C.
Assume that

fn(t) + Bun(t) — AGu(t) € Now)(Ca(t)) foralln €N, ae. t € 1.

Then for a.e. t € I one has

() € C(t) and f(t) + Bo(t) = AC(t) € Nog)(C(1))-

Proof. First, Lemma 3.2 justifies that ((¢) € C(¢) for a.e. t € I.

For each t € I keeping in mind that v, (t) — v(t) weakly in H and B is a con-
tinuous compact linear operator, we see that Buv,(t) — Buv(t) strongly in H. The
Lebesgue dominated convergence theorem says that jOT |Bvy,(t)) — Bu(t)|| dt — 0,
i.e., Bu,(-) — Bu() strongly in L (I). We can also see that A, — A weakly
in L}, (I) since for any h € L (1)

T T T T
/ (h(t), AGa(8)) dt = / (AR(t), Co(8)) dt — / (AR(1), C(1)) dt = / (h(t), AC(t)) dt.
0 0 0 0

As a main consequence f,, + Bv, — A, — f + Bu — A{ weakly in L (I).
Given any Lebesgue measurable subset Z C I we may apply the lower semi-
continuity of convex integral functional in [22, Theorem 8.1.16] to derive that

/Zé*(f(t)+Bv(t)—AC(t),C(t))dt<lin}minf/z5*(fn(t)+an(t)—ACn(t),C(t))dt.

(3.12)
This needs a careful look. Choose a measurable selection s of ¢t — C'(t) Nr(t)By,
so s € L7 (I). We note that (t,z) — ¢*(x,C(t)) is a normal lower semicontinu-
ous convex integrand defined on I x H and §*(f,(t) + Bu,(t) — ACu(t),C(t)) is

12



measurable and minored by p,(t) := (s(t), fn(t) + Bv,(t) — AG,(t)). Further, it
is easy to check that (p,(-)) is equi-integrable in L§(I). Then by [22, Theorem
8.1.6] we deduce that

lim nf /Z 5*(fu(t) + Bon(t) — Aa(t), C(1))dt
> [ 5500+ Bu®) - A¢(0). C0)d,
Z

which confirms (3.32).

Let us set Ya(z) = (Az,x) if x € C(t) and Ya(x) = 400 if x ¢ C(t). Then it
is clear that 14 is a positive lower semicontinuous convex integrand. Apply again
the lower semicontinuity of the convex integral functional ([22], Theorem 8.1.6)
associated with the positive normal convex integrand )4 we obtain

lim nf /Z alCal)) dt > /Z alC(t)) dt,

that is,
lim nf /Z (ACa(£), Cu())dt > /Z (AC(2), C(#)dt. (3.13)

Further, we have

tim [ (Bo,(0).Gu0) e = [ (Bo(e). ) (3.14)

im [ (1.0 Gu0)at = [ (0. cO) (.15

The two latter equality features require a careful justification. Indeed, since
(Bvp)y is uniformly bounded and pointwise strongly converges to Bv and (f,)n
is uniformly bounded and pointwise strongly converges to f and ({,) is equi-
integrable with ¢, — ¢ weakly in L}, (1), we see that both sequences (Bv,, — Bv),
and (f, — f)n converge to 0 uniformly on any uniformly integrable subset of
L ([0,T)), in other terms they converge to 0 with respect to the Mackey topol-
ogy T(L$$(I), L} (I)). Consequently, both (3.34) and (3.35) hold true, as claimed
above. !

On the other hand, the inclusion f,,(t) = Bv,(t) — AGu(t) € N (Ca(t)) for
a.e. t € I ensures that

5*(fn(t) + an(t) - AQL(t)vC(t)) - <fn(t) + an(t) - Agn@)én(t» <0.

If H = R®, here one may invoke a classical fact that on bounded subsets of LS the topology
of convergence in measure coincides with the topology of uniform convergence on uniformly
integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a
lemma due to Grothendieck [26] [Ch.5 §4 no 1 Prop. 1 and exercice].
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Integrating this inequality on I gives
T T
| 570+ Bu) = A0, Cnar+ [ AG 0.6

T
+/ (= fn(t) — Bun(t), Co(t))dt < 0.
0

Passing to the limit inferior as n — oo and using (3.32) we obtain

T
/0 [07(f(8) + Bu(t) — A¢(t), C(t)) + (AC(t) — Bu(t) — (), ¢())]dt < 0.
This and the inclusion ((¢) € C(t) a.e. t € I allow us to conclude that

() + Bu(t) — AC()) € Ny (1) ae. t €T

according to the description (2.1) of the normal cone.
O

Similarly to Proposition 3.4, when C(6,,(t) = C(t), the next result relaxes the
condition C(t) C rBy in Proposition 3.10.

Proposition 3.5. Let H be a separable Hilbert space and I = [0,T]. Let C :
I = H be a scalarly measurable multimapping with closed convexr weakly locally
compact values containing no line, for which there exist v € Lg5 (I) such that
Ct)ynr(t)By # 0 forallt € I. Let A: H — H be a continuous symmetric linear
coerciveoperator and let g : H — R be a convex function Lipschitz on bounded sets
and continuously differentiable on H.

Let (fn, [)nen be a bounded sequence in LY (1) with || fn(t)|| < B,]|f(t)]] < B
(8 >0) for all n € N such that (f,(t)), converges to f(t) for each t € I.
Let (un, u)nen be a sequence of absolutely continuous mappings

un (t) = wo —i—/o U (s)ds, up(t) € C(t)

u(t) = ug —|—/0 u(s)ds, u(t) € C(t)

such that (uy )y, converges to u uniformly on I and (i), converges to @ weakly in
Li(I). Assume that for every n € N

fn(t) + Vg(un(t)) — Atn(t) € New) (in(t)) a.e. t € 1.
Then for a.e. t € I one has

W(t) € C(t) and  f(t)+ Vg(u(t)) — Au(t) € Nog(u(t)).
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Proof. The inclusion u(t) € C(t) for a.e. t € I is justified by Lemma 3.2.

Take a real ' > r and let v > 0 be a Lipschitz constant of g on (||ug| +
r’"T)By. Take any Lebesgue measurable set Z C I. Let us consider the term
(Vg(u,(t)),i,(t)). The Lipschitz property of g on (||ug|| +7'T)Bg assures us that
gouy, and g o u are absolutely continuous on I and at any ¢t € I where v and all
u, are derivable

(Vg(u(t), (1)) = S gu(t)) and  (Vgfun(t)),im(t) = olun(t))

From this we deduce that
T
/0 (Vg(u(t)), at))dt
T
= [ o)t = guT) = g(u0)) = tim (g (T)) = g(0a(0))

T T
~ lim /O %g(un(t))dt:nrgn /O (Vg (1)), i (1))t (3.16)

Since (fy)n is uniformly bounded and pointwise converges to f and (up)n
weakly converges in L, ([0,7T7]) to i, we have

lim /Z a(8)s () dt = /Z (1), (b)) . (3.17)

This fact is mainly justified in the proof of Proposition 3.4 and is not a conse-
quence of Lebesgue theorem. Also the assumption of normal cone inclusion can
be reformulated for a.e. t € I as

0" (fn(t) + Vg(un(t) = Aitn (), C(t))) + (At (£) = Vg (un(t)) = fu(t), in(£)) <O
with g, (t) :== fn(t) + Vg(un(t)) — Auy(t), which gives
/5*(qn(t),0(t))dt +/(Aan(t)—fn(t),un(t»dt—/<Vg(un(t)),an(t))dt§0,
z z z (3.18)

(noting that the above functions are measurable). We claim that Awu,(-) — Au(-)
weakly in L (I) and Vg(u,(-)) — Vg(u(-)) weakly in L}, (1), so

() = fa() + Vg(un(-)) = Ain(-) = q(-) == F() + Vg(u(-)) — Ai(.)

weakly in L} (I). Indeed, for any h € L37(I) the weak convergence in Lk (I) of
(i) to @ says that [i (AR(t), @ (t))dt — [; (Ah(t),(t))dt, which means

T T
/ (h(t), Adn (£))dt — / (h(1), Ad(t))dt.
0 0
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This property for every h € LS (I) translates the weak convergence in L (I) o
(At ) to At Concerning (Vg(un(+)))n it converges strongly in L, (1) to Vg(u(-)
(by Lebesgue convergence theorem) since Vg(un(t)) — Vg(u(t)) for each t € I
and ||[Vg(un(t))|| < 7 (by the ~-Lipschitz property of g on (||ug| + 'T)Bg).
Altogether, the weak convergence in Lk (I) of (gn)n to g is justified.

Regarding fOT(Aun(t),un(t»dt let us set Y4(t,x) = (Azx,x) for all z € C(t)
and Y 4(t,z) = oo for = ¢ C(t). It is clear that 14 is a positive lower semicon-
tinuous convex normal integrand. By the lower semicontinuity of convex integral
functional (see [22, Theorem 8.1.6]) we obtain

f
)

T T
lim nf /O Gt (1)) dt > /0 alt, alt))dt,
that is,

n

T T
lim inf /0 (At (£), it (1)) dt > /0 (AG(t), it))dt. (3.19)

The last step deals with fOT 0*(gn(t),C(t))dt. Fix a measurable selection s(-)
of t — C(t)Nr(t)Bm, set pn(t) := (s(t), gn(t)), and observe that §*(qn(t), C(t)) >
pn(t). Tt is not difficult to check that (py), is equi-integrable in L} (I). From
this and the lower semicontinuous convex normal integrand (¢, x) — §*(x, C(t))
it follows by [22, Theorem 8.1.6] again that

T T
lim inf /0 5 (gn(t), C(t))dt > /0 5 (q(t), C(t))dt.

The latter inequality and (3.16)—(3.19) yield

T T
/0 3 (f(t)+Vg(u(t))—Au(t), C(t))dt—i—/o (—f(t)+Vg(u(t))+Au(t),u(t))dt <O0.
(3.20)
On the other hand, the inclusion 4(t) € C(t) entails that for a.e. t € I

8" (f(t) + Vg(u(t)) — Au(t), C(t)) = (f(t) + Vg(u(t)) — Au(t), u(t)).
Taking this into account in (3.40) we deduce for a.e. t € I
0 (f(t) + Vg(u(t)) — Au(t), C(t)) — (f(t + Vg(u(t)) — Ai(t), a(t) < 0.
The latter inequality and the inclusion u(t) € C(t) guarantees that for a.e. t € T
f(t) +Vg(u(t)) — Au(t) € Neg (a(t))
according to the description (2.1) of the normal cone. O

We pass now to the situation of a subdifferential d(¢, -) in place of the normal
cone Ny (+)-

16



Proposition 3.6. Let H be a separable Hilbert space and I = [0,T] Let ¢ :
[0,T] x H —] — 00, +00] be a normal lower semicontinuous convex integrand for
which there exists a convexr weakly compact set I' such that:

(1) for allt € I, domyy :=T;

(i1 {o(.,u(.)),u € SL} is uniformly integrable;

(i11) p(t,x) < o(1,2)+|v(t)—v(7)| for allt,7 € [0,T),z € T wherev : [0,T] — RT
is a positive nondecreasing continuous function with v(0) = 0.

Let A: H — H be a continuous symmetric linear coerciveoperator and let g : H —
R be a convex function Lipschitz on bounded sets and continuously differentiable
on H. Let (0,)nen be a sequence of measurable functions from I into I such that
for each t € I one has 0,,(t) — t.

Let (fn, f)nen be a bounded sequence in L3 (1) with ||fn(t)|] < B, f(®)| < B
(8> 0) for all n € N such that (f,(t))n converges to f(t) for eacht € I.

Let (vn,v)nen be a bounded sequence in L35 (I) with |lvn(t)| < 7, [|v(t)]] < v
(v > 0) for all n € N such that (v,(t)), converges strongly to v(t) for each t € I.
Let (un, u)nen be a sequence of absolutely continuous mappings

un(t) = ug +/0 Up(s)ds, up(t) €T

ot

u(t) = ug +/ u(s)ds,
0

such that (uy ) converges to u uniformly on I and (i), converges to @ weakly in
Li(I). Assume that for every n € N

fu(t) + Vg(vn(t)) — At (t) € 0p(0,(t), Uy (t)) a.e. t € 1.
Then for a.e. t € I one has
u(t) e and f(t)+ Vg(v(t)) — Au(t) € dp(t, u(t)).

Proof. First, Lemma 3.2 tells us that u(t) € I for a.e. t € I.

Let £ > 0 be a Lipschitz constant of g on By, so that Vg is bounded on
By and Vg(v,) — Vg(v) strongly . Take any Lebesgue measurable set Z C I.
Since (fy)n is uniformly bounded and pointwise converges to f and (), weakly
converges in L};([0,77]) to 1 , we have

im [ (a0 (0}t = [ (@ 00) . (321

This fact has been already justified in the proof of Proposition 3.4. As ¢ is normal
lower semicontinuous convex integrand, the conjugate function ¢* : I x H —
| — 00, +0]

e (t,y) = Sg}g[@,w —p(t, 7)] (3.22)
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is normal, see e.g Castaing-Valadier [24], and satisfies

e (t,y) < @ (T y) + [v(t) —v(7)]

for all t,7 € I, y € H using assumption (ii) ([36], Proposition 27). By using
the normality of ¢, the functions ¢ — @(0,(t),un(t)) and t — @(t,0,(t)) are
measurable and integrable.By assumption we have

Qn(t) = fn(t) + Vg(vn(t)) - Aan(t) € 8‘10(0n(t)a un(t»

so that by the normality of ¢*, the function t — ¢*(6,,(t), ¢, (t)) is measurable and
integrable, the measurability and integrability of Vg (v, (t)) is already ensured as
above. We also note that (g, u,) is measurable and integrable and the sequence
((gn, Uy)) is uniformly integrable.

Further, by (3.42) and condition (i) we have

ot () + (i (2), qu(t)) < 9* (16 (8)) < & (On(t), (1)) + [0(t) — 0(0a ()],

(3.23)

so that ¢ — —@(t,Un(t)) + (Un(t),gn(t)) is uniformly integrable thanks to (7).

We note that, for h,(t) := fn(t) + Vg(vn(t)), (hn)n is uniformly bounded and

pointwise converges to h given by h(t) = f(t) + Vg(v(t) in H. Hence h, — h
strongly in L}{(I ). As consequence, for every measurable set Z in I, we have

lim [ (ha(t), @ (t)) dt

n—o0 A

= lim [ (ho(t) — h(t),in(t)) dt + Lim [ (h(t),5n(t)) dt

= lim | (A(t), i (t))dt = / (h(t),u(t)) dt. (3.24)
Z Z

This fact has been justified in the proof of Proposition 3.4. As A is symmetric,
we also show that A, (-) — Adu(-) weakly in L1 (I). As consequence g, = f, +
Vg(vn(.)) — Aty () = q:= f+Vg(v(.)) — At weakly in L}, (I). Further, let us set
Ya(z) = (Az,z) if v € I and ¢(z) = +o0 if ¢ I'. Then it is clear ¢ is a positive
lower semicontinuous convex integrand. Apply again the lower semicontinuity of
the integral convex functional ([22], Theorem 8.1.6) associated with the positive
normal lower semi continuous convex integrand ¥4 we obtain

1mmémmeZéwwmw
that is,

lim inf / (At (1), 11 (1)) dt > / (Au(t), alt) dt. (3.25)
Z

n Z
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Now, we deduce using (3.43) and the lower semicontinuity of integral convex
functional (see [22, Theorem 8.1.6]) applied to ¢*,

/gp*(t,q(t))dtglimninf/ go*(t,qn(t))dtglimninf/ ©*(0n(t), gn(t))dt (3.26)
Z Z Z

This fact is justified because *(t, qn(t)) > —@(t, un(t)) + (Un(t), gn(t)), and the
sequence (—@(t, Uy (t)) + (Un(t), ¢n(t))) is uniformly integrable. By

P(t,in(t)) < @(On(t), wn(t)) + |v(t) — v(0a(t))]
we also have that

lim n /Z p(t. (1)) dt < limin /Z (O (1), i (1)) dt.

As (1), weakly converges to @ € L1 (I), by the lower semi continuity theorem
([22], Theorem 8.1.6) applied to the lower semicontinuous convex integral func-
tional associated with ¢, we derive that

/go(t,u(t))dtgliminf/ o(On(t), wn(t)) dt (3.27)
Z n z

with u(t) € T ae. and t — @(t,u(t)) is integrable. Now integrating on the
Lebesgue measurable subset Z of I the equality

@(en(t)v un(t)) + " (en(t)v Qn(t)) = <un(t)7 Qn(t)>

gives

éwwMMuamw+éww%mﬂamﬁ+éummmmﬁwt=[y%wwamﬁ.

Passing to the limit as n — oo in this equality and using (3.44)—(3.47) give

éMWW»ﬁ+LW@ﬂWﬁ</W@ﬂ@Wt

Z

By the measurability of the non negative function t — @(t, u(t)) + ¢*(t, q(t)) —
(u(t),q(t)), we deduce that for almost every t € I

p(t,a(t)) + " (t,q(t) — (a(t), q(t)) <0

along with @(t) € T'. So, it follows for almost every t € I that ¢(t,u(t)) +
@*(t,q(t)) = (u(t), q(t)), or equivalently

q(t) = f(t) + Vg(u(t)) — Au(t) € Op(t, u(t)).

The proof is finished. O
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Remark Proposition 3.6 hold true if we replace the gradient Vg by a linear
continuous operator B : H — H.

We finish this section with some new variants which have also some importance
in further developments.

Proposition 3.7. Let H be a separable Hilbert space and I = [0,T]. Let C :
I = H be a conver weakly compact valued multimapping for which there is some
nondecreasing continuous function r : I — RT such that haus(C(t),C(1)) <
|r(t)—r(7)| for all T,t € I Let A be a linear continuous coercive symmetric operator
on H and let B = Vg where Vg is the gradient of a convex continuous Gateaux
differentiable function g : H — R such that g(v(t)) is absolutely continuous for
v : [0,T] — H absolutely continuous. Let (0p)nen be a sequence of measurable
functions from I into I such that for each t € I one has 0,(t) — t.

Let (un, u)nen be a bounded sequence of absolutely continuous mapping on H such
that (un(t))n converges pointwise strongly to u and such that (tiy)nen o (L, L3S)
converges in L (I) to u. Assume that

—in(t) € Neo, ) (Atin () + Vg (un (b)) for alln € N, a.e.t € 1.
Then for a.c. t € I one has —u(t) € Nepy(Au(t) + Vg(u(t))).
Proof. As —ti,(t) € Neo, (1)) (Atin(t) + Vg(un(t))) then
" (=tn (1), C(On(t))) + (in(t), Atln(t) + Vg(un(t))) <0

By integrating on Z € L(I) (we are ensured that the functions given are measur-
able) this inequality we get

(3.7.1) /Z 5 (—ttn (£), C(Bn()))dt + /Z (i (t), At (t) + Vg (un(t)))dt < 0.

Now we have to consider first the term (Vg(u,(t),7,(t)) by using the special
property of Vg. In fact u, is absolutely continuous with derivative 1, and g(u,)
is absolutely continuous , so that by Moreau-Valadier [35] ,

(i (1), V(1)) = & g(un (1)

From this fact, it is easy to deduce that

T T
lim in /0 (Vg(1n(£)) i (1)) dt = limm inf /0 %g(un(t)»dt

T
(372) = liminf(g(un(T) — un(0) > g(u(T) — u(0)) = / g(u(t)))dt
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T
- / (Vg(u(t)), alt))dt

Further let ¥(z) = (z, Az) for all x € H. Then V¥ is positive lower semicontinuous
convex on H. As 1, weakly converges converges in L} (I) to 1, again by ([22],
Theorem 8.1.6) we get we have

(3.7.3) lim inf / U (1, (t))dt > / U(a(t))dt
Z Z

n

As it is readly seen that A, weakly converge to Au and Vg(u,(t))) — Vg(u(t))),
then let e € H, we have

(e, Atin (1) + Vg(un(t)))) < 5" (e, C(0n(1)))

Hence for Z € L(I)

[ tesin(t) + Va(unt)dt < [ 5, CO0))dt
Z Z

Passing to the limit in this inequality we get

/(ejAu()—f—Vg dt</5*eC
Z

By [24] we conclude that Au(t) + Vg(ut))) € C(t) By (ii) using the Hormander
formula we have the estimation

/ 5 (i (1), C ()t < / 5 (~in(t), C(On(t)dt + / it (D180 (8) — ()| dt
Z 7 7

with [ |0, (2)]||r(0n(t) — 7(t)|dt — 0 using the fact that p,(t) := [r(0,(t) —
r(t)] — 0 and ||, (¢)|| is uniformly integrable. Here the measurability of the
functions given these integrals is granted; in fact it is easily seen that C'is scalarly
continuous. So that

lim inf /Z 5 (=itn (), C(6n())dt > lim int /Z 5 (—in (1), O(t))dt

To finish the proof we apply the lower semicontinuity of the integral convex
functional ([22], Theorem 8.1.6) associated with the normal convex integrand
(t,xz) — 6*(x,C(t)) by noting that

(j) 0" (—tn(t),C(t)) is minored by (—tn(t), h(t)) with h(t) = Au(t) + Vg(u(t)),
(j7) the minored sequence ({(—,(t),h(t))) is uniformly integrable.

Then we are ensured by

(3.7.4)

liminf/ 5 (=t (t), C(6y, ())dt>hm1nf/ 0% (=t (t ))dt > / (=
" Z
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By combining (3.7.1) — —(3.7.4) we get

T
(3.7.5) /0 §*(—a(t), C(#))dt + (a(t), Ait) + Vg(u(t)))dt < 0.

5" (—u(t), C(t)) = (—u(t), Au(t) + Vg(u(t)))

a.e. that implies

T
|| (i0).C0) + (0. Aute) + Vau(e)la = 0
so we conclude that
6 (—=u(t), C(t)) + (u(t), Au(t) + Vg(u(t))) =0

a.e. with Au(t) + Vg(u(t)) € C(t), just proving that —u(t) € New)(Au(t) +
Vg(u(t))) a.e. O

Application We give an example of the existence of absolutelty continuous
solution to the evolution inclusion of the form —(t) € Ne (Au(t) + Vg(u(t)))
where C' is a convex compact valued continuous mapping and A is a linear con-
tinuous coercive: (Ax,x) > ~||z||> symmetric operator in H = R®.

Further variational limit involving time dependent maximal mono-
tone operator

We introduce in the following the definition and some properties of maximal
monotone operators needed in the proofs of our results, Let A: D(A) C H = H
be a set-valued operator. The domain, the range and the graph of A are the
following sets

D(A)={z e H: Az # 0},
R(A)={ye H: 3z € D(A), y€ Az} =U{Ax: z € D(A)},
gph(A) ={(x,y) e Hx H: z € D(A), y € Az}.

We say that A : D(A) C H = H is monotone, if (y; — y2, 1 — x2) > 0 whenever
(zi,y;) € gph(A), i = 1,2. Tt is maximal monotone, if its graph could not be
contained strictly in the graph of any other monotone operator, in this case, for
all A\ > 0, R(Ig + AA) = H, where Iy stands for the identity mapping of H.

If A is a maximal monotone operator then, for every x € D(A), Az is non-empty,
closed and convex. So that, the projection of the origin into Az, A°(z), exists
and is unique.

For A > 0, we define the resolvent and the Yosida approximation of A respectively
by, J& = (Iy + M)t and Ay = 1 (Ig — J§'). These operators are both single-
valued and defined on the whole space H, and we have

Jiz € D(A) and Ay(z) € A(J{z), for every z € H, (3.28)
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1 Ax(@)[| < [|A%]| Yz € D(A). (3.29)

Let A: D(A) C H = H and B: D(B) C H = H be two maximal monotone
operators, then we denote by dis(A, B) the pseudo-distance between A and B
defined by

. — su <y—y’,x'—:c>. - o
dis(a,8) =sup { LT (o) € (), (@) € (B} (330

Clearly, dis(A, B) € [0, 4+00],dis(A, B) = dis(B, A) and dis(A,B) =0 iff A = B.

Lemma 3.3. Let A, (n € N), A be mazimal monotone operators of H such that
dis(Ay, A) — 0. Suppose also that x,, € D(Ay) with x, — x and y, € An(x,)
with y, — y weakly for some x,y € H. Then x € D(A) and y € Azx.

Let [ := [0,T.] Lett — A; : D(A;) — 2% be a time dependent maximal
monotone operator. We say that A; : D(A;) — 21 is continuous in variation if
there exist nondecreasing continuous function p : I — RT with p(0) = 0 such that
dist(A¢, Ar) < |p(t) — p(7)| for all t, 7 € I.

