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Well-Posedness of evolution variational

inequalities with applications

Charles Castaing∗ Christiane Godet-Thobie† Manuel D.P. Monteiro Marques ‡ Lionel Thibault §

May 8, 2022

Abstract

We are concerned in the present work with the existence and uniqueness
of absolutely continuous solutions to a class of evolution problems governed
by time-dependent subdifferential operators of the form

f(t) +Bu(t)−Adu
dt

(t) ∈ ∂ϕ(t,
du

dt
(t))

with various applications.

1 Introduction

In this work we are concerned with the existence and uniqueness of absolutely
continuous solution to an evolution inclusion in a separable Hilbert space H in
the form

f(t) +Bu(t)−Adu
dt

(t) ∈ ∂ϕ(t,
du

dt
(t)), t ∈ [0, T ]. (1.1)

Above f : [0, T ] → H is a continuous mapping, B : H → H is an operator, A :
H → H is a linear continuous coercive and symmetric operator, ϕ : [0, T ]×H →
]−∞,+∞] is a normal lower semicontinuous convex integrand, and ∂ϕ(t, .) is the
subdifferential of ϕ(t, .). Problem (1.1) is interpreted as an evolution variational
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inequality (EVI) with the velocity inside the subdifferential. Generally, the model
for parabolic evolution inclusion is a differential inclusion of the form

B(t, u(t)) ∈ du
dt

(t) +A(t)u(t) + ∂ϕ(t, u(t)), t ∈ [0, T ], (1.2)

where A(t) is a time dependent maximal monotone operator, B(t, u) defined for
(t, u) ∈ [0, T ]×H is Lipschitz with respect to u. Then the existence and uniqueness
of absolutely continuous solution to (1.2) is known in some particular cases in the
literature, see e.g [4, 19] and Barbu and Rascanu in [7] dealing with existence
of generalized solutions for parabolic variational inequalities with singular inputs
and operators of the form

f(t) +
dM

dt
(t) ∈ du

dt
(t) +Au(t) + ∂ϕ(u(t)),

where A is a linear coercive operator and ϕ is a lower semicontinuous convex
function. There is an increasing activity around problem (1.2) since it contains
several new applications such as sweeping process, relaxed problem and Skorohod
problem etc. In this framework, problem (1.1) constitutes a new variational evolu-
tion inequality with the velocity inside the subdifferential in constrast to problem
(1.2). Likewise problem (1.2), the study of (1.1) leads to several applications
in a new setting such as the sweeping process, Skorohod problem, second order
evolution and fractional differential equation [19]. Although (1.1) deals with the
deterministic case, it is a step towards the Skorohod problem in the stochastic set-
ting, see the recent articles by Castaing-Raynaud de Fitte [18, 20], Rascanu [38],
and L.Maticiuc, A. Rascanu, L. Slominski and M.Topolewski [27] for references
on this stochastic subject. Let us mention the current situation of problem (1.1)
in the literature. In [19] it was dealt with the existence of absolutely continuous
solutions to variational evolution inequalities in separable Hilbert space H of the
forms

f(t)−Au(t) ∈ ∂ϕ(t,
du

dt
(t)) (1.3)

f(t)−Au(t) ∈ NC(t)(
du

dt
(t)), (1.4)

where f : [0, T ]→ H is a continuous mapping, A : H → H is a linear continuous
coercive symmetric operator, ϕ : [0, T ] × H →] − ∞,+∞] is a normal convex
integrand, and NC(t)(x) denotes the normal cone to a closed convex moving set
C(t) ⊂ H. Some related variants of problem (1.4) dealing with two positive
operators A and B are given in a series of papers by Adly et al [1, 2, 3]. We note
that there is a new variant of problem (1.1) in a recent work by Bacho, Emmrich
and Mielke [8] dealing with the following inclusion

B(t, u(t)) ∈ ∂ϕ(t,
du

dt
(t))
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or more generally with two subdifferentials, namely

B(t, u(t)) ∈ ∂ϕ(t,
du

dt
(t)) + ∂ψ(t,

du

dt
(t)),

where B is a continuous mapping. In Mielke’s paper, in order to solve the problem,
it is proposed an algorithm due to De Giorgi combined with regularization of
subdifferentials. Consult also a recent article by Migorski, Sofonea and Zeng [29]
dealing with the inclusion of the form

−du
dt

(t) ∈ NC(t)(A
du

dt
(t) +Bu(t))

where B : H → H is Lipschitz continuous. Note that in [29] B is not assumed to
be a positive operator in contrast to the results obtained by Adly et al [1, 2, 3].

Our aim in the present paper is to develop several variants of problem (1.1)
along with diverse applications via some related variational limits.

2 Preliminaries

Throughout the paper, H is a real separable Hilbert space and E is a separable
Banach space with BE as its closed unit ball centered at zero.

If I is an interval of R the spaces L1(I, E, dt) (L1
E(I), for short) and L∞(I, E, dt)

(L∞E (I), for short) denote the usual spaces with respect to the Lebesgue measure
endowed with their canonical norms ‖·‖1 and ‖·‖∞ respectively. Similarly, C(I, E)
or CE(I) will be the space of continuous mappings from I into E. For any subset
Q ⊂ I the function 1Q is defined by 1Q(t) = 1 if t ∈ Q and 1Q(t) = 0 otherwise.

Given a convex function ϕ : H → R ∪ {−∞,+∞}, its effective domain domϕ
is the set

domϕ := {x ∈ H : ϕ(x) < +∞},

so the function ϕ is proper whenever domϕ 6= ∅ and ϕ does not take the value
−∞. At any x ∈ H where ϕ is finite its subdifferential ∂ϕ(x) is defined by

∂ϕ(x) := {ζ ∈ H : 〈ζ, y − x〉 − ϕ(x) ≤ ϕ(y), ∀y ∈ H}.

If f(x) is not finite ∂ϕ(x) = ∅. Considering the Legendre-Fenchel conjugate
ϕ∗ : H → R ∪ {−∞,+∞} with

ϕ∗(y) := sup{〈y, x〉 − f(x) : x ∈ H},

it is known that, when ϕ is a proper lower semicontinuous convex function, ϕ∗ is
also proper lower semicontinuous and

y ∈ ∂ϕ(x) ⇔ 〈y, x〉 = ϕ(x) + ϕ∗(y).
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Given a nonempty closed convex subset S of H, its indicator function δ(·, S) :
H → R ∪ {+∞} is defined by δ(x, S) = 0 if x ∈ S and δ(x, S) = +∞ if x ∈
H \ S. Clearly, δ(·, S) is a proper lower semicontinuous convex function. Its
subdifferential is called the normal cone of S, and obviously

NS(x) = {ζ ∈ H : 〈ζ, y − x〉 ≤ 0, ∀y ∈ S} if x ∈ S (2.1)

and NS(x) = ∅ if x ∈ H \ S. The Legendre-Fenchel conjugate δ∗(·, S) : H →
R ∪ {+∞} coincides with the support function of S, that is,

δ∗(y, S) = sup
x∈S
〈y, x〉 for all y ∈ H.

If S, S′ are both nonempty closed bounded convex sets of H, the Hausdorff dis-
tance between S and S′ can be defined by

haus (S, S′) = sup
x∈H
|dS(x)− dS′(x)|,

and it is known that (see, e.g., [24, 41])

haus (S, S′) = sup
‖u‖≤1

|δ∗(u, S)− δ∗(u, S′)|, (2.2)

which entails

|δ∗(y, S)− δ∗(y, S′)| ≤ ‖y‖haus(S, S′) for all y ∈ H. (2.3)

We recall and summarize two useful results, see for example [6, Corollary 2.9,
Corollary 2.10]. Remind that a linear operator A : H → H is coercive if there is
a real ω > 0 such that

〈Ax, x〉 ≥ ω ‖x‖2 for all x ∈ H. (2.4)

Proposition 2.1. Let A : H → H be a linear continuous and coercive operator.
(a) If ϕ : H → [0,∞] is a proper lower semicontinuous convex function, then for
each f ∈ H the problem f ∈ Ay + ∂ϕ(y) admits a unique solution y.
(b) If K is a closed convex subset in H, then for each f ∈ H the problem f ∈
Ay +NK(y) admits a unique solution y.

3 Preparatory variational limit theorems

Proposition 3.1. Let H be a separable Hilbert space and I = [0, T ]. Let C : I ⇒
H be a closed convex valued scalarly measurable multimapping for which there
is some real r > 0 such that C(t) ⊂ rBH for all t ∈ I. Let A be a continuous
symmetric coercive linear operator on H and let B be a continuous compact linear
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operator on H. Let (θn)n∈N be a sequence of measurable functions from I into
I such that for each t ∈ I one has θn(t) → t and haus

(
C(θn(t)), C(t)

)
→ 0 as

n→∞.
Let (fn, f)n∈N be a bounded sequence in L∞H (I) with ‖fn(t)‖ ≤ β, ‖f(t)‖ ≤ β

(β > 0) for all n ∈ N such that (fn(t))n converges to f(t) for each t ∈ I.
Let (vn, v)n∈N be a bounded sequence in L∞H (I) with ‖vn(t)‖ ≤ γ, ‖v(t)‖ ≤ γ
(γ > 0) for all n ∈ N such that (vn(t))n converges weakly to v(t) for each t ∈ I.
Let (ζn)n∈N be an integrable sequence in L1

H(I) such that ζn(t) ∈ C(θn(t)) for all
t ∈ I and such that (ζn)n∈N σ(L1

H , L
∞
H ) converges in L1

H(I) to ζ. Assume that

fn(t) +Bvn(t)−Aζn(t) ∈ NC(θn(t))(ζn(t)) for all n ∈ N, a.e. t ∈ I.

Then for a.e. t ∈ I one has

ζ(t) ∈ C(t) and f(t) +Bv(t)−Aζ(t) ∈ NC(t)(ζ(t)).

Proof. We first verify that ζ(t) ∈ C(t) a.e.t ∈ I. Indeed, for every measurable set
Z ⊂ I and for any x ∈ H, the function 1Zx ∈ L∞H (I). By the inequality

〈x, ζn(t)〉 ≤ δ∗(x,C(θn(t)))

integrating on Z gives∫
I
〈1Zx, ζn(t), 〉dt =

∫
Z
〈x, ζn(t)〉dt ≤

∫
Z
δ∗(x,C(θn(t)))dt.

Passing to the upper limit in this inequality we obtain∫
Z
〈1Zx, ζ(t)〉dt ≤ lim sup

n

∫
Z
δ∗(x,C(θn(t)))dt

≤
∫
Z

lim sup
n

δ∗(x,C(θn(t))) ≤
∫
Z
δ∗(x,C(t))dt.

This being true for any Lebesgue measurable set Z ⊂ I we deduce that for every
x ∈ H

〈x, u̇(t)〉 ≤ δ∗(x,C(t)) a.e. t ∈ I.
By the separability of H and the weak compactness and convexity of C(t) (see,
e.g., Castaing-Valadier [24, Proposition III- 35]), we get the desired inclusion
ζ(t) ∈ C(t) a.e. t ∈ I

For each t ∈ I keeping in mind that vn(t) → v(t) weakly in H and B is a
continuous compact linear operator, we see that Bvn(t) → Bv(t) strongly in H,
so that Bvn(.) → Bv(.) weakly in L1

H(I). Indeed, let any h ∈ L∞H (I). Then we
have∣∣∣∣∫ T

0
〈h(t), Bvn(t)〉dt−

∫ T

0
〈h(t), Bv(t)〉dt

∣∣∣∣ ≤ ∫ T

0
|〈h(t), Bvn(t)−Bv(t)〉|dt

≤ |h|∞
∫ T

0
‖Bvn(t)−Bv(t)‖dt.
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As
∫ T

0 ‖Bvn(δn(t))−Bv(t)‖dt→ 0 as n→∞ (by Lebesgue dominated convergence
theorem), our assertion follows. Similarly as A is symmetric, we note that Aζn →
Aζ weakly in L1

H(I). As a main consequence fn+Bvn−Aζn → f+Bu−Aζ weakly
in L1

H(I). Then given any Lebesgue measurable subset Z ⊂ I we may apply the
lower semicontinuity of convex integral functional ([22], Theorem 8.1.16) to deduce
that∫
Z
δ∗(f(t)+Bv(t)−Aζ(t), C(t))dt ≤ lim inf

n

∫
Z
δ∗(fn(t)+Bvn(t)−Aζn(t), C(t))dt.

(3.1)
This need a careful look. Indeed, we note that (t, x) 7→ δ∗(x,C(t)) is a nor-
mal lower semicontinuous convex integrand defined on [0, T ]×H and δ∗(fn(t) +
Bvn(t) − Aζn(t), C(t)) is measurable and bounded by an integrable function in-
dependent of n ∈ N since taking some real constant α with ‖fn(t) + Bvn(t) −
Aζn(t)‖ ≤ α for all n ∈ N and t ∈ I we have

|δ∗(fn(t) +Bvn(t)−Aζn(t), C(t))| ≤ r‖fn(t) +Bvn(t)−Aζn(t)‖ ≤ αr.

Then writing∣∣δ∗(fn(t) +Bvn(t)−Aζn(t), C(t))− δ∗(fn(t) +Bvn(t)−Aζn(t), C(θn(t)))
∣∣

≤ ‖fn(t) +Bvn(t)−Aζn(t))‖haus
(
C(t), C(θn(t))

)
≤ α haus

(
C(t), C(θn(t))

)
,

we can see that

lim inf
n

∫
Z
δ∗(fn(t) +Bvn(t)−Aζn(t), C(θn(t)))dt

≥ lim inf
n

∫
Z
δ∗(fn(t) +Bvn(t)−Aζn(t), C(t))dt

≥
∫
Z
δ∗(f(t) +Bv(t)−Aζ(t), C(t))dt. (3.2)

Let us set ψA(x) = 〈Ax, x〉 if x ∈ rBH and ψA(x) = +∞ if x /∈ rBH . Then it is
clear that ψA is a positive lower semicontinuous convex integrand. Apply again
the lower semicontinuity of the convex integral functional ([22], Theorem 8.1.6)
associated with the positive normal convex integrand ψA we obtain

lim inf
n

∫
Z
ψA(ζn(t))dt ≥

∫
Z
ψA(ζ(t))dt,

that is,

lim inf
n

∫
Z
〈Aζn(t), ζn(t))dt ≥

∫
Z
〈Aζ(t), ζ(t)dt. (3.3)

Since we already saw that Bvn(t) → Bv(t) strongly in H for each t ∈ I, we also
have by the Lebesgue dominated convergence theorem

lim
n

∫
Z
〈Bvn(t), ζn(t)〉dt =

∫
Z
〈Bv(t), ζ(t)〉dt. (3.4)
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Further, by the Lebesgue dominated convergence theorem again the inequality

|〈fn(t), ζn(t)〉 − 〈f(t), ζn(t)〉| ≤ r‖fn(t)− f(t)‖

gives
∫
Z

(
〈fn(t), ζn(t)〉 − 〈f(t), ζn(t)〉

)
dt→ 0. Also as n→∞∫

Z
〈f(t), ζn(t)〉dt→

∫
Z
〈f(t), ζ(t)〉dt

since ζn → ζ weakly in L1
H(I). It ensues that

lim
n

∫
Z
〈fn(t), ζn(t)〉dt =

∫
Z
〈f(t), ζ(t)〉dt. (3.5)

Now putting qn(t) := fn(t) + Bvn(t)− Aζn(t) and integrating on Z ⊂ [0, T ] the
inequality ( here measurability and integrability are guaranted)

δ∗(qn(t), C(θn(t))) + 〈−fn(t)−Bvn(t), ζn(t)〉+ 〈Aζn(t), ζn(t)〉 ≤ 0

gives∫
Z
δ∗(qn(t), C(θn(t)))dt+

∫
Z
〈Avn(t), ζn(t)〉dt+

∫
Z
〈−fn(t)−Bvn(t), ζn(t)〉dt ≤ 0,

so passing to the limit as n→∞ in this equality and using (3.1)—(3.5) yield∫
Z

[
δ∗(f(t) +Bv(t)−Aζ(t), C(t)) + 〈Aζ(t)−Bv(t)− f(t), ζ(t)〉

]
dt ≤ 0.

As t 7→ δ∗(f(t) +Bv(t)−Aζ(t), C(t)) + 〈Aζ(t)−Bv(t)− f(t), ζ(t)〉 is integrable
and as the latter inequality holds true for any Lebesgue measurable set Z ⊂ I, it
follows that for a.e. t ∈ I

δ∗(f(t) +Bv(t)−Aζ(t), C(t)) + 〈Aζ(t)−Bv(t)− f(t), ζ(t)〉 ≤ 0.

This and the inclusion ζ(t) ∈ C(t) a.e. t ∈ I allow us to conclude that

f(t) +Bv(t)−Aζ(t)) ∈ NC(t)(ζ(t)) a.e. t ∈ I

according to the description (2.1) of the normal cone.

An easy adaptation of the arguments in the above proposition furnishes the
following variant.

Proposition 3.2. Let H be a separable Hilbert space and I = [0, T ]. Let C : I ⇒
H be a closed convex valued scalarly measurable multimapping for which there is
some real r > 0 such that C(t) ⊂ rBH for all t ∈ I. Let A be a continuous
symmetric linear operator coercive on H and let B : H → H be a Lipschitz
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mapping. Let (θn)n∈N be a sequence of measurable functions from I into I such
that for each t ∈ I one has θn(t)→ t and haus

(
C(θn(t)), C(t)

)
→ 0 as n→∞.

Let (fn, f)n∈N be a bounded sequence in L∞H (I) with ‖fn(t)‖ ≤ β, ‖f(t)‖ ≤ β
(β > 0) for all n ∈ N such that (fn(t))n converges to f(t) for each t ∈ I.
Let (vn, v)n∈N be a bounded sequence in L∞H (I) with ‖vn(t)‖ ≤ γ, ‖v(t)‖ ≤ γ
(γ > 0) for all n ∈ N such that (vn(t))n converges to v(t) for each t ∈ I. Let
(ζn)n∈N be an integrable sequence in L1

H(I) such that ζn(t) ∈ C(θn(t)) for all t ∈ I
and such that (ζn)n∈N σ(L1

H , L
∞
H ) converges in L1

H(I) to ζ. Assume that

fn(t) +Bvn(t)−Aζn(t) ∈ NC(θn(t))(ζn(t)) for all n ∈ N, t ∈ I.

Then for a.e. t ∈ I one has

ζ(t) ∈ C(t) and f(t) +Bv(t)−Aζ(t) ∈ NC(t)(ζ(t)).

Another variant of Proposition 3.1 is available with the gradient∇g of a convex
function g in place of the mapping B.

Proposition 3.3. Let H be a separable Hilbert space and I = [0, T ]. Let C : I ⇒
H be a closed convex valued scalarly measurable multimapping for which there is
some real r > 0 such that C(t) ⊂ rBH for all t ∈ I. Let A be a continuous
symmetric linear coercive operator on H and let g : H → R be a convex function
Lipschitz on bounded sets and continuously differentiable on H. Let (θn)n∈N be a
sequence of measurable functions from I into I such that for each t ∈ I one has
θn(t)→ t and haus

(
C(θn(t)), C(t)

)
→ 0 as n→∞.

Let (fn, f)n∈N be a bounded sequence in L∞H (I) with ‖fn(t)‖ ≤ β, ‖f(t)‖ ≤ β
(β > 0) for all n ∈ N such that (fn(t))n converges to f(t) for each t ∈ I.
Let (un, u)n∈N be a sequence of absolutely continuous mappings

un(t) = u0 +

∫ t

0
u̇n(s)ds, u̇n(t) ∈ C(t)

u(t) = u0 +

∫ t

0
u̇(s)ds, u̇(t) ∈ C(t)

such that (un)n converges to u uniformly on I and (u̇n)n conveges to u̇ weakly in
L1
H(I). Assume that for every n ∈ N

fn(t) +∇g(un(t))−Au̇n(t) ∈ NC(θn(t))(u̇n(t)) a.e. t ∈ I.

Then for a.e. t ∈ I one has

u̇(t) ∈ C(t) and f(t) +∇g(u(t))−A u̇(t) ∈ NC(t)(u̇(t)).

Proof. First, we justify that u̇(t) ∈ C(t) a.e. t ∈ I. We proceed as in the proof of
Proposition 3.1. Take any measurable Lebesgue set Z ⊂ I and any x ∈ H. The
function 1Zx ∈ L∞H (I). Writing

〈x, u̇n(t)〉 ≤ δ∗(x,C(θn(t))),
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we see that∫
I
〈1Zx, u̇n(t), 〉dt =

∫
Z
〈x, u̇n(t)〉dt ≤

∫
Z
δ∗(x,C(θn(t)))dt.

Passing to the upper limit we obtain∫
Z
〈1Zx, u̇(t)〉dt ≤ lim sup

n

∫
Z
δ∗(x,C(θn(t)))dt

≤
∫
Z

lim sup
n

δ∗(x,C(θn(t))) ≤
∫
Z
δ∗(x,C(t))dt.

This being true for any Lebesgue measurable set Z ⊂ I we deduce that for every
x ∈ H

〈x, u̇(t)〉 ≤ δ∗(x,C(t)) texta.e. t ∈ I.

By the separability of H and the weak compactness and convexity of C(t), we get
the desired inclusion u̇(t) ∈ C(t) a.e. t ∈ I.

Now let γ > 0 be a Lipschitz constant of g on (‖u0‖+ r′T )BH for some r′ > r.
Take any Lebesgue measurable set Z ⊂ I. Since (fn)n is uniformly bounded and
pointwise converges to f , we have

lim
n

∫
Z
〈fn(t), u̇n(t)〉dt =

∫
Z
〈f(t), u̇(t)〉dt. (3.6)

Also by integrating on Z (we are ensured that the functions given are measurable)
the inequality

δ∗
(
fn(t) +∇g(un(t))−Au̇n(t), C(θn(t))

)
+ 〈Au̇n(t)−∇g(un(t))−fn(t), u̇n(t)〉≤0

it ensues that with qn(t) := fn(t) +∇g(un(t))−Au̇n(t)∫
Z
δ∗(qn(t), C(θn(t)))dt+

∫
Z
〈Au̇n(t)−fn(t), u̇n(t)〉dt−

∫
Z
〈∇g(un(t)), u̇n(t)〉dt≤0.

(3.7)
We claim that Aun(·)→ Au(·) weakly in L1

H(I) and∇g(un(·))→ ∇g(u(·)) weakly
in L1

H(I), so

qn(·) = fn(·) +∇g(un(·))−Au̇n(·)→ q(·) := f(·) +∇g(u(·))−Au̇(·)

weakly in L1
H(I). Indeed, for any h ∈ L∞H (I) the weak convergence in L1

H(I) of

(u̇n)n to u̇ says that
∫ T

0 〈Ah(t), u̇n(t)〉dt→
∫ T

0 〈Ah(t), u̇(t)〉dt, which means∫ T

0
〈h(t), Au̇n(t)〉dt→

∫ T

0
〈h(t), Au̇(t)〉dt.

This property for every h ∈ L∞H (I) translates the weak convergence in L1
H(I) of

(Au̇n)n toAu̇. Concerning (∇g(un(·)))n it converges strongly in L1
H(I) to∇g(u(·))
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(by Lebesgue convergence theorem) since ∇g(un(t)) → ∇g(u(t)) for each t ∈ I
and ‖∇g(un(t))‖ ≤ γ (by the γ-Lipschitz property of g on (‖u0‖+ r′T )BH). The
desired weak convergence in L1

H(I) of (qn)n to q is justified. Let us consider now
the term 〈∇g(un(t), u̇n(t)〉. The Lipschitz property of g on (‖u0‖+rT )BH assures
us that g ◦ un and g ◦ u are absolutely continuous on I and at any t ∈ I where u
and all un are derivable and are derivable (by classical chain rule)

〈∇g(u(t)), u̇(t)〉 =
d

dt
g(u(t)) and 〈∇g(un(t)), u̇n(t)〉 =

d

dt
g(un(t)).