Proposition 3.8. Let H be a separable Hilbert space and I = [0,T]. Let C :
I = H be a convexr weakly compact valued multimapping for which there is some
nondecreasing continuous function r : I — RY such that haus(C(t),C (1)) <
|r(t)—r(T)| forall T,t € I. Lett — Ay : D(A;) — 28 be a continuous in variation
time dependent mazimal monotone operator: dist(Ay, Ar) < |p(t) — p(7)| for all
t,7 € I. Let B = Vg where Vg is the gradient of a convex continuous Gateauz
differentiable function g : H — R such that g(v(t)) is absolutely continuous for
v : [0,T] — H absolutely continuous. Let (0p)nen be a sequence of measurable
functions from I into I such that for each t € I one has 0,,(t) —t

Let (un, u)nen be a bounded sequence of absolutely continuous mapping on H such
that (un(t)), converges pointwise strongly to u and such that (i, )nen o (L, L3S)
converges in L}, (I) to 1. Let (v,) be a sequence of bounded measurable mapping
pointwise converging to a bounded measurable mapping v. Assume that

—n(t) € Neo, 1) (vn(t) + Vg(un(t))) for alln € N, a.e.t € I.

vn(t) € AGn(t)un(t)
Then for a.e. t € I one has a.e. t € [0,T]

—u(t) € No(v(t) + Vg(u(t)))
v(t) € Agu(t)
Proof. As —i,(t) € Neo, 1)) (vn(t) + Vg(un(t))) then

6" (=t (t), C(0n(t))) + (tn(t), va(t) + Vg(un(t))) <0
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By integrating on Z € L(I) (we are ensured that the functions given are measur-
able) this inequality we get

(3.7.1) /Z 5% (—iin (£), C(6u (1)) dt + /Z (i (1), vn(t) + Vgun(£)))dt < 0.

Now we have to consider first the term (Vg(u,(t),7,(t)) by using the special
property of Vg. In fact u, is absolutely continuous with derivative 1, and g(u,)
is absolutely continuous , so that by Moreau-Valadier [35] ,

(i (1), V(1)) = & g(un (1)

From this fact, it is easy to deduce that

T T
lim in /0 (Vg(1n(£)) i (1)) dt = limm inf /0 %g(un(t)»dt

T
(372) = liminf(g(un(T) — un(0) > g(u(T) — u(0)) = / g(u(t))dt

T
- /0 (Vg(u(t)), alt))dt

Further we have
(3.7.3) lim /Z (i (£), v (£) )t = /Z (), o(t))dt.

This need a careful look. Indeed, since v,, is uniformly bounded and pointwise
strongly converge to v and 1, is uniformly integrable and w, — u weakly in
L1;(I) we ensure that v, —v — 0 uniformly on any uniformly integrable subset of
L1 ([0,T]), in other terms it converges to 0 with respect to the Mackey topology
(LS (1), L (1)), as consequence (3.7.3) hold. If H = R®, here one may invoke a
classical fact that on bounded subsets of L7 the topology of convergence in mea-
sure coincides with the topology of uniform convergence on uniformly integrable
sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This
is a lemma due to Grothendieck [26] [Ch.5 §4 no 1 Prop. 1 and exercice]. By (ii)
using the Hormander formula we have the estimation

[ 5 Cinlt), 0N < [ 8 (int),COM0E + [ i @Ir0at) - r(D)at
7 Z 7
with [, [|tn (¢)]||r(0n(t) — r(t)|dt — 0 using the fact that p,(t) = |r(0n(t) —

r(t)] — 0 and ||@,(¢)|| is uniformly integrable. Here the measurability of the
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functions given these integrals is granted; in fact it is easily seen that C'is scalarly
continuous. So that

liminf/ 5*(—un(t),0(9n(t))dt2liminf/ 5 (—un(t),C(t))dt
" Z " Z

To finish the proof we apply the lower semicontinuity of the integral convex
functional ([22], Theorem 8.1.6) associated with the normal convex integrand
(t,x) — 0*(x,C(t)) by noting that

(7) 6*(—un(t),C(t)) is minored by (h(t), —t,(t)); with h(t) = v(t) + Vg(u(t)) €
C(t) for all t € I.

(j7) the minored sequence ({(h(t), —1uy,(t))) is uniformly integrable with (h(t), —t,(t)) <
§* (=t (1), C(1))-

In fact the last inclusion is easily ensured by noting that v, (t) + Vg(u,(t)) €
C(0,(t)) and v, (t) + Vg(un(t)) — v(t) + Vg(u(t)) and the multimapping C' is

scalarly continuous. Then we are ensured

(3.7.4)

li%inf/zé*(—un(t),C(Q ())dt>hmmf/ 5 (=i (¢ dt>/5* a(t), C(t))dt
By combining (3.7.1) — —(3.7.4) we get

(3.7.5) / *(—u(t),C(t))dt + (u(t),v(t) + Vg(u(t)))dt < 0.

as we have

0" (—u(t), C(t)) = (=u(t), v(t) + Vg(u(t)))

a.e. that implies

T
/O [67(=a(t), C(t)) + (a(t), v(t) + Vg(u(t)))]dt = 0
so we conclude that

8" (—a(t), C(t)) + (a(t), v(t) + Vg(u(t))) = 0

a.e. with v(t) +Vg(u(t)) € C(t), just proving that —u(t) € N (v(t) +Vg(u(t)))
a.e. It remain to check that v(t) € Auu(t). Indeed, as 0,,(t) —t — 0 and v,(t) €
Ag, (tyun(t), by Lemma 3.5, we get u(t) € D(A;) and v(t) € Au(t). O

As further application we consider a class of time measurable maximal mono-
tone perturbation ¢t — A; : H — H satisfying the conditions.

(Ay) t = Jx(t,x) is L(I)-measurable for every A > 0 and for every x € H
(A2) |A%(t, )| < c(1 4+ ||z||) for all (t,x) € T x H.
(A3) For A €]0,1], A — 0%, for fixed 7 > 0, for fixed t € I, sup,<, |Ay, (t,2) —
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A%(t, 2)| — 0.
(Ay) For fixed t € I, A%(t,.) is continuous on H.
It is important to note a useful consequence of these properties. Let (u,) a
uniformly bounded sequence of Lebesgue measurable mappings pointwise con-
verging to measurable mapping u. Let us consider the measurable mapping
vn(t) = Ay, (t,un(t)). Then (v,(t)) pointwise converge to a bounded measurable
mapping v : I — H. Indeed, let v,(t) = Ax, (t,un(t)), vm(t) = Ax,, (L, un(t)),
then let us write for every ¢t € [

[om (1) = v ()] < [Ax,, (8w (8)) = A%t wgn (6))] 4 |A°(E, i (1)) — A°(E, un (1))

+ A (t, un (t)) — Ax, (£, un(t))] — 0

when m,n — oo . Then (v,(t)) is a Cauchy sequence which converges uniformly
to v(t). Here the measurability of these mappings is ensured thank to (.A4;). Note
that (Aj). is not necessary when dealing with fixed maximal monotone A : H —
H. Ift— A;: H— H is a measurable single valued maximal monotone operator
satisfying (A1) (Az), then Ay, (¢, un(t))) = A(t, Ja(t,un(t))) — A(t,u(t)) = v(t)
As an example, consider A = Vg the gradient of a C'' convex Lipschitz. At this
point, in further application,we only need (A;) (A2) and the condition (A¢): For
any uniformly bounded sequence of Lebesgue measurable mappings (u,,) pointwise
converging to measurable mapping u, for A €]0,1], A\, — 01, then A (f,u,(t))
pointwise converges to a bounded measurable mapping v(t).

Theorem 3.4. Assume that H =R I =1[0,T]. Let C: I x H = H be a closed
convexr valued multimapping for which there is some nondecreasing continuous
function r : I — Rt such that haus(C(t,z),C(1,y)) < |r(t) — r(7)| + al|z — y||
for all T,t € I and for all x,y € H with r(0) = 0. Let B be a linear operator
continuous coercive: (Bx,x) > v||z||> > 0 for all x € H, symmetric operator on
H.

Let A : H — 2% be a mazimal monotone operator satisfying

(A)1 |A%x)| < e(1+ ||z|]) for all x € H.

(Ao If Ay — 0T, if (un, u) is a bounded sequence of measurable mappings on H
converging pointwise to u, then t — Ay, uy,(t) pointwise converge to v € L35 (I) .

(H)3 : Ay, x € C(0,z) for alln € N and for all x € H.

Then, for any ug € H, there exist v € L% (I) and an absolutely continuous map-
ping w: I — H satisfying

_%(t) c NC(t,u(t))(Bu(t) + v(t))a.e.
U(O) =ug € H
v(t) € Au(t)a.e.
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(1)
Y

Further, one has ||u(t)| < p:=

Proof. Put I := [0,7].We note that by Hormander formula (see e.g. Castaing-
Valadier [24])

(1.1.1)

6% (e, C(t, ) =0% (e, C(7,9))| < |lel|du (C(t, 2), C(7,y)) < llel|(|r(t)—r(7)|+allz—yl[)

so that C' is scalarly continuous.

Step I. Construction of a sequence (uy,),
We will use the Moreau ’s catching-up algorithm [33]. We consider for each n € N
the following partition of the interval 0,7 given by

T
t”:ig =im, for 0 <i<n, II':=t7 ] for0<i<n-—1.

7 (2
Put uff = ug € H. By (Hz2). There is 2] € H such that
—21 € Ne(in uny (B2T + Ay, ug)-
with Ay, ug € C(0,ug). Put uf = ug + n,27. We have
VAP < (B, o) = ([Bef + Ay, up — o] + [v = Ay, ug], 27)

< (v = Ay ug, 21) <o = Ax,ugllllz1]] < du(C(0, ug), O, ug) [ 27|

for all v € C(t7,ug). So
r(T)

|27 <

Suppose that uf,uy,..,ul’, 27, 2y, ..2;"

(12) o

are constructed. As above by condition

~li1 € Notas (B + Ar,al),

with Ay, ui € C(0,u}), and we set uj, | = ui' + 1,2{ ;. Then by induction there
are finite sequences (uZ )iy and (2])!_; such that

_Z;l+1 S NC(t?+1,u?)(BZ?+1 + A)\nu?) (331)

n _ n n
Uiy = Up + M2y

From (u

Mg, (2, we construct a sequence of mappings (un)nen from I to
H, u,(0) =

ug and for each i =0,..,.n — 1
n t— t? n n
Un(t) = UZ' + " (Ui+1 — 'LLi ) fOI' t E]tz s Z+1]

n

Furthermore we have the estimate
7||Z?+1H (Bzi'v1, 2041) = ([Bzlhy + Ay ui —v] + [v — Ay '], 200)
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< (v = Ay zih) < |lv = Ax il [[284]] < du(C0,47), O, wi))llzil|

for all v € C(}, 1, uj'). Whence

n ]' n n n
Hzi+1H < ;dH(C(Ovui ), C( i+1: Ug ) <

Keeping in mind that
1

b

n

r(T)

(uir —ug')

' el < p=

From this we construct sequence w,(-) is Lipschitz continuous on [ with p as
a Lipschitz constant. This Lipschitz property of u,(-) ensures that [ju,(t)| <
lluo|| + pT and up(t) = uo + fti) U (s)ds for every t € I with for every t €]}, ¢}, ]

7

Tin

n o .mn
i1 — U

Furthermore, for every ¢t € [0, T, one has u,(t) = uo—l—fot U (s)ds, hence |[|uy(t)|| <
[luol| + pT
Now, let us define the step functions 6,,, 6, : I — I by 6,,(0) = 6,,(0) = 0 and

On(t) = tiy1, On(t) =t if ¢ €]ty 1],
so the inclusion (4.1) becomes
—Un(t) € No(0,(t)un(5,(1))) (Btn(t) + Ax, un(dn(t))) a.e. t €1

For each t € I we observe that there is some i € {0, ...,n—1} such that ¢ € [t} ¢} ],
and then
|0n,(t) —t| = 0 and |0,(t) —t] - 0 asn — +o0.

We also note that the latter inclusion above yields
6 (—tn(t), C(0n(t), un(0n(t)))) + (tn(t), Biin(t) + Ax,un(dn(t))) <0

with 4, (t) € pBy a.e. t € I, so that u, € S;EH where S;EH = {¢ e LL() :

£(t) € pByae. t €1} ae. t€[0,T]. We note that ||u,(t)|| < ||uol| + pT, for
all t € [0,T] and uy,(t) = ug + fot tn(s)ds for all t € [0,T] so that

| A, (0 ()] < 1A° (un (5 ()] < (1 + [Jun (8 ()] < (1 + [Juol| + pT)

Step II. Convergence to a solution.
We note that S} is a weakly compact convex set of L (I). Set

X:={&: 1T — H:&®) :u0+/0té(s)ds, te[0,T]; v € St}
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It is clear that X' is convex, equicontinuous and compact. As u, € X, one can
extract from (uy), a (not relabeled) subsequence which converges uniformly to
w: I — H such that u(t) = ug + fo s)ds for all t € I and such that ()
o(LL(I), L33 (I))-converges to i € St. Further, the inequality

[[un (0n(2)) — un ()] < plon(t) — 1|

assures us that (un(én(t)))n converges to u(t) to H for each t € I. This and the
o (L (I), L% (1)) convergence of (i), to @ in Lk (I) along with the inclusion (4.1)
allow us to obtain that for a.e. ¢ € I the required inclusion. This need a careful
look. Indeed, for every Lebesgue measurable set Z C [ and for any e € H | the
function 1ze € L3y (I). Considering the inequality

(e, Bitn (1) + Ax, t (5,(1))) < 5% (e, C(6(8), un(6,(1))))

and integrating on Z gives

[aze. Bin) + Ay, Gu®))de < [ 8@ C0,(0), 00 (6,0
I Z

Passing to the limit in this inequality and using the scalar continuity of C(-) and
the fact that B, — B weakly in L (1), Ay, (un(5,(.))) pointwise converge to
v € Ly (I) we obtain

/1<1Z6 Bu(t) +v(t))dt < hmsup/ 5% (e, C(0n(t), un (6, (t)))dt

< /Zlimsupé*(e,C(Gn(t) /5* e,C(t,u(t)))dt,

n
which implies

(e, Bu(t) + v(t)) < 6*(e,C(t,u(t))) a.e. t € 1.

By the separability of H and the compactness of C(t,u(t)) (see, e.g., Castaing-
Valadier [24, Proposition III- 35]), we get the desired inclusion Bu(t)+wv(t) € C(t)
a.e. As consequence, we have

T T
lim/ <an(t)7A,\nun(5n(t))>dt:/ (a(t),v(t))dt.
" Jo 0
because Ay, un(6,(.)) T(LE(I), LY (I)) (Mackey ) converges to v in LSY using
Grothendieck Lemma, recalling that [Ay, u,(0,(.))] < e(14||ugl| + pT). As above

we may apply the lower semicontinuity of integral convex functional ([22], Theo-
rem 8.1.16) to deduce that

/ 0" (—a(t), C(t,u(t)))dt < hmlnf/ 0 (—un(t), C(t,u(t)))dt
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(1.1.2) < liminf /Z 5 (—tin(t), C(0n(t), un (50 (t))))dt

n

by noting that Bu(t) + v(t) € C(t) with Bu+v € L (I).

Let us set ¢¥p(x) = (Bx,z) if * € pBy and 9 (z) = +o0 if x ¢ pBy. Then
it is clear 1 is a positive lower semicontinuous convex integrand. Apply again
the lower semicontinuity of the integral convex functional ([22], Theorem 8.1.6)
associated with the positive normal convex integrand v we obtain,

lim in /Z i (i ()t > /Z b (a(t))dt
that is

(1.1.3) lim inf / (Bt (t), ity (£))dt > / (Bu(t), u(t)dt.
Z

n A

By integrating on measurable subset Z C [0, 7] the inequality ( here measurability
and integrability are guaranted)

" (=t (t), C(0n (1), un(0n(t)))) + (Un(t), Bitn(t) + Ax, un(6n(t)))dt <0

(L1.4)
/ F (— it (t), C(On (1), n (5, (1)) )t + / (Bt (), itn (£)) dt+ / (i (£), Ay, tn (8 (£)))dt < 0
Z Z Z

by passing to the limit when n goes to co in this equality using (1.1.1)—(1.1.7)
gives

T
(1.1.5) /0 % (—a(t), C(t u(t))) + (it), Bit) + v(t))]dt < 0.

As t — 5*(—u(t), C(t,u(t))) + (u(t), Bu(t) + v(t)) is integrable, by (1.1.5) and
Bu(t) +v(t) € C(t,u(t)), we have

0" (—u(t), C(t, u(t))) = (—u(t), Bu(t) + v(t))
that implies
T
(1.1.6) /0 (6% (—a(t), C(t u(t))) + (it), Bit) + v(t)]dt = 0.
By (1.1.6) we get finally

0" (—a(t), C(t,u(t))) + (u(t), Bu(t) + v(t)) =0
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a.e. with Bu(t)+v(t) € C(t,u(t)) a.e. sowe conclude that —1(t)) € Nes () (Bu(t)+
v(t)) a.e. It remain to check that v(t) € Au(t) a.e. Indeed Jy, u,(0n(t)) — u(t)
by writing

1 x, un (0n(t)) = (@) < || Ix, un(0n(t)) = In,u(®)]] + [[Ix, ut) — u@)]]

< lun (0n(t)) = w(®)[| + [|x, ut) — ()| =0
From vy, (t) = Ay, un(9,(t)) € Ay, un(0,(t)) we have that

(Un(t), Ix,un(6n(t))) € graphA

As graphA is closed that implies v(t) € Au(t) a.e.
0

Proposition 3.9. Let H be a separable Hilbert space and I = [0,T]. Let C :
I = H be a scalarly measurable multimapping with closed convex weakly locally
compact values which contain no line and for which there exist r € Lg% (I) such
that C(t)Nr(t)By # 0 for allt € I. Let B: H — H be a continuous symmetric
linear coercive operator. Let A : H — 2H be a mazimal monotone operator
satisfying

(H)1 |A%x)| < (1 + ||z|]) for all x € H. Let (fn, f)nen be a bounded sequence
in LY (I) with || fn(t)] < B, If@)| < B (B > 0) for all n € N such that (fn(t))n
converges to f(t) for eacht € I.

Let (v, v)nen be a bounded sequence in L35 (I) with ||v,(t)]] < v, [lv(@®)|| <~
(v > 0) for all n € N such that (v, (t)), converges to v(t) for each t € I. Let
(Cn)nen be an equi-integrable sequence in L (I) such that ¢, (t) € C(t) for allt € I
and n € N and such that ((n)nen 0(Ll, L) converges in L (I) to (. Assume
that

(1) fn(t) + A, 0n(t) — B (u(t) € Newy(Ca(t))  for alln €N, ae.t € 1.

and (i1) A\, — 0, limy,, Ay, v, (t) — w(t) pointwise, where w is a measurable map-
ping. Then for a.e. t € I one has

() € C(t) and f(t) +w(t) = B(t) € Now (C(1))-
w(t) € Av(t)

Proof. We first verify that ((t) € C(t) a.e. t € I. Let (ep)pen be a dense sequence
in H. Take any measurable set Z C I and any p € N, and note that the mapping
1ze, € L (I). Considering the inequality By the inequality (due to the inclusion
Cu(t) € C(1))

(ep; Cn(t)) < 0%(ep, C(1))

and integrating on Z ensure that
Jazen eyt = [ (o< [ 8w
I z z
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Passing to the limit in the latter inequality assures us that

/ (1ze,,C(t))dt < / 5*(ep, C(1))dL.
Z Z

This being true for any Lebesgue measurable set Z C I, it follows that for every
peN
(ep, C(1)) < 6%(ep, C(t)) ae. t € 1.

As H is separable and C(t) is closed convex weakly locally compact and con-
tains no line, by ( Castaing-Valadier [24, Proposition III- 35]), we get the desired
inclusion ((t) € C(t) a.e. t € I.

For each t € I keeping in mind that v,(f) — v(t) strongly in H and A is
a maximal montone operator satisfying (#); we see that |Ay, v, ()] < (1 4 7)
strongly in H so that by our assumption w(t) = lim,, Ay, v, (t) € c(14v)Bg. Then
the uniformly bounded sequence wy, := Ay, v,(.) = w for the Mackey topology
T(L (1), Ly (I) .As consequence

T T
i [ (Ar, 0. Gu0dt = tim [ (o). (o)

We can also see that B¢, — B¢ weakly in L} (I) since for any h € L% ()

T T T T
/ (h(t), BCa(t)) dt = / (Bh(E), Co(8) dt — / (Bh(t), (1)) dt = / (h(t), BE(L)) dt.
0 0 0 0

As a main consequence f,, + wy, — B, — f +w — B( weakly in Lk (I).
Given any Lebesgue measurable subset Z C I we may apply the lower semi-
continuity of convex integral functional in [22, Theorem 8.1.16] to derive that

/ 0 (f(t) +w(t) — B(t),C(t))dt < limninf/ 0 (fu(t) + wn(t) — Bu(t), C(t))dt.

. 8 (3.32)
This needs a careful look. Choose a bounded measurable selection s of ¢t —
C(t)Nr(t)Bu, so s € Ly (I). We note that (t,z) — 6*(z,C(t)) is a normal
lower semicontinuous convex integrand defined on I x H and 6*(f,,(t) + w,(t) —
B¢, (t), C(t)) is measurable and minored by py, (t) := (s(t), fu(t)+wn(t))—Bu(t)).
Further, it is easy to check that (p,(-)) is equi-integrable in L§(I). Then by [22,
Theorem 8.1.6] we deduce that

iminf | 8°(Fu(t) + wn(t) — BG,(0), CO)
A
> [ 8(5(0) + w®) - Bo(e). C(o)i,
Z
which confirms (3.32).
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Let us set ¢¥p(x) = (Bz,z) if x € C(t) and ¢p(z) = +oo if x ¢ C(t). Then it
is clear that ¢ p is a positive lower semicontinuous convex integrand. Apply again
the lower semicontinuity of the convex integral functional ([22], Theorem 8.1.6)
associated with the positive normal convex integrand ¢ we obtain

iminf [ wn(GuO)de > [ va(c®)at

that is,
imint | (BG.(0).Cu(0)de > [ (Be(o).co)ar (3.33)
Further, we have
im [ (a6 Gu0) e = [ twle). o) 331
tim [ (0. Gu0)at = [ (70, cOM (3.39

The two latter equality features require a careful justification. using the fact
that a uniformly bounded sequence of measurable mapping (g,) that pointwise
converge to a bounded measurable mapping g,then (g, ) converge to g with respect
to the Mackey topology (LS (1), L (I). Consequently, both (3.34) and (3.35)
hold true, as claimed above, by noting that ¢, is equi-integrable 2

On the other hand, the inclusion wy(t) — B(u(t) € Ne)(Ca(t)) for ae. t € 1
ensures that

6*(fn(t) + wn(t) - BCn(t)v C(t)) - <fn(t) + wn(t) - BCn(t)v Cn(t» <0.

Integrating this inequality on I gives
T T
570+ w0 = Be o.Mt + [ (BG0.Ge)
T

+/0 <_fn(t) - wn<t)7Cn(t)>dt S 0.

Passing to the limit inferior as n — oo and using (3.32) we obtain

T
150+ w6 = AC.C0) + (BUO —w(t) = F0). )t <0,
This and the inclusion ((t) € C(t) a.e. t € I allow us to conclude that

F() +w(t) = BE(H)) € Now(C(h)) ae tel

2If H = R®, here one may invoke a classical fact that on bounded subsets of L3 the topology
of convergence in measure coincides with the topology of uniform convergence on uniformly
integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a
lemma due to Grothendieck [26] [Ch.5 §4 no 1 Prop. 1 and exercice].
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according to the description (2.1) of the normal cone. It remain to check that
w(t) € Av(t) a.e. Indeed Jy, v, (t) — v(t) by writing

a,vn(t) = v < [|x,0n(8)) = Ix,0@I] + ||, 0(t) — 0 (@)]]
< lvn(t)) = v@)] + [|x,0(t) = v(®)[| = 0
From wy,(t) = Ay, vn(t) € AJy,vn(t) we have that
(wn(t), Ix,vn(t)) € graphA

As graphA is weakly strongly sequentially closed that implies w(t) € Av(t) a.e.
]

Proposition 3.10. Let H be a separable Hilbert space and I = [0,T]. Let
C: 1= H be a closed convez valued scalarly measurable multimapping for which
there is some real v > 0 such that C(t) C rBy for allt € I. Let B be a contin-
uous symmetric linear coercive operator on H and let A : H — 22 be a mazimal
monotone operator satisfying
(H)1 |A%(z)] < e(1 + ||z|]) for all z € H. Let (0n)nen be a sequence of mea-
surable functions from I into I such that for each t € I one has 0,(t) — t and
haus (C(0,(t)), C(t)) — 0 as n — oo.