From this we deduce that∫ T

0
〈∇g(u(t)), u̇(t)〉dt

=

∫ T

0

d

dt
g(u(t))dt = g(u(T ))− g(u(0)) = lim

n

(
g(un(T ))− g(un(0))

)
= lim

n

∫ T

0

d

dt
g(un(t))dt = lim

n

∫ T

0
〈∇g(un(t)), u̇n(t)〉dt. (3.8)

Regarding
∫ T

0 〈Au̇n(t), u̇n(t)〉dt let us set ψA(t, x) = 〈Ax, x〉 for all x ∈ H. It is
clear that ψA is a positive lower semicontinuous convex normal integrand. By the
lower semicontinuity of convex integral functional (see [22, Theorem 8.1.6]) we
obtain

lim inf
n

∫ T

0
ψA(t, u̇n(t))dt ≥

∫ T

0
ψA(t, u̇(t))dt,

that is,

lim inf
n

∫ T

0
〈Au̇n(t), u̇n(t)〉dt ≥

∫ T

0
〈Au̇(t), u̇(t)〉dt. (3.9)

The last step is concerned with
∫ T

0 δ∗(qn(t), C(t))dt. Note that ‖qn(t)‖ ≤
β+γ+ r‖A‖, hence δ∗(qn(t), C(t)) ≥ −r(β+γ+ r‖A‖). Using this and the lower
semicontinuous convex normal integrand (t, x) 7→ δ∗(x,C(t)) we obtain by [22,
Theorem 8.1.6] again that

lim inf
n

∫ T

0
δ∗(qn(t), C(t))dt ≥

∫ T

0
δ∗(g(t), C(t))dt.

Since∣∣δ∗(qn(t), C(θn(t)
)
−δ∗

(
qn(t), C(t)

)∣∣ ≤ (β+γ+r‖A‖) haus
(
C(θn(t)), C(t)

)
=: εn(t)

with
∫ T

0 εn(t)→ 0 as n→∞, we are ensured that

lim inf
n

∫ T

0
δ∗
(
qn(t), C(t)

)
dt ≥

∫ T

0
δ∗
(
g(t), C(t)

)
dt. (3.10)
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Putting together (3.37)—(3.39) yields∫ T

0
δ∗(f(t)+∇g(u(t))−Au̇(t), C(t))dt+

∫ T

0
〈−f(t)+∇g(u(t))+Au̇(t), u̇(t)〉dt ≤ 0.

(3.11)
On the other hand, the inclusion u̇(t) ∈ C(t) says that for a.e. t ∈ I

δ∗(f(t) +∇g(u(t))−Au̇(t), C(t)) ≥ 〈f(t) +∇g(u(t))−Au̇(t), u̇(t)〉.

Taking this into account in (3.40) we deduce for a.e. t ∈ I

δ∗
(
f(t) +∇g(u(t))−Au̇(t), C(t)

)
− 〈f(t+∇g(u(t))−Au̇(t), u̇(t) ≤ 0

The latter inequality and the inclusion u̇(t) ∈ C(t) guarantees that for a.e. t ∈ I

f(t) +∇g(u(t))−Au̇(t) ∈ NC(t)(u̇(t))

according to the description (2.1) of the normal cone.

Remark 3.1. Concerning the chain rule for g ◦u and g ◦un above, one can more
in Moreau-Valadier [35] under weaker assumptions for the convex function g.

When θn(t) = t ( i.e., C(θn(t)) = C(t)) in Proposition 3.1 the uniform bound-
edness condition C(t) ⊂ rBH can be relaxed as shown in the next proposition.
Let us prove first a lemma.

Lemma 3.2. Let H be a separable Hilbert space and I = [0, T ]. Let C : I ⇒ H
be a scalarly measurable multimapping with closed convex weakly locally compact
values which contain no line. Let (ζn)n∈N be sequence in L1

H(I) such that ζn(t) ∈
C(t) for all t ∈ I and n ∈ N and such that (ζn)n∈N σ(L1

H , L
∞
H ) converges in L1

H(I)
to ζ. Then ζ(t) ∈ C(t) for a.e. t ∈ I.

Proof. Let (ep)p∈N be a dense sequence in H. Take any measurable set Z ⊂ I and
any p ∈ N, and note that the mapping 1Zep ∈ L∞H (I). Considering the inequality
(due to the inclusion ζn(t) ∈ C(t))

〈ep, ζn(t)〉 ≤ δ∗(ep, C(t))

and integrating on Z ensure that∫
I
〈1Zep, ζn(t), 〉dt =

∫
Z
〈ep, ζn(t)〉dt ≤

∫
Z
δ∗(ep, C(t))dt.

Passing to the limit in the latter inequality assures us that∫
Z
〈1Zep, ζ(t)〉dt ≤

∫
Z
δ∗(ep, C(t))dt.

11



This being true for any Lebesgue measurable set Z ⊂ I, it follows that for every
p ∈ N

〈ep, ζ(t)〉 ≤ δ∗(ep, C(t)) a.e. t ∈ I.

As H is separable and C(t) is closed convex weakly locally compact and con-
tains no line, by ( Castaing-Valadier [24, Proposition III- 35]), we get the desired
inclusion ζ(t) ∈ C(t) a.e. t ∈ I.

Proposition 3.4. Let H be a separable Hilbert space and I = [0, T ]. Let C : I ⇒
H be a scalarly measurable multimapping with closed convex weakly locally compact
values which contain no line and for which there exist r ∈ L∞R+(I) such that
C(t)∩ r(t)BH 6= ∅ for all t ∈ I. Let A : H → H be a continuous symmetric linear
coercive operator and let B : H → H be a continuous compact linear operator. Let
(fn, f)n∈N be a bounded sequence in L∞H (I) with ‖fn(t)‖ ≤ β, ‖f(t)‖ ≤ β (β > 0)
for all n ∈ N such that (fn(t))n converges to f(t) for each t ∈ I.
Let (vn, v)n∈N be a bounded sequence in L∞H (I) with ‖vn(t)‖ ≤ γ, ‖v(t)‖ ≤ γ
(γ > 0) for all n ∈ N such that (vn(t))n converges weakly to v(t) for each t ∈ I.
Let (ζn)n∈N be an equi-integrable sequence in L1

H(I) such that ζn(t) ∈ C(t) for
all t ∈ I and n ∈ N and such that (ζn)n∈N σ(L1

H , L
∞
H ) converges in L1

H(I) to ζ.
Assume that

fn(t) +Bvn(t)−Aζn(t) ∈ NC(t)(ζn(t)) for all n ∈ N, a.e. t ∈ I.

Then for a.e. t ∈ I one has

ζ(t) ∈ C(t) and f(t) +Bv(t)−Aζ(t) ∈ NC(t)(ζ(t)).

Proof. First, Lemma 3.2 justifies that ζ(t) ∈ C(t) for a.e. t ∈ I.
For each t ∈ I keeping in mind that vn(t)→ v(t) weakly in H and B is a con-

tinuous compact linear operator, we see that Bvn(t)→ Bv(t) strongly in H. The

Lebesgue dominated convergence theorem says that
∫ T

0 ‖Bvn(t))−Bv(t)‖ dt→ 0,
i.e., Bvn(·) → Bv(·) strongly in L1

H(I). We can also see that Aζn → Aζ weakly
in L1

H(I) since for any h ∈ L∞H (I)∫ T

0
〈h(t), Aζn(t)〉 dt =

∫ T

0
〈Ah(t), ζn(t)〉 dt→

∫ T

0
〈Ah(t), ζ(t)〉 dt =

∫ T

0
〈h(t), Aζ(t)〉 dt.

As a main consequence fn +Bvn −Aζn → f +Bu−Aζ weakly in L1
H(I).

Given any Lebesgue measurable subset Z ⊂ I we may apply the lower semi-
continuity of convex integral functional in [22, Theorem 8.1.16] to derive that∫
Z
δ∗(f(t)+Bv(t)−Aζ(t), C(t))dt ≤ lim inf

n

∫
Z
δ∗(fn(t)+Bvn(t)−Aζn(t), C(t))dt.

(3.12)
This needs a careful look. Choose a measurable selection s of t 7→ C(t) ∩ r(t)BH ,
so s ∈ L∞H (I). We note that (t, x) 7→ δ∗(x,C(t)) is a normal lower semicontinu-
ous convex integrand defined on I × H and δ∗(fn(t) + Bvn(t) − Aζn(t), C(t)) is
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measurable and minored by ρn(t) := 〈s(t), fn(t) + Bvn(t) − Aζn(t)〉. Further, it
is easy to check that (ρn(·)) is equi-integrable in L1

R(I). Then by [22, Theorem
8.1.6] we deduce that

lim inf
n

∫
Z
δ∗(fn(t) +Bvn(t)−Aζn(t), C(t))dt

≥
∫
Z
δ∗(f(t) +Bv(t)−Aζ(t), C(t))dt,

which confirms (3.32).
Let us set ψA(x) = 〈Ax, x〉 if x ∈ C(t) and ψA(x) = +∞ if x /∈ C(t). Then it

is clear that ψA is a positive lower semicontinuous convex integrand. Apply again
the lower semicontinuity of the convex integral functional ([22], Theorem 8.1.6)
associated with the positive normal convex integrand ψA we obtain

lim inf
n

∫
Z
ψA(ζn(t)) dt ≥

∫
Z
ψA(ζ(t)) dt,

that is,

lim inf
n

∫
Z
〈Aζn(t), ζn(t))dt ≥

∫
Z
〈Aζ(t), ζ(t)dt. (3.13)

Further, we have

lim
n

∫
Z
〈Bvn(t), ζn(t)〉 dt =

∫
Z
〈Bv(t), ζ(t)〉 dt, (3.14)

lim
n

∫
Z
〈fn(t), ζn(t)〉dt =

∫
Z
〈f(t), ζ(t)〉dt. (3.15)

The two latter equality features require a careful justification. Indeed, since
(Bvn)n is uniformly bounded and pointwise strongly converges to Bv and (fn)n
is uniformly bounded and pointwise strongly converges to f and (ζn) is equi-
integrable with ζn → ζ weakly in L1

H(I), we see that both sequences (Bvn−Bv)n
and (fn − f)n converge to 0 uniformly on any uniformly integrable subset of
L1
H([0, T ]), in other terms they converge to 0 with respect to the Mackey topol-

ogy τ(L∞H (I), L1
H(I)). Consequently, both (3.34) and (3.35) hold true, as claimed

above. 1

On the other hand, the inclusion fn(t) = Bvn(t) − Aζn(t) ∈ NC(t)(ζn(t)) for
a.e. t ∈ I ensures that

δ∗(fn(t) +Bvn(t)−Aζn(t), C(t))− 〈fn(t) +Bvn(t)−Aζn(t), ζn(t)〉 ≤ 0.

1If H = Re, here one may invoke a classical fact that on bounded subsets of L∞H the topology
of convergence in measure coincides with the topology of uniform convergence on uniformly
integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a
lemma due to Grothendieck [26] [Ch.5 §4 no 1 Prop. 1 and exercice].
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Integrating this inequality on I gives∫ T

0
δ∗(fn(t) +Bvn(t)−Aζn(t), C(t))dt+

∫ T

0
〈Aζn(t), ζn(t)〉dt

+

∫ T

0
〈−fn(t)−Bvn(t), ζn(t)〉dt ≤ 0.

Passing to the limit inferior as n→∞ and using (3.32) we obtain∫ T

0

[
δ∗(f(t) +Bv(t)−Aζ(t), C(t)) + 〈Aζ(t)−Bv(t)− f(t), ζ(t)〉

]
dt ≤ 0.

This and the inclusion ζ(t) ∈ C(t) a.e. t ∈ I allow us to conclude that

f(t) +Bv(t)−Aζ(t)) ∈ NC(t)(ζ(t)) a.e. t ∈ I

according to the description (2.1) of the normal cone.

Similarly to Proposition 3.4, when C(θn(t) = C(t), the next result relaxes the
condition C(t) ⊂ rBH in Proposition 3.10.

Proposition 3.5. Let H be a separable Hilbert space and I = [0, T ]. Let C :
I ⇒ H be a scalarly measurable multimapping with closed convex weakly locally
compact values containing no line, for which there exist r ∈ L∞R+(I) such that
C(t)∩ r(t)BH 6= ∅ for all t ∈ I. Let A : H → H be a continuous symmetric linear
coerciveoperator and let g : H → R be a convex function Lipschitz on bounded sets
and continuously differentiable on H.

Let (fn, f)n∈N be a bounded sequence in L∞H (I) with ‖fn(t)‖ ≤ β, ‖f(t)‖ ≤ β
(β > 0) for all n ∈ N such that (fn(t))n converges to f(t) for each t ∈ I.
Let (un, u)n∈N be a sequence of absolutely continuous mappings

un(t) = u0 +

∫ t

0
u̇n(s)ds, u̇n(t) ∈ C(t)

u(t) = u0 +

∫ t

0
u̇(s)ds, u̇(t) ∈ C(t)

such that (un)n converges to u uniformly on I and (u̇n)n converges to u̇ weakly in
L1
H(I). Assume that for every n ∈ N

fn(t) +∇g(un(t))−Au̇n(t) ∈ NC(t)(u̇n(t)) a.e. t ∈ I.

Then for a.e. t ∈ I one has

u̇(t) ∈ C(t) and f(t) +∇g(u(t))−A u̇(t) ∈ NC(t)(u̇(t)).
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Proof. The inclusion u̇(t) ∈ C(t) for a.e. t ∈ I is justified by Lemma 3.2.
Take a real r′ > r and let γ > 0 be a Lipschitz constant of g on (‖u0‖ +

r′T )BH . Take any Lebesgue measurable set Z ⊂ I. Let us consider the term
〈∇g(un(t)), u̇n(t)〉. The Lipschitz property of g on (‖u0‖+r′T )BH assures us that
g ◦ un and g ◦ u are absolutely continuous on I and at any t ∈ I where u and all
un are derivable

〈∇g(u(t)), u̇(t)〉 =
d

dt
g(u(t)) and 〈∇g(un(t)), u̇n(t)〉 =

d

dt
g(un(t)).

From this we deduce that∫ T

0
〈∇g(u(t)), u̇(t)〉dt

=

∫ T

0

d

dt
g(u(t))dt = g(u(T ))− g(u(0)) = lim

n

(
g(un(T ))− g(un(0))

)
= lim

n

∫ T

0

d

dt
g(un(t))dt = lim

n

∫ T

0
〈∇g(un(t)), u̇n(t)〉dt. (3.16)

Since (fn)n is uniformly bounded and pointwise converges to f and (u̇n)n
weakly converges in L1

H([0, T ]) to u̇, we have

lim
n

∫
Z
〈fn(t), u̇n(t)〉dt =

∫
Z
〈f(t), u̇(t)〉dt. (3.17)

This fact is mainly justified in the proof of Proposition 3.4 and is not a conse-
quence of Lebesgue theorem. Also the assumption of normal cone inclusion can
be reformulated for a.e. t ∈ I as

δ∗
(
fn(t) +∇g(un(t))−Au̇n(t), C(t))

)
+ 〈Au̇n(t)−∇g(un(t))−fn(t), u̇n(t)〉≤0

with qn(t) := fn(t) +∇g(un(t))−Au̇n(t), which gives∫
Z
δ∗(qn(t), C(t))dt+

∫
Z
〈Au̇n(t)−fn(t), u̇n(t)〉dt−

∫
Z
〈∇g(un(t)), u̇n(t)〉dt≤0,

(3.18)
(noting that the above functions are measurable). We claim that Au̇n(·)→ Au̇(·)
weakly in L1

H(I) and ∇g(un(·))→ ∇g(u(·)) weakly in L1
H(I), so

qn(·) = fn(·) +∇g(un(·))−Au̇n(·)→ q(·) := f(·) +∇g(u(·))−Au̇(·)

weakly in L1
H(I). Indeed, for any h ∈ L∞H (I) the weak convergence in L1

H(I) of

(u̇n)n to u̇ says that
∫ T

0 〈Ah(t), u̇n(t)〉dt→
∫ T

0 〈Ah(t), u̇(t)〉dt, which means∫ T

0
〈h(t), Au̇n(t)〉dt→

∫ T

0
〈h(t), Au̇(t)〉dt.
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This property for every h ∈ L∞H (I) translates the weak convergence in L1
H(I) of

(Au̇n)n toAu̇. Concerning (∇g(un(·)))n it converges strongly in L1
H(I) to∇g(u(·))

(by Lebesgue convergence theorem) since ∇g(un(t)) → ∇g(u(t)) for each t ∈ I
and ‖∇g(un(t))‖ ≤ γ (by the γ-Lipschitz property of g on (‖u0‖ + r′T )BH).
Altogether, the weak convergence in L1

H(I) of (qn)n to q is justified.

Regarding
∫ T

0 〈Au̇n(t), u̇n(t)〉dt let us set ψA(t, x) = 〈Ax, x〉 for all x ∈ C(t)
and ψA(t, x) = +∞ for x /∈ C(t). It is clear that ψA is a positive lower semicon-
tinuous convex normal integrand. By the lower semicontinuity of convex integral
functional (see [22, Theorem 8.1.6]) we obtain

lim inf
n

∫ T

0
ψA(t, u̇n(t))dt ≥

∫ T

0
ψA(t, u̇(t))dt,

that is,

lim inf
n

∫ T

0
〈Au̇n(t), u̇n(t)〉dt ≥

∫ T

0
〈Au̇(t), u̇(t)〉dt. (3.19)

The last step deals with
∫ T

0 δ∗(qn(t), C(t))dt. Fix a measurable selection s(·)
of t 7→ C(t)∩ r(t)BH , set ρn(t) := 〈s(t), qn(t)〉, and observe that δ∗(qn(t), C(t)) ≥
ρn(t). It is not difficult to check that (ρn)n is equi-integrable in L1

R(I). From
this and the lower semicontinuous convex normal integrand (t, x) 7→ δ∗(x,C(t))
it follows by [22, Theorem 8.1.6] again that

lim inf
n

∫ T

0
δ∗(qn(t), C(t))dt ≥

∫ T

0
δ∗(q(t), C(t))dt.

The latter inequality and (3.16)—(3.19) yield∫ T

0
δ∗(f(t)+∇g(u(t))−Au̇(t), C(t))dt+

∫ T

0
〈−f(t)+∇g(u(t))+Au̇(t), u̇(t)〉dt ≤ 0.

(3.20)
On the other hand, the inclusion u̇(t) ∈ C(t) entails that for a.e. t ∈ I

δ∗(f(t) +∇g(u(t))−Au̇(t), C(t)) ≥ 〈f(t) +∇g(u(t))−Au̇(t), u̇(t)〉.

Taking this into account in (3.40) we deduce for a.e. t ∈ I

δ∗
(
f(t) +∇g(u(t))−Au̇(t), C(t)

)
− 〈f(t+∇g(u(t))−Au̇(t), u̇(t) ≤ 0.

The latter inequality and the inclusion u̇(t) ∈ C(t) guarantees that for a.e. t ∈ I

f(t) +∇g(u(t))−Au̇(t) ∈ NC(t)(u̇(t))

according to the description (2.1) of the normal cone.

We pass now to the situation of a subdifferential ∂ϕ(t, ·) in place of the normal
cone NC(t)(·).
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Proposition 3.6. Let H be a separable Hilbert space and I = [0, T ] Let ϕ :
[0, T ] ×H →] −∞,+∞] be a normal lower semicontinuous convex integrand for
which there exists a convex weakly compact set Γ such that:
(i) for all t ∈ I, domϕt := Γ;
(ii {ϕ(., u(.)), u ∈ S1

Γ} is uniformly integrable;
(iii) ϕ(t, x) ≤ ϕ(τ, x)+|v(t)−v(τ)| for all t, τ ∈ [0, T ], x ∈ Γ where v : [0, T ]→ R+

is a positive nondecreasing continuous function with v(0) = 0.
Let A : H → H be a continuous symmetric linear coerciveoperator and let g : H →
R be a convex function Lipschitz on bounded sets and continuously differentiable
on H. Let (θn)n∈N be a sequence of measurable functions from I into I such that
for each t ∈ I one has θn(t)→ t.
Let (fn, f)n∈N be a bounded sequence in L∞H (I) with ‖fn(t)‖ ≤ β, ‖f(t)‖ ≤ β
(β > 0) for all n ∈ N such that (fn(t))n converges to f(t) for each t ∈ I.
Let (vn, v)n∈N be a bounded sequence in L∞H (I) with ‖vn(t)‖ ≤ γ, ‖v(t)‖ ≤ γ
(γ > 0) for all n ∈ N such that (vn(t))n converges strongly to v(t) for each t ∈ I.
Let (un, u)n∈N be a sequence of absolutely continuous mappings

un(t) = u0 +

∫ t

0
u̇n(s)ds, u̇n(t) ∈ Γ

u(t) = u0 +

∫ t

0
u̇(s)ds,

such that (un)n converges to u uniformly on I and (u̇n)n converges to u̇ weakly in
L1
H(I). Assume that for every n ∈ N

fn(t) +∇g(vn(t))−Au̇n(t) ∈ ∂ϕ(θn(t), u̇n(t)) a.e. t ∈ I.

Then for a.e. t ∈ I one has

u̇(t) ∈ Γ and f(t) +∇g(v(t))−A u̇(t) ∈ ∂ϕ(t, u̇(t)).

Proof. First, Lemma 3.2 tells us that u̇(t) ∈ Γ for a.e. t ∈ I.
Let κ > 0 be a Lipschitz constant of g on γBH , so that ∇g is bounded on

γBH and ∇g(vn) → ∇g(v) strongly . Take any Lebesgue measurable set Z ⊂ I.
Since (fn)n is uniformly bounded and pointwise converges to f and (u̇n)n weakly
converges in L1

H([0, T ]) to u̇ , we have

lim
n

∫
Z
〈fn(t), u̇n(t)〉 dt =

∫
Z
〈f(t), u̇(t)〉 dt. (3.21)

This fact has been already justified in the proof of Proposition 3.4. As ϕ is normal
lower semicontinuous convex integrand, the conjugate function ϕ∗ : I × H →
]−∞,+∞]

ϕ∗(t, y) = sup
x∈H

[〈x, y〉 − ϕ(t, x)] (3.22)
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is normal, see e.g Castaing-Valadier [24], and satisfies

ϕ∗(t, y) ≤ ϕ∗(τ, y) + |v(t)− v(τ)|

for all t, τ ∈ I, y ∈ H using assumption (ii) ([36], Proposition 27). By using
the normality of ϕ, the functions t 7→ ϕ(θn(t), u̇n(t)) and t 7→ ϕ(t, u̇n(t)) are
measurable and integrable.By assumption we have

qn(t) := fn(t) +∇g(vn(t))−Au̇n(t) ∈ ∂ϕ(θn(t), u̇n(t))

so that by the normality of ϕ∗, the function t 7→ ϕ∗(θn(t), qn(t)) is measurable and
integrable, the measurability and integrability of ∇g(vn(t)) is already ensured as
above. We also note that 〈qn, u̇n〉 is measurable and integrable and the sequence
(〈qn, u̇n〉) is uniformly integrable.

Further, by (3.42) and condition (ii) we have

−ϕ(t, u̇n(t)) + 〈u̇n(t), qn(t)〉 ≤ ϕ∗(t, qn(t)) ≤ ϕ∗(θn(t), qn(t)) + |v(t)− v(θn(t))|,
(3.23)

so that t 7→ −ϕ(t, u̇n(t)) + 〈u̇n(t), qn(t)〉 is uniformly integrable thanks to (ii).
We note that, for hn(t) := fn(t) + ∇g(vn(t)), (hn)n is uniformly bounded and
pointwise converges to h given by h(t) = f(t) + ∇g(v(t) in H. Hence hn → h
strongly in L1

H(I). As consequence, for every measurable set Z in I, we have

lim
n→∞

∫
Z
〈hn(t), u̇n(t)〉 dt

= lim
n→∞

∫
Z
〈hn(t)− h(t), u̇n(t)〉 dt+ lim

n→∞

∫
Z
〈h(t), u̇n(t)〉 dt

= lim
n→∞

∫
Z
〈h(t), u̇n(t)〉dt =

∫
Z
〈h(t), u̇(t)〉 dt. (3.24)

This fact has been justified in the proof of Proposition 3.4. As A is symmetric,
we also show that Au̇n(·) → Au̇(·) weakly in L1

H(I). As consequence qn = fn +
∇g(vn(.))−Au̇n(.)→ q := f +∇g(v(.))−Au̇ weakly in L1

H(I). Further, let us set
ψA(x) = 〈Ax, x〉 if x ∈ Γ and ψ(x) = +∞ if x /∈ Γ. Then it is clear ψ is a positive
lower semicontinuous convex integrand. Apply again the lower semicontinuity of
the integral convex functional ([22], Theorem 8.1.6) associated with the positive
normal lower semi continuous convex integrand ψA we obtain

lim inf
n

∫
Z
ψA(un(t))dt ≥

∫
Z
ψA(u(t)) d, t

that is,

lim inf
n

∫
Z
〈Au̇n(t), u̇n(t)) dt ≥

∫
Z
〈Au̇(t), u̇(t) dt. (3.25)
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Now, we deduce using (3.43) and the lower semicontinuity of integral convex
functional (see [22, Theorem 8.1.6]) applied to ϕ∗,∫

Z
ϕ∗(t, q(t)) dt ≤ lim inf

n

∫
Z
ϕ∗(t, qn(t)) dt ≤ lim inf

n

∫
Z
ϕ∗(θn(t), qn(t))dt (3.26)

This fact is justified because ϕ∗(t, qn(t)) ≥ −ϕ(t, u̇n(t)) + 〈u̇n(t), qn(t)〉, and the
sequence (−ϕ(t, u̇n(t)) + 〈u̇n(t), qn(t)〉) is uniformly integrable. By

ϕ(t, u̇n(t)) ≤ ϕ(θn(t), u̇n(t)) + |v(t)− v(θn(t))|

we also have that

lim inf
n

∫
Z
ϕ(t, u̇n(t)) dt ≤ lim inf

n

∫
Z
ϕ(θn(t), u̇n(t)) dt.

As (u̇n)n weakly converges to u̇ ∈ L1
H(I), by the lower semi continuity theorem

([22], Theorem 8.1.6) applied to the lower semicontinuous convex integral func-
tional associated with ϕ, we derive that∫

Z
ϕ(t, u̇(t)) dt ≤ lim inf

n

∫
Z
ϕ(θn(t), u̇n(t)) dt (3.27)

with u̇(t) ∈ Γ a.e. and t 7→ ϕ(t, u̇(t)) is integrable. Now integrating on the
Lebesgue measurable subset Z of I the equality

ϕ(θn(t), u̇n(t)) + ϕ∗(θn(t), qn(t)) = 〈u̇n(t), qn(t)〉

gives∫
Z
ϕ(θn(t), u̇n(t))dt+

∫
Z
ϕ∗(θn(t), qn(t))dt+

∫
Z
〈Au̇n(t), u̇n(t)dt. =

∫
Z
〈u̇n(t), hn(t)〉dt.

Passing to the limit as n→∞ in this equality and using (3.44)–(3.47) give∫
Z
ϕ(t, u̇(t)) dt+

∫
Z
ϕ∗(t, q(t)) dt ≤

∫
Z
〈u̇(t), q(t)〉 dt.

By the measurability of the non negative function t 7→ ϕ(t, u̇(t)) + ϕ∗(t, q(t)) −
〈u̇(t), q(t)〉, we deduce that for almost every t ∈ I

ϕ(t, u̇(t)) + ϕ∗(t, q(t))− 〈u̇(t), q(t)〉 ≤ 0

along with u̇(t) ∈ Γ. So, it follows for almost every t ∈ I that ϕ(t, u̇(t)) +
ϕ∗(t, q(t)) = 〈u̇(t), q(t)〉, or equivalently

q(t) = f(t) +∇g(u(t))−Au̇(t) ∈ ∂ϕ(t, u̇(t)).

The proof is finished.
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Remark Proposition 3.6 hold true if we replace the gradient ∇g by a linear
continuous operator B : H → H.

We finish this section with some new variants which have also some importance
in further developments.

Proposition 3.7. Let H be a separable Hilbert space and I = [0, T ]. Let C :
I ⇒ H be a convex weakly compact valued multimapping for which there is some
nondecreasing continuous function r : I → R+ such that haus(C(t), C(τ)) ≤
|r(t)−r(τ)| for all τ, t ∈ I Let A be a linear continuous coercive symmetric operator
on H and let B = ∇g where ∇g is the gradient of a convex continuous Gateaux
differentiable function g : H → R+ such that g(v(t)) is absolutely continuous for
v : [0, T ] → H absolutely continuous. Let (θn)n∈N be a sequence of measurable
functions from I into I such that for each t ∈ I one has θn(t)→ t.
Let (un, u)n∈N be a bounded sequence of absolutely continuous mapping on H such
that (un(t))n converges pointwise strongly to u and such that (u̇n)n∈N σ(L1

H , L
∞
H )

converges in L1
H(I) to u. Assume that

−u̇n(t) ∈ NC(θn(t))(Au̇n(t) +∇g(un(t)))for all n ∈ N, a.e. t ∈ I.

Then for a.e. t ∈ I one has −u̇(t) ∈ NC(t)(Au̇(t) +∇g(u(t))).

Proof. As −u̇n(t) ∈ NC(θn(t))(Au̇n(t) +∇g(un(t))) then

δ∗(−u̇n(t), C(θn(t))) + 〈u̇n(t), Au̇n(t) +∇g(un(t))〉 ≤ 0

By integrating on Z ∈ L(I) (we are ensured that the functions given are measur-
able) this inequality we get

(3.7.1)

∫
Z
δ∗(−u̇n(t), C(θn(t)))dt+

∫
Z
〈u̇n(t), Au̇n(t) +∇g(un(t))〉dt ≤ 0.

Now we have to consider first the term 〈∇g(un(t), u̇n(t)〉 by using the special
property of ∇g. In fact un is absolutely continuous with derivative u̇n and g(un)
is absolutely continuous , so that by Moreau-Valadier [35] ,

〈u̇n(t),∇g(un(t))〉 =
d

dt
g(un(t))

From this fact, it is easy to deduce that

lim inf
n

∫ T

0
〈∇g(un(t)), u̇n(t)〉dt = lim inf

n

∫ T

0

d

dt
g(un(t))〉dt

(3.7.2) = lim inf
n

(g(un(T )− un(0)) ≥ g(u(T )− u(0)) =

∫ T

0

d

dt
g(u(t))〉dt
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=

∫ T

0
〈∇g(u(t)), u̇(t)〉dt

Further let Ψ(x) = 〈x,Ax〉 for all x ∈ H. Then Ψ is positive lower semicontinuous
convex on H. As u̇n weakly converges converges in L1

H(I) to u̇, again by ([22],
Theorem 8.1.6) we get we have

(3.7.3) lim inf
n

∫
Z

Ψ(u̇n(t))dt ≥
∫
Z

Ψ(u̇(t))dt

As it is readly seen that Au̇n weakly converge to Au̇ and ∇g(un(t)))→ ∇g(u(t))),
then let e ∈ H, we have

〈e,Au̇n(t) +∇g(un(t)))〉 ≤ δ∗(e, C(θn(t)))

Hence for Z ∈ L(I)∫
Z
〈e,Au̇n(t) +∇g(un(t)))〉dt ≤

∫
Z
δ∗(e, C(θn(t)))dt

Passing to the limit in this inequality we get∫
Z
〈e,Au̇(t) +∇g(u(t)))〉dt ≤

∫
Z
δ∗(e, C(t))dt

By [24] we conclude that Au̇(t) +∇g(ut))) ∈ C(t) By (ii) using the Hormander
formula we have the estimation∫

Z
δ∗(−u̇n(t), C(t))dt ≤

∫
Z
δ∗(−u̇n(t), C(θn(t)dt+

∫
Z
||u̇n(t)|||r(θn(t)− r(t)|dt

with
∫
Z ||u̇n(t)|||r(θn(t) − r(t)|dt → 0 using the fact that ρn(t) := |r(θn(t) −

r(t)| → 0 and ||u̇n(t)|| is uniformly integrable. Here the measurability of the
functions given these integrals is granted; in fact it is easily seen that C is scalarly
continuous. So that

lim inf
n

∫
Z
δ∗(−u̇n(t), C(θn(t))dt ≥ lim inf

n

∫
Z
δ∗(−u̇n(t), C(t))dt

To finish the proof we apply the lower semicontinuity of the integral convex
functional ([22], Theorem 8.1.6) associated with the normal convex integrand
(t, x) 7→ δ∗(x,C(t)) by noting that
(j) δ∗(−u̇n(t), C(t)) is minored by 〈−u̇n(t), h(t)〉 with h(t) = Au̇(t) +∇g(u(t)),
(jj) the minored sequence (〈−u̇n(t), h(t)〉) is uniformly integrable.
Then we are ensured by
(3.7.4)

lim inf
n

∫
Z
δ∗(−u̇n(t), C(θn(t))dt ≥ lim inf

n

∫
Z
δ∗(−u̇n(t), C(t))dt ≥

∫
Z
δ∗(−u̇(t), C(t))dt
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By combining (3.7.1)−−(3.7.4) we get

(3.7.5)

∫ T

0
δ∗(−u̇(t), C(t))dt+ 〈u̇(t), Au̇(t) +∇g(u(t))〉dt ≤ 0.

as
δ∗(−u̇(t), C(t)) ≥ 〈−u̇(t), Au(t) +∇g(u(t))〉

a.e. that implies∫ T

0
[δ∗(−u̇(t), C(t)) + 〈u̇(t), Au(t) +∇g(u(t))〉]dt = 0

so we conclude that

δ∗(−u̇(t), C(t)) + 〈u̇(t), Au(t) +∇g(u(t))〉 = 0

a.e. with Au̇(t) + ∇g(u(t)) ∈ C(t), just proving that −u̇(t) ∈ NC(t)(Au̇(t) +
∇g(u(t))) a.e.

Application We give an example of the existence of absolutelty continuous
solution to the evolution inclusion of the form −u̇(t) ∈ NC(t)(Au̇(t) +∇g(u(t)))
where C is a convex compact valued continuous mapping and A is a linear con-
tinuous coercive: 〈Ax, x〉 ≥ γ||x||2 symmetric operator in H = Re.

Further variational limit involving time dependent maximal mono-
tone operator

We introduce in the following the definition and some properties of maximal
monotone operators needed in the proofs of our results, Let A : D(A) ⊂ H ⇒ H
be a set-valued operator. The domain, the range and the graph of A are the
following sets

D(A) = {x ∈ H : Ax 6= ∅},

R(A) = {y ∈ H : ∃x ∈ D(A), y ∈ Ax} = ∪{Ax : x ∈ D(A)},

gph(A) = {(x, y) ∈ H ×H : x ∈ D(A), y ∈ Ax}.

We say that A : D(A) ⊂ H ⇒ H is monotone, if 〈y1 − y2, x1 − x2〉 ≥ 0 whenever
(xi, yi) ∈ gph(A), i = 1, 2. It is maximal monotone, if its graph could not be
contained strictly in the graph of any other monotone operator, in this case, for
all λ > 0, R(IH + λA) = H, where IH stands for the identity mapping of H.
If A is a maximal monotone operator then, for every x ∈ D(A), Ax is non-empty,
closed and convex. So that, the projection of the origin into Ax, A0(x), exists
and is unique.
For λ > 0, we define the resolvent and the Yosida approximation of A respectively
by, JAλ = (IH + λA)−1 and Aλ = 1

λ

(
IH − JAλ

)
. These operators are both single-

valued and defined on the whole space H, and we have

JAλ x ∈ D(A) and Aλ(x) ∈ A(JAλ x), for every x ∈ H, (3.28)
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||Aλ(x)|| ≤ ||A0x|| ∀x ∈ D(A). (3.29)

Let A : D(A) ⊂ H ⇒ H and B : D(B) ⊂ H ⇒ H be two maximal monotone
operators, then we denote by dis(A,B) the pseudo-distance between A and B
defined by

dis(A,B) = sup

{
〈y − y′, x′ − x〉
1 + ||y||+ ||y′||

: (x, y) ∈ gph(A), (x′, y′) ∈ gph(B)

}
. (3.30)

Clearly, dis(A,B) ∈ [0,+∞], dis(A,B) = dis(B,A) and dis(A,B) = 0 iff A = B.

Lemma 3.3. Let An (n ∈ N), A be maximal monotone operators of H such that
dis(An, A) → 0. Suppose also that xn ∈ D(An) with xn → x and yn ∈ An(xn)
with yn → y weakly for some x, y ∈ H. Then x ∈ D(A) and y ∈ Ax.

Let I := [0, T .] Let t → At : D(At) → 2H be a time dependent maximal
monotone operator. We say that At : D(At) → 2H is continuous in variation if
there exist nondecreasing continuous function ρ : I → R+ with ρ(0) = 0 such that
dist(At, Aτ ) ≤ |ρ(t)− ρ(τ)| for all t, τ ∈ I.

Proposition 3.8. Let H be a separable Hilbert space and I = [0, T ]. Let C :
I ⇒ H be a convex weakly compact valued multimapping for which there is some
nondecreasing continuous function r : I → R+ such that haus(C(t), C(τ)) ≤
|r(t)−r(τ)| for all τ, t ∈ I. Let t→ At : D(At)→ 2H be a continuous in variation
time dependent maximal monotone operator: dist(At,Aτ ) ≤ |ρ(t) − ρ(τ)| for all
t, τ ∈ I. Let B = ∇g where ∇g is the gradient of a convex continuous Gateaux
differentiable function g : H → R+ such that g(v(t)) is absolutely continuous for
v : [0, T ] → H absolutely continuous. Let (θn)n∈N be a sequence of measurable
functions from I into I such that for each t ∈ I one has θn(t)→ t
Let (un, u)n∈N be a bounded sequence of absolutely continuous mapping on H such
that (un(t))n converges pointwise strongly to u and such that (u̇n)n∈N σ(L1

H , L
∞
H )

converges in L1
H(I) to u̇. Let (vn) be a sequence of bounded measurable mapping

pointwise converging to a bounded measurable mapping v. Assume that

−u̇n(t) ∈ NC(θn(t))(vn(t) +∇g(un(t))) for all n ∈ N, a.e. t ∈ I.

vn(t) ∈ Aθn(t)un(t)

Then for a.e. t ∈ I one has a.e. t ∈ [0, T ]

−u̇(t) ∈ NC(t)(v(t) +∇g(u(t)))

v(t) ∈ Atu(t)

Proof. As −u̇n(t) ∈ NC(θn(t))(vn(t) +∇g(un(t))) then

δ∗(−u̇n(t), C(θn(t))) + 〈u̇n(t), vn(t) +∇g(un(t))〉 ≤ 0
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By integrating on Z ∈ L(I) (we are ensured that the functions given are measur-
able) this inequality we get

(3.7.1)

∫
Z
δ∗(−u̇n(t), C(θn(t)))dt+

∫
Z
〈u̇n(t), vn(t) +∇g(un(t))〉dt ≤ 0.

Now we have to consider first the term 〈∇g(un(t), u̇n(t)〉 by using the special
property of ∇g. In fact un is absolutely continuous with derivative u̇n and g(un)
is absolutely continuous , so that by Moreau-Valadier [35] ,

〈u̇n(t),∇g(un(t))〉 =
d

dt
g(un(t))

From this fact, it is easy to deduce that

lim inf
n

∫ T

0
〈∇g(un(t)), u̇n(t)〉dt = lim inf

n

∫ T

0

d

dt
g(un(t))〉dt

(3.7.2) = lim inf
n

(g(un(T )− un(0)) ≥ g(u(T )− u(0)) =

∫ T

0

d

dt
g(u(t))〉dt

=

∫ T

0
〈∇g(u(t)), u̇(t)〉dt

Further we have

(3.7.3) lim
n

∫
Z
〈u̇n(t), vn(t)〉dt =

∫
Z
〈u̇(t), v(t)〉dt.

This need a careful look. Indeed, since vn is uniformly bounded and pointwise
strongly converge to v and u̇n is uniformly integrable and u̇n → u̇ weakly in
L1
H(I) we ensure that vn− v → 0 uniformly on any uniformly integrable subset of

L1
H([0, T ]), in other terms it converges to 0 with respect to the Mackey topology

τ(L∞H (I), L1
H(I)), as consequence (3.7.3) hold. If H = Re, here one may invoke a

classical fact that on bounded subsets of L∞H the topology of convergence in mea-
sure coincides with the topology of uniform convergence on uniformly integrable
sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This
is a lemma due to Grothendieck [26] [Ch.5 §4 no 1 Prop. 1 and exercice]. By (ii)
using the Hormander formula we have the estimation∫

Z
δ∗(−u̇n(t), C(t))dt ≤

∫
Z
δ∗(−u̇n(t), C(θn(t)dt+

∫
Z
||u̇n(t)|||r(θn(t)− r(t)|dt

with
∫
Z ||u̇n(t)|||r(θn(t) − r(t)|dt → 0 using the fact that ρn(t) := |r(θn(t) −

r(t)| → 0 and ||u̇n(t)|| is uniformly integrable. Here the measurability of the
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functions given these integrals is granted; in fact it is easily seen that C is scalarly
continuous. So that

lim inf
n

∫
Z
δ∗(−u̇n(t), C(θn(t))dt ≥ lim inf

n

∫
Z
δ∗(−u̇n(t), C(t))dt

To finish the proof we apply the lower semicontinuity of the integral convex
functional ([22], Theorem 8.1.6) associated with the normal convex integrand
(t, x) 7→ δ∗(x,C(t)) by noting that
(j) δ∗(−u̇n(t), C(t)) is minored by 〈h(t),−u̇n(t)〉; with h(t) = v(t) +∇g(u(t)) ∈
C(t) for all t ∈ I.
(jj) the minored sequence (〈h(t),−u̇n(t)〉) is uniformly integrable with 〈h(t),−u̇n(t)〉 ≤
δ∗(−u̇n(t), C(t)).
In fact the last inclusion is easily ensured by noting that vn(t) + ∇g(un(t)) ∈
C(θn(t)) and vn(t) + ∇g(un(t)) → v(t) + ∇g(u(t)) and the multimapping C is
scalarly continuous. Then we are ensured
(3.7.4)

lim inf
n

∫
Z
δ∗(−u̇n(t), C(θn(t))dt ≥ lim inf

n

∫
Z
δ∗(−u̇n(t), C(t))dt ≥

∫
Z
δ∗(−u̇(t), C(t))dt

By combining (3.7.1)−−(3.7.4) we get

(3.7.5)

∫ T

0
δ∗(−u̇(t), C(t))dt+ 〈u̇(t), v(t) +∇g(u(t))〉dt ≤ 0.

as we have
δ∗(−u̇(t), C(t)) ≥ 〈−u̇(t), v(t) +∇g(u(t))〉

a.e. that implies∫ T

0
[δ∗(−u̇(t), C(t)) + 〈u̇(t), v(t) +∇g(u(t))〉]dt = 0

so we conclude that

δ∗(−u̇(t), C(t)) + 〈u̇(t), v(t) +∇g(u(t))〉 = 0

a.e. with v(t)+∇g(u(t)) ∈ C(t), just proving that −u̇(t) ∈ NC(t)(v(t)+∇g(u(t)))
a.e. It remain to check that v(t) ∈ Atu(t). Indeed, as θn(t) − t → 0 and vn(t) ∈
Aθn(t)un(t), by Lemma 3.5, we get u(t) ∈ D(At) and v(t) ∈ Atu(t).

As further application we consider a class of time measurable maximal mono-
tone perturbation t→ At : H → H satisfying the conditions.

(A1) t→ Jλ(t, x) is L(I)-measurable for every λ > 0 and for every x ∈ H
(A2) |A0(t, x)| ≤ c(1 + ||x||) for all (t, x) ∈ I ×H.
(A3) For λ ∈]0, 1], λ → 0+, for fixed r > 0, for fixed t ∈ I, sup|z|≤r |Aλn(t, z) −
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A0(t, z)| → 0.
(A4) For fixed t ∈ I, A0(t, .) is continuous on H.
It is important to note a useful consequence of these properties. Let (un) a
uniformly bounded sequence of Lebesgue measurable mappings pointwise con-
verging to measurable mapping u. Let us consider the measurable mapping
vn(t) = Aλn(t, un(t)). Then (vn(t)) pointwise converge to a bounded measurable
mapping v : I → H. Indeed, let vn(t) = Aλn(t, un(t)), vm(t) = Aλm(t, um(t)),
then let us write for every t ∈ I

|vm(t)− vn(t)| ≤ |Aλm(t, um(t))−A0(t, um(t))|+ |A0(t, um(t))−A0(t, un(t))|

+|A0(t, un(t))−Aλn(t, un(t))| → 0

when m,n→∞ . Then (vn(t)) is a Cauchy sequence which converges uniformly
to v(t). Here the measurability of these mappings is ensured thank to (A1). Note
that (A1). is not necessary when dealing with fixed maximal monotone A : H →
H. If t→ At : H → H is a measurable single valued maximal monotone operator
satisfying (A1) (A2), then Aλn(t, un(t))) = A(t, Jλ(t, un(t))) → A(t, u(t)) := v(t)
As an example, consider A = ∇g the gradient of a C1 convex Lipschitz. At this
point, in further application,we only need (A1) (A2) and the condition (AC): For
any uniformly bounded sequence of Lebesgue measurable mappings (un) pointwise
converging to measurable mapping u, for λ ∈]0, 1], λn → 0+, then Aλn(t, un(t))
pointwise converges to a bounded measurable mapping v(t).

Theorem 3.4. Assume that H = Re, I = [0, T ]. Let C : I ×H ⇒ H be a closed
convex valued multimapping for which there is some nondecreasing continuous
function r : I → R+ such that haus(C(t, x), C(τ, y)) ≤ |r(t) − r(τ)| + a||x − y||
for all τ, t ∈ I and for all x, y ∈ H with r(0) = 0. Let B be a linear operator
continuous coercive: 〈Bx, x〉 ≥ γ||x||2 ≥ 0 for all x ∈ H, symmetric operator on
H.
Let A : H → 2H be a maximal monotone operator satisfying
(A)1 |A0(x)| ≤ c(1 + ||x||) for all x ∈ H.
(A)2 :If λn → 0+, if (un, u) is a bounded sequence of measurable mappings on H
converging pointwise to u, then t→ Aλnun(t) pointwise converge to v ∈ L∞H (I) .
(H)3 : Aλnx ∈ C(0, x) for all n ∈ N and for all x ∈ H.
Then, for any u0 ∈ H, there exist v ∈ L∞H (I) and an absolutely continuous map-
ping u : I → H satisfying

−du
dt (t) ∈ NC(t,u(t))(Bu(t) + v(t))a.e.

u(0) = u0 ∈ H
v(t) ∈ Au(t)a.e.
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Further, one has ‖u̇(t)‖ ≤ ρ := r(T )
γ .

Proof. Put I := [0, T ].We note that by Hormander formula (see e.g. Castaing-
Valadier [24])
(1.1.1)
|δ∗(e, C(t, x))−δ∗(e, C(τ, y))| ≤ ||e||dH(C(t, x), C(τ, y)) ≤ ||e||(|r(t)−r(τ)|+a||x−y||)

so that C is scalarly continuous.

Step I. Construction of a sequence (un)n
We will use the Moreau ’s catching-up algorithm [33]. We consider for each n ∈ N
the following partition of the interval ]0, T ] given by

tni = i
T

n
:= iηn for 0 ≤ i ≤ n, Ini :=]tni , t

n
i+1] for 0 ≤ i ≤ n− 1.

Put un0 = u0 ∈ H. By (H2). There is zn1 ∈ H such that

−zn1 ∈ NC(tn1 ,u
n
0 )(Bz

n
1 +Aλnu

n
0 ).

with Aλnu
n
0 ∈ C(0, un0 ). Put un1 = un0 + ηnz

n
1 . We have

γ||zn1 ||2 ≤ 〈Bzn1 , zn1 〉 = 〈[Bzn1 +Aλnu
n
0 − v] + [v −Aλnun0 ], zn1 〉

≤ 〈v −Aλnun0 , zn1 〉 ≤ ||v −Aλnun0 ||||zn1 || ≤ dH(C(0, un0 ), C(tn1 , u
n
0 )||zn1 ||

for all v ∈ C(tn1 , u
n
0 ). So

||zn1 || ≤
r(T )

γ

Suppose that un0 , u
n
1 , .., u

n
i , z

n
1 , z

n
2 , ..z

n
i are constructed. As above by condition

(H2)
−zni+1 ∈ NC(tni+1,u

n
i )(Bz

n
i+1 +Aλnu

n
i ),

with Aλnu
n
i ∈ C(0, uni ), and we set uni+1 = uni + ηnz

n
i+1. Then by induction there

are finite sequences (uni )ni=0 and (zni )ni=1 such that

−zni+1 ∈ NC(tni+1,u
n
i )(Bz

n
i+1 +Aλnu

n
i ) (3.31)

uni+1 = uni + ηnz
n
i+1.