Let (fn, f)nen be a bounded sequence in L35 (I) with || fr(t)| < B, f@)| < B
(8> 0) for all n € N such that (f,,(t))n converges to f(t) for eacht € I.
Let (up, u)nen be a sequence of absolutely continuous mappings

un (t) = uo —l—/o U (s)ds, un(t) € C(t)

u(t) = ug +/0 u(s)ds,

such that (uy )y, converges to u uniformly on I and (i), converges to @ weakly in
Li(I). Assume that for every n € N

fn(t) + A)\nun(t) — Bun(t) € NC(Bn(t))(un(t)) a.e.tel.

and A\, — 0, lim,, Ay u,(t) — w(t) pointwise, where w is a measurable mapping.
Then for a.e. t € I one has

u(t) € C(t) and f(t) +w(t) — Bu(t) € Nog(u(t)).
w(t) € Au(t)

Proof. First, we justify that u(t) € C(t) a.e. t € I. Take any measurable Lebesgue
set Z C I and any x € H. The function 1z2 € L3 (I). Writing

(@, in (1)) < 6% (2, C(On(1))),
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we see that
/I<12x,un(t),>dt:/Z<x,un(t)>dtg /Zé*(x,C(Hn(t)))dt.

Passing to the upper limit we obtain

/<1Zx,u(t)>dt< limsup/ 5 (, C (0 (1)) dt
Z

/hmsup5 (z,C(0 /5* z,C(t
z

This being true for any Lebesgue measurable set Z C I we deduce that for every
reH
(x,u(t)) <o0*(xz,C(t)) texta.e. t € 1.

By the separability of H and the weak compactness and convexity of C(t), we get
the desired inclusion u(t) € C(t) a.e. t € I.
Since (fy)n is uniformly bounded and pointwise converges to f, we have

lim /Z (), (D))t = /Z (F(8), i(t))dt. (3.36)

this fact is explained. Also by integrating on Z (we are ensured that the functions
given are measurable) the inequality it ensues that with ¢, (t) := f,.(t)+Ax, un(t)—
B (t)

[ 57 @@.CO0) e+ [ B~ a0, inO)de— [ (A 100), 00 <0
z z z

(3.37)
We claim that Bu,(-) — Bu(-) weakly in L1 (I) and as above wy,(t) : Ay, un(t) —
w(t) for with respect to the Mackey topology 7(L% (1), L (I)in L}, (1), so

an() = ful) + Ax, (un (")) = Bin(-) = q(-) := f() + w(.) — Bu(:)

weakly in L},(I). Indeed, for any h € L35 (I) the weak convergence in L}, (I) of
(i) to @ says that [i (Bh(t), i, (t))dt — [} (Bh(t),a(t))dt, which means

T T
/ (h(t), Bitn (£))dt — / (h(t), Ba(t))dt.
0 0

This property for every h € LS9(I) translates the weak convergence in L, (I) of
(Bty)n to Bi. Concerning (Ay, (un(-)))n it converges 7(L(I), L} (1) to w as
have already seen.So weak convergence in L}, (I) of (g,), to ¢ is justified.

Regarding f0T<Bun(t),un(t)>dt let us set ¢Yp(t,x) = (Bz,z) if x € C(t) and
Yp(t,x) = 0if o ¢ C(t) . It is clear that ¢)p is a positive lower semicontin-
uous convex normal integrand. By the lower semicontinuity of convex integral
functional (see [22, Theorem 8.1.6]) we obtain

imint [ vntsin (@)t > [ vnteicoyr
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that is,

T T
lim inf /0 (B (1), it (1))t > /0 (Ba(t), a(t))dt. (3.38)

n

The last step is concerned with fOT *(qn(t),C(t))dt. Note that [|g,(t)|| <
B+~ +r| B, hence 6*(g,(t),C(t)) > —r(B8+~y+r|B|). Using this and the lower
semicontinuous convex normal integrand (¢, z) — §*(z, C(t)) we obtain by [22,
Theorem 8.1.6] again that

T T
hmnlnf/o o (qn(t),C(t))dtZ/O 0% (g(t),C(t))dt.
Since
107 (gn (1), C(On (1) =0" (an(t), C(1)) | < (B+y+r]|B]|) haus(C(6n(t)), C(t)) =: en(t)

with fo en(t) — 0 as n — oo, we are ensured that

T T
hmnmf/o § (qn(t),C(t))dtZ/O 8 (g(t),C(t))dt. (3.39)

Putting together (3.37)—(3.39) yields

/ 5*(f — Bat), C(t))di+ /D ) )+ Ba(t), a(6)dt < 0. (3.40)
On the other hand, the inclusion @(t) € C(#) says that for a.e. t €
8" (f(t) +w(t) — Bu(t), C(t)) > (f(t) +w(t) — Bu(t), u(t)).
Taking this into account in (3.40) we deduce for a.e. t € I
5 (F(t) + w(t) — Bu(t), C(8)) — (F(t + w(t) — Bu(t), at) <0
The latter inequality and the inclusion @(£) € C/(f) guarantees that for a.c. ¢ € I
f(t) +w(t) — Bu(t) € Nog (u(t))

according to the description (2.1) of the normal cone. It remain to check that
w(t) € Au(t) a.e. Indeed Jy, un(t) — u(t) by writing

[|Txnun(t) = w@I| < [|Ix,un(t)) = Inw@I] + (|5, u(t) = u@)]]

< lun(t)) — @) + [|Ix, u(t) — u(®)[]| =0
From wy,(t) = Ay, un(t) € AJy, u,(t) we have that

(wn(t)v J)xnun(t)) S gT’aphA

As graphA is weakly strongly sequentially closed that implies w(t) € Au(t) a.e.
]
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Theorem 3.5. Let f : [0,T7] — H = R® be a continuous mapping and let v :
[0,T] — R be a positive nondecreasing continuous function with v(0) = 0. Let
C:[0,T] = H be a compact convez valued multimapping such that

haus (C(t),C(7)) < |v(t) —v(r)| for allt,T € [0,T].

Let B : H — H be a linear continuous coercive symmetric operator and let A :
H — 2 be a mazimal monotone operator satisfying

(A)1 |A%(z)| < e(1 + ||z||) for all z € H.

(Ao :If Ny — 0T, if (un, u) is a bounded sequence of measurable mappings on H
converging pointwise to u, then t — Ay, un(t) pointwise converge to v € L (I) .
Then, for any ug € H, there exists an W}I’OO([O,T]) solution u : [0,T] — H and a
bounded measurable mapping w : I — H such that

F() +w(t) = B G(t) € Now (G (1))
u(0) = up
w(t) € Au(t)

Further, one has ||u(t)|| < p, where p := sup{||y|| : y € C([0,T7])}.

Proof. Put I :=[0,T] and denote § := max{| f(¢)|| : t € I} (by continuity of f).
Noticing that the multimapping C|(+) is upper semicontinuous from I into H the
set C'(I) is compact, and hence p := sup{||y| : y € C(I)} is finite and L := pBy
is compact and convex.

Step I. Construction of a sequence (uy,),

We will use the Moreau ’s catching-up algorithm [33]. We consider for each n € N
A, the Yosida approxiamtion of A and the following partition of the interval
10, T given by

K3 K3

T
t”:ig =im, for 0 <i<n, II':=t7 ] for0<i<n-—1

Put uwj = up and f* = f(t7) for all ¢ = 1,..,n. By Proposition 2.1(b), there is
2z € C(t}) C L such that
[+ Ax,ug — Bzt € N (21)-

Put v} = uf + n,27'. Suppose that g, ul, .., u}, 27, 25, ..2]" are constructed. As
above by Proposition 2.1(b) there exists zj,; € C(t},;) C L such that

i1t Ay u — Bzl € NG(t;l+1)(Z?+1)7
and we set ui',; = ui + npzf’, ;. Then by induction there are finite sequences
(u")iy and (2]")!_, such that

i/

i1t A u — Bzl € NC(t?+l)(z?+1) (3.41)
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n _ n n
Uiy = U; + Mgy

From (ul)!_,, (21")i~, (f])i, we construct two sequences of mappings (un)nen

and (fp)nen from I to H, by setting f,(0) = f', u,(0) = uf and for each
i=0,.,.n—1weset f,(t) = f; and

n

falt) = fia andun(t) =i + — S(ugyy — i) fort €]t ).

n
Keeping in mind that C(t) C L = pBy we have u; € C(t?,,) C pBpg, so

1

|

— (i —uy)
n

\ el < o

From this it is clear that w,(-) is Lipschitz continuous on I with p as a Lipschitz
constant. This Lipschitz property of u,(-) ensures that ||u,(t)|] < |luo|| + pT and
up(t) = ug + ftto Un(s)ds for every t € I. We also note that [|f,(¢)|] < @ for
all n € N and ¢t € I. Now, let us define the step functions 6,,6, : I — I by
0,(0) = 6,(0) = 0 and

Qn(t) = t?—&-lv 5n(t) = t? ift E]t?7 ?—i—l]a
so the inclusion (4.1) becomes
(0.5.1) fn(t) + A,\nun(én(t)) — Bun(t) S NC(Gn(t))(un(t)) ae. tel

For each t € I we observe that there is some i € {0, ...,n—1} such that ¢ € [t} ¢} ],
and then
|0,(t) —t| — 0 and |0,(t) —t| = 0 asn — +oc.

We also note that the latter inclusion above yields
0" (fu () AN, un (0n(t)) = Bin (t), C(0n(t))) (= fn(t) = Ax, tn (0n(t)) = Bdotun (1), in(t)) < 0

with
Un(t) € C(0,(t)) C L ae. t €1,
so that u, € S} where S} :={¢ e LL(I):&(t) e Lae tel}.

Step II. Convergence to a solution.
We note that S} is a weakly compact convex set of L}, (I) (see, e.g., [22] and the
references therein). Set

¢
X:={{: 1 — H:£(t) zuo-i-/o £(s)ds, t € [0,T]; v € St}.

It is clear that X is convex, equicontinuous and compact in Cr([0,7]) As u, €
X, one can extract from (u,), a (not relabeled) subsequence which pointwise
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converges to u : I — H (i.e., up(t) — u(t) in H for each ¢ € I) such that
u(t) = up+ fot u(s)ds for all t € I and such that (i), o(LL(I), L% (I))-converges
tou € Si. Further, the inequality

[t (90 (t)) = un ()] < plon(t) — 1]

assures us that (un(5n(t)))n converges in H for each t € I. This and the
o(Li (1), L%(I)) convergence of (i), to @ in L(I) along with the inclusion
(4.1) allow us (according to the pointwise convergence of (f,,), to f and the esti-
mates from the hypotheses) to obtain that for a.e. ¢ € I the inclusions u(t) € C(t)

f(t) +w(t) — Bi(t) € Nog)(a(t))
and
w(t) € Au(t)

Our first task is to prove the inclusion u(t) € C(t) a.e. t € I. Indeed, for every
Lebesgue measurable set Z C I and for any x € H , the function 1zx € L.
Considering the inequality

(@, 1 () < 0% (2, C(On(t)))

and integrating on Z gives

/I<1Zx,un(t),>dt:/Z<x,un(t)>dts/Zé*(x,C(Hn(t)»dt-

Passing to the limit in this inequality and using the scalar upper semicontinuity
of C(-) we obtain

/<lzx,a(t)>dt < limnsup/zé*(x?C(Gn(t)))dt

I
§/Zlim:up5*(x,0(9n(t)))S/Z5*(5L"ac(t))dt»

which is equivalent to
(x,a(t)) <o0*(x,C(t)) ae. t €l.

By the separability of H and the weak compactness of C(t) (se, e.g., Castaing-
Valadier [24, Proposition III- 35]), we get the desired inclusion u(t) € C(t) a.e.
Let h € L3 (I). We first note that Ay, u,(6,(t)) = w(t) by Az so that (wy(t) :
Ay, un(0,(t))) is a uniformly bounded measurable sequence pointwise converging
to w. As consequence, we have
T T
lim/ (T, (t), wp,(t))dt = / (a(t), w(t))dt.
" Jo 0
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Similarly we note that Bi,, — Bt weakly in L (I). As a main consequence
fo + A\, un(6,(t)) — Bi, — f + w — Bu weakly in L} (I). Then we may apply
the lower semicontinuity of integral convex functional ([22], Theorem 8.1.16) to
deduce that
(1.1.2)

/ 0" (f(t)+w(t)—Bu(t),C(t))dt < lim inf/ 3 (fu(£)+Ax, un (65 (t))— By (t), C(t))dt
z " z

for every Lebesque measurable set Z C [0, T]. This need a careful look. Indeed, we
note that (¢,z) — §*(x,C(t)) is a normal lower semicontinuous convex integrand

defined on [0,7] x H and 0*(fn(t) + Ax, un(9n(t)) — Buy(t), C(t)) is measurable
and integrable:

|07 (fn (t)+Ax, tun (00 (8)) = Bin (t), C(1))] < [|fn(t)+AN, un (0 (t)) —Bin(t)|[|L| < Constant
furthermore
5*(fn(t) + A)\nun((sn(t)) - Bun(t)’ C(t)) > <fn(t) + Aknun((sn(t)) - Ban(t)vﬂ(t»

where u(t) is a measurable selection of C' (note that C' is scalarly upper semicon-
tinuous multimapping from [0,77] to L). Further we have by (1.1.1)

|6* (fn (t)+AAn Un(én (t))_Ban (t)v C(t))_é* (fn(t)+AAnun(6n(t))_Bun(t)> C(en(t)))‘

<1 fn(t) + A, un (6 (1)) — Biin (1))[|dm (C(2), C(0n(t)))
<[ fn(®) + Axun(0n(t)) = Bl (8)[|[v(t) = v(0n(t))| < Constant|v(t) — v(0n(1))]

so that
iming | 5°(£u(6) + A0 (6(8) = Bita (1), C(0n(t)) s

> lim inf /Z 5 (fult) + Ax. tn (On()) — Bitn(2), C(2))dt

(1.1.3) 2/Zé*(f(t)—i—w(t)—Bu(t),C(t))dt.

Let us set ¥p(z) = (Bx,z) if x € L and ¢(x) = +oo if # ¢ L. Then it is clear
1¥p is a positive lower semicontinuous convex integrand. Apply again the lower
semicontinuity of the integral convex functional ([22], Theorem 8.1.6) associated
with the positive normal convex integrand g we obtain,

lqméw%MWZwamﬁ
that is

(1.1.4) lim inf / (Bt (t), it (£))dt > / (Bul(t), u(t)dt.
Z

n A
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Whence we have
(1.1.5) liTrln/Z<AAnun(6n(t)),un(t)>dt: /Z<w(t)),u(t)>dt.

Similarly we have

(1.1.6) O KON RO RUORIO

because f,, is uniformly bounded and pointwise strongly converge to f and w,, —
weakly in L1 ([0,7]) by noting that a bounded sequence is L% () which pointwise
converges to 0, converges to 0 uniformly on any uniformly integrable subset of
L1 ([0,T]), in other terms it converges to 0 with respect to the Mackey topology
T(L%(]0,TY)), LY ([0,77)) (see[10]).> Now integrating on Z C [0, 7] the inequality
( here measurability and integrability are guaranted)

5*(fn(t) + A)\nun(‘sn(t)) - Bun@)? C<0n(t)))

+<_fn(t) - AAnUn(én(t))vun(t» + <Ban(t)7un(t) <0
gives

/Z 5 (f(t) + An,tn (5n(1)) — Biin (1), C(0n(1))) )t

A1)+ [ B+ [ (Fa(0) = Arun (0, (D) <0

by passing to the limit when n goes to oo in this equality using (1.1.1)—(1.1.7)
gives

(1.1.8) /Z[d*(f(t) +w(t) — Bu(t), C(t)) + (Ba(t) — w(t) — f(£), a(t))]dt < 0.

As t — 0*(f(t) +w(t) — Bu(t),C(t)) + (Bu(t) — w(t) — f(t),u(t)) is integrable,
by (1.1.8) it follow

(1.1.9)  §*(f(t) + w(t) — Bu(t),C(t)) + (Bu(t) — w(t) — f(t),u(t)) <0, a.e.
As u(t) € C(t), we have

07 (f(t) + w(t) = Bu(t), C(t)) = (f(t) + w(t) — Bu(t), u(t))

3If H = R®, one may invoke a classical fact that on bounded subsets of LS the topology
of convergence in measure coincides with the topology of uniform convergence on uniformly
integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a
lemma due to Grothendieck [26] [Ch.5 §4 no 1 Prop. 1 and exercice]
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that is
(1.1.10) " (f(t) +w(t) — Bu(t),C(t)) + (= f(t) —w(t) + Bu(t),u(t) > 0.
By (1.1.9) and (1.1.10) we get finally

3" (f(8) +w(t) — Bu(t), C(t)) = (f(t) + w(t) — Bu(t),u(t))

a.e. with 4(t) € C(t) a.e. so we conclude that f(t) +w(t) — Biu(t)) € Neog)(u(t))
a.e. It remain to check w(t) € Av(t) a.e. Indeed Jy, uy(6,(t))— — u(t) by writing

1 xn un (0n(2)) = (@) < || Jx,un(0n(t)) = In,w(®)]] + [[Ix,ult) = u@)]]

< [un(0n (1)) — w(®)|] + [[Ix,u(t) — u(®)]] = 0
From wy,(t) = Ay, un(0n(t)) € AJy, un(6,(t)) we have that

(wn(t), Jx,un(6n(t))) € graphA

As graphA is weakly strongly sequentially closed that implies w(t) € Au(t) a.e.
O

Remark We cannot expect to have uniqueness of solution. In case when H
is separable Hilbert space the result hold true if we replace the operator A is
replaced by a linear compact operator, uniqueness of solutions hold true using the
coerciveness of the operator B, then result is read as : there exist an absolutely
continuous mapping u : I — H such tthat for a.e.

{f(t) + Au(t) — B 9 (t) € Nogy (2(t))
u(0) = ug

If A: I — H is a continuous mapping with the growth condition ||Az|| < ¢(1 +
||z||), the result is read as : there exist an absolutely continuous mapping u : I —
H such that for a.e.

() + Au(t) — B g (t) € No (% (1)
u(0) = ug

Proposition 3.11. Let H be a separable Hilbert space and I = [0,T] Let ¢ :
[0,T] x H —] — 00, +00] be a normal lower semicontinuous convex integrand for
which there exists a convex weakly compact set I' such that:

(1) for allt € I, domyy :=T;

(10 {p(.,u(.)),u € S} is uniformly integrable;

(i13) o(t,z) < p(1,2)+|v(t)—v(T)| for allt,7 € [0,T],z € T wherev : [0,T] — R
is a positive nondecreasing continuous function with v(0) = 0.

Let B : H — H be a continuous symmetric linear coerciveoperator, let Ay : H —
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28 be a time measurable mazimal monotone operator satisfying

(A)1 |A%(t, )| < (1 + ||z]]) for all (t,x) € I x H.

Let (0,)nen be a sequence of measurable functions from I into I such that for each
t € I one has 0,(t) — t.

Let (fn, [)nen be a bounded sequence in L$5(I) with || fo(t)| < B,|f(@®)| < B
(8 >0) for all n € N such that (f,(t)), converges to f(t) for each t € I.

Let (up, u)nen be a sequence of absolutely continuous mappings

¢
Un () = ug +/0 Up(s)ds, un(t) €T

u(t) = ug —|—/0 u(s)ds,

such that (uy ), converges to u uniformly on I and (1), converges to @ weakly in
Li(I). Assume that for every n € N

() fu () + Ay, (, un(t)) — Bl (t) € 0p(0n(t),in(t)) a.e. t € I.

(**) An €)0,1] = 0 and Ay, (t,un(t)) — v(t) pointwise strongly
Then for a.e. t € I one has

a(t) €T,  f(t) +o(t) — Ba(t) € dp(t,at)) and v(t) € A(t, u(t))

Proof. First, Lemma 3.2 tells us that (t) € " for a.e. t € I.

First, we justify that u(t) € I a.e. t € I. Let (e,) be a dense sequence in H.
For every measurable set Z C I and for any e, € H, the function 1ze, € L¥([).
By the inequality

(epsin() < 8 (e, T)

integrating on Z gives

/1 (1z6p, (1)) dt = /Z (e itn(£))dt < /Z 5* (e, T)dt.

Passing to the upper limit in this inequality we obtain

[ ey ione< [ 5, v

This being true for any Lebesgue measurable set Z C I we deduce that for every
ep € H
(ep,u(t)) < 6" (ep,I') ae. t €.

As H is separable and I' is closed convex weakly locally weakly compact which
contain no line, by (Castaing-Valadier [24, Proposition III- 35]), we get the de-
sired inclusion 4(t) € T a.e. t € I. Take any Lebesgue measurable set Z C I.
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Since (fy)y is uniformly bounded and pointwise converges to f and (), weakly
converges in L};([0,77]) to 1 , we have

lim [ (£ (0) e dt = [ (7000 . (3.42)

This fact has been already justified in the proof of Proposition 3.4. As ¢ is normal
lower semicontinuous convex integrand, the conjugate function ¢* : [ x H —
| — 00, +0]

©*(t,y) = sup [(z,y) — ¢(t, )] (3.43)

is normal, see e.g Castaing-Valadier [24], and satisfies

¢ (ty) < @™ (1y) + |v(t) — v(7)]

for all t,7 € I, y € H using assumption (ii) ([36], Proposition 27). By using
the normality of ¢, the functions ¢ — @(0,(t),u,(t)) and t — @(t,0,(t)) are
measurable and integrable.By assumption we have

n(t) = fu(t) + Ax, (L, un (1)) = Biin(t) € 9p(0n(1), un(t))

so that by the normality of ¢*, the function t — ¢*(0,,(t), gn(t)) is measurable and
integrable, the measurability and integrability of Ay, (¢,u,(t)) is already ensured
as above. We also note that (g, @,) is measurable and integrable and the sequence
({gn, Up)) is uniformly integrable.

Further, by (3.42) and condition (i) we have

—@(t, Un(t)) + (Un(t), gn(t)) < @7 (1, qn(t)) < @™ (On(t), an(t)) + [0(t) — v(On(1))],
(3.44)
so that t — —p(t, 10, (t)) + (Un(t), g.(t)) is uniformly integrable thanks to (ii).
We note that, for hy(t) := f,.(t) + Az, (t, un(t)), (hy)n is uniformly bounded and
pointwise converges to h given by h(t) = f(t) + v(t) in H. As consequence, for
every measurable set Z in I, we have

lim [ (hp(t), 0, (1)) dt = / (h(t),u(t)) dt. (3.45)
This fact has been justified in the proof of Proposition 3.4. As B is symmetric,
we also show that Biy,(-) — Au(-) weakly in L}, (I). As consequence g, = f, +
Ay, (t,un(t)) — By () = q := f +v(t) — Bu weakly in L1, (I). Further, let us set
Yp(r) = (Br,x) if x € T and ¢(z) = 400 if x ¢ T'. Then it is clear v is a positive
lower semicontinuous convex integrand. Apply again the lower semicontinuity of
the integral convex functional ([22] Theorem 8.1.6) associated with the positive
normal lower semi continuous convex integrand 4 we obtain

1@mémeWszwmm
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that is,
lin}Linf/Z<Ban(t),un(t))dt2 /Z(Bu(t)ﬂl(t) dt. (3.46)

Now, we deduce using (3.43) and the lower semicontinuity of integral convex
functional (see [22, Theorem 8.1.6]) applied to ¢*,

/ go*(t,q(t))dtglimninf / ©*(t, qn(t))dtghmninf / O (On(t), qn(t))dt (3.47)
Z Z Z

This fact is justified because ©*(t, g, (t)) > —@(t, un(t)) + (Un(t), gn(t)), and the
sequence (—@(t,un(t)) + (n(t), gn(t))) is uniformly integrable. By

p(t,in(t)) < @(On(t), in(t)) + [0(t) — v(0n(t))]

we also have that
Jim inf / ot i (1)) dt < liminf / (00 (1), (1)) dt.
n Z n Z

As (1), weakly converges to @ € Lk (I), by the lower semi continuity theorem
([22], Theorem 8.1.6) applied to the lower semicontinuous convex integral func-
tional associated with ¢, we derive that

/ o(t,a(t)) dt < lim inf / 00 (1), (1)) it (3.48)
Z n

Z

with u(t) € I' a.e. and ¢t — @(t,u(t)) is integrable. Now integrating on the
Lebesgue measurable subset Z of I the equality

(O (1), (1)) + 9" O (1), 4 (1)) = (it (1), g (1))
gives
/Z (O (t), () i+ / " (Bu(t), gu())dt+ /Z (Adi (1), it (1) . = /Z (i (), o (1)) .

Passing to the limit as n — oo in this equality and using (3.44)—(3.47) give

/Z ot () dt + /Z o (tg(t)) dt < /Z at), q(t)) d.