From (uni )ni=0, (zni )ni=1, we construct a sequence of mappings (un)n∈N from I to
H, un(0) = un0 and for each i = 0, .., ..n− 1

un(t) = uni +
t− tni
ηn

(uni+1 − uni ) for t ∈]tni , t
n
i+1].

Furthermore we have the estimate

γ||zni+1||2 ≤ 〈Bzni+1, z
n
i+1〉 = 〈[Bzni+1 +Aλnu

n
i − v] + [v −Aλnuni ], zni+1〉
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≤ 〈v −Aλnuni , zni+1〉 ≤ ||v −Aλnuni ||, ||zni+1|| ≤ dH(C(0, uni ), C(tni+1, u
n
i ))||zni+1||

for all v ∈ C(tni+1, u
n
i ). Whence

||zni+1|| ≤
1

γ
dH(C(0, uni ), C(tni+1, u

n
i )) ≤

r(tni+1)− r(0)

γ
≤ r(T )

γ

Keeping in mind that∥∥∥∥ 1

ηn
(uni+1 − uni )

∥∥∥∥ = ‖zni+1‖ ≤ ρ :=
r(T )

γ

From this we construct sequence un(·) is Lipschitz continuous on I with ρ as
a Lipschitz constant. This Lipschitz property of un(·) ensures that ‖un(t)‖ ≤
‖u0‖+ ρT and un(t) = u0 +

∫ t
t0
u̇n(s)ds for every t ∈ I with for every t ∈]tni , t

n
i+1]

u̇n(t) =
uni+1 − uni

ηn
= zni+1 ∈ ρBH .

Furthermore, for every t ∈ [0, T ], one has un(t) = u0+
∫ t

0 u̇n(s)ds, hence ||un(t)|| ≤
||u0||+ ρT .

Now, let us define the step functions θn, δn : I −→ I by θn(0) = δn(0) = 0 and

θn(t) = tni+1, δn(t) = tni if t ∈]tni , t
n
i+1],

so the inclusion (4.1) becomes

−u̇n(t) ∈ NC(θn(t),un(δn(t)))(Bu̇n(t) +Aλnun(δn(t))) a.e. t ∈ I

For each t ∈ I we observe that there is some i ∈ {0, ..., n−1} such that t ∈ [tni , t
n
i+1[,

and then
|θn(t)− t| → 0 and |δn(t)− t| → 0 as n→ +∞.

We also note that the latter inclusion above yields

δ∗(−u̇n(t), C(θn(t), un(δn(t)))) + 〈u̇n(t), Bu̇n(t) +Aλnun(δn(t))〉 ≤ 0

with u̇n(t) ∈ ρBH a.e. t ∈ I, so that u̇n ∈ S1
ρBH

where S1
ρBH

= {ξ ∈ L1
H(I) :

ξ(t) ∈ ρBH a.e. t ∈ I }. a.e. t ∈ [0, T ] . We note that ||un(t)|| ≤ ||u0|| + ρT , for
all t ∈ [0, T ] and un(t) = u0 +

∫ t
0 u̇n(s)ds for all t ∈ [0, T ] so that

|Aλnun(δn(t))| ≤ |A0(un(δn(t))| ≤ c(1 + ||un(δn(t))|| ≤ c(1 + ||u0||+ ρT )

Step II. Convergence to a solution.
We note that S1

L is a weakly compact convex set of L1
H(I). Set

X := {ξ : I → H : ξ(t) = u0 +

∫ t

0
ξ̇(s)ds, t ∈ [0, T ]; v̇ ∈ S1

L}.
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It is clear that X is convex, equicontinuous and compact. As un ∈ X , one can
extract from (un)n a (not relabeled) subsequence which converges uniformly to
u : I → H such that u(t) = u0 +

∫ t
0 u̇(s)ds for all t ∈ I and such that (u̇n)n

σ(L1
H(I), L∞H (I))-converges to u̇ ∈ S1

L. Further, the inequality

‖un(δn(t))− un(t)‖ ≤ ρ|δn(t)− t|

assures us that
(
un(δn(t))

)
n

converges to u(t) to H for each t ∈ I. This and the
σ(L1

H(I), L∞H (I)) convergence of (u̇n)n to u̇ in L1
H(I) along with the inclusion (4.1)

allow us to obtain that for a.e. t ∈ I the required inclusion. This need a careful
look. Indeed, for every Lebesgue measurable set Z ⊂ I and for any e ∈ H , the
function 1Ze ∈ L∞H (I). Considering the inequality

〈e,Bu̇n(t) +Aλnun(δn(t))〉 ≤ δ∗(e, C(θn(t), un(δn(t))))

and integrating on Z gives∫
I
〈1Ze,Bu̇n(t) +Aλnun(δn(t))〉dt ≤

∫
Z
δ∗(x,C(θn(t), un(δn(t))))dt.

Passing to the limit in this inequality and using the scalar continuity of C(·) and
the fact that Bu̇n → Bu̇ weakly in L1

H(I), Aλn(un(δn(.))) pointwise converge to
v ∈ L∞H (I) we obtain∫

I
〈1Ze,Bu̇(t) + v(t)〉dt ≤ lim sup

n

∫
Z
δ∗(e, C(θn(t), un(δn(t)))dt

≤
∫
Z

lim sup
n

δ∗(e, C(θn(t), un(δn(t)))) ≤
∫
Z
δ∗(e, C(t, u(t)))dt,

which implies

〈e,Bu̇(t) + v(t)〉 ≤ δ∗(e, C(t, u(t))) a.e. t ∈ I.

By the separability of H and the compactness of C(t, u(t)) (see, e.g., Castaing-
Valadier [24, Proposition III- 35]), we get the desired inclusion Bu̇(t)+v(t) ∈ C(t)
a.e. As consequence, we have

lim
n

∫ T

0
〈u̇n(t), Aλnun(δn(t))〉dt =

∫ T

0
〈u̇(t), v(t)〉dt.

because Aλnun(δn(.)) τ(L∞H (I), L1
H(I)) (Mackey ) converges to v in L∞H using

Grothendieck Lemma, recalling that |Aλnun(δn(.))| ≤ c(1+ ||u0||+ρT ). As above
we may apply the lower semicontinuity of integral convex functional ([22], Theo-
rem 8.1.16) to deduce that∫

Z
δ∗(−u̇(t), C(t, u(t)))dt ≤ lim inf

n

∫
Z
δ∗(−u̇n(t), C(t, u(t)))dt
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(1.1.2) ≤ lim inf
n

∫
Z
δ∗(−u̇n(t), C(θn(t), un(δn(t))))dt

by noting that Bu̇(t) + v(t) ∈ C(t) with Bu̇+ v ∈ L∞H (I).
Let us set ψB(x) = 〈Bx, x〉 if x ∈ ρBH and ψ(x) = +∞ if x /∈ ρBH . Then

it is clear ψ is a positive lower semicontinuous convex integrand. Apply again
the lower semicontinuity of the integral convex functional ([22], Theorem 8.1.6)
associated with the positive normal convex integrand ψB we obtain,

lim inf
n

∫
Z
ψB(u̇n(t))dt ≥

∫
Z
ψB(u̇(t))dt

that is

(1.1.3) lim inf
n

∫
Z
〈Bu̇n(t), u̇n(t))dt ≥

∫
Z
〈Bu̇(t), u̇(t)dt.

By integrating on measurable subset Z ⊂ [0, T ] the inequality ( here measurability
and integrability are guaranted)

δ∗(−u̇n(t), C(θn(t), un(δn(t)))) + 〈u̇n(t), Bu̇n(t) +Aλnun(δn(t))〉dt ≤ 0

gives
(1.1.4)∫
Z
δ∗(−u̇n(t), C(θn(t), un(δn(t))))dt+

∫
Z
〈Bu̇n(t), u̇n(t)〉dt+

∫
Z
〈u̇n(t), Aλnun(δn(t))〉dt ≤ 0

by passing to the limit when n goes to ∞ in this equality using (1.1.1)—(1.1.7)
gives

(1.1.5)

∫ T

0
[δ∗(−u̇(t), C(t, u(t))) + 〈u̇(t), Bu̇(t) + v(t)〉]dt ≤ 0.

As t 7→ δ∗(−u̇(t), C(t, u(t))) + 〈u̇(t), Bu̇(t) + v(t)〉 is integrable, by (1.1.5) and
Bu̇(t) + v(t) ∈ C(t, u(t)), we have

δ∗(−u̇(t), C(t, u(t))) ≥ 〈−u̇(t), Bu̇(t) + v(t)〉

that implies

(1.1.6)

∫ T

0
[δ∗(−u̇(t), C(t, u(t))) + 〈u̇(t), Bu̇(t) + v(t)〉]dt = 0.

By (1.1.6) we get finally

δ∗(−u̇(t), C(t, u(t))) + 〈u̇(t), Bu̇(t) + v(t)〉 = 0
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a.e. withBu̇(t)+v(t) ∈ C(t, u(t)) a.e. so we conclude that−u̇(t)) ∈ NC(t,u(t))(Bu̇(t)+
v(t)) a.e. It remain to check that v(t) ∈ Au(t) a.e. Indeed Jλnun(δn(t)) → u(t)
by writing

||Jλnun(δn(t))− u(t)|| ≤ ||Jλnun(δn(t))− Jλnu(t)|| + ||Jλnu(t)− u(t)||

≤ ||un(δn(t))− u(t)||+ ||Jλnu(t)− u(t)|| → 0

From vn(t) = Aλnun(δn(t)) ∈ AJλnun(δn(t)) we have that

(vn(t), Jλnun(δn(t))) ∈ graphA

As graphA is closed that implies v(t) ∈ Au(t) a.e.

Proposition 3.9. Let H be a separable Hilbert space and I = [0, T ]. Let C :
I ⇒ H be a scalarly measurable multimapping with closed convex weakly locally
compact values which contain no line and for which there exist r ∈ L∞R+(I) such
that C(t) ∩ r(t)BH 6= ∅ for all t ∈ I. Let B : H → H be a continuous symmetric
linear coercive operator. Let A : H → 2H be a maximal monotone operator
satisfying
(H)1 |A0(x)| ≤ c(1 + ||x||) for all x ∈ H. Let (fn, f)n∈N be a bounded sequence
in L∞H (I) with ‖fn(t)‖ ≤ β, ‖f(t)‖ ≤ β (β > 0) for all n ∈ N such that (fn(t))n
converges to f(t) for each t ∈ I.
Let (vn, v)n∈N be a bounded sequence in L∞H (I) with ‖vn(t)‖ ≤ γ, ‖v(t)‖ ≤ γ
(γ > 0) for all n ∈ N such that (vn(t))n converges to v(t) for each t ∈ I. Let
(ζn)n∈N be an equi-integrable sequence in L1

H(I) such that ζn(t) ∈ C(t) for all t ∈ I
and n ∈ N and such that (ζn)n∈N σ(L1

H , L
∞
H ) converges in L1

H(I) to ζ. Assume
that

(i)fn(t) +Aλnvn(t)−B ζn(t) ∈ NC(t)(ζn(t)) for all n ∈ N, a.e. t ∈ I.

and (ii) λn → 0, limnAλnvn(t)→ w(t) pointwise, where w is a measurable map-
ping. Then for a.e. t ∈ I one has

ζ(t) ∈ C(t) and f(t) + w(t)−B ζ(t) ∈ NC(t)(ζ(t)).

w(t) ∈ Av(t)

Proof. We first verify that ζ(t) ∈ C(t) a.e. t ∈ I. Let (ep)p∈N be a dense sequence
in H. Take any measurable set Z ⊂ I and any p ∈ N, and note that the mapping
1Zep ∈ L∞H (I). Considering the inequality By the inequality (due to the inclusion
ζn(t) ∈ C(t))

〈ep, ζn(t)〉 ≤ δ∗(ep, C(t))

and integrating on Z ensure that∫
I
〈1Zep, ζn(t), 〉dt =

∫
Z
〈ep, ζn(t)〉dt ≤

∫
Z
δ∗(ep, C(t))dt.
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Passing to the limit in the latter inequality assures us that∫
Z
〈1Zep, ζ(t)〉dt ≤

∫
Z
δ∗(ep, C(t))dt.

This being true for any Lebesgue measurable set Z ⊂ I, it follows that for every
p ∈ N

〈ep, ζ(t)〉 ≤ δ∗(ep, C(t)) a.e. t ∈ I.

As H is separable and C(t) is closed convex weakly locally compact and con-
tains no line, by ( Castaing-Valadier [24, Proposition III- 35]), we get the desired
inclusion ζ(t) ∈ C(t) a.e. t ∈ I.

For each t ∈ I keeping in mind that vn(t) → v(t) strongly in H and A is
a maximal montone operator satisfying (H)1 we see that |Aλnvn(t)| ≤ c(1 + γ)
strongly inH so that by our assumption w(t) = limnAλnvn(t) ∈ c(1+γ)BH . Then
the uniformly bounded sequence wn := Aλnvn(.) → w for the Mackey topology
τ(L∞H (I), L1

H(I) .As consequence

lim
n

∫ T

0
〈Aλnvn(t), ζn(t)dt = lim

n

∫ T

0
〈w(t), ζ(t)dt

We can also see that Bζn → Bζ weakly in L1
H(I) since for any h ∈ L∞H (I)∫ T

0
〈h(t), Bζn(t)〉 dt =

∫ T

0
〈Bh(t), ζn(t)〉 dt→

∫ T

0
〈Bh(t), ζ(t)〉 dt =

∫ T

0
〈h(t), Bζ(t)〉 dt.

As a main consequence fn + wn −Bζn → f + w −Bζ weakly in L1
H(I).

Given any Lebesgue measurable subset Z ⊂ I we may apply the lower semi-
continuity of convex integral functional in [22, Theorem 8.1.16] to derive that∫
Z
δ∗(f(t) +w(t)−Bζ(t), C(t))dt ≤ lim inf

n

∫
Z
δ∗(fn(t) +wn(t)−Bζn(t), C(t))dt.

(3.32)
This needs a careful look. Choose a bounded measurable selection s of t 7→
C(t) ∩ r(t)BH , so s ∈ L∞H (I). We note that (t, x) 7→ δ∗(x,C(t)) is a normal
lower semicontinuous convex integrand defined on I ×H and δ∗(fn(t) + wn(t)−
Bζn(t), C(t)) is measurable and minored by ρn(t) := 〈s(t), fn(t)+wn(t))−Bζn(t)〉.
Further, it is easy to check that (ρn(·)) is equi-integrable in L1

R(I). Then by [22,
Theorem 8.1.6] we deduce that

lim inf
n

∫
Z
δ∗(fn(t) + wn(t)−Bζn(t), C(t))dt

≥
∫
Z
δ∗(f(t) + w(t)−Bζ(t), C(t))dt,

which confirms (3.32).

32



Let us set ψB(x) = 〈Bx, x〉 if x ∈ C(t) and ψB(x) = +∞ if x /∈ C(t). Then it
is clear that ψB is a positive lower semicontinuous convex integrand. Apply again
the lower semicontinuity of the convex integral functional ([22], Theorem 8.1.6)
associated with the positive normal convex integrand ψB we obtain

lim inf
n

∫
Z
ψB(ζn(t)) dt ≥

∫
Z
ψB(ζ(t)) dt,

that is,

lim inf
n

∫
Z
〈Bζn(t), ζn(t))dt ≥

∫
Z
〈Bζ(t), ζ(t)dt. (3.33)

Further, we have

lim
n

∫
Z
〈wn(t)), ζn(t)〉 dt =

∫
Z
〈w(t), ζ(t)〉 dt, (3.34)

lim
n

∫
Z
〈fn(t), ζn(t)〉dt =

∫
Z
〈f(t), ζ(t)〉dt. (3.35)

The two latter equality features require a careful justification. using the fact
that a uniformly bounded sequence of measurable mapping (gn) that pointwise
converge to a bounded measurable mapping g,then (gn) converge to g with respect
to the Mackey topology τ(L∞H (I), L1

H(I). Consequently, both (3.34) and (3.35)
hold true, as claimed above, by noting that ζn is equi-integrable 2

On the other hand, the inclusion wn(t)− Bζn(t) ∈ NC(t)(ζn(t)) for a.e. t ∈ I
ensures that

δ∗(fn(t) + wn(t)−Bζn(t), C(t))− 〈fn(t) + wn(t)−Bζn(t), ζn(t)〉 ≤ 0.

Integrating this inequality on I gives∫ T

0
δ∗(fn(t) + wn(t)−Bζn(t), C(t))dt+

∫ T

0
〈Bζn(t), ζn(t)〉dt

+

∫ T

0
〈−fn(t)− wn(t), ζn(t)〉dt ≤ 0.

Passing to the limit inferior as n→∞ and using (3.32) we obtain∫ T

0

[
δ∗(f(t) + w(t)−Aζ(t), C(t)) + 〈Bζ(t)− w(t)− f(t), ζ(t)〉

]
dt ≤ 0.

This and the inclusion ζ(t) ∈ C(t) a.e. t ∈ I allow us to conclude that

f(t) + w(t)−Bζ(t)) ∈ NC(t)(ζ(t)) a.e. t ∈ I
2If H = Re, here one may invoke a classical fact that on bounded subsets of L∞H the topology

of convergence in measure coincides with the topology of uniform convergence on uniformly
integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a
lemma due to Grothendieck [26] [Ch.5 §4 no 1 Prop. 1 and exercice].
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according to the description (2.1) of the normal cone. It remain to check that
w(t) ∈ Av(t) a.e. Indeed Jλnvn(t)→ v(t) by writing

||Jλnvn(t)− v(t)|| ≤ ||Jλnvn(t))− Jλnv(t)|| + ||Jλnv(t)− v(t)||

≤ ||vn(t))− v(t)||+ ||Jλnv(t)− v(t)|| → 0

From wn(t) = Aλnvn(t) ∈ AJλnvn(t) we have that

(wn(t), Jλnvn(t)) ∈ graphA

As graphA is weakly strongly sequentially closed that implies w(t) ∈ Av(t) a.e.

Proposition 3.10. Let H be a separable Hilbert space and I = [0, T ]. Let
C : I ⇒ H be a closed convex valued scalarly measurable multimapping for which
there is some real r > 0 such that C(t) ⊂ rBH for all t ∈ I. Let B be a contin-
uous symmetric linear coercive operator on H and let A : H → 2H be a maximal
monotone operator satisfying
(H)1 |A0(x)| ≤ c(1 + ||x||) for all x ∈ H. Let (θn)n∈N be a sequence of mea-
surable functions from I into I such that for each t ∈ I one has θn(t) → t and
haus

(
C(θn(t)), C(t)

)
→ 0 as n→∞.

Let (fn, f)n∈N be a bounded sequence in L∞H (I) with ‖fn(t)‖ ≤ β, ‖f(t)‖ ≤ β
(β > 0) for all n ∈ N such that (fn(t))n converges to f(t) for each t ∈ I.
Let (un, u)n∈N be a sequence of absolutely continuous mappings

un(t) = u0 +

∫ t

0
u̇n(s)ds, u̇n(t) ∈ C(t)

u(t) = u0 +

∫ t

0
u̇(s)ds,

such that (un)n converges to u uniformly on I and (u̇n)n converges to u̇ weakly in
L1
H(I). Assume that for every n ∈ N

fn(t) +Aλnun(t)−Bu̇n(t) ∈ NC(θn(t))(u̇n(t)) a.e. t ∈ I.

and λn → 0, limnAλnun(t)→ w(t) pointwise, where w is a measurable mapping.
Then for a.e. t ∈ I one has

u̇(t) ∈ C(t) and f(t) + w(t)−B u̇(t) ∈ NC(t)(u̇(t)).

w(t) ∈ Au(t)

Proof. First, we justify that u̇(t) ∈ C(t) a.e. t ∈ I. Take any measurable Lebesgue
set Z ⊂ I and any x ∈ H. The function 1Zx ∈ L∞H (I). Writing

〈x, u̇n(t)〉 ≤ δ∗(x,C(θn(t))),
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we see that∫
I
〈1Zx, u̇n(t), 〉dt =

∫
Z
〈x, u̇n(t)〉dt ≤

∫
Z
δ∗(x,C(θn(t)))dt.

Passing to the upper limit we obtain∫
Z
〈1Zx, u̇(t)〉dt ≤ lim sup

n

∫
Z
δ∗(x,C(θn(t)))dt

≤
∫
Z

lim sup
n

δ∗(x,C(θn(t))) ≤
∫
Z
δ∗(x,C(t))dt.

This being true for any Lebesgue measurable set Z ⊂ I we deduce that for every
x ∈ H

〈x, u̇(t)〉 ≤ δ∗(x,C(t)) texta.e. t ∈ I.
By the separability of H and the weak compactness and convexity of C(t), we get
the desired inclusion u̇(t) ∈ C(t) a.e. t ∈ I.

Since (fn)n is uniformly bounded and pointwise converges to f , we have

lim
n

∫
Z
〈fn(t), u̇n(t)〉dt =

∫
Z
〈f(t), u̇(t)〉dt. (3.36)

this fact is explained. Also by integrating on Z (we are ensured that the functions
given are measurable) the inequality it ensues that with qn(t) := fn(t)+Aλnun(t)−
Bu̇n(t)∫
Z
δ∗(qn(t), C(θn(t)))dt+

∫
Z
〈Bu̇n(t)−fn(t), u̇n(t)〉dt−

∫
Z
〈Aλnun(t), u̇n(t)〉dt≤0.

(3.37)
We claim that Bun(·)→ Bu(·) weakly in L1

H(I) and as above wn(t) : Aλnun(t)→
w(t) for with respect to the Mackey topology τ(L∞H (I), L1

H(I)in L1
H(I), so

qn(·) = fn(·) +Aλn(un(·))−Bu̇n(·)→ q(·) := f(·) + w(.)−Bu̇(·)

weakly in L1
H(I). Indeed, for any h ∈ L∞H (I) the weak convergence in L1

H(I) of

(u̇n)n to u̇ says that
∫ T

0 〈Bh(t), u̇n(t)〉dt→
∫ T

0 〈Bh(t), u̇(t)〉dt, which means∫ T

0
〈h(t), Bu̇n(t)〉dt→

∫ T

0
〈h(t), Bu̇(t)〉dt.

This property for every h ∈ L∞H (I) translates the weak convergence in L1
H(I) of

(Bu̇n)n to Bu̇. Concerning (Aλn(un(·)))n it converges τ(L∞H (I), L1
H(I) to w as

have already seen.So weak convergence in L1
H(I) of (qn)n to q is justified.

Regarding
∫ T

0 〈Bu̇n(t), u̇n(t)〉dt let us set ψB(t, x) = 〈Bx, x〉 if x ∈ C(t) and
ψB(t, x) = 0 if x /∈ C(t) . It is clear that ψB is a positive lower semicontin-
uous convex normal integrand. By the lower semicontinuity of convex integral
functional (see [22, Theorem 8.1.6]) we obtain

lim inf
n

∫ T

0
ψB(t, u̇n(t))dt ≥

∫ T

0
ψB(t, u̇(t))dt,
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that is,

lim inf
n

∫ T

0
〈Bu̇n(t), u̇n(t)〉dt ≥

∫ T

0
〈Bu̇(t), u̇(t)〉dt. (3.38)

The last step is concerned with
∫ T

0 δ∗(qn(t), C(t))dt. Note that ‖qn(t)‖ ≤
β+γ+ r‖B‖, hence δ∗(qn(t), C(t)) ≥ −r(β+γ+ r‖B‖). Using this and the lower
semicontinuous convex normal integrand (t, x) 7→ δ∗(x,C(t)) we obtain by [22,
Theorem 8.1.6] again that

lim inf
n

∫ T

0
δ∗(qn(t), C(t))dt ≥

∫ T

0
δ∗(g(t), C(t))dt.