By the measurability of the non negative function t — ¢(t,u(t)) + ¢*(t, q(t)) —
(u(t), q(t)), we deduce that for almost every t € I

et a(t) + ¢ (¢, q(t) — (a(t), ¢(t)) <0

along with @(t) € T'. So, it follows for almost every ¢t € I that o(t,u(t)) +
©*(t,q(t)) = (a(t), q(t)), or equivalently

q(t) = f(t) +v(t) — Au(t) € Op(t, u(t)).
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It remain to check v(t) € A(t,u(t)) a.e. Indeed Jy, (¢, un(t))— — u(t) by writing
[ (8 un(8)) — u(®)]] < {IIn, (8 u(t)) = Ix, (G u@)]] + ([, (¢ () = u(t)]]

< lun(t) — u@] + (|5, @& u(t)) — u@)][ =0

As [Jun(t) = Ix,, (8 un ()] = Al Ax, (& un (O] < An] A2(F, un (1)) < (1 +[Jun(t)]])
with A, < 1, Jy, (¢, un(t)) is uniformly bounded and pointwise converge to u(t),
so that t — Jy, (t,un(t)) converge to u in L% (I). From v,(t) = Ay, (t,un(t)) €
A(t, Iy, (t,un(t)) we show that (v, (t), Iy, (£, un(t)) € graphAy, so that (v, w,) €
graphA* with w,(t) = Jy,(t,u,(t)). As graphA* is sequentially strong weakly
closed by Lemma 0.1, with v, — v strongly hence weakly in L% (I) and w,, — u
strongly in L% (I) applying Lemma 0.1 gives (v, u) € graphA*, that implies v(t) €
A(t,u(t)) a.e. The proof is finished. O

Theorem 3.6. Let H be a separable Hilbert space.Let K be a convexr compact
subset of H. Let ¢ : [0,T] x K —] — 00, +00] be a normal lower semicontinuous
convezx integrand such that
(i {o(,u(.),u € Sk} is uniformly integrable.
(i1) p(t,z) < (1, 2)+|v(t)—v(T)| for allt,7 € [0,T],z € K wherev : [0,T] — R
is a positive nondecreasing continuous function with v(0) = 0.
Let B : H — H be a linear continuous coercive symmetric operator and let A :
H — 2" be a mazimal monotone operator satisfying the properties
(A)1 |A%)| < (1 + ||z]]) for all (t,z) € I x H.
(Ao :If Ny — 0T, if (un, u) is a bounded sequence of measurable mappings on H
converging pointwise to u, then Ay, uy(.) pointwise converge to v € L35 (1)
Let f: 1 — H be a continuous mapping.

Then, for any ug € H, there is an absolutely continuous mapping u : 1 — H
and a bounded measurable mapping v : I — H such that for a.e.,

£(8) +0(t) — Bilt) € p(t, 5 1)

u(0) = up
v(t) € Au(t)
Further the solution set {(u,v)} is compact in Cg(I) x w-L3,(I).

Proof. We will use again the Moreau ’s catching-up algorithm. We consider for
each n € N the following partition of the interval I = [0, T].
= z% =iy, for 0 <i <n. I7:=]t7 47 ] for 0 <i <n—1.
Put ug = ug and f* = f(t}) for all ¢ = 1,..,n. By Proposition 1.1 1) , there is
21 € K such that

1+ Ay ug — Bz € 0p(t], 27).
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Put v} = u{ + n,27". Suppose that ug,ul,..,u}, 27, 25, ..2]" are constructed. As
above by Proposition 1.1 1) there exists 2}, ; € K such that

fivn + A ui' — B2y € 0p(tiy, 21 1)-

and we set uj ; = uy + nnz . Then by induction there are finite sequences

(u)?, and (z/")"_; such that

1+ An,u — Bty € 0p(t g, 21 )

n . n n
Uip1 = Uy +NnZiqq

From (u})?_, (z/")i, (fI")i,, we construct two sequences u,, from [0,T] to H, f,

from [0,7T] to H, by setting f,(0) = f{*, un(0) = ug and for each i =0,..,..n — 1
we set fn(t) = fi\, and
_4n

un(t) = uff + —"(ullyy —uf)
TIn

for t €]t}, ¢}, ,]. Clearly, the mapping u,(.) is Lipschitz continuous on [0, T, and
p is a Lipschitz constant of u,(.) on [0, 7] since for every t €]t} t}' ;]

=2, € K C pBy.
Furthermore, for every ¢t € [0, 7], one has u,(t) = uo—l—f(;t Un(8)ds, hence ||u,(t)|] <
||uo|| + pT'. We have
i1 T Axui — Bzily € 0p(ti 1, 2i)-
Now, let us define the step functions 6,,,0,, : I — I by
On(t) = t?—}-la on(t) =t

if ¢ €]ty 7 1] and 0,(0) = 6,(0) = 0, and observe that for each t € I, there is
i €{0,...,n — 1} such that t € [t} ¢}, [, and then,

|0, (t) —t| = 0 and |0,(t) —t| = 0 asn — 400,
So, the last inclusion becomes

fn(t) + AAnun((sn(t)) - Bun(t) € 8(,0((9n(t), un(t))

a.e. t € [0,T] . We note that ||u,(t)|] < |Juol| + pT, [|f™(.)]| < B for all t € [0,T]
and uy(t) = ug + [ wn(s)ds for all t € [0, T] with i, € K a.e.

Step 2 Convergence of the algorithm and final conclusion
Let S3 = {h € L} ([0,T]) : h(t) € K a.e.} and let

X :={v:[0,T] > H:v(t) = u0+/0t2'1(s)ds, te[0,T]; € Sk}
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Then it is clear that S} is convex and weakly compact in L, ([0,7]) (see e.g. [22]
and the references therein) and that X is convex, equicontinuous and compact in
Cu([0,T]). As (u,) C X, one can extract from (u,) a subsequence not relabelled
which pointwise converges to w : [0,7] — H such that u(t) = up + fg u(s)ds, for
all t € [0,7] and (4,) o(LY([0,77), L% ([0,T]))-converges to @ € Sj,. By using
the normality of ¢, the mappings t — ¢(0,(t),u,(t)) and t — (¢, u,(t)) are
measurable and integrable. By construction we have

gn(t) = fn(t) + A)\nun((sn(t)) - Bun(t) € 890(9n(t)7un(t))'

by (A)s :let A\, — 07, then Ay u,(6,(¢)) pointwise converges to a bounded mea-
surable mapping v : I — H. For simplicity set

g(t) :== f(t) +v(t) — Bu(t).

As f, — f pointwise strongly, u,(d,(.)) — u(.)) pointwise strongly, and u, — «
weakly in L4 ([0, 7)), Ax,un(,(t)) pointwise converges to v, a direct application
of Proposition 3.11 gives

g(t) := f(t) +v(t) — Bu(t) € Op(t, u(t))
a.e It remain to check v(t) € Au(t) a.e. Indeed Jy, (t,u,(t))— — u(t) by writing
[ xn tn (60 (8)) — u(B)]] < ([ T3, un (0n(2) = In,u(@)I] + [|Ix, u(t)) — u(t)]|

(
< [un(9n (1)) — w(®)[] + [[Ix, (¢, u(t)) — w@)|| = 0

From vy, (t) = A, un(0n(t)) € AJy, un(0n(t)) we show that (v, w,) € graphA
with wy,(t) = Jy,un(dn(t))). As graphA is sequentially strong weakly closed,
with v,, — v strongly pointwise in H and w,, — u strongly pointwise in H this
gives (v,u) € graphA, that implies v(t) € Au(t) a.e. and finish the proof. The
compactness of solution set follows from the arguments given in the variational
limit theorem, cf Proposition 0.7. ]

Theorem 3.7. Let H be a separable Hilbert space. Let K be a convex compact
subset of H. Let ¢ : [0,T] x K —] — 00, +00] be a normal lower semicontinuous
convezx integrand such that

(i {o(.,u(.),u € Sk} is uniformly integrable.

(it) p(t,z) < (1, 2)+|v(t)—v(7)| for allt,7 € [0,T],z € K wherev : [0,T] = R
is a positive nondecreasing continuous function with v(0) = 0.

Let B : H — H be a linear continuous coercive symmetric operator. Let f : [ — H
be a continuous mapping. Let g : H — R be a convexr function Lipschitz on
bounded sets and continuously differentiable on H.

Then, for any ug € H, there is an absolutely continuous mapping u : I — H such
that for a.e.,

F(8) + Vg(u(t)) — Ba(t) € d(t, T (1)
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u(0) = ug
Further the solution set is compact in Cy(I).

Proof. We will use again the Moreau ’s catching-up algorithm. We consider for
each n € N the following partition of the interval I = [0, T].
th =4 = in, for 0 <i<m. IP:=]t?, 7 ] for 0 <i<n—1.
Put ug = ug and f' = f(t}) for all i = 1,..,n. By Proposition 1.1 1) , there is
21" € K such that

F1 4+ Vg(uf) — Bf € Dot 27).

Put v} = u{ + n,27'. Suppose that wug,ul, .., u}, 27, 25, ..2]" are constructed. As
above by Proposition 1.1 1) there exists 2}, ; € K such that

i1+ Vg(u') — By € 0p(tlq, 2 )-

and we set uj ; = uy + npz . Then by induction there are finite sequences
(ui)i and (2]')j-; such that

fiv1 +Vg(u)') — B2y € 0p(ti 1, 2 1)

n _ n n
Uit = Uy + MnZigq

From (u)?_, (/)i (fI")i,, we construct two sequences u,, from [0,7] to H, f,

from [0,7T] to H, by setting f,(0) = f{*, un(0) = ug and for each i =0,..,..n — 1
we set fn(t) = fi, and

n

un(t) = u + : (uify —ug)
TIn

7
p is a Lipschitz constant of u,(.) on [0, 77 since for every t €]t} ¢}, ]

for t €]t}, ¢}, ,]. Clearly, the mapping u,(.) is Lipschitz continuous on [0, T, and

ul o —ul _
i (t) = % =21, € K C pBy.
n

Furthermore, for every ¢ € [0, T, one has u,(t) = uo—l—fot U (s)ds, hence [|uy(t)|| <
l|uo|| + pT". We have

i1+ Vg(ui) — Bzl € 0p(ti 1, 2i'1)-
Now, let us define the step functions 60,,,0,, : I — I by
On(t) =tiy1, On(t) =t

if ¢ €]t} t},,] and 6,(0) = 6,(0) = 0, and observe that for each ¢ € I, there is
i €{0,...,n — 1} such that t € [t}, ¢} [, and then,

|0, (t) —t| = 0 and |0,(t) —t| = 0 asn — 400,
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So, the last inclusion becomes

fo(t) +Vg(un(6n(t))) — Bin(t) € 0p(On(t), in(t))

a.e. t € [0,T] . We note that ||u,(t)|] < |Juol| + pT, [|f"(.)]| < B for all t € [0,T]
and uy,(t) = up + fg Up(s)ds for all t € [0,T] with 4, € K a.e.

Step 2 Convergence of the algorithm and final conclusion
Let S3 = {h € L} ([0,T)) : h(t) € K a.e.} and let

X :={v:[0,T] - H:v(t) = uo+/0ti1(s)ds, te[0,T); v € S}

Then it is clear that S} is convex and weakly compact in L1 ([0,7]) (see e.g. [22]
and the references therein) and that X is convex, equicontinuous and compact in
Cu([0,T]). As (u,) C X, one can extract from (u,) a subsequence not relabelled
which pointwise converges to w : [0,7] — H such that u(t) = up + fg u(s)ds, for
all t € [0,7] and (4,) (LY ([0,77), L% ([0,T]))-converges to @ € S},. By using
the normality of ¢, the mappings t — ¢(0,(t),u,(t)) and t — (¢, u,(t)) are
measurable and integrable. By construction we have

gn(t) 3= fn(t) + Vg(un(0n(t))) — Biin(t) € 9p(On(t), in(t))-

For simplicity set

g(t) == f(t) + Vg(u(t)) — Bu(t).
As f, — f pointwise strongly, u,(d,(.)) — u(.)) pointwise strongly, and i, — @
weakly in LL([0,T]), Vg(un(6,(t))) pointwise converges to Vg(u(t)), a direct
application of Proposition 3.6 gives

g(t) := f(t) + Vg(u(t)) — Bi(t) € 0p(t, u(t))
a.e and finish the proof. O

Lemma 3.8. Let a time measurable mazimal monotone operatort — Ay : H — H
satisfying the conditions.

(A1) t = Ja(t,z) is L(I)-measurable for every X > 0 and for every x € H

(A2) |A%t, )| < (1 +||x]]) for all (t,x) € I x H.

If (uy) is a uniformly bounded sequence of Lebesgue measurable mappings point-
wise converging to measurable mapping u, for X €]0,1],\, — 07, Ay (¢, un(t))
weakly converge in L2, (I) to a bounded measurable mapping v, then v(t) € A(t, u(t))
a.e.

Proof. Let us set vy (t) := Ay, (t,un(t)). From Lemma we are ensured that (vy)
is bounded measurable and (v,) wealy converge to v in L% (I). We have v, (t) :
Ay, (tun(t)) € A(t, Ix(t, un(t))) with wy(t) := Jr(t,un(t))) — u(t)) pointwise.
Indeed Jy, (t,un(t))— — u(t) by writing

[ (8 un(8)) — u(®)]] < {1In, (8 u(t)) = Ix, (G w@)]] + ([, (¢ () — u(t)]]
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< lun(t) — u(@)|] + (|5, (& u(t)) — u@)]] =0

As [|un(t) = Ix, (t, un () || = Anl|Ax, (8 un ()] < M| A2(t, un(t)) < (1 +|[un(t)]])
with A, < 1, Jy, (t,un(t)) is uniformly bounded and pointwise converge to u(t),
so that t — Jy, (t,u,(t)) converge to u in L?,(I). Then from v,(t) € A(t, wn(t))
with v, — v weakly in L?,(I) and w,, — u strongly in L% (I) and (v,,w,) € A*.
by Lemma 0.1, (v,u) € A* i.e v(t) € A(t,u(t)) a.e. O

4 Well-posedness of inclusion (1.1)

Our main proofs in this section are build upon the variational inequalities in
Proposition 2.1 and the variational limits in Section 3 as well as upon an ex-
plicit catching-up algorithm (alias Moreau’s algorithm). We stress the fact that
our algorithm and tools are self contained apart from the use of the mentioned
variational inequalities.

Theorem 4.1. Let f : [0,T] — H be a continuous mapping and let v : [0,T] —
R* be a positive nondecreasing continuous function with v(0) = 0. Let C : [0,T] —
H be a weakly compact conver valued multimapping such that

haus (C(t),C(7)) < |v(t) —v(r)| for allt,T € [0,T].

Let A : H — H be a linear continuous coercive symmetric operator and let B :
H — H be a linear continuous compact operator. Then, for any ug € H, the
evolution inclusion

f(t) + Bu(t) — A%(t) € Nogy (%2(1))
= U’O
admits a unique W;I’OO([O,T]) solution w : [0,T] — H. Further, one has |[u(t)| <
p, where p:=sup{]lyl : y € C([0, T])}.

Proof. Put I := [0,T] and denote § := max{||f(¢)|| : t € I} (by continuity of
f). Noticing that the multimapping C(-) is upper semicontinuous from I into
H endowed with the weak topology, the set C'(I) is weakly compact, and hence
p:=sup{||y|l : y € C(I)} is finite and L := pBy is weakly compact and convex.

Step I. Construction of a sequence (uy),

We will use the Moreau ’s catching-up algorithm [33]. We consider for each n € N
the following partition of the interval |0, T] given by

tn

3 (2

T
=i—:=1in, for0<i<n, I =t} ¢, for0<i<n—1.
n
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Put uwj = up and f* = f(t7) for all ¢ = 1,..,n. By Proposition 2.1(b), there is
21 € C(t}) C L such that

J1' + Bug — Az € Nepy (21).-
Put v} = u{ + n,27'. Suppose that ug,ul,..,u}, 27, 25, ..2]" are constructed. As
above by Proposition 2.1(b) there exists 2j,; € C(},;) C L such that

fit1 + Buj — Az} | € NC(tl’-jrl)(zz?'l—i-l)v

and we set ul’,; = u} + np2zl’ . Then by induction there are finite sequences

(u)?_, and (2")I, such that

fif1+ Bui — Az € Negr, ) (214) (4.1)

n . n n
Uity = Uy + M-

From (ul)?_o, (27")i2; (f])iy, we construct two sequences of mappings (un)neN

and (fp)nen from I to H, by setting f,(0) = fI', un(0) = ug and for each
i=0,.,.n—1weset f,(t) = f, and

t—th
fn(t) = fi, and  wun(t) =ui + L

(uiyy — i) fort €]t} 4]
n

Keeping in mind that C(t) C L = pBy we have u; € C(t}, ;) C pBp, so
1

.

n

(uitr —ui')

= bl <o

From this it is clear that u,(-) is Lipschitz continuous on I with p as a Lipschitz
constant. This Lipschitz property of u, () ensures that ||u,(t)| < [Juo|| + pT and
un(t) = uo + ftz Un(s)ds for every t € I. We also note that || f,(t)|| < S for
alln € N and t € I. Now, let us define the step functions 6,,6, : I — I by
0,(0) = 6,(0) = 0 and

On(t) = tit1, onlt) =18 ift €], tl],
so the inclusion (4.1) becomes
Jn(t) + Bun (0 (t)) — Atn(t) € N, 1) (Un(t)) ae. t € 1.

For each ¢ € I we observe that there is some i € {0, ...,n—1} such that ¢ € [t} ¢} ],
and then
|0n,(t) —t| = 0 and |0,(t) —t] - 0 asn — +o0.

We also note that the latter inclusion above yields

6*(fn(t)+Bun(5n(t))_Aun(t)7 C(en(t)))+<_fn(t)_Bun(én(t))+Aun(t)v un(t)> <0
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with
Un(t) € C(0,(t)) C L ae. t €,

so that u, € S} where S} :={¢€ L}, (I):&(t) e Lae. tel}.

Step II. Convergence to a solution.
We note that S} is a weakly compact convex set of L}, (1) (see, e.g., [22] and the
references therein). Set

X ={&: 1T — H:&®t) :uo—i-/oté(s)ds, te[0,T]; v € St}

It is clear that X" is convex, equicontinuous and weakly compact [40] in C ([0, 1)
(see [40]). As u, € X, one can extract from (uy), a (not relabeled) subsequence
which pointwise weakly converges to u : I — H (i.e., u,(t) — u(t) weakly in H
for each t € I) such that u(t) = ug + fg u(s)ds for all ¢t € I and such that (),
o (L (1), L% (I))-converges to 1 € St. Further, the inequality

[t (90 () = un ()] < plon(t) — 1]

assures us that (un(én(t)))n converges weakly in H for each ¢ € I. This and the
o (L (1), L% (1)) convergence of (i), to © in L (I) along with the inclusion (4.1)
allow us (according to the pointwise convergence of (fy,), to f and the estimates
from the hypotheses) to apply Proposition 3.1, with v, = u,, 0§, and (, = iy, to
obtain that for a.e. ¢ € I the inclusions u(t) € C(t) and

f(t) + Bu(t) — Aui(t) € Nog) ()
hold true. This says that u(-) is solution of the inclusion of the theorem.

STEP III. Uniqueness.
The uniqueness of solutions follows easily from the coerciveness of the operator
A. Indeed let u; and us be two solutions. An easy computation gives

(Atig(t) — Aty (£), tia(£) — 1 (£)) + (Busa(t) — Buy (£), tia(t) — i (£)) < 0,
so that
(At (t) — Atn (), ia(t) — 1(t)) < B lua(t) — ua ()] li2(t) — aa ()])-
By coerciveness of A we deduce that
wllia(t) — ar(O)* < 1B [[uz(t) —ur ()] [[az(t) — @ (t)].

This entails that
: : B Bl [* . :
Jia(e) — in(e)] < 2 uatt) — (0 < 21 [ iats) — an (o) s,

By Gronwall lemma 4 (t) = ua(t) a.e. t € I, and so ui(t) = ua(t) for every t € [
since w1 (t) = ug + fg u1(s)ds and wua(t) = ug + fg Ug(s)ds. O
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Remark 4.2. The tools developed above allow to obtain further variants. The
fact that C(t) is weakly compact is required, and mainly the coerciveness of A
and the compactness assumption for the operator B. An inspection of the proof
of Theorem 4.1, shows that the compactness assumption on B is required to prove
the Fatou property,

lin%inf/ (B(un(0p,(t)), n(t))dt > / (Bu(t),u(t))dt
Z Z

So as a possible variant we may substitute the bounded operator B by the gradient
Vg of a positive convex continuous Gateaux differentiable function g : H — R
such that g(v(t)) is absolutely continuous for v : [0, 7] — H absolutely continuous,
so that by invoking the chain rule formula, see Moreau-Valadier, [35], we have the
equality

(Vo(u(t), 5(0)) = olv(t)

Hence by using this fact and the tool developed in Theorem 1.1, we obtain a
variant of Theorem 1.1 by noting that

T T
lim n /0 (Vg(n(8)) i (£)dt = limm inf /0 %g(un(t))dt

T T
> [ ot = [ (Tatun). o

It is obvious that a linear continuous operator and a gradient do not enjoy similar
properties, showing the interest of the new variant we give further. This remark
has some importance in further developments.

Now we present a variant dealing with the existence and uniqueness of abso-
lutely continuous solution to the evolution inclusion of the form

(8) + Bult) — Ai(t) € Ne (1, (1)

where f is a continuous mapping f : I — H, A is a coercive symmetric operator,
and B : H — H is a Lipschitz mapping.

Theorem 4.3. Let f : [0,T] — H be a continuous mapping and let v : [0,T] —
RT be a non-negative nondecreasing continuous function with v(0) = 0. Let
C : [0,T] — H be a strongly compact convexr valued multimapping such that
haus(C(t),C (7)) < |v(t) — v(T)| for all t,7 € [0,T]. Let A: H — H be a lin-
ear continuous coercive symmetric operator and let B : H — H be a Lipschitz
mapping, that is, for some real constant M > 0, ||Bx — By| < M|z — y|| for
all x,y € H for some positive constant M. Then, for any ug € H, the evolution

inclusion
F(t) + Bu(t) — A% (t) € N (%(t))
u(0) = ug
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admits a unique W}I’OO([O,T]) solution uw : [0,T] — H. Further, ||u(t)|| < p a.e.
t € [0,T], where p := max{|ly|| : y € C([0,T))}.

Proof. Put I := [0,T] and denote § := max{||f(¢)|| : t € I} (by continuity of
f). Noticing that the multimapping C(-) is upper semicontinuous from I into
H endowed with the norm topology, the set C'(I) is norm compact, and hence
p:=sup{|ly| : y € C(I)} is finite and L := o (C(I)) is convex and norm compact.

Step I. The sequence (uy), is constructed as in Theorem 4.1.

Step II. With the strongly compact set L = ¢o (C(I)) at hands, we see that
the set X in the proof of Theorem 4.1 is strongly compact in Cg(I). Since
u, € X we can extract from (u,), a (not relabeled) sequence which pointwise
converges to u : I — H (i.e., u,(t) — u(t) strongly in H for each t € I') such that
u(t) = uo + fot u(s)ds, for all t € I and (1), o(L}([0,T7), L ([0,T7]))-converges
to @ € Si. The inequality

[t (0 (2)) = un ()] < plon(t) — 1]

ensures that the sequence (un(én(t)))n strongly converges to u(t) for each t € I.
Consequently, we can follow Step II in the proof of Theorem 4.1 by applying
Proposition 3.2 in place of Proposition 3.1, to arrive to the fact that u(-) is a
solution of the inclusion in the present theorem.

Step III. The arguments for the uniqueness are the same as for Theorem 4.1. [

Similarly, in the proof of Theorem 4.1 employing Proposition 3.10 instead of
Proposition 3.1 we easily obtain the following case with the gradient Vg of a
convex function g in place of B.

Theorem 4.4. Let f : [0,T] — H be a continuous mapping and let v : [0,T] —
R™ be a positive nondecreasing continuous function withv(0) = 0. Let C' : [0,T] —
H be a strongly compact convex valued multimapping such that

haus (C(t),C (7)) < |v(t) —v(r)| for allt,7 € [0,T].

Let A: H — H be a linear continuous coercive symmetric operator and let g be
a convex function on H Lipschitz on bounded sets and continuously differentiable
on H. Then, for any ug € H, the evolution inclusion

F(t) + Vg(u(t)) — A G (1) € Now (5 (1)
u(0) = up

admits at least a W}{’OO([O, T)) solution w : [0,T] — H. Further, one has ||u(t)| <
p, where p:=sup{ iy : y € C([0, T))}.
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We present another variant dealing with the existence and uniqueness of ab-
solutely continuous solution to the evolution inclusion of the form

F(8) + Bu(t) — Aat) € dy(1, %(t))

where f is a bounded continuous mapping f : I — H, A is a coercive symmetric
operator, and B : H — H be a linear continuous mapping Oy is the subdifferential
of a normal lower semicontinuous convex integrand .

Theorem 4.5. Let H be a separable Hilbert space.Let K be a convexr compact
subset of H. Let ¢ : [0,T] x K —] — 00, +00] be a normal lower semicontinuous
convezx integrand such that

(i {o(,u(.),u € SL} is uniformly integrable.

(i1) p(t,z) < (1, 2)+|v(t)—v(T)| for allt,7 € [0,T],x € K wherev : [0,T] — R
is a positive nondecreasing continuous function with v(0) = 0.

Let A: H— H be a linear continuous coercive symmetric operator and B : H —
H be a linear continuous mapping.

Then, for any uy € H, the evolution inclusion
. du
F(t) + Bu(t) — Au(t) € 9p(t, (1))
u(0) = up

admits a unique W;I’OO([O,T]) solution w : [0,T] — H.

Proof. We will use again the Moreau ’s catching-up algorithm. We consider for
each n € N the following partition of the interval I = [0, 7.
t?:i% = iny, for 0 <i <n. I} =]t ¢ ] for 0 <i <n—1
Put uy = ug and f* = f(t}) for all i = 1,..,n. By Proposition 1.1 1) , there is
21" € K such that

1+ Bug — Az € 0p(t1, 21).

Put u} = uf + ny27. Suppose that uf,uy,..,ul, 27, 25, ..2]" are constructed. As
above by Proposition 1.1 1) there exists zj,; € K such that

fivq + Bui — Azl € Op(tiy, 204 1)

and we set uf,; = uj + nn2j%,. Then by induction there are finite sequences
(u")i—y and (2])_; such that

fiv1 + Bui — Azl € Op(tiy, 2% 1)

n  _ .n n
Ui = Uy + M2t
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From (u})?_, (2/")i, (fI*)i,, we construct two sequences u,, from [0,T] to H, f,

from [0,7T] to H, by setting f,(0) = f{*, un(0) = ug and for each i =0, ..,..n — 1
we set fr(t) = fii, and

_ 4N

un(t) = uf! + —(ulyy — uf)
Mn

for t €]t}, ¢}, ,]. Clearly, the mapping u,(.) is Lipschitz continuous on [0, T7], and

p is a Lipschitz constant of u,(.) on [0,77] since for every t €]t}, ¢}, ]

n n
Uipy — Uy

Un(t) = ; =2, €K CpBy.
n

Furthermore, for every ¢ € [0, T, one has u,(t) = u0+f0t U (s)ds, hence ||u,(t)|] <
lluo|| + pT. We have
i+ Bui — Azl € 0p(ti g, 20 )
Now, let us define the step functions 0,,,0,, : [ — I by
On(t) =1, On(t) =1
if ¢ €]t 7 1] and 0,(0) = 6,(0) = 0, and observe that for each t € I, there is
i €{0,...,n — 1} such that ¢ € [t}, ¢}, ,[, and then,
|0,(t) —t| = 0 and [6,(t) —t| = 0 asn — +o0,
So, the last inclusion becomes
fn(t) + Bun(6n(t)) — Atn(t) € 0p(0n(t), tn(t))

a.e. t € [0,T] . We note that ||u,(t)|| < [luo|| + pT, [|f™(.)|] < B for all t € [0,T]
and u,(t) = ug + fg Uy (s)ds for all t € [0,7] with @, € K a.e.

Step 2 Convergence of the algorithm and final conclusion
Let S3- = {h € L}, ([0,T)) : h(t) € K a.e.} and let

X :={v:[0,T] - H:v(t) = uo—i—/ot?)(s)ds, t€[0,T]; v € Sk}

Then it is clear that S} is convex and weakly compact in L}, ([0,7]) (see e.g. [22]
and the references therein) and that X is convex, equicontinuous and compact in
Cu([0,T]). As (un) C X, one can extract from (u,) a subsequence not relabelled
which pointwise converges to w : [0,7] — H such that u(t) = uo—|—f(;f u(s)ds, for all
t €[0,7] and (i) o(LL([0,T]), L3 ([0, T]))-converges to @ € Sk As ¢ is normal
lower semicontinuous convex, the conjugate function ¢* : [0,7] x H —] — 00, +0]

©*(t,y) = 22}13[@, y) — o(t, )]
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is normal, see e.g Castaing-Valadier [24] and satisfies

e (t,y) < @ (T y) + [v(t) —v(7)]

for all t,7 € [0,T],y € H using assumption (ii) ([36], Proposition 27).
By using the normality of ¢, the mappings ¢ — ¢(0,(t), 0, (t)) and t —
©(t, Uy, (t)) are measurable and integrable. By construction we have

gn(t) 7= fn(t) + Bun(0n(t)) — Atin(t) € 9p(On(t), in(t))-

For simplicity set
g(t) == F(t) + Bu(t)) — Au(t).

As f, — f pointwise strongly, u,(d,(.)) — u(.)) pointwise strongly, and u, — u
weakly in L}E([O, T)), a direct application of Proposition 3.11 and its remark gives

g(t) == f(t) + Bu(t)) — Au(t) € Op(t, u(t))
a.e and finish the proof. ]

Remarks 1) The uniqueness of solutions follows easily from the coerciveness of
the operator A. Indeed let u; and us two solutions. then by an easy computation,

(Aug(t) — Ady(t), ua(t) — ur(t)) + (Bua(t) — Bui(t), a(t) — u1(t)) <0
so that
(Adig(t) — At (t), ta(t) — 1 (2)) < |Bl[|uz(t) — ua(®)[||i2(t) — aa(B)]]
By coerciveness, we deduce that
wllia(t) = ar (O] < |Bllluz(t) — ua(®)[[ia(t) — a (t)]]
Whence
|B]

t
lia(0) — in ()1 < ) — w0l < 2 [ aa(s-yinoias

0
By Gronwall lemma 4(t) = u2(t) a and so wui(t) = us(t) since uy(t) = ug +
[y a1 (s)ds, ¥t € [0, T, ua(t) = ug + [ u2(s)ds, vt € [0, T].
2) Theorem 4.5 holds if we replace the operator B by the gradient Vg of a smooth
function g.
3) Theorem 4.5 generalizes Theorem 6 in [19] dealing with finite dimensional

space.
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5 Applications

5.1 A Skorokhod problem

We present at first a new version of the Skorokhod problem in Castaing et al
[18, 20] dealing with the sweeping process associated with an absolutely continuous
(or continuous) closed convex moving set C(t) in H. Here the novelty is the
velocity inside the nrmal cone operator. We will denote, as usual, by £(R%, R¢)
the space of linear mappings A from R? to R¢ endowed with the operator norm

|A| == sup |A(x)]

xERdalleRzizl

Re .

Given a mapping @ : I — L(R%,R®) on a compact interval I, it will be convenient
to write

Q) oe:r = Sup Q).

Theorem 5.1. Let [ := [0,1] and H = R®. Let v : I — RT be a positive
nondecreasing continuous function with v(0) = 0. Let C : I = R® be a compact
convex valued multimapping such that

(i) there is a real constant M > 0 such that C(t) C MBg for allt € I;

(#) haus (C(t), C(7)) < |v(t) —v(7)| for allt,7 € 1.

Let A : R¢ — R be a coercive symmetric linear operator and let B : R® — R€ be
a linear operator. Let z € C'=v%7([0,1],R%), the space of continuous mappings of
bounded variation defined on [0,1] with values in R?. Let b: I x R® — L(R? R€)
be a continuous integrand operator satisfying for some real My > 0

(a) |b(t,x)| < My for all (t,x) € I x R®;

(b) [b(t, ) —b(t,y)| < Myp||lx —y||lre for all (t,x,y) € I xR® xR® with the perturbed
Riemann-Stieljies integral fg b(T,z(7))dz; defined for x € C(I,RR®).

Let g : I x I x R® — R® be a continuous mapping satisfying for real My > 0:

(i) ||g(t,s,z)|| < M, for all (t,s,z) € I x I xR

(i) ||g(t, s, x) —g(t, s,9)|| < My|lx—yl| for allt,s € I, x,y € R® with the perturbed
Lebesgue integral fotg(t, s,x(s))ds defined on in C(I,RR).

Let a € C(0). Then there exist a BVC mapping x : [0,1] — R® and an absolutely
continuous mapping w : [0,1] — R® satisfying

2(0) =u(0) =a

x(t) = h(t) + k(t) + Bu(t), YVt € I
h(t) = [y b(r,2(r))dz-, VEE T
kgt) =[5 g(t,s,2(s))ds, Vt € I
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Proof. Let M := max{M,, M,}. Set for all t € I =0, 1]

t
20(¢) = a, h'(t) = T,a)dz,,
(1) = a, W1() /Ob(, )

so by Proposition 2.2 in Friz-Victoir [25], we have

t
/ b(r,a)dz;
0

t s t
/ b(r, a)dzT—/ b(r, a)dzT:/ b(t,a)dz,,
0 0 s

we see by condition (a) that

< ‘b<7 CL) ’oo:[O,l] ‘z’l—var:[o,t] .

Writing

th (t) - hl(S)H < M|z|1—va7":[s,t}
for all 0 < s <t <1, and in particular
Hh’l(t)” < M‘Z‘l—var:[o,t] < A'J|Z|lfwar:[0,l]

for all t € [0,1]. Let us set for all t € I = [0, 1]
t
kl(t) = / g(t,s,2%(s))ds forallt € I =1[0,1]
0

and note that k! is continuous with ||k!(¢)|| < M for all t € I. By an easy
computation, using conditions (i) and (i) we have the estimate ||k (t) — k()| <
M|t — |, for all 7,t € I. By Theorem 4.1 there is a unique absolutely continuous
mapping u' : I — H solution of the problem

u'(0) = a
{ hl(t) 4+ kNt) + Bu'(t) — Au'(t) € No (u'(t)) ae. t € 1
with u!(t) = a + f(f ul(s)ds for all t € I and ||u!(t)|| < M a.e. t € I. Set
t t
zH(t) = h(t) + k1(t) + Bul(t) = / b(r, 2°(7)dz, + / g(t,s,2°(s))ds + Bul(t).
0 0

Then z! is BVC with 2'(0) = a. Now we construct z™ by induction as follows.
Let for all t € I

B (t) = /0 b(r, 2" (7)) dzs
E™(t) = /O/g(t,s,x”’l(sﬂds.
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Then ||k™(t) — k™ (7)|| < M|t — 7|, for all 7,¢ € I with ||[k"(¢)|] < M for all t € I.
By Proposition 2.2 in Friz-Victoir [25] we have the estimate

th(t) - hn(s)H < M’z‘l—var:[s,t] (51)
for all 0 < s <t <1, and in particular
th(t)H < M|Z|17var:[0,t] < M|Z’17var:[0,1] (52)

forall 0 < ¢t < 1. By Theorem 1.1 there is a unique absolutely continuous mapping
u” : I — H solution of the problem

{ u™(0) = a,

h(t) + K" () + Bu(t) — Ai"(t) € Negy(@7(t) ae. €t € T

with u"(t) = a + f(f " (s)ds for all t € I and ||[a™(t)|| < M a.e. t € I. Set for all
tel

()= Bk () + B (1) = /0 b(r, 2" (7)) dzrt /O o(t, 5,21 (s))ds-+ Bu™ (1)

so that 2" is BVC.

As (u™)y, is equi-Lipschitz continuous (with M as Lipschitz constant) we may
suppose that (u™),, converges uniformly to a Lipschitz continuous mapping u : I —
H with u(t) = a+ j(f u(s)ds for all t € I and with [|a(t)|| < M for a.e. t € I. We
may also suppose that (i), weakly converges in L} () to 1, and by Arzela-Ascoli
theorem we may suppose that (k™),, converges uniformly to a continuous mapping
k :I — H. Thanks to (5.1) (h™), is bounded and equicontinuous. By Arzela-
Ascoli theorem again, we may suppose that (h"),, converge uniformly to a continu-
ous mapping h. Similarly (k"),, is bounded and equi-Lipschitz. By Arzeala-Ascoli
theorem, we may suppose that (k™),, converges uniformly to a continuous mapping
k. Then putting z"(t) = h"™(t)+k"™(t) + Bu"(t) and x(t) := h(t) + k(t) + Bu(t), we
see that (z™), converges uniformly to z, and (b(., x”_l(.)))n converges uniformly
to b(., z(.)) according to the Lipschitz condition (b). Therefore, by Friz-Victoir [25,
Proposition 2.7] fg b(r, 2" 1(7))dz, converge uniformly in t € I to fg b(r,x(7))dzr
as n — oo. By hypothesis (ii), g(t,s, 2" 1(s)) converges to g(t, s, z(s)) for every
(t,s) € I x I, hence f(f g(t,s,z"1(s))ds — fgg(t./s,q:(s))ds for each t € I by
Lebesgue dominated convergence theorem. So we can write

z(t) = lim 2"(t)

n— oo
t t
T n—1 . n—1 : n
—T}Ln;o ; b(r,z (T))dZT+7}LH;O ; g(t,s,x (S))dS+TLlL>II;OBu (t)

:/ b(T,x(T))dZT-‘r-/ g(t,s,z(s))ds + Buf(t).
0 0
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From the inclusion
R™(t) + k" (t) + Bu"(t) — Au"(t)) € No)(u"(t)) ae. t €1
and the above convergence, applying Proposition 3.1 we obtain
h(t) + k(t) + Bu(t) — Au(t) € No)(u(t)) a.e. t € I.
The proof is therefore complete. O

Our tools allow to state several variants of Theorem 5.1 according to the
nature of the perturbation and the operator. Actually Theorem 5.1 holds true if
B : H — H is a Lipschitz mapping, that is, there is some real constant M > 0
such that | Bx — By|| < M ||z —y|| for all z,y € H. Theorem 5.1 is still valid if we
replace B by the gradient Vg of a positive convex function g : H — R Lipschitz
on bounded sets and continuously differentiable.

5.2 Towards an application in Optimal Control problem

In the previous results we have developed the Skorokhod problem associated with
the sweeping process with Riemann-Stieltjes integral perturbation. This leads to
study the following optimal control problem.

Proposition 5.1. Let I := [0,1] and H = R®. Let v : I — RT be a positive
nondecreasing continuous function with v(0) = 0. Let C' : I = R® be a compact
convex valued multimapping such that
(i) C(t) C MBge for allt € I where M is a positive constant;
(7i) hausge (C(t), C(7)) < |v(t) — v(T)| for all t,7 € I.
Let A : R — R be a coercive symmetric linear operator and let B : R® — R be
a clinear operator. Let z € C'=v7([0,1],R%), the space of continuous functions of
bounded variation defined on [0,1] with values in RY. Let L(R?,R®) be the space
of linear mappings A from R? to R® endowed with the operator norm
[Al:==" sup  [|A(@)]|re
z€RY,||z]|pa=1
Let us consider a continuous integrand operator b : [0,1] x R® — L(R? R®)

satisfying
(a) |b(t,x)| < M for all (t,x) € I x R;
(b) |b(t,z) — b(t,y)| < M||z — y||ge for all (t,x,y) € I x R® x R°.
Let V : R — R be a bounded continuous mapping. Let L : [0,1] xR x R¢ x R¢ —
[0, 00] be a lower semicontinuous integrand such that L(t,x,y,.) is conver on R®
for every (t,x,y) € [0,1] x R® x R¢. Then the problem of minimizing the cost
function fol L(t,x(t),y(t),y(t))dt subject to

dxry = V(a;t)dzt, t e [0, 1]

xg =Y € R®

y(0) =yo € C(0)

o b(r,x(7))dzr + By(t) — Aj(t) € Noy(%(t)), a.e.t €[0,T]
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has an optimal solution.

Proof. Let us consider a minimizing sequence (&, yn), in Y, that is,

T T
lim [ L(t,2n(t), yn(t), yn(t))dt = inf / L(t,u(t), v(t), o(t))dt,
n—o0 0 (U7U)ey 0
where Y is the set of solutions (z,y) to the above dynamical system. First by [25,
Theorem 3.4] we assert that the C1=v%" (I, R¢)-solution set to

dry = V($t)d2t, tel
xo =1 € R€

is compact in C(I,R¢) and so is the W1°°(I,R¢)-solution set to

y(0) = yo € C(0)
JEb(r, 2(r))dzr + By(t) — A <%(t)) € Neg (%)), aetel,

Then (z,), converges uniformly to some x € C'7Y*(I,R®) with z; = ¢ +
fot V(xs)dzs, and (y,), converges to y € W1°(I,R®) and (¢,), converges to
y weakly in L. (I).

Applying the lower semicontinuity of the integral functional (][22, Theorem 8.16])
gives

1 1
lim inf /0 Lt, 2n(t), yn(t), g (t))dt > /0 L(t, (), y(t), §(t))dt.

n
From the inclusion

! , dyn
| bz + B 0) = A (e) € Nego (1)

and the fact that lim,, fg b(r, xn(7))dzr = fg b(t,x(7))dz; uniformly with respect
to t € I (cf the proof of Theorem 5.1) we obtain by using Proposition 3.2 that

/0 b(t,z(7))dzr + By(t) — Ay(t) € Nc(t)(%(t)) ae. tel.

We then conclude that (x,y) is an optimal solution. O

Several variants of the preceding theorem are available using Theorems 4.3
and 4.4 along with Propositions 3.2 and 3.10.

In the following we will examine a Bolza problem and its relaxation associated
with a Young integral perturbation of a sweeping process with a Lipschitzian
moving compact set C(t), say hausge(C(t),C(s)) < a|t — s|. First, we need some
notation and background on Young integral and Young measures in this special
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context.
Young integral. Let z € C'~%" ([0, T],R%), that is, z is a bounded variation
continuous mapping defined on [0, 7' with values in R%. We remind that £(R?, R¢)
denotes the space of linear mappings A from R? to R¢ endowed with the operator
norm

A= swp o JA@)e

z€RY, || z]|pa=1

Let us consider a continuous integrand operator b : [0,T] x R® — L(R? R¢)
satisfying
(By) : [b(t, z)| < M, VzeR

(Ba) = [b(t, x) = b(r,y)| < p(t) = p(1) + M|z = y[lge, 0 <7 <t <T, Va,y € R

where p : [0,7] — RT is a positive nondecreasing continuous function and M is
a positive constant. If a sequence (uy,), of continuous mappings from [0, 7] into
R€ is uniformly bounded and uniformly bounded in variation, then the sequence
(Yn)n, With y,(t) = b(t,un(t)), is formed with mappings which are continuous,
uniformly bounded and uniformly bounded in variation from [0, 7] to £(R9, R€),
shortly y, € C*=v ([0, T], L(R4 R®)). Indeed we have

[9n(t) = yn(7)] < p(t) = p(7) + Mlun(t) = un(7)]|re

for all 7 < ¢ < T, so that sup,, [yn|1—varysy < 00 for all 0 < s <t < T. As

consequence the Young integral fg Yn(s)dzs of y, against z is well-defined and
belongs to C1=v%7(]0,T],R®) according to Friz-Victoir [25], with the following
estimates

t
1
[ )| < g vl o+ (9) 260) = (5 s
S
1
< 1 _ 910 |Z|1—W7”;[87t] yn|1—var;[s,t} + M||z(t) — 2(s)||pe

forall 0 < s <t<7T with 8§ =2 and

/0 yn(F)dz:

for all 0 < s <t <T. As consequence

¢
’ / Yndz

< 0(17 1)|Z‘17var;[s,t] (|yn‘lfvar;[s,t] + |yn‘oo;[s,t])

1—var;[s,t]

1
< W’Z‘l—var;[s,t]‘yn|1—var;[s,t] + \yn(s)\ ||Z(t) - Z(S)HRd

-1
1
< 1 _ 910 |Z|1—Ua'r;[s,t]|yn‘1—var;[s,t] + M||Z(t) - Z(S)HRd
1
< ﬁ‘zhfvar;[s,t] sup |yn|17var;[s,t] + sup MHZ(t) - Z(S)HRd
-2 n s€[0,T]
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forall 0 < s <t<7T with 8§ =2 and

/ | Yndz
0

for all 0 < s <t < T. Shortly the sequence g,(.) = [;yndz of C'~"([0,T],R®)
mappings is uniformly bounded, equicontinuous and uniformly bounded in varia-
tion.

< C(lv 1)’Z‘17var;[s,t] sup (|yn‘17var;[s,t] + |yn‘oo;[s,t])
n

1—var;[s,t]

Now let E be a separable reflexive Banach space. Let us consider a weakly
compact convex valued multimapping K : [0,1] = Bg with bounded right con-
tinuous retraction in the sense, there is a bounded and right continuous function
p:[0,1] — R such that

haus(K (t), K(7)) < p(1) = p(t) for allt <7 € 0,1]

and such that its graph is Borelian, that is, gph (C) € B([0,7]) ® B(E). We
consider the control sets given by

SBVEC .— (4,:]0,1] = E,uis BVRC, u(t) € K(t), ¥t € [0,1]}

S = {u e L™([0,1], E,dt), u(t) € K(t), Vte[0,T].}

By J.J. Moreau ([34], Prop.5 d, p. 198) and Valadier [42] these sets are non empty
and cl SEVRC = S%, here cl denotes the closure with respect to the o (LS, L}E*)—
topology. Shortly, SIB;VRC is dense in S with respect to this topology.

Our next theorem, say theorem 5.2, will present relaxation results for a Bolza
optimal control problem governed by EVI sweeping processes of the types devel-
oped in the previous sections. The control will belong either in SI]?VRC or S§.
In the theorem A : R® — R¢ is a coercive symmetric linear operator while B is a
linear operator on R® and b : [0, 7] x R® — L£(R? R¢) is a mapping satisfying (B;)
and (Bs).

Theorem 5.2. With the Hilbert space R¢ consider the problem

T t
inf )/0 </O b(s, u(s))dzs, C(1))dt

P<BVRC
( sB

associated, for I :=[0,T], with the dynamical system

[7¢(s)ds + Bu(t) + Au(t) € Nogy(a(t)),t € 1,¢ € SEVRC
(Pspvre) { JEO) =a € C(0) v “
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as well as the problem

inf /T</0t b(s, u(s))dzs, C(£))dt

(Pssee) Jo
associated with the dynamic system

[Y¢(s)ds + Bu(t) + Au(t) € Nog(a(t)),t € I, € S
(Psze) { u(%O)—aGC( 0). v :

Then one has inf (Psy ) = inf (PSEVRC, and as a consequence

T t
e /0 ( /0 b(s, u(s))dzs, C(1))dt

has a minimizer.

Proof. The inequality inf (Psx) < inf (Psgxfﬁ(7) is a simple consequence of the
Valadier result mentioned above since any BVRC mappin,g is Borelian. Take and
any ¢ € V2. As SBVEC i sequentially dense in V32 with respect to the o(LS, L)
topology, there exists a sequence ((n) inSg BVEC guch that (Cn) o(L$, L) converge
to ¢. For simplicity set f,(t) fo Cn(s)ds , and f(t) fo s)ds for all ¢t € [0, T).
Then it is clear that f, and f Contlnuous umformly bounded with f,(t) — f(t)
for every t € [0,T]. Let u, be the unique Lipschitz solution to

{ JiCu(8)ds + Buy(t) + At (t) € Negy (in (), t € 1,
un(0) =a € C(0)

and let v be the unique Lipschitz solution to

{ fo s)ds + Bo(t) + Ai(t) € N (0(t)),t € 1,
u(0) = a € C(0)

In view Theorem 4.1 and Proposition 3.1 the sequence (un) is equi Lipchitz
and converges uniformly to v. For simplicity set g, (¢ fo S, Up(8s))dzs for
all t € [0,T]. Applying the foregoing estimates concemmg the Young mteglal,
the sequence (g ), is uniformly bounded, equicontinuous and uniformly bounded
in variation. Indeed, by condition (Bs), the sequence (b(-,u,(-))), converge uni-
formly to b(-,v(+)). Asb(.,un(.)) and b(.,v(.)) are bounded and uniformly bounded
in variation, by FI‘lZ Victoir ([25 Proposition 6.12]) (g ), converges uniformly to
g defined by g(t fo s))dzs, so that

T st T st
lim ; (/0 b(sjun(s))dzs,(:n(t»dt:/o (/0 b(s,v(s)dzs, ¢(t))dt

n—oo
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Since

/:(/Otb(s,un(s)dzs,Cn(t))dt> Sgavfm/ /bsu Vdzs, C(£))dt

for all n € N, it follows by taking the limit that

T t
/ ( / b(s, v(s))dzs, C(1))dt > inf (Pgpvnc).
0 0

This holds for every ¢ € Vi, hence inf (Pye) > inf (,PSEVRC). O

For simplicity we considered in Theorem 5.2 a simple perturbation control
integral in the form fo s)ds. This theorem is still valid with the perturbation

control integral fo D((s)ds where D : R® — R€ is a linear operator. Several other
variants of Theorem 5.2 are available using Theorems 4.1 and 4.3 along with
Propositions 3.2 and 3.10.