Since∣∣δ∗(qn(t), C(θn(t)
)
−δ∗

(
qn(t), C(t)

)∣∣ ≤ (β+γ+r‖B‖) haus
(
C(θn(t)), C(t)

)
=: εn(t)

with
∫ T

0 εn(t)→ 0 as n→∞, we are ensured that

lim inf
n

∫ T

0
δ∗
(
qn(t), C(t)

)
dt ≥

∫ T

0
δ∗
(
g(t), C(t)

)
dt. (3.39)

Putting together (3.37)—(3.39) yields∫ T

0
δ∗(f(t)+w(t)−Bu̇(t), C(t))dt+

∫ T

0
〈−f(t)+w(t)+Bu̇(t), u̇(t)〉dt ≤ 0. (3.40)

On the other hand, the inclusion u̇(t) ∈ C(t) says that for a.e. t ∈ I

δ∗(f(t) + w(t)−Bu̇(t), C(t)) ≥ 〈f(t) + w(t)−Bu̇(t), u̇(t)〉.

Taking this into account in (3.40) we deduce for a.e. t ∈ I

δ∗
(
f(t) + w(t)−Bu̇(t), C(t)

)
− 〈f(t+ w(t)−Bu̇(t), u̇(t) ≤ 0

The latter inequality and the inclusion u̇(t) ∈ C(t) guarantees that for a.e. t ∈ I

f(t) + w(t)−Bu̇(t) ∈ NC(t)(u̇(t))

according to the description (2.1) of the normal cone. It remain to check that
w(t) ∈ Au(t) a.e. Indeed Jλnun(t)→ u(t) by writing

||Jλnun(t)− u(t)|| ≤ ||Jλnun(t))− Jλnu(t)|| + ||Jλnu(t)− u(t)||

≤ ||un(t))− u(t)||+ ||Jλnu(t)− u(t)|| → 0

From wn(t) = Aλnun(t) ∈ AJλnun(t) we have that

(wn(t), Jλnun(t)) ∈ graphA

As graphA is weakly strongly sequentially closed that implies w(t) ∈ Au(t) a.e.
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Theorem 3.5. Let f : [0, T ] → H = Re be a continuous mapping and let v :
[0, T ] → R+ be a positive nondecreasing continuous function with v(0) = 0. Let
C : [0, T ]→ H be a compact convex valued multimapping such that

haus (C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ [0, T ].

Let B : H → H be a linear continuous coercive symmetric operator and let A :
H → 2H be a maximal monotone operator satisfying
(A)1 |A0(x)| ≤ c(1 + ||x||) for all x ∈ H.
(A)2 :If λn → 0+, if (un, u) is a bounded sequence of measurable mappings on H
converging pointwise to u, then t→ Aλnun(t) pointwise converge to v ∈ L∞H (I) .

Then, for any u0 ∈ H, there exists an W 1,∞
H ([0, T ]) solution u : [0, T ]→ H and a

bounded measurable mapping w : I → H such that
f(t) + w(t)−B du

dt (t) ∈ NC(t)(
du
dt (t))

u(0) = u0

w(t) ∈ Au(t)

Further, one has ‖u̇(t)‖ ≤ ρ, where ρ := sup{‖y‖ : y ∈ C([0, T ])}.

Proof. Put I := [0, T ] and denote β := max{‖f(t)‖ : t ∈ I} (by continuity of f).
Noticing that the multimapping C(·) is upper semicontinuous from I into H the
set C(I) is compact, and hence ρ := sup{‖y‖ : y ∈ C(I)} is finite and L := ρBH

is compact and convex.

Step I. Construction of a sequence (un)n
We will use the Moreau ’s catching-up algorithm [33]. We consider for each n ∈ N
Aλn the Yosida approxiamtion of A and the following partition of the interval
]0, T ] given by

tni = i
T

n
:= iηn for 0 ≤ i ≤ n, Ini :=]tni , t

n
i+1] for 0 ≤ i ≤ n− 1.

Put un0 = u0 and fni = f(tni ) for all i = 1, .., n. By Proposition 2.1(b), there is
zn1 ∈ C(tn1 ) ⊂ L such that

fn1 +Aλnu
n
0 −Bzn1 ∈ NC(tn1 )(z

n
1 ).

Put un1 = un0 + ηnz
n
1 . Suppose that un0 , u

n
1 , .., u

n
i , z

n
1 , z

n
2 , ..z

n
i are constructed. As

above by Proposition 2.1(b) there exists zni+1 ∈ C(tni+1) ⊂ L such that

fni+1 +Aλnu
n
i −Bzni+1 ∈ NC(tni+1)(z

n
i+1),

and we set uni+1 = uni + ηnz
n
i+1. Then by induction there are finite sequences

(uni )ni=0 and (zni )ni=1 such that

fni+1 +Aλnu
n
i −Bzni+1 ∈ NC(tni+1)(z

n
i+1) (3.41)
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uni+1 = uni + ηnz
n
i+1.

From (uni )ni=0, (zni )ni=1 (fni )ni=0, we construct two sequences of mappings (un)n∈N
and (fn)n∈N from I to H, by setting fn(0) = fn1 , un(0) = un0 and for each
i = 0, .., ..n− 1 we set fn(t) = fni+1 and

fn(t) = fni+1 and un(t) = uni +
t− tni
ηn

(uni+1 − uni ) for t ∈]tni , t
n
i+1].

Keeping in mind that C(t) ⊂ L = ρBH we have ui ∈ C(tni+1) ⊂ ρBH , so∥∥∥∥ 1

ηn
(uni+1 − uni )

∥∥∥∥ = ‖zni+1‖ ≤ ρ.

From this it is clear that un(·) is Lipschitz continuous on I with ρ as a Lipschitz
constant. This Lipschitz property of un(·) ensures that ‖un(t)‖ ≤ ‖u0‖+ ρT and
un(t) = u0 +

∫ t
t0
u̇n(s)ds for every t ∈ I. We also note that ‖fn(t)‖ ≤ β for

all n ∈ N and t ∈ I. Now, let us define the step functions θn, δn : I −→ I by
θn(0) = δn(0) = 0 and

θn(t) = tni+1, δn(t) = tni if t ∈]tni , t
n
i+1],

so the inclusion (4.1) becomes

(0.5.1) fn(t) +Aλnun(δn(t))−Bu̇n(t) ∈ NC(θn(t))(u̇n(t)) a.e. t ∈ I

For each t ∈ I we observe that there is some i ∈ {0, ..., n−1} such that t ∈ [tni , t
n
i+1[,

and then
|θn(t)− t| → 0 and |δn(t)− t| → 0 as n→ +∞.

We also note that the latter inclusion above yields

δ∗(fn(t)+Aλnun(δn(t))−Bu̇n(t), C(θn(t)))+〈−fn(t)−Aλnun(δn(t))−Bdotun(t), u̇n(t)〉 ≤ 0

with
u̇n(t) ∈ C(θn(t)) ⊂ L a.e. t ∈ I,

so that u̇n ∈ S1
L where S1

L := {ξ ∈ L1
H(I) : ξ(t) ∈ L a.e. t ∈ I }.

Step II. Convergence to a solution.
We note that S1

L is a weakly compact convex set of L1
H(I) (see, e.g., [22] and the

references therein). Set

X := {ξ : I → H : ξ(t) = u0 +

∫ t

0
ξ̇(s)ds, t ∈ [0, T ]; v̇ ∈ S1

L}.

It is clear that X is convex, equicontinuous and compact in CH([0, T ]) As un ∈
X , one can extract from (un)n a (not relabeled) subsequence which pointwise
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converges to u : I → H (i.e., un(t) → u(t) in H for each t ∈ I) such that
u(t) = u0 +

∫ t
0 u̇(s)ds for all t ∈ I and such that (u̇n)n σ(L1

H(I), L∞H (I))-converges
to u̇ ∈ S1

L. Further, the inequality

‖un(δn(t))− un(t)‖ ≤ ρ|δn(t)− t|

assures us that
(
un(δn(t))

)
n

converges in H for each t ∈ I. This and the
σ(L1

H(I), L∞H (I)) convergence of (u̇n)n to u̇ in L1
H(I) along with the inclusion

(4.1) allow us (according to the pointwise convergence of (fn)n to f and the esti-
mates from the hypotheses) to obtain that for a.e. t ∈ I the inclusions u̇(t) ∈ C(t)

f(t) + w(t)−Bu̇(t) ∈ NC(t)(u̇(t))

and
w(t) ∈ Au(t)

Our first task is to prove the inclusion u̇(t) ∈ C(t) a.e. t ∈ I. Indeed, for every
Lebesgue measurable set Z ⊂ I and for any x ∈ H , the function 1Zx ∈ L∞H .
Considering the inequality

〈x, u̇n(t)〉 ≤ δ∗(x,C(θn(t)))

and integrating on Z gives∫
I
〈1Zx, u̇n(t), 〉dt =

∫
Z
〈x, u̇n(t)〉dt ≤

∫
Z
δ∗(x,C(θn(t)))dt.

Passing to the limit in this inequality and using the scalar upper semicontinuity
of C(·) we obtain ∫

I
〈1Zx, u̇(t)〉dt ≤ lim sup

n

∫
Z
δ∗(x,C(θn(t)))dt

≤
∫
Z

lim sup
n

δ∗(x,C(θn(t))) ≤
∫
Z
δ∗(x,C(t))dt,

which is equivalent to

〈x, u̇(t)〉 ≤ δ∗(x,C(t)) a.e. t ∈ I.

By the separability of H and the weak compactness of C(t) (se, e.g., Castaing-
Valadier [24, Proposition III- 35]), we get the desired inclusion u̇(t) ∈ C(t) a.e.
Let h ∈ L∞H (I). We first note that Aλnun(δn(t)) → w(t) by A2 so that (wn(t) :
Aλnun(δn(t))) is a uniformly bounded measurable sequence pointwise converging
to w. As consequence, we have

lim
n

∫ T

0
〈u̇n(t), wn(t)〉dt =

∫ T

0
〈u̇(t), w(t)〉dt.
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Similarly we note that Bu̇n → Bu̇ weakly in L1
H(I). As a main consequence

fn + Aλnun(δn(t)) − Bu̇n → f + w − Bu̇ weakly in L1
H(I). Then we may apply

the lower semicontinuity of integral convex functional ([22], Theorem 8.1.16) to
deduce that
(1.1.2)∫
Z
δ∗(f(t)+w(t)−Bu̇(t), C(t))dt ≤ lim inf

n

∫
Z
δ∗(fn(t)+Aλnun(δn(t))−Bu̇n(t), C(t))dt

for every Lebesque measurable set Z ⊂ [0, T ]. This need a careful look. Indeed, we
note that (t, x) 7→ δ∗(x,C(t)) is a normal lower semicontinuous convex integrand
defined on [0, T ] ×H and δ∗(fn(t) + Aλnun(δn(t)) − Bu̇n(t), C(t)) is measurable
and integrable:

|δ∗(fn(t)+Aλnun(δn(t))−Bu̇n(t), C(t))| ≤ ||fn(t)+Aλnun(δn(t))−Bu̇n(t)|||L| ≤ Constant

furthermore

δ∗(fn(t) +Aλnun(δn(t))−Bu̇n(t), C(t)) ≥ 〈fn(t) +Aλnun(δn(t))−Bu̇n(t), u(t)〉

where u(t) is a measurable selection of C (note that C is scalarly upper semicon-
tinuous multimapping from [0, T ] to L). Further we have by (1.1.1)

|δ∗(fn(t)+Aλnun(δn(t))−Bu̇n(t), C(t))−δ∗(fn(t)+Aλnun(δn(t))−Bu̇n(t), C(θn(t)))|

≤ ||fn(t) +Aλnun(δn(t))−Bu̇n(t))||dH(C(t), C(θn(t)))

≤ ||fn(t) +Aλnun(δn(t))−Bu̇n(t)|||v(t)− v(θn(t))| ≤ Constant|v(t)− v(θn(t))|

so that

lim inf
n

∫
Z
δ∗(fn(t) +Aλnun(δn(t))−Bu̇n(t), C(θn(t)))dt

≥ lim inf
n

∫
Z
δ∗(fn(t) +Aλnun(δn(t))−Bu̇n(t), C(t))dt

(1.1.3) ≥
∫
Z
δ∗(f(t) + w(t)−Bu̇(t), C(t))dt.

Let us set ψB(x) = 〈Bx, x〉 if x ∈ L and ψ(x) = +∞ if x /∈ L. Then it is clear
ψB is a positive lower semicontinuous convex integrand. Apply again the lower
semicontinuity of the integral convex functional ([22], Theorem 8.1.6) associated
with the positive normal convex integrand ψB we obtain,

lim inf
n

∫
Z
ψB(u̇n(t))dt ≥

∫
Z
ψB(u̇(t))dt

that is

(1.1.4) lim inf
n

∫
Z
〈Bu̇n(t), u̇n(t))dt ≥

∫
Z
〈Bu̇(t), u̇(t)dt.
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Whence we have

(1.1.5) lim
n

∫
Z
〈Aλnun(δn(t)), u̇n(t)〉dt =

∫
Z
〈w(t)), u̇(t)〉dt.

Similarly we have

(1.1.6) lim
n

∫
Z
〈fn(t), u̇n(t)〉dt =

∫
Z
〈f(t), u̇(t)〉dt

because fn is uniformly bounded and pointwise strongly converge to f and u̇n → u̇
weakly in L1

H([0, T ]) by noting that a bounded sequence is L∞H (I) which pointwise
converges to 0, converges to 0 uniformly on any uniformly integrable subset of
L1
H([0, T ]), in other terms it converges to 0 with respect to the Mackey topology

τ(L∞H ([0, T ]), L1
H([0, T ])) (see[10]).3 Now integrating on Z ⊂ [0, T ] the inequality

( here measurability and integrability are guaranted)

δ∗(fn(t) +Aλnun(δn(t))−Bu̇n(t), C(θn(t)))

+〈−fn(t)−Aλnun(δn(t)), u̇n(t)〉+ 〈Bu̇n(t), u̇n(t) ≤ 0

gives ∫
Z
δ∗(fn(t) +Aλnun(δn(t))−Bu̇n(t), C(θn(t))))dt

(1.1.7) +

∫
Z
〈Bu̇n(t), u̇n(t)〉dt+

∫
Z
〈−fn(t)−Aλnun(δn(t)), u̇n(t)〉dt ≤ 0

by passing to the limit when n goes to ∞ in this equality using (1.1.1)—(1.1.7)
gives

(1.1.8)

∫
Z

[δ∗(f(t) + w(t)−Bu̇(t), C(t)) + 〈Bu̇(t)− w(t)− f(t), u̇(t)〉]dt ≤ 0.

As t 7→ δ∗(f(t) + w(t) − Bu̇(t), C(t)) + 〈Bu̇(t) − w(t) − f(t), u̇(t)〉 is integrable,
by (1.1.8) it follow

(1.1.9) δ∗(f(t) + w(t)−Bu̇(t), C(t)) + 〈Bu̇(t)− w(t)− f(t), u̇(t)〉 ≤ 0, a.e.

As u̇(t) ∈ C(t), we have

δ∗(f(t) + w(t)−Bu̇(t), C(t)) ≥ 〈f(t) + w(t)−Bu̇(t), u̇(t)〉
3If H = Re, one may invoke a classical fact that on bounded subsets of L∞H the topology

of convergence in measure coincides with the topology of uniform convergence on uniformly
integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a
lemma due to Grothendieck [26] [Ch.5 §4 no 1 Prop. 1 and exercice]
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that is

(1.1.10) δ∗(f(t) + w(t)−Bu̇(t), C(t)) + 〈−f(t)− w(t) +Bu̇(t), u̇(t) ≥ 0.

By (1.1.9) and (1.1.10) we get finally

δ∗(f(t) + w(t)−Bu̇(t), C(t)) = 〈f(t) + w(t)−Bu̇(t), u̇(t)〉

a.e. with u̇(t) ∈ C(t) a.e. so we conclude that f(t) + w(t)−Bu̇(t)) ∈ NC(t)(u̇(t))
a.e. It remain to check w(t) ∈ Av(t) a.e. Indeed Jλnun(δn(t))− → u(t) by writing

||Jλnun(δn(t))− u(t)|| ≤ ||Jλnun(δn(t))− Jλnu(t)|| + ||Jλnu(t)− u(t)||

≤ ||un(δn(t))− u(t)||+ ||Jλnu(t)− u(t)|| → 0

From wn(t) = Aλnun(δn(t)) ∈ AJλnun(δn(t)) we have that

(wn(t), Jλnun(δn(t))) ∈ graphA

As graphA is weakly strongly sequentially closed that implies w(t) ∈ Au(t) a.e.

Remark We cannot expect to have uniqueness of solution. In case when H
is separable Hilbert space the result hold true if we replace the operator A is
replaced by a linear compact operator, uniqueness of solutions hold true using the
coerciveness of the operator B, then result is read as : there exist an absolutely
continuous mapping u : I → H such tthat for a.e.{

f(t) +Au(t)−B du
dt (t) ∈ NC(t)(

du
dt (t))

u(0) = u0

If A : I → H is a continuous mapping with the growth condition ||Ax|| ≤ c(1 +
||x||), the result is read as : there exist an absolutely continuous mapping u : I →
H such that for a.e.{

f(t) +Au(t)−B du
dt (t) ∈ NC(t)(

du
dt (t))

u(0) = u0

Proposition 3.11. Let H be a separable Hilbert space and I = [0, T ] Let ϕ :
[0, T ] ×H →] −∞,+∞] be a normal lower semicontinuous convex integrand for
which there exists a convex weakly compact set Γ such that:
(i) for all t ∈ I, domϕt := Γ;
(ii {ϕ(., u(.)), u ∈ S∞Γ } is uniformly integrable;
(iii) ϕ(t, x) ≤ ϕ(τ, x)+|v(t)−v(τ)| for all t, τ ∈ [0, T ], x ∈ Γ where v : [0, T ]→ R+

is a positive nondecreasing continuous function with v(0) = 0.
Let B : H → H be a continuous symmetric linear coerciveoperator, let At : H →
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2H be a time measurable maximal monotone operator satisfying
(A)1 |A0(t, x)| ≤ c(1 + ||x||) for all (t, x) ∈ I ×H.
Let (θn)n∈N be a sequence of measurable functions from I into I such that for each
t ∈ I one has θn(t)→ t.
Let (fn, f)n∈N be a bounded sequence in L∞H (I) with ‖fn(t)‖ ≤ β, ‖f(t)‖ ≤ β
(β > 0) for all n ∈ N such that (fn(t))n converges to f(t) for each t ∈ I.

Let (un, u)n∈N be a sequence of absolutely continuous mappings

un(t) = u0 +

∫ t

0
u̇n(s)ds, u̇n(t) ∈ Γ

u(t) = u0 +

∫ t

0
u̇(s)ds,

such that (un)n converges to u uniformly on I and (u̇n)n converges to u̇ weakly in
L1
H(I). Assume that for every n ∈ N

(∗)fn(t) +Aλn(t, un(t))−Bu̇n(t) ∈ ∂ϕ(θn(t), u̇n(t)) a.e. t ∈ I.

(∗∗) λn ∈]0, 1]→ 0 and Aλn(t, un(t))→ v(t) pointwise strongly
Then for a.e. t ∈ I one has

u̇(t) ∈ Γ, f(t) + v(t)−B u̇(t) ∈ ∂ϕ(t, u̇(t)) and v(t) ∈ A(t, u(t))

Proof. First, Lemma 3.2 tells us that u̇(t) ∈ Γ for a.e. t ∈ I.
First, we justify that u̇(t) ∈ Γ a.e. t ∈ I. Let (ep) be a dense sequence in H.

For every measurable set Z ⊂ I and for any ep ∈ H, the function 1Zep ∈ L∞H (I).
By the inequality

〈ep, u̇n(t)〉 ≤ δ∗(ep,Γ)

integrating on Z gives∫
I
〈1Zep, u̇n(t)〉dt =

∫
Z
〈ep, u̇n(t)〉dt ≤

∫
Z
δ∗(ep,Γ)dt.

Passing to the upper limit in this inequality we obtain∫
Z
〈1Zep, u̇(t)〉dt ≤

∫
Z
δ∗(ep,Γ)dt.

This being true for any Lebesgue measurable set Z ⊂ I we deduce that for every
ep ∈ H

〈ep, u̇(t)〉 ≤ δ∗(ep,Γ) a.e. t ∈ I.

As H is separable and Γ is closed convex weakly locally weakly compact which
contain no line, by (Castaing-Valadier [24, Proposition III- 35]), we get the de-
sired inclusion u̇(t) ∈ Γ a.e. t ∈ I. Take any Lebesgue measurable set Z ⊂ I.
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Since (fn)n is uniformly bounded and pointwise converges to f and (u̇n)n weakly
converges in L1

H([0, T ]) to u̇ , we have

lim
n

∫
Z
〈fn(t), u̇n(t)〉 dt =

∫
Z
〈f(t), u̇(t)〉 dt. (3.42)

This fact has been already justified in the proof of Proposition 3.4. As ϕ is normal
lower semicontinuous convex integrand, the conjugate function ϕ∗ : I × H →
]−∞,+∞]

ϕ∗(t, y) = sup
x∈H

[〈x, y〉 − ϕ(t, x)] (3.43)

is normal, see e.g Castaing-Valadier [24], and satisfies

ϕ∗(t, y) ≤ ϕ∗(τ, y) + |v(t)− v(τ)|

for all t, τ ∈ I, y ∈ H using assumption (ii) ([36], Proposition 27). By using
the normality of ϕ, the functions t 7→ ϕ(θn(t), u̇n(t)) and t 7→ ϕ(t, u̇n(t)) are
measurable and integrable.By assumption we have

qn(t) := fn(t) +Aλn(t, un(t))−Bu̇n(t) ∈ ∂ϕ(θn(t), u̇n(t))

so that by the normality of ϕ∗, the function t 7→ ϕ∗(θn(t), qn(t)) is measurable and
integrable, the measurability and integrability of Aλn(t, un(t)) is already ensured
as above. We also note that 〈qn, u̇n〉 is measurable and integrable and the sequence
(〈qn, u̇n〉) is uniformly integrable.

Further, by (3.42) and condition (ii) we have

−ϕ(t, u̇n(t)) + 〈u̇n(t), qn(t)〉 ≤ ϕ∗(t, qn(t)) ≤ ϕ∗(θn(t), qn(t)) + |v(t)− v(θn(t))|,
(3.44)

so that t 7→ −ϕ(t, u̇n(t)) + 〈u̇n(t), qn(t)〉 is uniformly integrable thanks to (ii).
We note that, for hn(t) := fn(t) + Aλn(t, un(t)), (hn)n is uniformly bounded and
pointwise converges to h given by h(t) = f(t) + v(t) in H. As consequence, for
every measurable set Z in I, we have

lim
n→∞

∫
Z
〈hn(t), u̇n(t)〉 dt =

∫
Z
〈h(t), u̇(t)〉 dt. (3.45)

This fact has been justified in the proof of Proposition 3.4. As B is symmetric,
we also show that Bu̇n(·) → Au̇(·) weakly in L1

H(I). As consequence qn = fn +
Aλn(t, un(t))−Bu̇n(.)→ q := f + v(t)−Bu̇ weakly in L1

H(I). Further, let us set
ψB(x) = 〈Bx, x〉 if x ∈ Γ and ψ(x) = +∞ if x /∈ Γ. Then it is clear ψ is a positive
lower semicontinuous convex integrand. Apply again the lower semicontinuity of
the integral convex functional ([22] Theorem 8.1.6) associated with the positive
normal lower semi continuous convex integrand ψA we obtain

lim inf
n

∫
Z
ψB(un(t))dt ≥

∫
Z
ψB(u(t)) d, t
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that is,

lim inf
n

∫
Z
〈Bu̇n(t), u̇n(t)) dt ≥

∫
Z
〈Bu̇(t), u̇(t) dt. (3.46)

Now, we deduce using (3.43) and the lower semicontinuity of integral convex
functional (see [22, Theorem 8.1.6]) applied to ϕ∗,∫

Z
ϕ∗(t, q(t)) dt ≤ lim inf

n

∫
Z
ϕ∗(t, qn(t)) dt ≤ lim inf

n

∫
Z
ϕ∗(θn(t), qn(t))dt (3.47)

This fact is justified because ϕ∗(t, qn(t)) ≥ −ϕ(t, u̇n(t)) + 〈u̇n(t), qn(t)〉, and the
sequence (−ϕ(t, u̇n(t)) + 〈u̇n(t), qn(t)〉) is uniformly integrable. By

ϕ(t, u̇n(t)) ≤ ϕ(θn(t), u̇n(t)) + |v(t)− v(θn(t))|

we also have that

lim inf
n

∫
Z
ϕ(t, u̇n(t)) dt ≤ lim inf

n

∫
Z
ϕ(θn(t), u̇n(t)) dt.

As (u̇n)n weakly converges to u̇ ∈ L1
H(I), by the lower semi continuity theorem

([22], Theorem 8.1.6) applied to the lower semicontinuous convex integral func-
tional associated with ϕ, we derive that∫

Z
ϕ(t, u̇(t)) dt ≤ lim inf

n

∫
Z
ϕ(θn(t), u̇n(t)) dt (3.48)

with u̇(t) ∈ Γ a.e. and t 7→ ϕ(t, u̇(t)) is integrable. Now integrating on the
Lebesgue measurable subset Z of I the equality

ϕ(θn(t), u̇n(t)) + ϕ∗(θn(t), qn(t)) = 〈u̇n(t), qn(t)〉

gives∫
Z
ϕ(θn(t), u̇n(t))dt+

∫
Z
ϕ∗(θn(t), qn(t))dt+

∫
Z
〈Au̇n(t), u̇n(t)dt. =

∫
Z
〈u̇n(t), hn(t)〉dt.

Passing to the limit as n→∞ in this equality and using (3.44)–(3.47) give∫
Z
ϕ(t, u̇(t)) dt+

∫
Z
ϕ∗(t, q(t)) dt ≤

∫
Z
〈u̇(t), q(t)〉 dt.

By the measurability of the non negative function t 7→ ϕ(t, u̇(t)) + ϕ∗(t, q(t)) −
〈u̇(t), q(t)〉, we deduce that for almost every t ∈ I

ϕ(t, u̇(t)) + ϕ∗(t, q(t))− 〈u̇(t), q(t)〉 ≤ 0

along with u̇(t) ∈ Γ. So, it follows for almost every t ∈ I that ϕ(t, u̇(t)) +
ϕ∗(t, q(t)) = 〈u̇(t), q(t)〉, or equivalently

q(t) = f(t) + v(t)−Au̇(t) ∈ ∂ϕ(t, u̇(t)).
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It remain to check v(t) ∈ A(t, u(t)) a.e. Indeed Jλn(t, un(t))− → u(t) by writing

||Jλn(t, un(t))− u(t)|| ≤ ||Jλn(t, u(t))− Jλn(t, u(t))|| + ||Jλn(t, u(t))− u(t)||

≤ ||un(t)− u(t)||+ ||Jλn(t, u(t))− u(t)|| → 0

As ||un(t)−Jλn(t, un(t))|| = λn||Aλn(t, un(t))|| ≤ λn|A0(t, un(t)) ≤ c(1+ ||un(t)||)
with λn < 1, Jλn(t, un(t)) is uniformly bounded and pointwise converge to u(t),
so that t → Jλn(t, un(t)) converge to u in L2

H(I). From vn(t) = Aλn(t, un(t)) ∈
A(t, Jλn(t, un(t)) we show that (vn(t), Jλn(t, un(t)) ∈ graphAt, so that (vn, wn) ∈
graphA∗ with wn(t) = Jλn(t, un(t)). As graphA∗ is sequentially strong weakly
closed by Lemma 0.1, with vn → v strongly hence weakly in L2

H(I) and wn → u
strongly in L2

H(I) applying Lemma 0.1 gives (v, u) ∈ graphA∗, that implies v(t) ∈
A(t, u(t)) a.e. The proof is finished.

Theorem 3.6. Let H be a separable Hilbert space.Let K be a convex compact
subset of H. Let ϕ : [0, T ] ×K →] −∞,+∞] be a normal lower semicontinuous
convex integrand such that
(i {ϕ(., u(.)), u ∈ S1

K} is uniformly integrable.
(ii) ϕ(t, x) ≤ ϕ(τ, x)+|v(t)−v(τ)| for all t, τ ∈ [0, T ], x ∈ K where v : [0, T ]→ R+

is a positive nondecreasing continuous function with v(0) = 0.
Let B : H → H be a linear continuous coercive symmetric operator and let A :
H → 2H be a maximal monotone operator satisfying the properties
(A)1 |A0x)| ≤ c(1 + ||x||) for all (t, x) ∈ I ×H.
(A)2 :If λn → 0+, if (un, u) is a bounded sequence of measurable mappings on H
converging pointwise to u, then Aλnun(.) pointwise converge to v ∈ L∞H (I)
Let f : I → H be a continuous mapping.

Then, for any u0 ∈ H, there is an absolutely continuous mapping u : i → H
and a bounded measurable mapping v : I → H such that for a.e.,

f(t) + v(t)−Bu̇(t) ∈ ∂ϕ(t,
du

dt
(t))

u(0) = u0

v(t) ∈ Au(t)

Further the solution set {(u, v)} is compact in CH(I)× w-L2
H(I).

Proof. We will use again the Moreau ’s catching-up algorithm. We consider for
each n ∈ N the following partition of the interval I = [0, T ].
tni = iTn := iηn for 0 ≤ i ≤ n. Ini :=]tni , t

n
i+1] for 0 ≤ i ≤ n− 1.

Put un0 = u0 and fni = f(tni ) for all i = 1, .., n. By Proposition 1.1 1) , there is
zn1 ∈ K such that

fn1 +Aλnu
n
0 −Bzn1 ∈ ∂ϕ(tn1 , z

n
1 ).
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Put un1 = un0 + ηnz
n
1 . Suppose that un0 , u

n
1 , .., u

n
i , z

n
1 , z

n
2 , ..z

n
i are constructed. As

above by Proposition 1.1 1) there exists zni+1 ∈ K such that

fni+1 +Aλnu
n
i −Bzni+1 ∈ ∂ϕ(tni+1, z

n
i+1).

and we set uni+1 = uni + ηnz
n
i+1. Then by induction there are finite sequences

(uni )ni=0 and (zni )ni=1 such that

fni+1 +Aλnu
n
i −Bzni+1 ∈ ∂ϕ(tni+1, z

n
i+1)

uni+1 = uni + ηnz
n
i+1

From (uni )ni=0, (zni )ni=1 (fni )ni=0, we construct two sequences un from [0, T ] to H, fn
from [0, T ] to H, by setting fn(0) = fn1 , un(0) = un0 and for each i = 0, .., ..n− 1
we set fn(t) = fni+1 and

un(t) = uni +
t− tni
ηn

(uni+1 − uni )

for t ∈]tni , t
n
i+1]. Clearly, the mapping un(.) is Lipschitz continuous on [0, T ], and

ρ is a Lipschitz constant of un(.) on [0, T ] since for every t ∈]tni , t
n
i+1]

u̇n(t) =
uni+1 − uni

ηn
= zni+1 ∈ K ⊂ ρBH .

Furthermore, for every t ∈ [0, T ], one has un(t) = u0+
∫ t

0 u̇n(s)ds, hence ||un(t)|| ≤
||u0||+ ρT . We have

fni+1 +Aλnu
n
i −Bzni+1 ∈ ∂ϕ(tni+1, z

n
i+1).

Now, let us define the step functions θn, δn : I −→ I by

θn(t) = tni+1, δn(t) = tni

if t ∈]tni , t
n
i+1] and θn(0) = δn(0) = 0, and observe that for each t ∈ I, there is

i ∈ {0, ..., n− 1} such that t ∈ [tni , t
n
i+1[, and then,

|θn(t)− t| → 0 and |δn(t)− t| → 0 as n→ +∞,

So, the last inclusion becomes

fn(t) +Aλnun(δn(t))−Bu̇n(t) ∈ ∂ϕ(θn(t), u̇n(t))

a.e. t ∈ [0, T ] . We note that ||un(t)|| ≤ ||u0||+ ρT , ||fn(.)|| ≤ β for all t ∈ [0, T ]
and un(t) = u0 +

∫ t
0 u̇n(s)ds for all t ∈ [0, T ] with u̇n ∈ K a.e.

Step 2 Convergence of the algorithm and final conclusion
Let S1

K := {h ∈ L1
H([0, T ]) : h(t) ∈ K a.e.} and let

X := {v : [0, T ]→ H : v(t) = u0 +

∫ t

0
v̇(s)ds, t ∈ [0, T ]; v̇ ∈ S1

K}.
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Then it is clear that S1
K is convex and weakly compact in L1

H([0, T ]) (see e.g. [22]
and the references therein) and that X is convex, equicontinuous and compact in
CH([0, T ]). As (un) ⊂ X , one can extract from (un) a subsequence not relabelled
which pointwise converges to u : [0, T ] → H such that u(t) = u0 +

∫ t
0 u̇(s)ds, for

all t ∈ [0, T ] and (u̇n) σ(L1
H([0, T ]), L∞H ([0, T ]))-converges to u̇ ∈ S1

K . By using
the normality of ϕ, the mappings t 7→ ϕ(θn(t), u̇n(t)) and t 7→ ϕ(t, u̇n(t)) are
measurable and integrable. By construction we have

gn(t) := fn(t) +Aλnun(δn(t))−Bu̇n(t) ∈ ∂ϕ(θn(t), u̇n(t)).

by (A)2 :let λn → 0+, then Aλnun(δn(t)) pointwise converges to a bounded mea-
surable mapping v : I → H. For simplicity set

g(t) := f(t) + v(t)−Bu̇(t).

As fn → f pointwise strongly, un(δn(.)) → u(.)) pointwise strongly, and u̇n → u̇
weakly in L1

E([0, T ]), Aλnun(δn(t)) pointwise converges to v, a direct application
of Proposition 3.11 gives

g(t) := f(t) + v(t)−Bu̇(t) ∈ ∂ϕ(t, u̇(t))

a.e It remain to check v(t) ∈ Au(t) a.e. Indeed Jλn(t, un(t))− → u(t) by writing

||Jλnun(δn(t))− u(t)|| ≤ ||Jλnun(δn(t))− Jλnu(t))|| + ||Jλnu(t))− u(t)||

≤ ||un(δn(t))− u(t)||+ ||Jλn(t, u(t))− u(t)|| → 0

From vn(t) = Aλnun(δn(t)) ∈ AJλnun(δn(t)) we show that (vn, wn) ∈ graphA
with wn(t) = Jλnun(δn(t))). As graphA is sequentially strong weakly closed,
with vn → v strongly pointwise in H and wn → u strongly pointwise in H this
gives (v, u) ∈ graphA, that implies v(t) ∈ Au(t) a.e. and finish the proof. The
compactness of solution set follows from the arguments given in the variational
limit theorem, cf Proposition 0.7.

Theorem 3.7. Let H be a separable Hilbert space. Let K be a convex compact
subset of H. Let ϕ : [0, T ] ×K →] −∞,+∞] be a normal lower semicontinuous
convex integrand such that
(i {ϕ(., u(.)), u ∈ S1

K} is uniformly integrable.
(ii) ϕ(t, x) ≤ ϕ(τ, x)+|v(t)−v(τ)| for all t, τ ∈ [0, T ], x ∈ K where v : [0, T ]→ R+

is a positive nondecreasing continuous function with v(0) = 0.
Let B : H → H be a linear continuous coercive symmetric operator. Let f : I → H
be a continuous mapping. Let g : H → R be a convex function Lipschitz on
bounded sets and continuously differentiable on H.
Then, for any u0 ∈ H, there is an absolutely continuous mapping u : I → H such
that for a.e.,

f(t) +∇g(u(t))−Bu̇(t) ∈ ∂ϕ(t,
du

dt
(t))
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u(0) = u0

Further the solution set is compact in CH(I).

Proof. We will use again the Moreau ’s catching-up algorithm. We consider for
each n ∈ N the following partition of the interval I = [0, T ].
tni = iTn := iηn for 0 ≤ i ≤ n. Ini :=]tni , t

n
i+1] for 0 ≤ i ≤ n− 1.

Put un0 = u0 and fni = f(tni ) for all i = 1, .., n. By Proposition 1.1 1) , there is
zn1 ∈ K such that

fn1 +∇g(un0 )−Bzn1 ∈ ∂ϕ(tn1 , z
n
1 ).

Put un1 = un0 + ηnz
n
1 . Suppose that un0 , u

n
1 , .., u

n
i , z

n
1 , z

n
2 , ..z

n
i are constructed. As

above by Proposition 1.1 1) there exists zni+1 ∈ K such that

fni+1 +∇g(uni )−Bzni+1 ∈ ∂ϕ(tni+1, z
n
i+1).

and we set uni+1 = uni + ηnz
n
i+1. Then by induction there are finite sequences

(uni )ni=0 and (zni )ni=1 such that

fni+1 +∇g(uni )−Bzni+1 ∈ ∂ϕ(tni+1, z
n
i+1)

uni+1 = uni + ηnz
n
i+1

From (uni )ni=0, (zni )ni=1 (fni )ni=0, we construct two sequences un from [0, T ] to H, fn
from [0, T ] to H, by setting fn(0) = fn1 , un(0) = un0 and for each i = 0, .., ..n− 1
we set fn(t) = fni+1 and

un(t) = uni +
t− tni
ηn

(uni+1 − uni )

for t ∈]tni , t
n
i+1]. Clearly, the mapping un(.) is Lipschitz continuous on [0, T ], and

ρ is a Lipschitz constant of un(.) on [0, T ] since for every t ∈]tni , t
n
i+1]

u̇n(t) =
uni+1 − uni

ηn
= zni+1 ∈ K ⊂ ρBH .

Furthermore, for every t ∈ [0, T ], one has un(t) = u0+
∫ t

0 u̇n(s)ds, hence ||un(t)|| ≤
||u0||+ ρT . We have

fni+1 +∇g(uni )−Bzni+1 ∈ ∂ϕ(tni+1, z
n
i+1).

Now, let us define the step functions θn, δn : I −→ I by

θn(t) = tni+1, δn(t) = tni

if t ∈]tni , t
n
i+1] and θn(0) = δn(0) = 0, and observe that for each t ∈ I, there is

i ∈ {0, ..., n− 1} such that t ∈ [tni , t
n
i+1[, and then,

|θn(t)− t| → 0 and |δn(t)− t| → 0 as n→ +∞,
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So, the last inclusion becomes

fn(t) +∇g(un(δn(t)))−Bu̇n(t) ∈ ∂ϕ(θn(t), u̇n(t))

a.e. t ∈ [0, T ] . We note that ||un(t)|| ≤ ||u0||+ ρT , ||fn(.)|| ≤ β for all t ∈ [0, T ]
and un(t) = u0 +

∫ t
0 u̇n(s)ds for all t ∈ [0, T ] with u̇n ∈ K a.e.

Step 2 Convergence of the algorithm and final conclusion
Let S1

K := {h ∈ L1
H([0, T ]) : h(t) ∈ K a.e.} and let

X := {v : [0, T ]→ H : v(t) = u0 +

∫ t

0
v̇(s)ds, t ∈ [0, T ]; v̇ ∈ S1

K}.

Then it is clear that S1
K is convex and weakly compact in L1

H([0, T ]) (see e.g. [22]
and the references therein) and that X is convex, equicontinuous and compact in
CH([0, T ]). As (un) ⊂ X , one can extract from (un) a subsequence not relabelled
which pointwise converges to u : [0, T ] → H such that u(t) = u0 +

∫ t
0 u̇(s)ds, for

all t ∈ [0, T ] and (u̇n) σ(L1
H([0, T ]), L∞H ([0, T ]))-converges to u̇ ∈ S1

K . By using
the normality of ϕ, the mappings t 7→ ϕ(θn(t), u̇n(t)) and t 7→ ϕ(t, u̇n(t)) are
measurable and integrable. By construction we have

gn(t) := fn(t) +∇g(un(δn(t)))−Bu̇n(t) ∈ ∂ϕ(θn(t), u̇n(t)).

For simplicity set
g(t) := f(t) +∇g(u(t))−Bu̇(t).

As fn → f pointwise strongly, un(δn(.)) → u(.)) pointwise strongly, and u̇n → u̇
weakly in L1

E([0, T ]), ∇g(un(δn(t))) pointwise converges to ∇g(u(t)), a direct
application of Proposition 3.6 gives

g(t) := f(t) +∇g(u(t))−Bu̇(t) ∈ ∂ϕ(t, u̇(t))

a.e and finish the proof.

Lemma 3.8. Let a time measurable maximal monotone operator t→ At : H → H
satisfying the conditions.
(A1) t→ Jλ(t, x) is L(I)-measurable for every λ > 0 and for every x ∈ H
(A2) |A0(t, x)| ≤ c(1 + ||x||) for all (t, x) ∈ I ×H.
If (un) is a uniformly bounded sequence of Lebesgue measurable mappings point-
wise converging to measurable mapping u, for λ ∈]0, 1], λn → 0+, Aλn(t, un(t))
weakly converge in L2

H(I) to a bounded measurable mapping v, then v(t) ∈ A(t, u(t))
a.e.

Proof. Let us set vn(t) := Aλn(t, un(t)). From Lemma we are ensured that (vn)
is bounded measurable and (vn) wealy converge to v in L2

H(I). We have vn(t) :=
Aλn(t, un(t)) ∈ A(t, Jλ(t, un(t))) with wn(t) := Jλ(t, un(t))) → u(t)) pointwise.
Indeed Jλn(t, un(t))− → u(t) by writing

||Jλn(t, un(t))− u(t)|| ≤ ||Jλn(t, u(t))− Jλn(t, u(t))|| + ||Jλn(t, u(t))− u(t)||
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≤ ||un(t)− u(t)||+ ||Jλn(t, u(t))− u(t)|| → 0

As ||un(t)−Jλn(t, un(t))|| = λn||Aλn(t, un(t))|| ≤ λn|A0(t, un(t)) ≤ c(1+ ||un(t)||)
with λn < 1, Jλn(t, un(t)) is uniformly bounded and pointwise converge to u(t),
so that t → Jλn(t, un(t)) converge to u in L2

H(I). Then from vn(t) ∈ A(t, wn(t))
with vn → v weakly in L2

H(I) and wn → u strongly in L2
H(I) and (vn, wn) ∈ A∗.

by Lemma 0.1, (v, u) ∈ A∗ i.e v(t) ∈ A(t, u(t)) a.e.

4 Well-posedness of inclusion (1.1)

Our main proofs in this section are build upon the variational inequalities in
Proposition 2.1 and the variational limits in Section 3 as well as upon an ex-
plicit catching-up algorithm (alias Moreau’s algorithm). We stress the fact that
our algorithm and tools are self contained apart from the use of the mentioned
variational inequalities.

Theorem 4.1. Let f : [0, T ] → H be a continuous mapping and let v : [0, T ] →
R+ be a positive nondecreasing continuous function with v(0) = 0. Let C : [0, T ]→
H be a weakly compact convex valued multimapping such that

haus (C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ [0, T ].

Let A : H → H be a linear continuous coercive symmetric operator and let B :
H → H be a linear continuous compact operator. Then, for any u0 ∈ H, the
evolution inclusion {

f(t) +Bu(t)−A du
dt (t) ∈ NC(t)(

du
dt (t))

u(0) = u0

admits a unique W 1,∞
H ([0, T ]) solution u : [0, T ]→ H. Further, one has ‖u̇(t)‖ ≤

ρ, where ρ := sup{‖y‖ : y ∈ C([0, T ])}.

Proof. Put I := [0, T ] and denote β := max{‖f(t)‖ : t ∈ I} (by continuity of
f). Noticing that the multimapping C(·) is upper semicontinuous from I into
H endowed with the weak topology, the set C(I) is weakly compact, and hence
ρ := sup{‖y‖ : y ∈ C(I)} is finite and L := ρBH is weakly compact and convex.

Step I. Construction of a sequence (un)n
We will use the Moreau ’s catching-up algorithm [33]. We consider for each n ∈ N
the following partition of the interval ]0, T ] given by

tni = i
T

n
:= iηn for 0 ≤ i ≤ n, Ini :=]tni , t

n
i+1] for 0 ≤ i ≤ n− 1.
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Put un0 = u0 and fni = f(tni ) for all i = 1, .., n. By Proposition 2.1(b), there is
zn1 ∈ C(tn1 ) ⊂ L such that

fn1 +Bun0 −Azn1 ∈ NC(tn1 )(z
n
1 ).

Put un1 = un0 + ηnz
n
1 . Suppose that un0 , u

n
1 , .., u

n
i , z

n
1 , z

n
2 , ..z

n
i are constructed. As

above by Proposition 2.1(b) there exists zni+1 ∈ C(tni+1) ⊂ L such that

fni+1 +Buni −Azni+1 ∈ NC(tni+1)(z
n
i+1),

and we set uni+1 = uni + ηnz
n
i+1. Then by induction there are finite sequences

(uni )ni=0 and (zni )ni=1 such that

fni+1 +Buni −Azni+1 ∈ NC(tni+1)(z
n
i+1) (4.1)

uni+1 = uni + ηnz
n
i+1.

From (uni )ni=0, (zni )ni=1 (fni )ni=0, we construct two sequences of mappings (un)n∈N
and (fn)n∈N from I to H, by setting fn(0) = fn1 , un(0) = un0 and for each
i = 0, .., ..n− 1 we set fn(t) = fni+1 and

fn(t) = fni+1 and un(t) = uni +
t− tni
ηn

(uni+1 − uni ) for t ∈]tni , t
n
i+1].

Keeping in mind that C(t) ⊂ L = ρBH we have ui ∈ C(tni+1) ⊂ ρBH , so∥∥∥∥ 1

ηn
(uni+1 − uni )

∥∥∥∥ = ‖zni+1‖ ≤ ρ.

From this it is clear that un(·) is Lipschitz continuous on I with ρ as a Lipschitz
constant. This Lipschitz property of un(·) ensures that ‖un(t)‖ ≤ ‖u0‖+ ρT and
un(t) = u0 +

∫ t
t0
u̇n(s)ds for every t ∈ I. We also note that ‖fn(t)‖ ≤ β for

all n ∈ N and t ∈ I. Now, let us define the step functions θn, δn : I −→ I by
θn(0) = δn(0) = 0 and

θn(t) = tni+1, δn(t) = tni if t ∈]tni , t
n
i+1],

so the inclusion (4.1) becomes

fn(t) +Bun(δn(t))−Au̇n(t) ∈ NC(θn(t))(u̇n(t)) a.e. t ∈ I.

For each t ∈ I we observe that there is some i ∈ {0, ..., n−1} such that t ∈ [tni , t
n
i+1[,

and then
|θn(t)− t| → 0 and |δn(t)− t| → 0 as n→ +∞.

We also note that the latter inclusion above yields

δ∗(fn(t)+Bun(δn(t))−Au̇n(t), C(θn(t)))+〈−fn(t)−Bun(δn(t))+Au̇n(t), u̇n(t)〉 ≤ 0
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with
u̇n(t) ∈ C(θn(t)) ⊂ L a.e. t ∈ I,

so that u̇n ∈ S1
L where S1

L := {ξ ∈ L1
H(I) : ξ(t) ∈ L a.e. t ∈ I }.

Step II. Convergence to a solution.
We note that S1

L is a weakly compact convex set of L1
H(I) (see, e.g., [22] and the

references therein). Set

X := {ξ : I → H : ξ(t) = u0 +

∫ t

0
ξ̇(s)ds, t ∈ [0, T ]; v̇ ∈ S1

L}.

It is clear that X is convex, equicontinuous and weakly compact [40] in CH([0, T ])
(see [40]). As un ∈ X , one can extract from (un)n a (not relabeled) subsequence
which pointwise weakly converges to u : I → H (i.e., un(t) → u(t) weakly in H
for each t ∈ I) such that u(t) = u0 +

∫ t
0 u̇(s)ds for all t ∈ I and such that (u̇n)n

σ(L1
H(I), L∞H (I))-converges to u̇ ∈ S1

L. Further, the inequality

‖un(δn(t))− un(t)‖ ≤ ρ|δn(t)− t|

assures us that
(
un(δn(t))

)
n

converges weakly in H for each t ∈ I. This and the
σ(L1

H(I), L∞H (I)) convergence of (u̇n)n to u̇ in L1
H(I) along with the inclusion (4.1)

allow us (according to the pointwise convergence of (fn)n to f and the estimates
from the hypotheses) to apply Proposition 3.1, with vn = un ◦ δn and ζn = u̇n, to
obtain that for a.e. t ∈ I the inclusions u̇(t) ∈ C(t) and

f(t) +Bu(t)−Au̇(t) ∈ NC(t)(u̇(t))

hold true. This says that u(·) is solution of the inclusion of the theorem.