Young measures. For the sake of completeness of the next development
of Theorem 5.3, we summarize some useful facts concerning Young measures.
Let (92, F, P) be a complete probability space. Let X be a Polish space and let
C®(X,R) be the space of all bounded continuous functions defined on X. Let
ML (X) be the set of all Borel probability measures on X equipped with the
narrow topology. A Young measure v : 2 — M}F(X ) is, by definition, a scalarly
measurable mapping from into /\/l1 (X), that is, for every f € C*(X,R), the
mapping w — (f,v,) = [ f X dyw (z) is F-measurable. A sequence (v™) in
the space of Young measures y(Q F,P; MY (X)) stably converges to a Young
measure v € Y(Q, F, P; M} (X)) if the following holds:

[ ([ r@aze)are = [ ([ @) ape)

for every A € F and for every f € C°(X,R).

In the remainder Z is a compact metric space, ML (Z) is the space of all Radon
probability measures on Z. We will endow Mfr(Z ) with the narrow topology so
that M! (Z) is a compact metrizable space. For I := [0,1] let us denote by
V(I; MY (Z)) the space of all Young measures defined on I endowed with the
stable topology so that Y([; M}r(Z )) is a compact metrizable space with respect
to this topology. By the Portmanteau Theorem for Young measures [22, Theorem
2.1.3], a sequence (v") in Y(I; M’ (Z)) stably converges to v € Y(I; ML (2)) if

lim. OT ( /Z ht(z)dz/f(z)) it — /0 ! < /Z ht(z)dz/t(z)> dt

for all h € L1(I,Cr(Z)); here Cr(Z) denotes the space of all continuous real valued
functions defined on Z endowed with the norm of uniform convergence. Finally
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let I" be a measurable multimapping defined on I with nonempty compact values
in Z and let St be the set of all Lebesgue measurable selections of I' (alias original
controls).

Let C : [0,T] = R® be a compact valued Lipschitzian multimapping and let
f I x Z — R be a mapping satisfying
(1) for every fixed ¢ € I, f(¢,-) is continuous on Z,
(2) for every z € Z, f(-,z) is Lebesgue-measurable on I;
(3) there is a constant M > 0 such that ||f(¢, z)|| < M for all (t,2) in I x Z.

We aim to present some relaxation problems in the framework of Optimal
Control Theory. We consider the evolution inclusion (PQ) associated with original
controls

{ fD dS + BUC( ) AiLC(t) S Nc(t)(ﬂg(t))), ae. tel,
uC(O) — uo e C(0),

where ¢ belongs to the set Z := S% of all original controls, which means that ( is a
Lebesgue-measurable selection of ', and the evolution inclusion (PR) associated
with relaxed controls

{ fo 1[5, f(s,2)vs(dz)]ds + Bu,(t) — A, (t) € New (i, (t))), ae. t € 1
u,(0) = uy € C(0),

where v belongs to the set R := Sy, of all relaxed controls, which means that v is
a Lebesgue-measurable selection of the multimapping ¥ defined by

t):={oe ML(Z):0(I(t) =1}

for all t € I. Note that, for v € R, the mapping

hy : (t,z) — /Zf(tjz)l/t(dz)

inherits the properties
(1) for every fixed t € I, h,(t,-) is continuous on Z;
(2) for every z € Z, h,(-, z) is Lebesgue-measurable on I;
(3) there is a constant M > 0 such that ||k, (¢, 2)|| < M for all (¢,z) in I x Z.
Consequently, for each ( € Z (resp. v € R), the evolution inclusion (PQO) (resp.
(PR)) has a unique Lipschitz continuous solution. Moreover, there is an a priori
bound for the Lipschitz ratio of solutions which easily implies that the solution
sets (SO) and (SR) (to (PO) and (PR)) are equi-Lipschitz.

We can now prove the following theorem establishing some topological prop-
erties of the solution sets (Sp) and (Sr), namely we obtain the typical relaxation
result that the former is dense in the latter.

Theorem 5.3. Let [ := [0,1] and let C': I = R® be a compact convezr valued
Lipschitz multimapping. Let f : I x Z — R® be a mapping satisfying (1), (2), (3).
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Then the following hold:
(a) the solution set (Sg) to

{ fo [ f(s, 2)vs(dz)|ds+ Bu, (t) — At (t) € Nopy (4, (t))), a.e.tel, vER
uy(0) = ug € C(0)

is nonempty and compact in C(I,R€).
(b) the solution set (Sp) to

( { fO dS + BUC( ) AiLc(t) S Nc(t)(ﬂc(t))), aetel, (€Z
uC(O) _ uo € C(0)

is dense in (Sg) with respect to the topology of uniform convergence.

Proof. (a) By Theorem 4.1, the solution set (Sg) is bounded and equi-Lipschitz.
Then (Sg) is relatively compact in C(I,R¢), by Arzela-Ascoli theorem. Therefore,
for (™) C R, there is a subsequence still denoted by (u,n) which converges
uniformly to a Lipschitz continuous mapping u* with ||[a*(¢)|| < K a.e. t € I
and such that also (1) o(L*(I, R dt), L°°(I,R¢; dt))-converges to ™. As R is
compact and metrizable for the stable topology, we may suppose that (v™) stably
converges to v*° € R. Since the continuous functions g, and g, given for all ¢t € T

by t
:/0 [/Zf(s,z)yg(dz)]ds

_ /Ot[/z F(s, 202 (d2)|ds

are uniformly bounded, and since g, (t) — g(t) for every ¢t € I, from the inclusion

gn(t) + Buy (t) — At (t) € N (i (1))

and Proposition 3.2, we deduce that

and

9(t) + Buyes (1) = Atiyoo (1) € Ny (e (1)))-

This proves the first part of the theorem.
(b) The second part follows by continuity and density, since Z is dense in R with
respect to the stable topology ([22, Lemma 7.1.1]). O

With notation and assumptions in Theorem 5.3

Theorem 5.4. With notation and assumptions in Theorem 5.3 let us consider

the problem
mf/ / s, u( dzs,//fszusdz ds>d
(Pr)
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associated with the dynamic system

(Pr { fo ([, f(s,2)vs(d2)]ds + Bu,(t) — Ay (t) € Now (i (1)), ae.t €I, vER
u,(0) = up € C(0)

and the problem

/0T</0t b(s,u(s))dzs,/Oth(s’c(s))dswt

associated with the dynamic system

( { fO dS-f-BUg( ) Allc(t) S NC(t)(ﬂc(t))), aetel (€2
u(O) —q e C(0)

Then one has inf (Pr) = inf (Po) and

ot / / 5, u(s))dzs, / [ / h(s, 2)ve(dz))ds)d

has a minimizer.

Proof. The inequality inf (Pr) > inf (Pp) is clear. Fix any v € R. Let ((,), in
Z with

t t
lirn/ f(s,¢n(s))ds —/ [/ f(s,2)vs(dz)]ds for all t € I.
" Jo 0o Jz
Let u, be the unique Lipschitz solution to

{ Un(t) € Nogyun(t —l—fo ))ds, ae.t €1
un(0) = a € C(0)

and let v be the unique Lipschitz solution to

{ o(t) € Negyv(t —i—fofz (s,2)vs(dz)]|ds, ae. t € T
U(O)—aeC(O)

In view of the first step of the proof of Theorem 5.3 the sequence (un), con-
verges uniformly to v. For simplicity set g, (t fo S,up(s))dzs for all t € I.
Apply the foregoing estimates related to the Young integral, the sequence (gn)n
is uniformly bounded, equicontinuous and uniformly bounded in variation. By
condition (By) the sequence (b(-,un(-)))n converges uniformly to b(-,v(-)). As
b(-,upn(-)) and b(-,v(-)) are bounded and uniformly bounded in variation, by
Frlz Victoir ([25 Proposition 6.12]) (gn)n converges unlforrnly to g defined by
fo ))dzs. For simplicity set k(¢ fo ))ds and k(t) =
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Jolf f(s,2)v5(d2)]ds, so that lim,, (g, (1), ka(1)) = (9(t), k(t)). Since (gn)n, 9,
(kn)n, k are uniformly bounded, we deduce that

T t t T
nh_{r;o ; (/0 b(s,un(s))dzs,/o h(s,(n(s))ds>dt:nh_>ngo ; (gn(t), kn(t))dt
T t t
_ /O (o), k() dt = ( /0 b(s, v(s)dzs, /O [ /Z h(s, =)vs(d=)]ds) dt.
As

/OT(/Ot b(s,un(s)dzs, /ot h<3aCn(3))d8>dt > inf(Po)

for all n € N, it follows by taking the limit that

/0T</Ot b(s,v(s))dzs,/ot[/z h(s, 2)vs(d2)]ds)dt > inf(Pe)

Since this holds for every v € R, we conclude that inf (Pr) > inf (Po). O

5.3 Towards fractional inclusion coupled with EVI and sweeping
process

Now given I = [0, 1] we investigate a class of boundary value problems governed
by a fractional differential inclusion (FDI) (5.3) in the separable Hilbert space H
coupled with the evolution inclusion governed by the (EVI) (5.4) and sweeping
process (5.6) below.

DPh(t) + AD* " h(t) = u(t),t € I,
tip_ g)B—1 101 _ gpr—1
12, 1(t) =0 ::g%/o (tr(;)h(s)ds ~0, h(1)zlg+h(1):/0 um);h(s)ds,
(5.3)
F(t, h() + Bu(t) — Aut) € dp(t, u(t)) ae. t € T
and
F(h(1)) + Bu(t) — Ai(t) € Nog (i(t)) ac. t € 1,

where « €]1,2], 8 € [0,2—a],\ > 0, > 0 are given constants, D is the standard
Riemann-Liouville fractional derivative , I' is the Classical gamma function.

For the convenience of the reader, we begin with a few reminders of the con-
cepts which will be used in this subsection.

Definition 5.1 (Fractional Bochner integral). Let E be a separable Banach space
and f : I = [0,1] — E. The fractional Bochner-integral of order o > 0 of the
function f is defined by

t —s a—1
IS f(t) = /0 (trw)[)f(s)ds, t > 0.
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In the above definition, the sign “[” denotes the classical Bochner integral.
Lemma 5.5 ([37]). Let f € L'(I, E,dt) with I = [0,1].
(a) If a €]0,1] then IS, f exists almost everywhere on I and I$, f € L'(I, E, dt).
(b) If a€[l,00) then I§, f € Cr(I).

Definition 5.2. Let E be a separable Banach space and let f € L}E(I, E, dt) with
I:=10,1]. One defines the Riemann-Liouville fractional derivative of order a > 0

of f by

dn dn t _ \n—a—1
D f(0) = D5 (0 = a0 = g [ O psas

where n = [a] + 1 and [o] is the integer part of .

We denote by Wg%([ ) the space of all continuous functions in Cg(I) such that
their Riemann-Liouville fractional derivatives of order o — 1 are continuous and
their Riemann-Liouville fractional derivatives of order oo are Bochner integrable.
Green function and its properties.

In all the rest of this subsection o €]1,2], 5 € [0,2 — a],A > 0,7 > 0. Let
G : [0,1] x [0,1] — R be the Green function defined by

exp()\s)I;"fl(exp(—)\t)), 0<s<t<1,
G(t,s) = @(s)[57 " (exp(=At)) +

0, 0<t<s<l,
(5.4)
where
o(s) = Z2E (12 expl-a)) (1) - (1 o) (0] (59
with
o = (157 (exp(=20))) (1) = (157 (exp(=2)) ) (). (5.6)

We recall and summarize a useful result ([16]).

Lemma 5.6. Let E be a separable Banach space and let G be the function defined
by (5.4)-(5.6). For « €]1,2] the following hold:

(a) G(-,-) satisfies the estimate

1 1+T(y+1)
= T (uoll“(a)l“(7+ i

|G(t,s) ) + 1> = Mg.
(b) Ifuc Wg:}f ([0,1]) satisfying boundary conditions (5.3), then
1
u(t) = / G(t,s) (D*u(s) + AD* tu(s)) ds for everyt € [0,1].
0
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(c) Let f € L%([0,1]) and let us : [0,1] — E be the function defined by

1
:/G(t,s)f(s)ds for telo,1].
0

Then

Ioup(t) limo =0 and up(1) = (I us) (1).

Moreover uy € Wg’g([o, 1]) and one has for every t € [0, 1]

t 1
a=ly, = exp(— —s s)ds + exp(— s)f(s)ds
(D°uy) (1) / D(=A(t — 5))f(s)ds + exp(~At) / o (5) f(5)ds,

(Da’lLf) (t) + A (Da_lu]f) (t) =f (t) .
From Lemma 5.6 we derive a crucial feature.

Lemma 5.7. Let E be a separable Banach space and let f € L'(I,E,dt) with
I:=10,1]. Then the boundary value problem

{ Du(t) + AD* tu(t) = f(t), tel
ou(t) =0 =0, (1) = IJ,u(1)

has a unique Wg:g([)-solution defined by

/ G(t,s)f(s)ds, textforall t € I.

Theorem 5.8. Let E be a separable Banach space, o €|1,2) and I := [0,1].
Let X : I = E be a compact convex valued measurable multimapping such that
X (t) CvBg for all t € I, where y is a positive constant. Let S be the set of all
measurable selections of X. Then the Wg:g(l)—solutions set of problem

{ Dou(t) + AD* tu(t) = f(t),f € Sk, ae. t €1
ou(t) =0 =0, (1) = I u(1)

is compact in Cp([).

Proof. By virtue of Lemma 5.7 the WE’E(I )-solutions set X to the above inclusion
is characterized by

X={us: 1= E, up(t /Gts s)ds, fe Sk, tell). (5.7)

Claim: X is bounded, convex, equicontinuous and compact in Cg (7).
From the definition of the Green function G, it is not difficult to show that
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{uf : f € Sk} is bounded, equicontinuous in Cg(I). To show first the rela-

tive compactness take any sequence (uy, ), in X. We note that, for each n € N,

we have uy, € Wg}E(I) , and
1
uf, (t) :/ G(t,s)fn(s)ds, tel,
0

with by Lemma 5.6

o Ijiug, (Oli=o =0, uy, (1) = I,u(l),
t 1

° (Do‘_lufn) (t) :/ exp(—A(t — s))fn(s)ds—i—exp(—)\t)/ o(s)fn(s)ds, t €1,
0 0

o (D%uy,) (t) + A (D tuy,) (t) = fu(t), t € 1.

Consider any t1,to € I with t; < to. Let us write

1
up, (t2) — ug, () = / G(t, 8)(fu(5) — fuls))ds

—\T —A\T

= 1g0(s)fn(s)ds ’ Tla =1 (; — (ta — T)a72d7'— " Tla_1 ea — (t1 — T)a72d7'
0 o I( ) o I( )

+ /0t2 e (/:2 (?(OZT_)(I;Q 6)‘Td7'> fn(s)ds

B t1 6)\3 t1 %(tl . T)andT fn(S)dS,
0 s F(a 1)

which gives with ®(¢,7) := (t — 7)*2/T'(ac — 1)

uy, (t2) —uy, (1)
= /01 0(3) fa(s)ds Uotl e M (D(ta,7) — (P(t1,7'))d7'+/t2 eATé(tQ,T)dT}

+/Ot1 s </:1 e (B(ta,T) — <I>(tm))dr) Fu(s)ds |

to

+ /t1 e (/tQ e/\T<I>(t2,T)dT) fn(s)ds +/:2 e (/ eAT(I)(tQ,T)d7—> fn(s)ds.

0 t1
Then, putting | X (s)| := sup{||y|| : y € X(s)} it follows that

[, (E2) = ug, (1)
T)a—2 . (tQ o T)a—2

< /01 (!@(S)! - eAS) | X (s)|ds /Otl e~ (01 = o 1) dr

+ /01 (]go(s)| + eks) | X (5)|ds /: ekfmdf
+ /;2 ™| X (s)|ds /;2 e_’\T(tIZ‘(;i)alde.
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It is easy to see, after an integration by parts, that

t -2 -2 t —1
/2 €—>\T (t2 B 7—)04 dT — e—/\tl (tQ — t1>a 4 A/ ? 6—)\7' (tQ ; T)a dT
t1

I(a—1) I(a) t (@)
1+ A
< ——(ta — 1)
< Tt —t)
and
t1 o a—2 . a—2 t1 o a—2 o a—2
/ ot —7) (t2 = 7) drg/ (i —7) (t2 —7)*"
0 [ —1) 0 [(a=1)
(e —t) ety gt
I(a)
Using for p €]0, 1] the inequality |a? — 0P| < |a — b|P for all a,b > 0, we deduce
that . ( Jom2 _ ( o2
1 to — 7)) % — (t1 — 1)
_ar \2 1
dr to —1
X M- 1) < e ="

Then, since a €]1, 2], we can estimate |luy, (t2) — uy, (t1)| by
g, (t2) =y, (8] < K[tz — 1]

with K:fol (B4 N)[¢(s)| + (44 2X)e**] | X (s)|ds. This shows that {uy, : n € N}
is equicontinuous in Cg([). Moreover, for each t € I the set {uy,(t) :n € N}
is contained in the compact convex set fol G(t,s)X(s)ds [?, 24], so that X is
relatively compact in Cg(I) as claimed. It remains to justify that X is closed in
Cp(I). Let (uy,), in X converging to u in Cg(I). As Sk is o(L};, L% )-compact
(see, e.g, [24]) we may suppose that (fn)n (L, L. )-converges to fo € S&. Then
(u . )n pointwise weakly converges to uys,_, with us € Cg(I) given by uy _(t) =
fo (t,8) foo(s)ds. Therefore, for each t € T
1
Uso(t) = w- lim uyg, (1) = w- lim G(t,s)fn(s)ds

n—r60 n—oo Jq
:/O G(t,s) foo(s)ds = us (1),

SO Use = Uy, and the desired closedness of X' in Cg([) is confirmed. The proof
of the theorem is complete. ]

We can now state and prove the theorem concerned with a fractional inclusion
coupled with an EVI.

Theorem 5.9. Let I := [0,1] and H be a separable Hilbert space. Let K be a
compact convex equilibrated subset of H. Let ¢ : I x H —] — 00, +00] be a normal
lower semicontinuous conver integrand such that dom ¢(t,-) = K for allt € I and
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(i {o(,u(.),u € SL} is uniformly integrable;
(11) p(t,z) < (1, 2) + [v(t) —v(T)| forallt, 7 € I, v € K, wherev: I - R" is a
positive nondecreasing continuous function with v(0) = 0.
Let A: H— H be a continuous coercive symmetric linear operator and B : H —
H be a continuous linear operator. Let f : I x H — H be a bounded continuous
mapping, say || f(t,x)|| < M for all (t,x) € I x H.

Then for any ug € H, there ezist a Wg’}{([o, 1]) mapping x : I — H and an
absolutely continuous mapping u: 1 — H sdtisfying

u(0) =uy € H

Da (t) + AD*Lz(t) = u(t), t € [0,1]

0+x =0 =0, (1) = Ig+$(1)

f(t,x(t)) + Bu(t) — A%(t) € 0p(t, %(t)), ae. t € [0,1].

Proof. Let us consider the compact convex (cf Theorem 5.8 and (5.7)) subset X
in the Banach space Cg(I) defined by

Xo={up: I — H:ut /Gts s)ds, fESuo+K,tEI}

where S o+ denotes the set of all integrable selections of the compact convex
valued constant multimapping wg + K. For each h € &X', by Theorem 4.5 and
the assumptions on f, there is a unique absolutely continuous solution vy to the
inclusion

{ vp(0) =
F(t,h(t)) + Bup(t) — A% (t) € dp(t, Wr(t)), ae. t €

with %h(t) € K a.e. t € I,sothat v(t) = u0_|_ft Do (5)ds e U0+f0 Kds Cup+K
forallt e I.
For each h € X' consider the mapping ®(h) defined on I by

t
:/ G(t,s)vp(s)ds for allt € I.
0

It is clear that ®(h) € X. Let us check that & is continuous on X. It is sufficient
to show that, if (hy,), uniformly converges to h in X, then for v;, denoting the
absolutely continuous solution of the inclusion

{ v, (0) =up € H
F(t, ha(t)) + Bop, (t) — A% (1) € 9p(t, “in (1)), ace. t € I,

the sequence (vp,, ), uniformly converges to the absolutely continuous solution vy,
of the inclusion
{ h(O) =uyg € H

F(t,h(t)) + Bup(t) — A%n(t) € dp(t, Wr(t)), ae. t € I.

<
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As (vp, )n is equi-absolutely continuous with vy, (t) € ug + fg Kds C ug + K
for all ¢ € I we may suppose that (vp, ), uniformly converges to an absolutely
continuous mapping v on I. Since vy, (t) = ug + jio " %(s)ds, for all t € I and

dz)i’;" (s) € K a.e. s € I, we may also suppose that (dfi’;" )n weakly converges in

LL(I) to w € LL(I) with w(t) € K for all t € I, so that

t
limwy, (t) = uo + / w(s)ds for all ¢t € 1.
" 0

Identifying the limits yields for every t € [

u(t) = ug Jr/o w(s)ds,

so 1 = w. Therefore, by applying the arguments in the above variational limit
result Cf. Proposition 3.6we get

du

du

F(t,h(t)) + Bu(t) — A .

(1), ae. t €1

with u(0) = up € H, so that by uniqueness u = vy,.
On the other hand, writing

1 1
D(hy)(t) — P(h)(1) :/0 G(t, s)vp,, (s)ds /0 G(t,s)vp(s)ds
1
:/0 G(t, s)[vn, (s) —vp(s)]|ds

we see by Lemma 5.6(a) that

1
sup [|®(hn)(t) — @(h) ()] S/ Mc||vn, (-) = vn(-)|ds.
te[0,1] Jo

This inequality and the uniform convergence of (v, ), to v, on I entail that
®(hy) = ©(h) in Cy(I), so ® : X — X is continuous. This continuity of ® : X —
X on the comapct convex set X' of Cy(I) tells us that ® has a fixed point, say
h = ®(h) € X. This means that

1
h(t) = ®(h)(t) = /0 G(t,s)vp(s)ds for all t € T

with
Uh(O) = U € H
D%h(t) + AD*Lh(t) = vy (t), t € [0,1]
I.h(t) =0 =0, (1) = I h(1)
F(t,h(t)) + Bup(t) — A%n(t) € dp(t, Wr(t)), ae. t € I.
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So by putting x = h and u = v;, we conclude that (z,u) solves the dynamic EVI

u(0) =ug € H

Dx(t) + AD* ' (t) = u(t), t € [0,1]

Iya(t) li=o =0, (1) = I, 2(1)

f(t,z(t)) + Bu(t) — Ad $(t) € 0p(t 7E(t>)’ a.e. t € [0,1]

The proof is complete. O

Further variants of the above results are available. For instance, we are able
to state the existence of solution to the dynamic system

D%h(t) + AD*th(t) = u(t), t € [0,1]

IJoh(t) =0 =0, (1) = I h(1)

u(0) = ug

F(t,h(t) + Bu(t) — A%(t) € Nogy(2(t)), ae. t €[0,1]

Our tools also allow to treat other variants by considering other class of FDI given
n [11, 13, 14, 15, 16].

We study below an example of a Caputo fractional differential inclusion gov-
erned by an EVI. For the sake of completeness, we recall some needed properties
for the fractional calculus and provide a series of lemmas on the fractional integral.
Throughout we assume « €]1, 2].

Definition 5.3. The Caputo fractional derivative of order v > 0 of a function
h:1=1[0,T]| - H, “D"h:[0,T| — H, is defined by

ey 1 tp(s)
DU = =7, T

Here n = [y] + 1 and [y denotes the integer part of .

Denote by
W5(I) = {u € Cx(I) : D ‘u € Cy(I); “D*u € L (1)},

where D%y and *D%u are the fractional Caputo derivatives of order o — 1 and
« of u, respectively.

We summarize some properties of a Green function given in Lemma 2.1 of

[15].
Lemma 5.10. Let I =[0,T] and let G : I x I — R be a function defined by

(t=)°~ 144 {(T—s)”‘*1 n (T—S)Q*Q]’ if 0<s<t,

Tle) ~ T+2| I(w I(a—1)
Gt s) =
—5)&— T—s y
%fz[( F(;) L (a)n} if t<s<T.



Let f € L (I). Then the system defined by

cDu(t) = f(t), t € [0,T]
u(0) — 4(0) = 0
u(T) + 9(T) =0

has a unique W§7w([0,T]) solution u given by u(t fo s)ds, Vit € 1.
with |G(t, )| < Mg := 2 Ho-0T2,

We recall and summarize a crucial lemma (Lemma 3.5 of [15]) for our next
theorem.

Lemma 5.11. Let X : [0,7] = H be a convex compact valued measurable map-
ping such that | X (t)| < y(t) < +oo, Vt € I with v € LY(I). Then the W™ (I)-
solutions set X to

‘Du(t) € X(t), tel

u(0) — %(0) =0

u(T) + %(T) =0,

is convex compact in Cg(I).
Now comes an existence result with a Caputo fractional differential inclusion.

Theorem 5.12. Let I := [0,1] and H be a separable Hilbert space. Let K be a
convex compact equilibrated subset of H. Let ¢ : [0,1] x K —] — 00, +00] be a
normal lower semicontinuous convex integrand such that

(i {¢(.,u(.),u € Sk} is uniformly integrable.

(i1) p(t,z) < o(1,2) +|v(t) —v(7)| for allt,7 € [0,1],2 € K where v :[0,1] - R
is a positive nondecreasing continuous function with v(0) = 0.

Let A: H— H be a linear continuous coercive symmetric operator and B : H —
H be a linear continuous mapping.

Let f : IxH — H be a bounded mapping : ||f(t,z)|| < M for all (t,x) € [0,1]x H
such that

(i) f(-,x) is L(I) measurable for all x € H,

(ii) f(t,-) is continuous on H for allt € I.

Then given a € H, there is a W™ (I) mapping « : I — H and an absolutely
continuous mapping u : I — H satisfying

t,2(t) + Bu(t) — A% (t) € dp(t, (1)), ae. t € [0,1]

Proof. For any continuous mapping h : I — H, the mapping fr, : I x H —
H defined by f5(t) := f(t,h(t)) forall t € I is £L(I) measurable and satisfies
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|fn(t)] <M for allt € I. Then by Theorem 4.4 and the assumptions on f, there
is a unique absolutely continuous solution vy to the inclusion

{ vh(O) =a E H
i £ ))ds + Buy(t) — AL (t) € dp(t, 2u(1)), ae. t €[0,1]

with %’I(t) € K a.e. so that v () —a—l—ft don (5)ds € a+f0 Kds Ca+ K,Vt
[0, 1] with vy uniformly bounded and equi- absolutely continuous: d”th € K. Now
let us consider the set X defined by

X:={&:T—>H: feSt g},

each mapping £ being given for every ¢t € I by

/Gts s)ds, f €8,

where G is the Green function given in Lemma 5.10. We note that X is convex
compact in Cg(I) by Lemma 5.11. Now for each h € X', by Theorem 4.4 again
denote by uy, the unique absolutely continuous solution of the differential inclusion

duy, duy,

/0 f(s,h(s))ds + Bup(t) — Aﬁ( ) € Op(t, H(t» ae tel

up(0) =a € H.

For each h € X let us set (again with the above Green function G)
1
:/ G(t,s)up(s)ds, forallte I.
0

Then it is clear that ®(h) € X because up(t) € a + K for all t € I. Hence
®(X) is equicontinuous and relatively compact in the Banach space Cg(I) because
®(X) C X. Now we check that ® is continuous relative to X. It is enough to show
that, if (hy,,)n converges uniformly to h in X', then the sequence (up,, )n, where each
up,, is the unique absolutely continuous solution of the differential inclusion

up,, (0) =acH
{ L s s))ds + Buy, () — A% (1) € Op(t, Ln (1)), ae.tel,

uniformly converges to the unique absolutely continuous solution uy, of the differ-
ential inclusion

uh(O) =a 6 H
Iy £( ))ds + Bup(t) — A%n(t) € dp(t, % (1)), ae.tel.

We note that (up, ) is equicontinuous since for every n € N one has up, (1) € K
for almost all ¢t € I. Further, {up,(t) : n € N} is included in the compact set
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a + K for every t € I. The Arzela-Ascoli theorem tells us that {u, : n € N}
is relatively compact in Cy(I). So by extracting a subsequence, we may suppose
that (up, )n converges uniformly on I to some mapping ¢ : [ — H with

t-
((t):a—l—/og(s)ds for allt € I,

along with (i, ), converging weakly in Lk (I) to ¢ with ((t) € K for a.e. t € I.
Note that

t t
/ f(s,hn(s))ds — / f(s,h(s)ds foralltel.
0 0

This combined with the variational limit theorem (Cf. Proposition 5.3) gives

/0 F(s,h(s))ds + BE(t) — A%(t)) € dp(t, %(t)), aetel

So using the uniqueness of solution of the latter differential inclusion we obtain
that ¢ = uy. Now let us write by Lemma 5.10 and boundedness of the Green
function G

B(hn)(t) — D(h)(t) = /0 G(t, s)un. (5) ds — /0 G(t, s)un(s) ds
:/0 G(t,s)up, (s) — up(s)] ds
g/o Meun, (5) — un(s)]| ds.

Since |lup,, (+) — up(-)|| = 0 uniformly on I as n — oo, we deduce that
1
Sup | (hn)(t) — S(R)()]| < /0 Mg|lun,(-) = un()| ds — 0,
€

which entails that ®(h,,) — ®(h) uniformly on I, as desired. Then & : X — X
is continuous, hence ® has a fixed point, say h = ®(h) € X. This means that for
every t €

1
) = B0 = [ Gltsyune) s

with

o

h
o f(s,7(s))ds + Bup(t) — A% (1) € dp(t, Mu(t)), ae.tel.
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Coming back to Lemma 5.10 and applying the above notations, this means that
we have just shown that there exists a mapping h € Wg? (I) satisfying

h(0) — 92(0) =0
h(1) + %(1) =0
uh(O) = a, tel
i ))ds + Bup(t) — A%r(t) € dp(t, Ln(t)), ae.tel.
The proof of the theorem is then complete O

We finish this section with two variants.

Theorem 5.13. Let I = [0,1] and let v : [0,1] — RT be a positive nondecreasing
continuous function with v(0) = 0. Let C : [0,1] — H be a convex compact valued
multimapping such that

haus (C(¢t),C (7)) < |v(t) —v(r)| for allt,T € [0,1].

Let A: H — H be a linear continuous coercive symmetric operator and let B :
H — H be a linear continuous compact operator.

Let f : IxH — H be a bounded mapping : ||f(t,z)|| < M for all (t,z) € [0,1]x H
such that

(i) f(-,x) is L(I) measurable for all x € H,

(ii) f(t,-) is continuous on H for allt € I.

Then given a € H, there is a Wfl’oo(l) mapping ¢ : I — H and an absolutely
continuous mapping u : I — H satisfying

‘D(t) =u(t), tel
z(0) — 92(0) =0
0

I ))ds + Bu(t) — A% (t) € Nogy (%2(t)), ae. t €[0,1]

Proof. For any continuous mapping h : I — H, the mapping f; : I x H —
H defined by f5(t) := f(t,h(t)) forall t € I is £L(I) measurable and satisfies
|fn(t)] <M for allt € I. Then by Theorem 4.1 and the assumptions on f, there
is a unique absolutely continuous solution vy to the inclusion

{ vh(O) = e H
I £( ))ds + Bup(t) — AZE(t) € Ny (%e(t)), ae. t € [0,1]

with 22(t) € K, where K = J,c(o1) C(t) ace. so that vy(t) = a + [y =(s)ds €

a-+ fg coKds C a+coK,Vt € [0,1] with v, uniformly bounded and equl—absolutely
continuous. Now let us consider the set X defined by

X:={&:1—H: fe€S mrh
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each mapping £y being given for every ¢t € I by

where G is the Green function given in Lemma 5.10. We note that X is convex
compact in Cg(I) by Lemma 5.11. Now for each h € X', by Theorem 4.1 again
denote by uy, the unique absolutely continuous solution of the differential inclusion

duh

/0 £(5, h())ds + Bun(t) — A (1) € N (2t

p (t), aetel

dt
uh(O) =a € H.

For each h € X let us set (again with the above Green function G)
1
—/ G(t,s)up(s)ds, forallte .
0

Then it is clear that ®(h) € X because up(t) € a + coK for all t € I. Hence
®(X) is equicontinuous and relatively compact in the Banach space Cg(I) because
o(X) C X. Now we check that ® is continuous relative to X'. It is enough to show
that, if (hy,), converges uniformly to h in X, then the sequence (uy,, )n, where each
up,, is the unique absolutely continuous solution of the differential inclusion

uhn(O) =a€cH
JE £ ))ds + Bup, (t) — A% (£) € Nog (%0n (1)), ace.t e,

uniformly converges to the unique absolutely continuous solution uy of the differ-
ential inclusion

{ uh(O) —a e H
[y £(s,h(s))ds + Buy(t) — A%n(t) € Nogy (% (t), ae.tel.

We note that (up,, ), is equicontinuous since for every n € N one has 4y, (t) € coK
for almost all ¢ € I. Further, {us, (t) : n € N} is included in the convex compact
set a+coK for every t € I. The Arzela-Ascoli theorem tells us that {uy, : n € N}
is relatively compact in Cy(I). So by extracting a subsequence, we may suppose
that (up,, )n converges uniformly on I to some mapping ¢ : I — H with

t
t) :a—l—/ ((s)ds foralltel,
0
along with (i, ), converging weakly in LL (1) to ¢ with ((t) € @K for a.e. t € I.
Note that

/tf(s, hn(s))ds — /tf(s, h(s)ds forallt e I.
0 0
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This combined with the variational limit theorem (Cf. Proposition 3.1) gives

P dg

dt( )) € NC(t)(E(t)), ae.tel

/fsh )ds + BC(t) —

So using the uniqueness of solution of the latter differential inclusion we obtain
that ¢ = uy. Now let us write by Lemma 5.10 and boundedness of the Green
function G

B(hn)(t) — D(h)(t) = /0 G(t, s)un. (s) ds — /0 G(t, s)un(s) ds
:/0 G(t,s)up, (s) — up(s)] ds
1
g/o Meun, (5) — un(s)]| ds.

Since |lup,, (+) — un(-)|| = 0 uniformly on I as n — oo, we deduce that

1
sup [[®(hn)(t) — 2(h)(1)] < / Mg|lun,(-) = un()| ds = 0,
tel 0

which entails that ®(h,,) — ®(h) uniformly on I, as desired. Then & : X — X
is continuous, hence ® has a fixed point, say h = ®(h) € X. This means that for
every t €

1
h(t) = ®(h)(t) = /0 G(t, s)un(s) ds
with

{uh(()) a
5 f(s,h(s))ds + Buy(t) — A% (t) € Nogy (% (1), ae t€l.

Coming back to Lemma 5.10 and applying the above notations, this means that
we have just shown that there exists a mapping h € W57 (I) satisfying

CDh(t) = up(t), t € I

h(0) — %(0 =0

h(1) + Z (1) =

uh(O) = a, tel

Ji £(s,h(s))ds + Bup(t) — A% (t) € Nogy(n(t)), ae.tel.

The proof of the theorem is then complete O

] and let v : [0,1] — R be a positive nondecreasing

Theorem 5.14. Let I = 0,1
(0) =0. Let C :[0,1] — H be a convex compact valued

continuous function with v
multimapping such that

haus (C(¢t),C (7)) < |v(t) —v(r)| for allt,7 € [0,1].
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Let A: H — H be a linear continuous coercive symmetric operator and let g be
a convex function on H Lipschitz on bounded sets and continuously differentiable
on H whose gradient is locally Lipschitz.  Let f : I x H — H be a bounded
mapping : || f(t,x)|| < M for all (t,z) € [0,1] x H such that

(i) f(-,x) is L(I) measurable for all x € H,

(ii) f(t,-) is continuous on H for allt € I.

Then given a € H, there is a W™ (I) mapping z : I — H and an absolutely
continuous mapping u : I — H satisfying

fo $))ds + Vg(u(t)) — AL (t) € Nogy(2(t)), ae. t € [0,1]

Proof. The proof is omitted by repeating the arguments given in the proof of
Theorem 5.13. Here we apply Theorem 4.4 with the variational limit given in
Proposition 3.3. O

An easy inspection of the tool developed above lead to a second order evolution
like mechanical problem with dry friction.

| and let v : [0,1] — R* be a positive nondecreasing

Theorem 5.15. Let I =[0,1
(0) =0. Let C : [0,1] = H be a convex compact valued

continuous function with v
multimapping such that

haus (C(t),C(7)) < |v(t) —v(r)| for allt,7 € [0,1].

Let A: H — H be a linear continuous coercive symmetric operator and let g be
a convex function on H Lipschitz on bounded sets and continuously differentiable
on H whose gradient is locally Lipschitz.

Let f : IxH — H be a bounded mapping : ||f(t,z)|| < M for all (t,x) € [0,1] x H
such that

(i) f(-,x) is L(I) measurable for all x € H,

(ii) f(t,-) is continuous on H for allt € I.

Then given a,b € H, there is an absolutely continuous mapping x : I — H and
an absolutely continuous mapping w : I — H satisfying

a(t) = a+ [ju(s)ds, t €1

u(0 ) = b
fo ))ds + Vg(u(t)) — A%(t) € Nowy(24(t)), ae. t €[0,1]

Proof. For any continuous mapping h : I — H, the mapping f; : I x H —
H defined by f5(t) := f(t,h(t)) forall t € I is £L(I) measurable and satisfies
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|fn(t)] <M for allt € I. Then by Theorem 4.4 and the assumptions on f, there
is a unique absolutely continuous solution vy to the inclusion

{ Uh( ) = b eH
i ))ds + Vg(vp(t)) — A% (t) € Nogy (L (t)), ae. t € [0,1]

with %h(t) € K, where K := (J;¢jo1) C(t) a-e. so that vy(t) = b+ ft d”sh )ds €

b+ fg co(K U0)ds C b+ co(K U0),Vt € [0,1] with v, uniformly bounded and
equi-absolutely continuous. Now let us consider the set X defined by

each mapping £y being given for every ¢t € I by

£t —a+/f Yds,t € 1, f € Styamxon)

We note that X is convex compact in C(I). Now for each h € X', by Theorem 4.4
again denote by wup the unique absolutely continuous solution of the differential
inclusion

/O F(s,h(s))ds + Vg(un(t)) — Add%(t) c Nc(t)(%(t)), aetel
uh(O) =be H.

For each h € X let us set
t
O(h)(t)=a —l—/ up(s)ds, forallte 1.
0

Then it is clear that ®(h) € X because up(t) € b+ coK for all t € I. Hence
®(X) is equicontinuous and relatively compact in the Banach space Cg(I) because
®(X) C X. Now we check that ® is continuous relative to X. It is enough to show
that, if (hy,), converges uniformly to h in X, then the sequence (uy,, )n, where each
up,, is the unique absolutely continuous solution of the differential inclusion

Up,, (O) = b eH
JEfC ))ds + Vgun, (t) — A% (1) € Neygy (% (1)), ace.t €1,

uniformly converges to the unique absolutely continuous solution uy of the differ-
ential inclusion

{ uh(O) = b ceH
Jo F(s,1(s))ds + Vg(up(t)) — A%e(t) € Nogy (% (1)), ae.tel

We note that (up,, ) is equicontinuous since for every n € N one has uy,, (t) € coK
for almost all ¢t € I. Further, {uy, (t) : n € N} is included in the convex compact
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set a+coK for every t € I. The Arzela-Ascoli theorem tells us that {uy, : n € N}
is relatively compact in Cy(I). So by extracting a subsequence, we may suppose
that (up, )n converges uniformly on I to some mapping ¢ : [ — H with

t
t)zb—i—/((s)ds for allt € I,
0

along with (1, ), converging weakly in L} (I) to ¢ with ((t) € oK for a.e. t € I.
Note that

t t
/ f(s,hp(s))ds — / f(s,h(s)ds forallt e I.
0 0
This combined with the variational limit theorem (Cf. Proposition 3.3) gives

dg

| 7t hsds + Va(c0) - AGHO) € Ne(G ). ac.ter

So using the uniqueness of solution of the latter differential inclusion we obtain
that ¢ = up. Now let us write

®(hy)(t) — D(h)(t) = /0 un, (5) ds — /0 un(s) ds
- / [ (5) — un(s)]| ds
0

Since |lup,, (+) — un(-)|| = 0 uniformly on I as n — oo, we deduce that

1
sup [|®(hn)(t) — @(h)(1)]| < /0 [un, () = un(-)] ds =0,

tel

which entails that ®(h,,) — ®(h) uniformly on I, as desired. Then ® : X — X
is continuous, hence ® has a fixed point, say h = ®(h) € X. This means that for
every t € 1

h(t) = ®(h)(t) =a+ /t up(s)ds,t € I
with 0
{ up (0 ) =be
Jo f(s,h(s)) ds + Vg(un(t)) — A% (t) € Nogy (L (t), ae.te
So we have just shown that there is an absolutely continuous mapping x : I — H

with 2(0) = a, ©(0) = b such that

/0 f(s,2(s))ds + Vg(i(t)) — AZ(t) € Now)(i(t)), aetel
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Theorem 5.16. Let I := [0,1] and H be a separable Hilbert space. Let K be a
convex compact equilibrated subset of H. Let ¢ : [0,1] x K —] — 00, +00] be a
normal lower semicontinuous convex integrand such that

(i {¢(.,u(.)),u € Sk} is uniformly integrable.

(it) p(t,z) < o(1,2)+|v(t) —v(7)| for allt,T € [0,1],2 € K wherev :[0,1] = R
is a positive nondecreasing continuous function with v(0) = 0.

Let A: H — H be a linear continuous coercive symmetric operator and let g be
a convex function on H Lipschitz on bounded sets and continuously differentiable
on H whose gradient is locally Lipschitz.

Let f : IxH — H be a bounded mapping : ||f(t,z)|| < M for all (t,z) € [0,1]x H
such that

(i) f(-,x) is L(I) measurable for all x € H,

(ii) f(t,-) is continuous on H for allt € I.

Then given a,b € H, there is an absolutely continuous mapping x : I — H and
an absolutely continuous mapping w : I — H satisfying

z(t) = a+ [Ju(s)ds, t € 1

u(0 )—b
fo s))ds + Vg(u(t)) — A%L(t) € 0p(t, (t)), ae. t € [0,1]

Proof. For any continuous mapping h : I — H, the mapping fr, : I x H —
H defined by f5(t) := f(t,h(t)) forall t € I is £L(I) measurable and satisfies
|fn(t)] < M forallt € I. Then by Theorem 4.5 and the assumptions on f, there
is a unique absolutely continuous solution vy to the inclusion

{ Uh(O) = b ceH
Iy £( ))ds + Vg(vn(t)) — A% (1) € Dp(t, Wn(t)), a.e. t € [0,1]

with dsth(t) € K a.e. so that v (t) = b—i—fg djsh )ds € b—i—fo Kds C b+ KVt € [0,1]
with vy, uniformly bounded and equi- absolutely continuous. Now let us consider
the set X' defined by

X:={&:T—H: feSpgl

each mapping &y being given for every t € I by

t
&) =a +/0 f(s)ds,t €1, fe Stk

We note that & is convex compact in Cy(I). Now for each h € X', by Theorem 4.5
again denote by wuy the unique absolutely continuous solution of the differential
inclusion

duh

/0 F(5,h(5))ds + Vg(un(t)) — Add—t( ) € dplt, Th(1), actel
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uh(O) =beH.
For each h € X let us set

t
O(h)(t)=a —I—/ up(s)ds, forallte 1.
0

Then it is clear that ®(h) € X because uy(t) € b+ K for all ¢ € I. Hence
®(X) is equicontinuous and relatively compact in the Banach space Cg(I) because
o(X) C X. Now we check that ® is continuous relative to X'. It is enough to show
that, if (hy,), converges uniformly to h in X, then the sequence (uy,, )n, where each
up,, is the unique absolutely continuous solution of the differential inclusion

{ un, ( )_beH
¥ F(5,hn(9))ds + Vaup, (t) — A% (1) € dp(t, Wn (), ace. t e,

uniformly converges to the unique absolutely continuous solution uy, of the differ-
ential inclusion

{ uh( ) = b eH
I f( ))ds + Vg(up(t)) — A% (t) € dp(t, Ln(t)), ae.tel.

We note that (uhn)n is equicontinuous since for every n € N one has 1y, (t) € K
for almost all ¢ € I. Further, {us, (t) : n € N} is included in the convex compact
set a+coK for every t € I. The Arzela-Ascoli theorem tells us that {uy, : n € N}
is relatively compact in Cy(I). So by extracting a subsequence, we may suppose
that (up,, )n converges uniformly on I to some mapping ¢ : I — H with

t
t)zb—l—/((s)ds for allt € I,
0

along with (i, ), converging weakly in L} (I) to ¢ with ((t) € K for a.e. t € I.
Note that

t t
/ f(s,hp(s))ds — / f(s,h(s)ds forallte I.
0 0
This combined with the variational limit theorem (Cf. Proposition 3.6) gives

[ #ohs)ds + Vale(e) = AGH0) € No (55 0), ae.te 1
0

So using the uniqueness of solution of the latter differential inclusion we obtain
that ( = up. Now let us write

@(hn)(t)—@(h)(t):/o up,, () ds—/o up(s) ds
= [ lhun,(s) = un(o)ll ds
0
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Since |lup,, (-) — un(-)|| = 0 uniformly on I as n — oo, we deduce that

1
sup [|®(hn)(t) — @(h)(1)]| < /0 lun, () = un(-)] ds — 0,

tel

which entails that ®(h,,) — ®(h) uniformly on I, as desired. Then ® : X — X
is continuous, hence ® has a fixed point, say h = ®(h) € X. This means that for
every t €

h(t) = ®(h)(t) =a +/0 up(s)ds,t € I
with

{ uh( ) =beH
I3 f(s,h(s))ds + Vg(up(t)) — A% (1) € dp(t, W (t)), ae tel

So we have just shown that there is an absolutely continuous mapping x : I — H
with z(0) = a, £(0) = b such that

/0 f(s,xz(s))ds + Vg(i(t)) — Az (t) € dp(t, &(t)), ae. tel

O

Remark.Theorem 5.16 hold if we replace the gradient Vg by a linear continuous
operator B: H — H.

Comments on second order variational problems We have stated the exis-
tence of solution to a class of second order evolution inclusion of the form

t
0 € A#(t) — Bi(t) — /0 £(s,2(s))ds + Dpl(t, #(t))

0 € Ai(t) - V(i /fsw §))ds + B (t, i (1))

with given operator A and B and given gradient Vg, perturbation f and time
dependent subdifferential operator dy; and also in the context of sweeping process

0 € Ai(t) — Bi(t)) — /0 F(s,2(s))ds + Neg (#(1))

0 € Ai(t) — Vg(i /fsw )ds + Ne (£(t))

Existence and uniqueness of solution for a general second order evolution inclusion
in a separable Hilbert space of the form

0 € ii(t) + A@)u(t) + F(t,u(t)), t € [0,T]
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where A(t) is a time dependent Lipschitz variation maximal monotone operator
and the perturbation f(t,.) is boundedly Lipschitz is stated in [4] . In particular,
existence and uniqueness of solution to

0=1u(t) + A@t)u(t) + V(u(t)), t € [0,T]

where A(t) is a time dependent Lipschitz variation single valued maximal mono-
tone operator and Vi is the gradient of a smooth Lipschitz function ¢ is stated,
by constrast with classical cases dealing with some special fixed operators; cf.
Attouch et al [5], Paoli [31] and Schatzman [32]. Problems of second order have
some importance in Mechanics [30], which may require a more general evolution
inclusion of the form

0 € u(t) + A(t)u(t) + Op(u(t)), t € [0,T]

here Op(u(t)) denotes the subdifferential of a proper lower semicontinuous convex
function ¢ at the point u(t). Existence for this problem is stated in [17] via a vari-
ational approach. In this spirit, existence of solution for a second order problem
dealing with time and state dependent maximal monotone A;, and multivalued
perturbation F(t,z,y) of the form

—ii(t) € Ay uin(t) + F(t,ult), u(t))

is given in [15]. Second order evolution inclusion under consideration require
concise and original proofs. We will give below a main variational limit result
which help to give a meaning of the variational limit solution to the second order
evolution inclusion of the form

f(t) € i(t) + Au(t) + 0p(u(t))

where A is a linear continuous coercive symmetric operator and dy is the subd-
ifferential of a lower convex lower semi continuous function and f € L%/([0,T]).
In this context our results contains novelties since the second velocity is in inside
the subdifferential (resp. the normal cone). These variants are not comparable.

We recall below some notations and summarize some results which describe
the limiting behavior of a bounded sequence in L}, ([0, 77). See ([22], Proposition
6.5.17).