STEP III. Uniqueness.
The uniqueness of solutions follows easily from the coerciveness of the operator
A. Indeed let u1 and u2 be two solutions. An easy computation gives

〈Au̇2(t)−Au̇1(t), u̇2(t)− u̇1(t)〉+ 〈Bu2(t)−Bu1(t), u̇2(t)− u̇1(t)〉 ≤ 0,

so that

〈Au̇2(t)−Au̇1(t), u̇2(t)− u̇1(t)〉 ≤ |B| ‖u2(t)− u1(t)‖ ‖u̇2(t)− u̇1(t)‖.

By coerciveness of A we deduce that

ω‖u̇2(t)− u̇1(t)‖2 ≤ |B| ‖u2(t)− u1(t)‖ ‖u̇2(t)− u̇1(t)‖.

This entails that

‖u̇2(t)− u̇1(t)‖ ≤ |B|
ω
‖u2(t)− u1(t)‖ ≤ |B|

ω

∫ t

0
‖u̇2(s)− u̇1(s)‖ds.

By Gronwall lemma u̇1(t) = u̇2(t) a.e. t ∈ I, and so u1(t) = u2(t) for every t ∈ I
since u1(t) = u0 +

∫ t
0 u̇1(s)ds and u2(t) = u0 +

∫ t
0 u̇2(s)ds.
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Remark 4.2. The tools developed above allow to obtain further variants. The
fact that C(t) is weakly compact is required, and mainly the coerciveness of A
and the compactness assumption for the operator B. An inspection of the proof
of Theorem 4.1, shows that the compactness assumption on B is required to prove
the Fatou property,

lim inf
n

∫
Z
〈B(un(δn(t)), u̇n(t)〉dt ≥

∫
Z
〈Bu(t), u̇(t)〉dt

So as a possible variant we may substitute the bounded operator B by the gradient
∇g of a positive convex continuous Gateaux differentiable function g : H → R
such that g(v(t)) is absolutely continuous for v : [0, T ]→ H absolutely continuous,
so that by invoking the chain rule formula, see Moreau-Valadier, [35], we have the
equality

〈∇g(v(t)), v̇(t)〉 =
d

dt
g(v(t))

Hence by using this fact and the tool developed in Theorem 1.1, we obtain a
variant of Theorem 1.1 by noting that

lim inf
n

∫ T

0
〈∇g(un(t)), u̇n(t)dt = lim inf

n

∫ T

0

d

dt
g(un(t))dt

≥
∫ T

0

d

dt
g(u(t))dt =

∫ T

0
〈∇g(u(t)), u̇(t)dt

It is obvious that a linear continuous operator and a gradient do not enjoy similar
properties, showing the interest of the new variant we give further. This remark
has some importance in further developments.

Now we present a variant dealing with the existence and uniqueness of abso-
lutely continuous solution to the evolution inclusion of the form

f(t) +Bu(t)−Au̇(t) ∈ NC(t)(t,
du

dt
(t))

where f is a continuous mapping f : I → H, A is a coercive symmetric operator,
and B : H → H is a Lipschitz mapping.

Theorem 4.3. Let f : [0, T ] → H be a continuous mapping and let v : [0, T ] →
R+ be a non-negative nondecreasing continuous function with v(0) = 0. Let
C : [0, T ] → H be a strongly compact convex valued multimapping such that
haus(C(t), C(τ)) ≤ |v(t) − v(τ)| for all t, τ ∈ [0, T ]. Let A : H → H be a lin-
ear continuous coercive symmetric operator and let B : H → H be a Lipschitz
mapping, that is, for some real constant M > 0, ‖Bx − By‖ ≤ M‖x − y‖ for
all x, y ∈ H for some positive constant M . Then, for any u0 ∈ H, the evolution
inclusion {

f(t) +Bu(t)−Adu
dt (t) ∈ NC(t)(

du
dt (t))

u(0) = u0
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admits a unique W 1,∞
H ([0, T ]) solution u : [0, T ] → H. Further, ‖u̇(t)‖ ≤ ρ a.e.

t ∈ [0, T ], where ρ := max{‖y‖ : y ∈ C([0, T ])}.

Proof. Put I := [0, T ] and denote β := max{‖f(t)‖ : t ∈ I} (by continuity of
f). Noticing that the multimapping C(·) is upper semicontinuous from I into
H endowed with the norm topology, the set C(I) is norm compact, and hence
ρ := sup{‖y‖ : y ∈ C(I)} is finite and L := co

(
C(I)

)
is convex and norm compact.

Step I. The sequence (un)n is constructed as in Theorem 4.1.

Step II. With the strongly compact set L = co
(
C(I)

)
at hands, we see that

the set X in the proof of Theorem 4.1 is strongly compact in CH(I). Since
un ∈ X we can extract from (un)n a (not relabeled) sequence which pointwise
converges to u : I → H (i.e., un(t)→ u(t) strongly in H for each t ∈ I) such that
u(t) = u0 +

∫ t
0 u̇(s)ds, for all t ∈ I and (u̇n)n σ(L1

H([0, T ]), L∞H ([0, T ]))-converges
to u̇ ∈ S1

L. The inequality

‖un(δn(t))− un(t)‖ ≤ ρ|δn(t)− t|

ensures that the sequence
(
un(δn(t))

)
n

strongly converges to u(t) for each t ∈ I.
Consequently, we can follow Step II in the proof of Theorem 4.1 by applying
Proposition 3.2 in place of Proposition 3.1, to arrive to the fact that u(·) is a
solution of the inclusion in the present theorem.

Step III. The arguments for the uniqueness are the same as for Theorem 4.1.

Similarly, in the proof of Theorem 4.1 employing Proposition 3.10 instead of
Proposition 3.1 we easily obtain the following case with the gradient ∇g of a
convex function g in place of B.

Theorem 4.4. Let f : [0, T ] → H be a continuous mapping and let v : [0, T ] →
R+ be a positive nondecreasing continuous function with v(0) = 0. Let C : [0, T ]→
H be a strongly compact convex valued multimapping such that

haus (C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ [0, T ].

Let A : H → H be a linear continuous coercive symmetric operator and let g be
a convex function on H Lipschitz on bounded sets and continuously differentiable
on H. Then, for any u0 ∈ H, the evolution inclusion{

f(t) +∇g(u(t))−A du
dt (t) ∈ NC(t)(

du
dt (t))

u(0) = u0

admits at least a W 1,∞
H ([0, T ]) solution u : [0, T ]→ H. Further, one has ‖u̇(t)‖ ≤

ρ, where ρ := sup{‖y‖ : y ∈ C([0, T ])}.
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We present another variant dealing with the existence and uniqueness of ab-
solutely continuous solution to the evolution inclusion of the form

f(t) +Bu(t)−Au̇(t) ∈ ∂ϕ(t,
du

dt
(t))

where f is a bounded continuous mapping f : I → H, A is a coercive symmetric
operator, and B : H → H be a linear continuous mapping ∂ϕ is the subdifferential
of a normal lower semicontinuous convex integrand ϕ.

Theorem 4.5. Let H be a separable Hilbert space.Let K be a convex compact
subset of H. Let ϕ : [0, T ] ×K →] −∞,+∞] be a normal lower semicontinuous
convex integrand such that
(i {ϕ(., u(.)), u ∈ S1

K} is uniformly integrable.
(ii) ϕ(t, x) ≤ ϕ(τ, x)+|v(t)−v(τ)| for all t, τ ∈ [0, T ], x ∈ K where v : [0, T ]→ R+

is a positive nondecreasing continuous function with v(0) = 0.
Let A : H → H be a linear continuous coercive symmetric operator and B : H →
H be a linear continuous mapping.

Then, for any u0 ∈ H, the evolution inclusion

f(t) +Bu(t)−Au̇(t) ∈ ∂ϕ(t,
du

dt
(t))

u(0) = u0

admits a unique W 1,∞
H ([0, T ]) solution u : [0, T ]→ H.

Proof. We will use again the Moreau ’s catching-up algorithm. We consider for
each n ∈ N the following partition of the interval I = [0, T ].
tni = iTn := iηn for 0 ≤ i ≤ n. Ini :=]tni , t

n
i+1] for 0 ≤ i ≤ n− 1.

Put un0 = u0 and fni = f(tni ) for all i = 1, .., n. By Proposition 1.1 1) , there is
zn1 ∈ K such that

fn1 +Bun0 −Azn1 ∈ ∂ϕ(tn1 , z
n
1 ).

Put un1 = un0 + ηnz
n
1 . Suppose that un0 , u

n
1 , .., u

n
i , z

n
1 , z

n
2 , ..z

n
i are constructed. As

above by Proposition 1.1 1) there exists zni+1 ∈ K such that

fni+1 +Buni −Azni+1 ∈ ∂ϕ(tni+1, z
n
i+1).

and we set uni+1 = uni + ηnz
n
i+1. Then by induction there are finite sequences

(uni )ni=0 and (zni )ni=1 such that

fni+1 +Buni −Azni+1 ∈ ∂ϕ(tni+1, z
n
i+1)

uni+1 = uni + ηnz
n
i+1
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From (uni )ni=0, (zni )ni=1 (fni )ni=0, we construct two sequences un from [0, T ] to H, fn
from [0, T ] to H, by setting fn(0) = fn1 , un(0) = un0 and for each i = 0, .., ..n− 1
we set fn(t) = fni+1 and

un(t) = uni +
t− tni
ηn

(uni+1 − uni )

for t ∈]tni , t
n
i+1]. Clearly, the mapping un(.) is Lipschitz continuous on [0, T ], and

ρ is a Lipschitz constant of un(.) on [0, T ] since for every t ∈]tni , t
n
i+1]

u̇n(t) =
uni+1 − uni

ηn
= zni+1 ∈ K ⊂ ρBH .

Furthermore, for every t ∈ [0, T ], one has un(t) = u0+
∫ t

0 u̇n(s)ds, hence ||un(t)|| ≤
||u0||+ ρT . We have

fni+1 +Buni −Azni+1 ∈ ∂ϕ(tni+1, z
n
i+1).

Now, let us define the step functions θn, δn : I −→ I by

θn(t) = tni+1, δn(t) = tni

if t ∈]tni , t
n
i+1] and θn(0) = δn(0) = 0, and observe that for each t ∈ I, there is

i ∈ {0, ..., n− 1} such that t ∈ [tni , t
n
i+1[, and then,

|θn(t)− t| → 0 and |δn(t)− t| → 0 as n→ +∞,

So, the last inclusion becomes

fn(t) +Bun(δn(t))−Au̇n(t) ∈ ∂ϕ(θn(t), u̇n(t))

a.e. t ∈ [0, T ] . We note that ||un(t)|| ≤ ||u0||+ ρT , ||fn(.)|| ≤ β for all t ∈ [0, T ]
and un(t) = u0 +

∫ t
0 u̇n(s)ds for all t ∈ [0, T ] with u̇n ∈ K a.e.

Step 2 Convergence of the algorithm and final conclusion
Let S1

K := {h ∈ L1
H([0, T ]) : h(t) ∈ K a.e.} and let

X := {v : [0, T ]→ H : v(t) = u0 +

∫ t

0
v̇(s)ds, t ∈ [0, T ]; v̇ ∈ S1

K}.

Then it is clear that S1
K is convex and weakly compact in L1

H([0, T ]) (see e.g. [22]
and the references therein) and that X is convex, equicontinuous and compact in
CH([0, T ]). As (un) ⊂ X , one can extract from (un) a subsequence not relabelled
which pointwise converges to u : [0, T ]→ H such that u(t) = u0+

∫ t
0 u̇(s)ds, for all

t ∈ [0, T ] and (u̇n) σ(L1
H([0, T ]), L∞H ([0, T ]))-converges to u̇ ∈ S1

K . As ϕ is normal
lower semicontinuous convex, the conjugate function ϕ∗ : [0, T ]×H →]−∞,+∞]

ϕ∗(t, y) = sup
x∈K

[〈x, y〉 − ϕ(t, x)]

57



is normal, see e.g Castaing-Valadier [24] and satisfies

ϕ∗(t, y) ≤ ϕ∗(τ, y) + |v(t)− v(τ)|

for all t, τ ∈ [0, T ], y ∈ H using assumption (ii) ([36], Proposition 27).
By using the normality of ϕ, the mappings t 7→ ϕ(θn(t), u̇n(t)) and t 7→

ϕ(t, u̇n(t)) are measurable and integrable. By construction we have

gn(t) := fn(t) +Bun(δn(t))−Au̇n(t) ∈ ∂ϕ(θn(t), u̇n(t)).

For simplicity set
g(t) := f(t) +Bu(t))−Au̇(t).

As fn → f pointwise strongly, un(δn(.)) → u(.)) pointwise strongly, and u̇n → u̇
weakly in L1

E([0, T ]), a direct application of Proposition 3.11 and its remark gives

g(t) := f(t) +Bu(t))−Au̇(t) ∈ ∂ϕ(t, u̇(t))

a.e and finish the proof.

Remarks 1) The uniqueness of solutions follows easily from the coerciveness of
the operator A. Indeed let u1 and u2 two solutions. then by an easy computation,

〈Au̇2(t)−Au̇1(t), u̇2(t)− u̇1(t)〉+ 〈Bu2(t)−Bu1(t), u̇2(t)− u̇1(t)〉 ≤ 0

so that

〈Au̇2(t)−Au̇1(t), u̇2(t)− u̇1(t)〉 ≤ |B|||u2(t)− u1(t)||||u̇2(t)− u̇1(t)||

By coerciveness, we deduce that

ω||u̇2(t)− u̇1(t)||2 ≤ |B|||u2(t)− u1(t)||||u̇2(t)− u̇1(t)||

Whence

||u̇2(t)− u̇1(t)|| ≤ |B|
ω
||u2(t)− u1(t)|| ≤ |B|

ω

∫ t

0
||u̇2(s−)u̇1(s)||ds

By Gronwall lemma u̇1(t) = u̇2(t) a and so u1(t) = u̇2(t) since u1(t) = u0 +∫ t
0 u̇1(s)ds,∀t ∈ [0, T ], u2(t) = u0 +

∫ t
0 u̇2(s)ds,∀t ∈ [0, T ].

2) Theorem 4.5 holds if we replace the operator B by the gradient ∇g of a smooth
function g.
3) Theorem 4.5 generalizes Theorem 6 in [19] dealing with finite dimensional
space.
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5 Applications

5.1 A Skorokhod problem

We present at first a new version of the Skorokhod problem in Castaing et al
[18, 20] dealing with the sweeping process associated with an absolutely continuous
(or continuous) closed convex moving set C(t) in H. Here the novelty is the
velocity inside the nrmal cone operator. We will denote, as usual, by L(Rd,Re)
the space of linear mappings Λ from Rd to Re endowed with the operator norm

|Λ| := sup
x∈Rd,‖x‖Rd=1

‖Λ(x)‖Re .

Given a mapping Q : I → L(Rd,Re) on a compact interval I, it will be convenient
to write

|Q(·)|∞:I := sup
t∈I
|Q(t)|.

Theorem 5.1. Let I := [0, 1] and H = Re. Let v : I → R+ be a positive
nondecreasing continuous function with v(0) = 0. Let C : I ⇒ Re be a compact
convex valued multimapping such that
(i) there is a real constant M > 0 such that C(t) ⊂MBH for all t ∈ I;
(ii) haus (C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ I.
Let A : Re → Re be a coercive symmetric linear operator and let B : Re → Re be
a linear operator. Let z ∈ C1−var([0, 1],Rd), the space of continuous mappings of
bounded variation defined on [0, 1] with values in Rd. Let b : I × Re → L(Rd,Re)
be a continuous integrand operator satisfying for some real Mb > 0
(a) |b(t, x)| ≤Mb for all (t, x) ∈ I × Re;
(b) |b(t, x)−b(t, y)| ≤Mb‖x−y‖Re for all (t, x, y) ∈ I×Re×Re with the perturbed
Riemann-Stieljies integral

∫ t
0 b(τ, x(τ))dzτ defined for x ∈ C(I,Re).

Let g : I × I × Re → Re be a continuous mapping satisfying for real Mg > 0:
(i) ‖g(t, s, x)‖ ≤Mg for all (t, s, x) ∈ I × I × Re;
(ii) ‖g(t, s, x)−g(t, s, y)‖ ≤Mg||x−y|| for all t, s ∈ I, x, y ∈ Re with the perturbed

Lebesgue integral
∫ t

0 g(t, s, x(s))ds defined on in C(I,Re).
Let a ∈ C(0). Then there exist a BVC mapping x : [0, 1]→ Re and an absolutely
continuous mapping u : [0, 1]→ Re satisfying

x(0) = u(0) = a
x(t) = h(t) + k(t) +Bu(t), ∀t ∈ I
h(t) =

∫ t
0 b(τ, x(τ))dzτ , ∀t ∈ I

k(t) =
∫ t

0 g(t, s, x(s))ds, ∀t ∈ I∫ t
0 b(s, x(s))dzs +

∫ t
0 g(t, s, x(s))ds+Bu(t)−Au̇(t) ∈ NC(t)(u̇(t)) a.e. t ∈ I
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Proof. Let M := max{Mb,Mg}. Set for all t ∈ I = [0, 1]

x0(t) = a, h1(t) =

∫ t

0
b(τ, a)dzτ ,

so by Proposition 2.2 in Friz-Victoir [25], we have∣∣∣∣∫ t

0
b(τ, a)dzτ

∣∣∣∣ ≤ |b(., a)|∞:[0,1]|z|1−var:[0,t].

Writing ∫ t

0
b(τ, a)dzτ −

∫ s

0
b(τ, a)dzτ =

∫ t

s
b(τ, a)dzτ ,

we see by condition (a) that

‖h1(t)− h1(s)‖ ≤M |z|1−var:[s,t]

for all 0 ≤ s ≤ t ≤ 1, and in particular

‖h1(t)‖ ≤M |z|1−var:[0,t] ≤M |z|1−var:[0,1]

for all t ∈ [0, 1]. Let us set for all t ∈ I = [0, 1]

k1(t) =

∫ t

0
g(t, s, x0(s))ds for all t ∈ I = [0, 1]

and note that k1 is continuous with ‖k1(t)‖ ≤ M for all t ∈ I. By an easy
computation, using conditions (i) and (ii) we have the estimate ‖k1(t)−k1(τ)‖ ≤
M |t− τ |, for all τ, t ∈ I. By Theorem 4.1 there is a unique absolutely continuous
mapping u1 : I → H solution of the problem{

u1(0) = a
h1(t) + k1(t) +Bu1(t)−Au̇1(t) ∈ NC(t)(u̇

1(t)) a.e. t ∈ I

with u1(t) = a+
∫ t

0 u̇
1(s)ds for all t ∈ I and ‖u̇1(t)‖ ≤M a.e. t ∈ I. Set

x1(t) = h1(t) + k1(t) +Bu1(t) =

∫ t

0
b(τ, x0(τ)dzτ +

∫ t

0
g(t, s, x0(s))ds+Bu1(t).

Then x1 is BVC with x1(0) = a. Now we construct xn by induction as follows.
Let for all t ∈ I

hn(t) =

∫ t

0
b(τ, xn−1(τ))dzτ

kn(t) =

∫ t

0
g
(
t, s, xn−1(s)

)
ds.
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Then ||kn(t)− kn(τ)|| ≤ M |t− τ |, for all τ, t ∈ I with ‖kn(t)‖ ≤ M for all t ∈ I.
By Proposition 2.2 in Friz-Victoir [25] we have the estimate

‖hn(t)− hn(s)‖ ≤M |z|1−var:[s,t] (5.1)

for all 0 ≤ s ≤ t ≤ 1, and in particular

‖hn(t)‖ ≤M |z|1−var:[0,t] ≤M |z|1−var:[0,1] (5.2)

for all 0 ≤ t ≤ 1. By Theorem 1.1 there is a unique absolutely continuous mapping
un : I → H solution of the problem{

un(0) = a,
hn(t) + kn(t) +Bun(t)−Au̇n(t) ∈ NC(t)(u̇

n(t)) a.e. ∈ t ∈ I

with un(t) = a +
∫ t

0 u̇
n(s)ds for all t ∈ I and ‖u̇n(t)‖ ≤ M a.e. t ∈ I. Set for all

t ∈ I

xn(t)= hn(t)+kn(t)+Bun(t)=

∫ t

0
b(τ, xn−1(τ))dzτ+

∫ t

0
g
(
t, s, xn−1(s)

)
ds+Bun(t)

so that xn is BVC.
As (un)n is equi-Lipschitz continuous (with M as Lipschitz constant) we may

suppose that (un)n converges uniformly to a Lipschitz continuous mapping u : I →
H with u(t) = a+

∫ t
0 u̇(s)ds for all t ∈ I and with ‖u̇(t)‖ ≤M for a.e. t ∈ I. We

may also suppose that (u̇n)n weakly converges in L1
H(I) to u̇, and by Arzela-Ascoli

theorem we may suppose that (kn)n converges uniformly to a continuous mapping
k : I → H. Thanks to (5.1) (hn)n is bounded and equicontinuous. By Arzela-
Ascoli theorem again, we may suppose that (hn)n converge uniformly to a continu-
ous mapping h. Similarly (kn)n is bounded and equi-Lipschitz. By Arzeala-Ascoli
theorem, we may suppose that (kn)n converges uniformly to a continuous mapping
k. Then putting xn(t) = hn(t)+kn(t)+Bun(t) and x(t) := h(t)+k(t)+Bu(t), we
see that (xn)n converges uniformly to x, and

(
b(., xn−1(.))

)
n

converges uniformly
to b(., x(.)) according to the Lipschitz condition (b). Therefore, by Friz-Victoir [25,
Proposition 2.7]

∫ t
0 b(τ, x

n−1(τ))dzτ converge uniformly in t ∈ I to
∫ t

0 b(τ, x(τ))dzτ
as n → ∞. By hypothesis (ii), g(t, s, xn−1(s)) converges to g(t, s, x(s)) for every
(t, s) ∈ I × I, hence

∫ t
0 g(t, s, xn−1(s))ds →

∫ t
0 g(t, s, x(s))ds for each t ∈ I by

Lebesgue dominated convergence theorem. So we can write

x(t) = lim
n→∞

xn(t)

= lim
n→∞

∫ t

0
b(τ, xn−1(τ))dzτ + lim

n→∞

∫ t

0
g(t, s, xn−1(s))ds+ lim

n→∞
Bun(t)

=

∫ t

0
b(τ, x(τ))dzτ +

∫ t

0
g(t, s, x(s))ds+Bu(t).
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From the inclusion

hn(t) + kn(t) +Bun(t)−Au̇n(t)) ∈ NC(t)(u̇
n(t)) a.e. t ∈ I

and the above convergence, applying Proposition 3.1 we obtain

h(t) + k(t) +Bu(t)−Au̇(t) ∈ NC(t)(u̇(t)) a.e. t ∈ I.

The proof is therefore complete.

Our tools allow to state several variants of Theorem 5.1 according to the
nature of the perturbation and the operator. Actually Theorem 5.1 holds true if
B : H → H is a Lipschitz mapping, that is, there is some real constant M > 0
such that ‖Bx−By‖ ≤M ‖x−y‖ for all x, y ∈ H. Theorem 5.1 is still valid if we
replace B by the gradient ∇g of a positive convex function g : H → R Lipschitz
on bounded sets and continuously differentiable.

5.2 Towards an application in Optimal Control problem

In the previous results we have developed the Skorokhod problem associated with
the sweeping process with Riemann-Stieltjes integral perturbation. This leads to
study the following optimal control problem.

Proposition 5.1. Let I := [0, 1] and H = Re. Let v : I → R+ be a positive
nondecreasing continuous function with v(0) = 0. Let C : I ⇒ Re be a compact
convex valued multimapping such that
(i) C(t) ⊂MBRe for all t ∈ I where M is a positive constant;
(ii) hausRe(C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ I.
Let A : Re → Re be a coercive symmetric linear operator and let B : Re → Re be
a clinear operator. Let z ∈ C1−var([0, 1],Rd), the space of continuous functions of
bounded variation defined on [0, 1] with values in Rd. Let L(Rd,Re) be the space
of linear mappings Λ from Rd to Re endowed with the operator norm

|Λ| := sup
x∈Rd,‖x‖Rd=1

‖Λ(x)‖Re .