Proposition 5.2. Let H be a separable Hilbert space. Let ((,) be a bounded
sequence in L ([0,T]). Then the following hold:

1) (¢n) (up to an extracted subsequence) stably converges to a Young measure v
that is, there exist a subsequence () of ((n) and a Young measure v belonging
to the space of Young measure Y([0,T); Hy) with t — bar(vy) € LY, ([0,T)) (here
bar(v;) denotes the barycenter of v) such that

T T
lim h(t,gg(t)))dt)z/o [/Hh(t,x)vt(da:)]dt

n—oo 0
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for all bounded Carathéodory integrands h : [0,T] x H, — R,

2) (¢n) (up to an extracted subsequence) weakly biting converges to an integrable
function f € L ([0,T]), which means that, there is a subsequence ((},) of ((n)
and an increasing sequence of Lebesgue-measurable sets (Ap) with lim, A(4,) =1
and f € LL([0,T)) such that, for each p,

i [ (h(e), (6 dt = [ (hio), ) e
m=oo fa Ay

for all h € L% ([0,T7),

3) (Cn) (up to an extracted subsequence) Komlds converges to an integrable func-

tion g € Ly ([0,T)), which means that, there is a subsequence (Cg(ny) and an

integrable function g € L ([0,T]), such that

S S,
lim —¥7_ ;) (t) = g(t), a.e. €[0,T7,

n—oo N

for every subsequence (fymn)) of (fam))-
4) There is a filter U finer than the Fréchet filter such that U — lim, , = | €

(L), our. where (LS3)!: .1 is the second dual of L};(]0,TY).
Let wy, € L,([0,T)) be the density of the absolutely continuous part l, of | in the
decomposition | =1, + ls in absolutely continuous part l, and singular part .
If we have considered the same extracted subsequence in 1), 2), 3), 4), then one
has

f(t) =g(t) = bar(vy) = wy, (t) a.e. t €[0,T]

By Wﬂg;}([O, T1)) (resp. W]éf([O, T) we denote the set of all continuous functions
in Cra([0,7]) such that their first derivatives are continuous and their second
derivatives belong to Ly, ([0,T]) (resp. L3,([0,7])) and by Wé"l,([o, T)) we denote
the set of all continuous functions in Cra([0,77]) such that their first derivatives
are of bounded variation (BV for short).

Let us recall a useful Gronwall type lemma [23].

Lemma 5.17. (A Gronwall-like inequality.) Let p,q,r : [0,T] — [0, 00[ be three
nonnegative Lebesque integrable functions such that for almost all t € [0,T)

r(t) < p(t) + q(t) /0 r(s) ds.
Then . .
r(t) < p(t) + q(t) /0 [p(s) exp / o(r) dr)] ds
for all t € [0,T.

Here is a main variational limit result which help to give a meaning of the
variational limit solution to the second order evolution inclusion

f(t) € a(t) + Au(t) + Op(u(t))
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where A is a linear continuous coercive symmetric operator and dy is the subdif-
ferential of a lower convex lower semi continuous function ¢ and f € L% ([0, 7).

Proposition 5.3. Assume that 8 € L3, ([0,T]) and A is a linear continuous
symmetric and coercive operator: (Ax,x) > M||z||? for all z € R? where M is
a positive constant. Let n € N and p, : R® = RT be a C', convex, Lipschitz
function and let ps be a monnegative l.s.c proper function defined on R¢ such
that ¢n(2) < @oo(x) for all n € N and for all z € RL. Let f* € L]?Qd([O,T])
such that ||fn(t)|| < B(t), Yn € N, Vt € [0,T]. For each n € N, let u" be a
Wé&l([O,T])—solution to the problem

fr(t) e u™(t) + Au"(t) 4+ Opn(u™(t)),t € [0,T]
u™(0) = ug; u™(0) = ug.

Assume that

(i) f" J(L?Rd,Lid)—converges to f* € Léd([O,T]),

(ii) pn epi-converges to Yoo,

(13) lim, u™(0) = uf® € dom peo, lim, v, (u™(0)) = Yoo(u), and lim, 4™ (0) =

g,

(iv) There exist 1o > 0 and xo € R? such that

T
sup  sup / Yoo(xo + Tou(t)) < +00
nENvEBLo (0,1 0

here ELH@([O,T]) is the closed unit ball in L3 ([0,T7]).

(a) Then wup to extracted subsequences, (u™) converges uniformly to an
Wé"l/([O,T})-function u™ and (u") pointwisely converges to a BV function v™

with v™° = 4>, and (i) biting converges to a function (> € L{,([0,T]) so that

the limit function u®,u and the biting limit (°° satisfy the variational inclusion

[ e ™+ Au>® + 0l (u™)
here 01, denotes the subdifferential of the convex lower semicontinuous integral

functional 1, defined on Lg% ([0,T7])

T
I, (u) ::/0 oo (u(t)) dt, Yu € Lgu([0,T]).

Furthermore lim,, o, (u™(t)) = @oo(u™(t)) < oo a.e. andlim, fOT on(u™(t))dt =

fOT Voo (u(t))dt. Subsequently, the energy estimate holds true almost everywhere
t e 0,77,

oo (u (1) + S E (DO = oo (u?) + 5 |la5°]*

- [ @as+ [ (). @)
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Further (4™) weakly converges to the vector measure m € M%d([O,T]) so that the
limit functions u®(.) and the limit measure m satisfy the following variational
mnequality:

T 1 1
/ ooe(v(t) dt > / oo (u (1)) dt + / (—AG(t) + F(0), u(t) — u (b)) dt
0 0 0

+ (=m0 =) (0,1 Cpal0TI)

In other words, the vector measure —m + [—Au™ + f°]dt belongs to the subdif-
ferential 0J, (u®) of the convex functional integral J, . defined on Cra([0,T])

by Jpn (V) = fy oc(t,v(1)) dt, Yo € Cra((0,T)).
(b) There are a filter U finer than the Fréchet filter, | € Lo ([0, T])" such that

U —lim[f" — i" — A" = 1 € LX([0,T)),

weak

where Lo ([0, 7)), cqp is the second dual of Lg,([0,T]) endowed with the topology
o(Lga([0,T]), Lgu([0,TT)) and n € Cga([0, T]);eqr such that

lim(f" — " — Ai"] = n € Cga([0, 7)),

weak

here Cra([0,T1)! ... denotes the space Cra([0,T])" endowed with the weak topology

weak

o(Cra([0,T]),Cra([0,T))). Let l, be the density of the absolutely continuous part
lo of I in the decomposition | = l,+1s in absolutely continuous part l, and singular
part ls. Then

T
L(h) = / (h(t). £ (1) — C(t) — Ai(8))dt
0
for all h € Lgy([0,T]) so that
I:;oo(l) = Lpgo(foo — (™ - A"[LOO) + 5*(l5, domf%o)

here %, is the conjugate of Yoo, 1yx  the integral functional defined on L%Rd([(], T))
associated with o3, I the conjugate of the integral functional I, , domly , =
{u € Lgu([0,T]) : Iy (u) < oo} and

T
(1) = [ (7¥0) = €30 — AT Bt + (k) VR Coa([0,T]),
0
with (ng,h) = ls(h), Vh € Cra([0,T]). Further n belongs to the subdifferential
0Jy. (u®) of the convex lower semicontinuous integral functional J, defined on

Cra([0,T] .,
Jpoo (1) ::/0 Yoo (u(t)) dt, Yu € Cra([0,T]).
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(¢) Consequently the density f° —(°° — Au®> of the absolutely continuous part ng

T
na() 1= [ (0 = €20 ~ AP (@) hO)dt. V< Coa((0.7)
satisfies the inclusion
foOt) — C°°(t) — Au™(t) € Opoo(u™(t)), a.e..

and for any nonnegative measure 6 on [0,T| with respect to which ns is absolutely
continuous

T dIlS T 00 dns
[ hen G onaote) = [ (o). G enase

o o *
here hyx  denotes the recession function of 5.

Proof. Step 1 ||4"(.)|| and @n(un(.)) are uniformly bounded.
Multiplying scalarly the inclusion

fr(E) — @ (t) — Ad™(t) € Oepp(u™(t))
by 4"(t) and applying the chain rule theorem ([35], Theorem 2) yields

(i (8), £ () — (67 (2), i (8)) — (6(0), A (1)) = = [ (n(8))]

dt
that is
(3.3.1) —(Au™(t),u"(t)) + (4" (1), () = %[%(un(t)) + %Hﬂ"(t)HQl
By integrating on [0, ¢] this equality we get
on(u"(0) + 3 1" (DI = ale(0)) + 3 1" (O)
_ / (AT (), 0" ())ds + / (i (s), £7(s))ds
0 0

< n(u(0)) + Sl O

t t )
[ 1) s+ 17z oy 1 (9) )
n L
< pnle(0)) + 11" O)
! ;T 1 n t .n
M [P+ 1 gz o1+ [ 11 (s)|Pds)
0 R 0
n 1 e 2
< palu(0)) + i (0)]

b n 1 b n
[ 136 s+ Bz o (1 + [ 11751,
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Then from (éii), the preceding estimate and the Gronwall like inequality (Lemma
3.1), it is immediate that

(3.3.2) sup sup ||@"(t)|| < +oo and sup sup @n(u”(t)) < +oo.
n>1te[0,T] n>11t€[0,T)

Step 2 Estimation of ||i™(.)||. As
2"(t) == f(t) —u"(t) — Au"(t) € Opn(u"(1))

by the subdifferential inequality for convex lower semi continuous functions we
have

pn () = pn(u (1)) + (& —u" (1), 2" (1))

for all z € R Now let v € ELD‘@([O,T]% the closed unit ball of Lg3[0,77). By
taking x = w(t) := z¢ + rov(t) in the preceding inequality we get

pn(w(t)) = n(u"(t) + (w(t) — u"(t), 2" (1))

Integrating the preceding inequality gives
T
/ (w0 + rou(t) — " (¢), 2" () dt
0
T T
:/ (xo —u"(t),z”(t))dt—Fm/ (v(t), 2" (t))dt
0 0
T T
< / o (0 + Tov())dt — / o (™ (1))t
0 0
Whence follows

T T
(3.3.3) "o /0 (w8, 2" (1))t < /0 (0 + rov(t))dt
T T
—/ gpn(u”(t))dt—/ (xg —u™(t),2"(t))dt.
0 0

We compute the last integral in the preceding inequality. For simplicity, let us set
v"™(t) = u(t) — o for all t € [0,T]. By integration by parts and taking account
into (3.3.2) we have

T T
(3.3.4) — /0 (20 — U (1), 2" (1))t = — /0 (W (E), 57 (8) + AT () — £ ()t
T

T
= —[(W"(t), 9" (t) + A" (1)]§ + /0 (0" (1), 0" (t) + Av™(t))dt + /0 (0" (t), f"(t))dt
< —(™(T),0"(T)) + (v"(0),0"(0)) — (Av"™(T),v"(T))

T T T
+<Av”(0),v"(0))—|—/0 |\@"(t)|]2dt+/0 <i}"(t),Av”(t)>dt+/0 (W"(t), f(t))dt.
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By (3.3.2) — —(3.3.4), we get

T T
(3.3.5) 7o /O (w8, 2" (1))t < /O (0 + Tou())dE + L

for all v € FLO% (0,77)» here L is a generic positive constant independent of n €
R

N. By (iv) and (3.3.5) we conclude that (2" = f" — 4" — A4"™) is bounded in
Lg4([0,T7), then so is (é"). It turns out that the sequence (@") is uniformly
bounded by using (3.3.2) and is bounded in variation. By Helly theorem, we may
assume that (4/") pointwisely converges to a BV function v* : [0, 7] — R and the
sequence (u") converges uniformly to an absolutely continuous function u*° with
1™ = v> a.e. At this point, it is clear that (u,) converges in Lﬁgd([O,T]) to v,
using (3.4.2) and the dominated convergence theorem. Hence (Au4™(.)) converges
in L]%gd([O,T]) to Av>(.).

Step 3. Young measure limit and biting limit of i,. As (ii,) is bounded in
Lg4([0,T]), we may assume that (i") stably converges to a Young measure v €
Y([0,77);R?) with bar (v) : ¢ — bar (14) € Lg,([0,T]) (here bar (1) denotes
the barycenter of ;). Further by Proposition 3.1, we may assume that (i")
biting converges to a function (*° : ¢t — bar (14) that is, there exists a decreasing
sequence of Lebesgue-measurable sets (Bp) with lim, A(B,) = 0 such that the
restriction of (ii,) on each BS converges weakly in Ly, ([0,T]) to ¢*°. Noting that
(Ad™) converges in Ly, ([0,T]) to Av™®. It follows that the restriction of (2" =
J—i"—Ad™) to each BS weakly converges in Lg , ([0, T]) to 22 := f*—(>—Av™,
because (f™) weakly converges in Lg,([0,T7]) to f°, (Ad™) converges in Ly, ([0,T])
to Av™ and (ii™) biting converges to (> € Lg,([0,T1). It follows that

(3.46) lim /B (i — W), w(t) — un (1)) = /B (—bar (1) — W (t), w(t) — u())dt

for every B € By N L([0,T]), and for every w € Lgy([0,7]), where W"(t) =
Mu™(t) — f*(t) and W(t) = Mu> — f*°. Indeed, we note that (w(t) — u™(t)) is
a bounded sequence in Lg5([0, 1]) which pointwisely converges to w(t) —u™(t), it
converges uniformly on every uniformly integrable subset of LIIRd([O, T]) by virtue
of a Grothendieck Lemma [26], recalling here that the restriction of —i"™ — W"
on each By is uniformly integrable. Now, since ¢, lower epiconverges to ¢, for
every Lebesgue-measurable set A in [0, 7], by virtue of Corollary 4.7 in [21], we
have

(3.3.7) o0 > lim inf / on(u™(1))dt > / oo (w0 (1)
nooJa A
Combining (3.3.2)-(3.3.5)-(3.3.6)-(3.3.7) and using the subdifferential inequality

pn(w(t)) = en(u"(t)) + (=" (t) = W"(1), w(t) — u"(t))
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gives

/Bgooo(w(t))dt>/Bwoo(uoo(t))dt+/3(—bar () — W(E), w(t) — u (1)) dt.

This shows that ¢ — —bar (1) — W (t) is a subgradient at the point u™ of the
convex integral functional I, restricted to Lg;(B,), consequently,

—bar (1) — W(t) € 0pec(u™(t)), a.e.on By,
As this inclusion is true on each By and By 1 [0, 7], we conclude that

—bar (1) — W(t) € 0poc(u™(t)), a.e.on [0,T].

Step 4. Measure limit in M&d([o, T]) of i™. As (iin) is bounded in L, ([0, T]), we
may assume that (i) weakly converges to the vector measure m € M%d([o, T))
so that the limit functions u®(.) and the limit measure m satisfy the following
variational inequality:

T 1 1
/ Po(v(t))dt > /SOOO(UOO(t))dtJr/ (—AW(t) + f°(t), v(t) — u™(t)) dt
0 0 0
(0 = U (Mt ((0,7)).Ca (0T])-

In other words, the vector measure —m + [—A4> + f*°]| dt = —m — W.dt belongs
to the subdifferential 0.J,_ (u™) of the convex functional integral J;_ defined

on Cpa([0,7]) by Joo (v) = [y Poo(v(t)) dt, Yo € Cra([0,T]). Indeed, let w €
Cra([0,T]). Integrating the subdifferential inequality

pn(w(t)) = on(u”(t)) + (=" (t) = W"(1), w(t) —u"(t))
and noting that @ (w(t)) > ¢n(w(t)) gives immediately
T T
| entwyie= [ patwio)
0 0
T
> / pn(u(1))dt + (=u"(t) = W™ (1), w(t) — u"(1))dt
0
We note that
. T T
h;Ln/o W), w(t) — u (t)>dt:/0 (W (), w(t) — u™())dt

because (W" := A4™ — f") is uniformly integrable, and weakly converges to
W = A4 — f*° and the bounded sequence in w(t) — u"(t) pointwise converges
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to w—u so that it converges uniformly on uniformly integrable subsets by virtue
of Grothendieck lemma. Whence follows

T T T
| etz [ o+ [ -wiu - e o)

0 0 0
(=m,w = u™) (e (0,7).Ca(0.17)

which shows that that the vector measure —m — W.dt is a subgradient at the
point u> of the of the convex integral functional J,_ defined on Cra([0,77])) by

T (V) = [ oo (v(t))dt, Yo € Cpa([0,T]).
Step 5. Claim lim,, ¢, (u"(t)) = Yoo (u™(t)) < oo a.e, and lim,, fOT on(u™(t))dt =

fOT Voo (u(t))dt < oo, and subsequently, the energy estimate holds for a.e t €
[0, T7:

oo (1)) + 512 = pec ™ (0)) + 2 1E=(O)]

+/0 (A0(s), 0% (s))ds _/0 (1>(s), f(s))ds

With the above results and notations, applying the subdifferential inequality
pn(w(t)) = on(u"(t) + (=i"(t) = W"(t), w(t) — u"(t))

with w = u®, integrating on [0, 7], and passing to the limit when n goes to oo,
gives the inequality

[ ot @yt = timint [ onare)ar

B
> /Bcpoo(uoo(t))dtzlimfup/Bcpn(u"(t))dt

on B € ByN L([0,T]) so that

(3.3.8) lim /B o (™ (1))t = /B oo (™ (1)

on B € By N L([0,T]). Now, from the chain rule theorem given in Step 1, recall

that p
(@(8), /(1)) = (u"(2), a"(t) — Adn(t)) = - [on(un(t))]

that is J
(@), 2"(1)) = = [en(un(?))]-

By the estimate (3.4.2) and the boundedness in Lg,([0,T]) of (2"), it is imme-
diate that (Z[p,(us(t))]) is bounded in L% ([0,77) so that (¢, (un(.)) is bounded
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in variation. By Helly theorem, we may assume that (¢, (u,(.)) pointwisely con-
verges to a BV function 1. By (3.4.2), (¢n(un(.)) converges in LL([0,T]) to . In
particular, for every k € Lg%, ([0,7]) we have

T T
(3.3.9) lim [ B (un(t))dt = /0 ()b (1) .

n—o0 0

Combining (3.3.8)—(3.3.9) yields

[owat=tm [ oo @it = [ putuxo)d
B B B

n—oo

for all € By N L([0,T]). As this inclusion is true on each By and By 1 [0,T], we
conclude that

$(t) = lim pp (un(t)) = oo (u™(t)) ace.

Hence we get lim,, @p, (un(t)) = poo(u™(t)) a.e. Subsequently, using (iii) the pas-
sage to the limit when n goes to oo in the equation

onlu" (1)) + 5[ (D)|” = alu™(0)) + 3l (0)]

- [, @nas+ [ ). )

yields for a.e t € [0, 7]

1,. 1.
oo (u (1) + S (DO = oo (u?) + 5 |l05°]*

_/O (AQOO(S),aOO(s»der/O (W™ (s), f>(s))ds

By noting that (f™) is uniformly integrable and 4" is uniformly bounded and
pointwise converges to 1>, by virtue of Grothendieck lemma [26], it converges uni-
formly on uniformly integrable (= relatively weakly compact) subsets of Lﬁ{d( [0,77),
so that

tim [ (i 6). 7 (sds = [ (). 17 ()

Step 6. Localization of further limits and final step.
As (2" = f" —i" — Ad™) is bounded in Lg,([0,7]) in view of Step 3, it is
relatively compact in the second dual Lg% ([0,T])" of Lg,([0,T]) endowed with the
weak topology o (Lgy ([0, T])’, Ly ([0, T])). Furthermore, (2™) can be viewed as a
bounded sequence in Cgra([0,7])". Hence there are a filter ¢ finer than the Fréchet
filter, I € Lg% ([0, T])" and n € Cga([0,T])" such that

(3310) Uu — hnHl Zt=1le LIESi([()?T])Zueak
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and

(3.3.11) lim 2" = n € Cga([0, 7)),

weak

where L2%([0,T1),,.q5 is the second dual of Lg,([0,7]) endowed with the topol-
ogy o(Lgu([0,T7)', Ly ([0, T])) and Cga([0,T1);,.q; denotes the space Cra([0,T7])’

weak

endowed with the weak topology o(Cra([0,T])’, Cra([0,T7])), because Cra([0,T]) is
a separable Banach space for the norm sup, so that we may assume by extracting
subsequences that (2") weakly converges to n € Cra([0,7]). Using Step 4, we
note that n = —m — W.dt = —m — (Au™ — f*°).dt. Let [, be the density of the
absolutely continuous part [, of [ in the decomposition [ = [, + l5 in absolutely
continuous part [, and singular part [, in the sense there is an decreasing sequence
(Ay,) of Lebesgue measurable sets in [0, 7] with A,, | 0 such that Is(h) = l5(14,h)
for all h € Lg5([0,T]) and for all n > 1. As (2" = f" —ii" — Au™) biting converges
to 2°° = f° —(*°(t) — Au™ in Step 4, it is already seen (cf. Proposition 3.1) that

T
La(h) = / (h(t), £ — C(t) — M () dt

for all h € Lgy([0,T]), shortly 2°° = f>° — (*°(t) — Au™ coincides a.e. with the
density of the absolutely continuous part l,. By ([24], [39]) we have

I(:oo (l) = I‘P;o (foo — COO — AUOO) + (5*(15, dO’I?’LI@OO)

here @7 is the conjugate of o, I« is the integral functional defined on L%&d ([0,77)
associated with o3, I is the conjugate of the integral functional I, and

doml, = {u € Lga([0,T]) : I, (u) < oo}.
Using the inclusion
2% = f = (> - Au™> € 0l, (u™).
that is
Ip: (f°°—(%° = AW™®) = (f* = (= A4, u™) — I, (u™)
we see that

I (1) = (f = ¢ = Au™,u™) — Iy (u™) + 6 (ls, domly,,).

Coming back to the inclusion 2" (t) € dp,(u"(t)), we have

() = n(u™ (1)) + (& —u"(t), 2" (1))
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for all 2 € R?. By substituting = by h(t) in this inequality, here h € L ([0,T7),
and by integrating

T T T
/O son(h(t))dt>/0 on(u (t))dt+/0 (h(t) — u™(t), 2(1)) dt.

Arguing as in Step 4 by passing to the limit in the preceding inequality, in-
volving the epiliminf property for integral functionals fOT on(h(t))dt defined on
L ([0,T7), it is easy to see that

T T
/ Voo (h(t)) dt > / Voo (U (t)) dt + (h — u™, n).
0 0

Since this holds, in particular, when h € Cra([0,77]), we conclude that n belongs
to the subdifferential 0.J,,_ (u>°) of the convex lower semicontinuous integral func-
tional J,,. defined on Cga([0,77)

T
T (1) = /0 ono(ut)) dt, Y € Caa([0,T]).

Now let B : Cra([0,T]) — Lg3([0,7]) be the continuous injection and let
B* : L5 ([0, T])" — Cra([0,T])" be the adjoint of B given by

(B*l,h) = (I, Bh) = (I,h), Vle Li([0,T])', Vh € Cra([0,T]).
Then we have B*l = B*l, + B*ls, | € Lg;([0,T])" being the limit of (2, =
fm —a"™ — Ad™) under the filter U given in section 4 and [ = I, + ls being the

decomposition of [ in absolutely continuous part [, and singular part [s. It follows
that

(B*1,h) = (B*ly, h) + (B*ls,h) = (la, h) + (Is, h)
for all h € Cga([0,T)). But it is already seen that
(lay ) = (f* = ¢ — Au™, h)
= /OT<f°°(t) —¢(t) — Au™(t), h(t))dt, Vh e Lgy([0,T])

so that the measure B*l, is absolutely continuous
T
(Blach) = [ (1 = () ~ A0, hit)dt. ¥ € Ca(0.T)
0

and its density f*° — (*° — A satisfies the inclusion

foO(t) — C°°(t) — Au™(t) € Opoo(u™(t)), a.e..
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and the singular part B*[s satisfies the equation
(B*ls,h) = (ls,h), Vh € Cra([0,T7]).

As B*l = n, using (3.3.10)—(3.3.11), it turns out that n is the sum of the absolutely
continuous measure n, with

T
(D0, ) = /0 (F% — ¢ (1) — Aa(8), h(t))dt, Wh € Caa([0,T))
and the singular part ng given by
<n87h> = <lsah‘>7 VhECRd([QT])'

which satisfies the property: for any nonnegative measure 6 on [0, 7] with respect
to which ny is absolutely continuous

dng dng

T T -
[ e Gpronaote) = [ (0. Granas

here hyx_ denotes the recession function of ¢} . Indeed, as n belongs to 0.J,,_ (u™)
by applying Theorem 5 in [39] we have

n T n
(3.3.12) i (n) = I (%) + /0 B (%(t))da(t)

with -
Le. (v) ;_/0 ot (0(8))dt, Yo € LL((0,T)).

Recall that

dna [e'e] [e'e] - 00 [e'e]
pral — (™ = Au™ € 0l (u™)
that is
dna [e'e] [e’e] - 00 [e'e] [e'e]
(3:3.13)  Lpn (7)) = (F% = ¢% = AW, u™) 11 qos11),L25 (10,11)) ~ Lo (u™°)

From (3.3.13) we deduce

I () = (U™, m) (cy ((0.77).Coa (0.71)) — Jipoe (W)
_ I oo

(u™,m) e 4 (10.17).Coa(0.77)) — Lo (U™°)

T
- /0 (W (1), F2() — C(t) — Ai (1))t

T 00 dns o]
+/0 (W (1), 2 () ab(E) — L, (u™)
dng

T
=L (G0 + [ 0. G,
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Coming back to (3.3.12) we get the equality

dng dng

T T -
| hen (Gronase = [ o). Gronasco).
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