Let us consider a continuous integrand operator b : [0, 1] × Re → L(Rd,Re)
satisfying
(a) |b(t, x)| ≤M for all (t, x) ∈ I × Re;
(b) |b(t, x)− b(t, y)| ≤M‖x− y‖Re for all (t, x, y) ∈ I × Re × Re.
Let V : Rd → Re be a bounded continuous mapping. Let L : [0, 1]×Re×Re×Re →
[0,∞[ be a lower semicontinuous integrand such that L(t, x, y, .) is convex on Re
for every (t, x, y) ∈ [0, 1] × Re × Re. Then the problem of minimizing the cost
function

∫ 1
0 L(t, x(t), y(t), ẏ(t))dt subject to
dxt = V (xt)dzt, t ∈ [0, 1]
x0 = ψ ∈ Re
y(0) = y0 ∈ C(0)∫ t

0 b(τ, x(τ))dzτ +By(t)−Aẏ(t) ∈ NC(t)(
dy
dt (t)), a.e. t ∈ [0, T ]
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has an optimal solution.

Proof. Let us consider a minimizing sequence (xn, yn)n in Y, that is,

lim
n→∞

∫ T

0
L(t, xn(t), yn(t), ẏn(t))dt = inf

(u,v)∈Y

∫ T

0
L(t, u(t), v(t), v̇(t))dt,

where Y is the set of solutions (x, y) to the above dynamical system. First by [25,
Theorem 3.4] we assert that the C1−var(I,Re)-solution set to{

dxt = V (xt)dzt, t ∈ I
x0 = ψ ∈ Re

is compact in C(I,Re) and so is the W 1,∞(I,Re)-solution set to{
y(0) = y0 ∈ C(0)∫ t

0 b(τ, x(τ))dzτ +By(t)−A
(
dy
dt (t)

)
∈ NC(t)(

dy
dt (t)), a.e. t ∈ I.

Then (xn)n converges uniformly to some x ∈ C1−var(I,Re) with xt = ψ +∫ t
0 V (xs)dzs, and (yn)n converges to y ∈ W 1,∞(I,Re) and (ẏn)n converges to
ẏ weakly in L1

Re(I).
Applying the lower semicontinuity of the integral functional ([22, Theorem 8.16])
gives

lim inf
n

∫ 1

0
L(t, xn(t), yn(t), ẏn(t))dt ≥

∫ 1

0
L(t, x(t), y(t), ẏ(t))dt.

From the inclusion∫ t

0
b(τ, xn(τ))dzτ +Byn(t)−Aẏn(t) ∈ NC(t)(

dyn
dt

(t))

and the fact that limn

∫ t
0 b(τ, xn(τ))dzτ =

∫ t
0 b(τ, x(τ))dzτ uniformly with respect

to t ∈ I (cf the proof of Theorem 5.1) we obtain by using Proposition 3.2 that∫ t

0
b(τ, x(τ))dzτ +By(t)−Aẏ(t) ∈ NC(t)(

dy

dt
(t)) a.e. t ∈ I.

We then conclude that (x, y) is an optimal solution.

Several variants of the preceding theorem are available using Theorems 4.3
and 4.4 along with Propositions 3.2 and 3.10.

In the following we will examine a Bolza problem and its relaxation associated
with a Young integral perturbation of a sweeping process with a Lipschitzian
moving compact set C(t), say hausRe(C(t), C(s)) ≤ α|t− s|. First, we need some
notation and background on Young integral and Young measures in this special
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context.
Young integral. Let z ∈ C1−var([0, T ],Rd), that is, z is a bounded variation
continuous mapping defined on [0, T ] with values in Rd. We remind that L(Rd,Re)
denotes the space of linear mappings Λ from Rd to Re endowed with the operator
norm

|Λ| := sup
x∈Rd,‖x‖Rd=1

|Λ(x)|Re .

Let us consider a continuous integrand operator b : [0, T ] × Re → L(Rd,Re)
satisfying

(B1) : |b(t, x)| ≤M, ∀x ∈ Re

(B2) : |b(t, x)− b(τ, y)| ≤ ρ(t)− ρ(τ) +M‖x− y‖Re , 0 ≤ τ ≤ t ≤ T, ∀x, y ∈ Re

where ρ : [0, T ] → R+ is a positive nondecreasing continuous function and M is
a positive constant. If a sequence (un)n of continuous mappings from [0, T ] into
Re is uniformly bounded and uniformly bounded in variation, then the sequence
(yn)n, with yn(t) = b(t, un(t)), is formed with mappings which are continuous,
uniformly bounded and uniformly bounded in variation from [0, T ] to L(Rd,Re),
shortly yn ∈ C1−var([0, T ],L(Rd,Re)). Indeed we have

|yn(t)− yn(τ)| ≤ ρ(t)− ρ(τ) +M‖un(t)− un(τ)‖Re

for all τ ≤ t ≤ T , so that supn |yn|1−var;[s,t] < ∞ for all 0 ≤ s ≤ t ≤ T . As

consequence the Young integral
∫ t

0 yn(s)dzs of yn against z is well-defined and
belongs to C1−var([0, T ],Re) according to Friz-Victoir [25], with the following
estimates∥∥∥∥∫ t

s
yn(τ)dzτ

∥∥∥∥ ≤ 1

1− 21−θ |z|1−var;[s,t]|yn|1−var;[s,t] + |yn(s)| ‖z(t)− z(s)‖Rd

≤ 1

1− 21−θ |z|1−var;[s,t]|yn|1−var;[s,t] +M‖z(t)− z(s)‖Rd

for all 0 ≤ s ≤ t ≤ T with θ = 2 and∣∣∣∣∫ .

0
yn(τ)dzτ

∣∣∣∣
1−var;[s,t]

≤ C(1, 1)|z|1−var;[s,t]
(
|yn|1−var;[s,t] + |yn|∞;[s,t]

)
for all 0 ≤ s ≤ t ≤ T . As consequence∥∥∥∥∫ t

s
yndz

∥∥∥∥ ≤ 1

1− 21−θ |z|1−var;[s,t]|yn|1−var;[s,t] + |yn(s)| ‖z(t)− z(s)‖Rd

≤ 1

1− 21−θ |z|1−var;[s,t]|yn|1−var;[s,t] +M ||z(t)− z(s)||Rd

≤ 1

1− 21−θ |z|1−var;[s,t] sup
n
|yn|1−var;[s,t] + sup

s∈[0,T ]
M ||z(t)− z(s)||Rd
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for all 0 ≤ s ≤ t ≤ T with θ = 2 and∣∣∣∣∫ .

0
yndz

∣∣∣∣
1−var;[s,t]

≤ C(1, 1)|z|1−var;[s,t] sup
n

(
|yn|1−var;[s,t] + |yn|∞;[s,t]

)
for all 0 ≤ s ≤ t ≤ T . Shortly the sequence gn(.) =

∫ .
0 yndz of C1−var([0, T ],Re)

mappings is uniformly bounded, equicontinuous and uniformly bounded in varia-
tion.

Now let E be a separable reflexive Banach space. Let us consider a weakly
compact convex valued multimapping K : [0, 1] ⇒ BE with bounded right con-
tinuous retraction in the sense, there is a bounded and right continuous function
ρ : [0, 1]→ R+ such that

haus(K(t),K(τ)) ≤ ρ(τ)− ρ(t) for all t ≤ τ ∈ [0, 1]

and such that its graph is Borelian, that is, gph (C) ∈ B([0, T ]) ⊗ B(E). We
consider the control sets given by

SBV RCK := {u : [0, 1]→ E, u is BVRC, u(t) ∈ K(t), ∀t ∈ [0, 1]}

S∞K := {u ∈ L∞([0, 1], E, dt), u(t) ∈ K(t), ∀t ∈ [0, T ].}

By J.J. Moreau ([34], Prop.5 d, p. 198) and Valadier [42] these sets are non empty
and clSBV RCK = S∞K , here cl denotes the closure with respect to the σ(L∞E , L

1
E∗)-

topology. Shortly, SBV RCK is dense in S∞K with respect to this topology.

Our next theorem, say theorem 5.2, will present relaxation results for a Bolza
optimal control problem governed by EVI sweeping processes of the types devel-
oped in the previous sections. The control will belong either in SBV RCK or S∞K .
In the theorem A : Re → Re is a coercive symmetric linear operator while B is a
linear operator on Re and b : [0, T ]×Re → L(Rd,Re) is a mapping satisfying (B1)
and (B2).

Theorem 5.2. With the Hilbert space Re consider the problem

inf
(PSBVRC

K
)

∫ T

0
〈
∫ t

0
b(s, u(s))dzs, ζ(t)〉dt

associated, for I := [0, T ], with the dynamical system

(PSBVRCK
)

{ ∫ t
0 ζ(s)ds+Bu(t) +Au̇(t) ∈ NC(t)(u̇(t)), t ∈ I, ζ ∈ SBV RCK

u(0) = a ∈ C(0)
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as well as the problem

inf
(PS∞

K
)

∫ T

0
〈
∫ t

0
b(s, u(s))dzs, ζ(t)〉dt

associated with the dynamic system

(PS∞K )

{ ∫ t
0 ζ(s)ds+Bu(t) +Au̇(t) ∈ NC(t)(u̇(t)), t ∈ I, ζ ∈ S∞K
u(0) = a ∈ C(0).

Then one has inf (PS∞K ) = inf (PSBVRCK
, and as a consequence

inf
(PS∞

K
)

∫ T

0
〈
∫ t

0
b(s, u(s))dzs, ζ(t)〉dt

has a minimizer.

Proof. The inequality inf (PS∞K ) ≤ inf (PSBVRCK
) is a simple consequence of the

Valadier result mentioned above since any BVRC mappin,g is Borelian. Take and
any ζ ∈ V∞K . As SBV RCK is sequentially dense in V∞K with respect to the σ(L∞E , L

1
E)

topology, there exists a sequence (ζn) in SBV RCK such that (ζn) σ(L∞E , L
1
E) converge

to ζ. For simplicity set fn(t) =
∫ t

0 ζn(s)ds , and f(t) =
∫ t

0 ζ(s)ds for all t ∈ [0, T ].
Then it is clear that fn and f continuous uniformly bounded with fn(t) → f(t)
for every t ∈ [0, T ]. Let un be the unique Lipschitz solution to{ ∫ t

0 ζn(s)ds+Bun(t) +Au̇n(t) ∈ NC(t)(u̇n(t)), t ∈ I,
un(0) = a ∈ C(0)

and let v be the unique Lipschitz solution to{ ∫ t
0 ζ(s)ds+Bv(t) +Av̇(t) ∈ NC(t)(v̇(t)), t ∈ I,
u(0) = a ∈ C(0)

In view Theorem 4.1 and Proposition 3.1 the sequence (un)n is equi-Lipchitz

and converges uniformly to v. For simplicity set gn(t) =
∫ t

0 b(s, un(s))dzs for
all t ∈ [0, T ]. Applying the foregoing estimates concerning the Young integral,
the sequence (gn)n is uniformly bounded, equicontinuous and uniformly bounded
in variation. Indeed, by condition (B2), the sequence (b(·, un(·)))n converge uni-
formly to b(·, v(·)). As b(., un(.)) and b(., v(.)) are bounded and uniformly bounded
in variation, by Friz-Victoir ([25, Proposition 6.12]) (gn)n converges uniformly to
g defined by g(t) =

∫ t
0 b(s, v(s))dzs, so that

lim
n→∞

∫ T

0
〈
∫ t

0
b(s, un(s))dzs, ζn(t)〉dt =

∫ T

0
〈
∫ t

0
b(s, v(s)dzs, ζ(t)〉dt.
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Since ∫ T

0
〈
∫ t

0
b(s, un(s)dzs, ζn(t)〉dt ≥ inf

(PSBVRC
K

)

∫ T

0
〈
∫ t

0
b(s, u(s))dzs, ζ(t)〉dt

for all n ∈ N, it follows by taking the limit that∫ T

0
〈
∫ t

0
b(s, v(s))dzs, ζ(t)〉dt ≥ inf (PSBVRCK

).

This holds for every ζ ∈ V∞K , hence inf (PV∞K ) ≥ inf (PSBVRCK
).

For simplicity we considered in Theorem 5.2 a simple perturbation control
integral in the form

∫ t
0 ζ(s)ds. This theorem is still valid with the perturbation

control integral
∫ t

0 Dζ(s)ds where D : Re → Re is a linear operator. Several other
variants of Theorem 5.2 are available using Theorems 4.1 and 4.3 along with
Propositions 3.2 and 3.10.

Young measures. For the sake of completeness of the next development
of Theorem 5.3, we summarize some useful facts concerning Young measures.
Let (Ω,F , P ) be a complete probability space. Let X be a Polish space and let
Cb(X,R) be the space of all bounded continuous functions defined on X. Let
M1

+(X) be the set of all Borel probability measures on X equipped with the
narrow topology. A Young measure ν : Ω →M1

+(X) is, by definition, a scalarly
measurable mapping from Ω into M1

+(X), that is, for every f ∈ Cb(X,R), the
mapping ω 7→ 〈f, νω〉 :=

∫
X f(x) dνω(x) is F-measurable. A sequence (νn) in

the space of Young measures Y(Ω,F , P ;M1
+(X)) stably converges to a Young

measure ν ∈ Y(Ω,F , P ;M1
+(X)) if the following holds:

lim
n→∞

∫
A

(∫
X
f(x) dνnω(x)

)
dP (ω) =

∫
A

(∫
X
f(x) dνω(x)

)
dP (ω)

for every A ∈ F and for every f ∈ Cb(X,R).
In the remainder Z is a compact metric space,M1

+(Z) is the space of all Radon
probability measures on Z. We will endow M1

+(Z) with the narrow topology so
that M1

+(Z) is a compact metrizable space. For I := [0, 1] let us denote by
Y(I;M1

+(Z)) the space of all Young measures defined on I endowed with the
stable topology so that Y(I;M1

+(Z)) is a compact metrizable space with respect
to this topology. By the Portmanteau Theorem for Young measures [22, Theorem
2.1.3], a sequence (νn) in Y(I;M1

+(Z)) stably converges to ν ∈ Y(I;M1
+(Z)) if

lim
n→∞

∫ T

0

(∫
Z
ht(z)dν

n
t (z)

)
dt =

∫ T

0

(∫
Z
ht(z)dνt(z)

)
dt

for all h ∈ L1(I, CR(Z)); here CR(Z) denotes the space of all continuous real valued
functions defined on Z endowed with the norm of uniform convergence. Finally
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let Γ be a measurable multimapping defined on I with nonempty compact values
in Z and let SΓ be the set of all Lebesgue measurable selections of Γ (alias original
controls).

Let C : [0, T ] ⇒ Re be a compact valued Lipschitzian multimapping and let
f : I × Z → Re be a mapping satisfying
(1) for every fixed t ∈ I, f(t, ·) is continuous on Z,
(2) for every z ∈ Z, f(·, z) is Lebesgue-measurable on I;
(3) there is a constant M > 0 such that ‖f(t, z)‖ ≤M for all (t, z) in I × Z.

We aim to present some relaxation problems in the framework of Optimal
Control Theory. We consider the evolution inclusion (PO) associated with original
controls

(PO)

{ ∫ t
0 f(s, ζ(s))ds+Buζ(t)−Au̇ζ(t) ∈ NC(t)(u̇ζ(t))), a.e. t ∈ I,
uζ(0) = u0 ∈ C(0),

where ζ belongs to the set Z := S1
Γ of all original controls, which means that ζ is a

Lebesgue-measurable selection of Γ, and the evolution inclusion (PR) associated
with relaxed controls

(PR)

{ ∫ t
0 [
∫
Z f(s, z)νs(dz)]ds+Buν(t)−Au̇ν(t) ∈ NC(t)(u̇ν(t))), a.e. t ∈ I

uν(0) = u0 ∈ C(0),

where ν belongs to the set R := SΣ of all relaxed controls, which means that ν is
a Lebesgue-measurable selection of the multimapping Σ defined by

Σ(t) :=
{
σ ∈M1

+(Z) : σ(Γ(t)) = 1
}

for all t ∈ I. Note that, for ν ∈ R, the mapping

hν : (t, z) 7→
∫
Z
f(t, z)νt(dz)

inherits the properties
(1) for every fixed t ∈ I, hν(t, ·) is continuous on Z;
(2) for every z ∈ Z, hν(·, z) is Lebesgue-measurable on I;
(3) there is a constant M > 0 such that ‖hν(t, z)‖ ≤M for all (t, z) in I × Z.
Consequently, for each ζ ∈ Z (resp. ν ∈ R), the evolution inclusion (PO) (resp.
(PR)) has a unique Lipschitz continuous solution. Moreover, there is an a priori
bound for the Lipschitz ratio of solutions which easily implies that the solution
sets (SO) and (SR) (to (PO) and (PR)) are equi-Lipschitz.

We can now prove the following theorem establishing some topological prop-
erties of the solution sets (SO) and (SR), namely we obtain the typical relaxation
result that the former is dense in the latter.

Theorem 5.3. Let I := [0, 1] and let C : I ⇒ Re be a compact convex valued
Lipschitz multimapping. Let f : I×Z → Re be a mapping satisfying (1), (2), (3).
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Then the following hold:
(a) the solution set (SR) to

(PR)

{ ∫ t
0 [
∫
Z f(s, z)νs(dz)]ds+Buν(t)−Au̇ν(t)∈NC(t)(u̇ν(t))), a.e. t∈I, ν∈R

uν(0) = u0 ∈ C(0)

is nonempty and compact in C(I,Re).
(b) the solution set (SO) to

(PO)

{ ∫ t
0 f(s, ζ(s))ds+Buζ(t)−Au̇ζ(t) ∈ NC(t)(u̇ζ(t))), a.e. t ∈ I, ζ ∈ Z
uζ(0) = u0 ∈ C(0)

is dense in (SR) with respect to the topology of uniform convergence.

Proof. (a) By Theorem 4.1, the solution set (SR) is bounded and equi-Lipschitz.
Then (SR) is relatively compact in C(I,Re), by Arzela-Ascoli theorem. Therefore,
for (νn) ⊂ R, there is a subsequence still denoted by (uνn) which converges
uniformly to a Lipschitz continuous mapping u∞ with ‖u̇∞(t)‖ ≤ K a.e. t ∈ I
and such that also (u̇νn) σ(L1(I,Re; dt), L∞(I,Re; dt))-converges to u̇∞. As R is
compact and metrizable for the stable topology, we may suppose that (νn) stably
converges to ν∞ ∈ R. Since the continuous functions gn and g, given for all t ∈ I
by

gn(t) :=

∫ t

0
[

∫
Z
f(s, z)νns (dz)]ds

and

g(t) :=

∫ t

0
[

∫
Z
f(s, z)ν∞s (dz)]ds,

are uniformly bounded, and since gn(t)→ g(t) for every t ∈ I, from the inclusion

gn(t) +Bunν (t)−Au̇ν(t) ∈ NC(t)(u̇
n
ν (t)))

and Proposition 3.2, we deduce that

g(t) +Buν∞(t)−Au̇ν∞(t) ∈ NC(t)(u̇ν∞(t))).

This proves the first part of the theorem.
(b) The second part follows by continuity and density, since Z is dense in R with
respect to the stable topology ([22, Lemma 7.1.1]).

With notation and assumptions in Theorem 5.3

Theorem 5.4. With notation and assumptions in Theorem 5.3 let us consider
the problem

inf
(PR)

∫ T

0

〈 ∫ t

0
b(s, u(s))dzs,

∫ t

0
[

∫
Z
f(s, z)νs(dz)]ds

〉
dt
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associated with the dynamic system

(PR)

{ ∫ t
0 [
∫
Z f(s, z)νs(dz)]ds+Buν(t)−Au̇ν(t) ∈ NC(t)(u̇ν(t))), a.e. t ∈ I, ν ∈ R

uν(0) = u0 ∈ C(0)

and the problem ∫ T

0

〈 ∫ t

0
b(s, u(s))dzs,

∫ t

0
h(s, ζ(s))ds

〉
dt

associated with the dynamic system

(PO)

{ ∫ t
0 f(s, ζ(s))ds+Buζ(t)−Au̇ζ(t) ∈ NC(t)(u̇ζ(t))), a.e. t ∈ I, ζ ∈ Z
u(0) = a ∈ C(0)

Then one has inf (PR) = inf (PO) and

inf
(PR)

∫ T

0

〈 ∫ t

0
b(s, u(s))dzs,

∫ t

0
[

∫
Z
h(s, z)νs(dz)]ds

〉
dt

has a minimizer.

Proof. The inequality inf (PR) ≥ inf (PO) is clear. Fix any ν ∈ R. Let (ζn)n in
Z with

lim
n

∫ t

0
f(s, ζn(s))ds =

∫ t

0
[

∫
Z
f(s, z)νs(dz)]ds for all t ∈ I.

Let un be the unique Lipschitz solution to{
−u̇n(t) ∈ NC(t)un(t) +

∫ t
0 f(s, ζn(s))ds, a.e. t ∈ I

un(0) = a ∈ C(0)

and let v be the unique Lipschitz solution to{
−v̇(t) ∈ NC(t)v(t) +

∫ t
0 [
∫
Z f(s, z)νs(dz)]ds, a.e. t ∈ I

v(0) = a ∈ C(0).

In view of the first step of the proof of Theorem 5.3 the sequence (un)n con-

verges uniformly to v. For simplicity set gn(t) =
∫ t

0 b(s, un(s))dzs for all t ∈ I.
Apply the foregoing estimates related to the Young integral, the sequence (gn)n
is uniformly bounded, equicontinuous and uniformly bounded in variation. By
condition (B2) the sequence (b(·, un(·)))n converges uniformly to b(·, v(·)). As
b(·, un(·)) and b(·, v(·)) are bounded and uniformly bounded in variation, by
Friz-Victoir ([25, Proposition 6.12]) (gn)n converges uniformly to g defined by
g(t) =

∫ t
0 b(s, v(s))dzs. For simplicity set kn(t) =

∫ t
0 f(s, ζn(s))ds and k(t) =
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∫ t
0 [
∫
Z f(s, z)νs(dz)]ds, so that limn〈gn(t), kn(t)〉 = 〈g(t), k(t)〉. Since (gn)n, g,

(kn)n, k are uniformly bounded, we deduce that

lim
n→∞

∫ T

0
〈
∫ t

0
b(s, un(s))dzs,

∫ t

0
h(s, ζn(s))ds

〉
dt = lim

n→∞

∫ T

0
〈gn(t), kn(t)〉dt

=

∫ T

0
〈g(t), k(t)〉dt = 〈

∫ t

0
b(s, v(s)dzs,

∫ t

0
[

∫
Z
h(s, z)νs(dz)]ds〉dt.

As ∫ T

0
〈
∫ t

0
b(s, un(s)dzs,

∫ t

0
h(s, ζn(s))ds

〉
dt ≥ inf(PO)

for all n ∈ N, it follows by taking the limit that∫ T

0
〈
∫ t

0
b(s, v(s))dzs,

∫ t

0
[

∫
Z
h(s, z)νs(dz)]ds〉dt ≥ inf(PO)

Since this holds for every ν ∈ R, we conclude that inf (PR) ≥ inf (PO).

5.3 Towards fractional inclusion coupled with EVI and sweeping
process

Now given I = [0, 1] we investigate a class of boundary value problems governed
by a fractional differential inclusion (FDI) (5.3) in the separable Hilbert space H
coupled with the evolution inclusion governed by the (EVI) (5.4) and sweeping
process (5.6) below.

Dαh(t) + λDα−1h(t) = u(t), t ∈ I,

Iβ
0+
h(t) |t=0 := lim

t→0

∫ t

0

(t− s)β−1

Γ(β)
h(s)ds = 0, h(1)=Iγ

0+
h(1)=

∫ 1

0

(1− s)γ−1

Γ(γ)
h(s)ds,

(5.3)
f(t, h(t)) +Bu(t)−Au̇(t) ∈ ∂ϕ(t, u̇(t)) a.e. t ∈ I

and
f(t, h(t)) +Bu(t)−Au̇(t) ∈ NC(t)(u̇(t)) a.e. t ∈ I,

where α ∈]1, 2], β ∈ [0, 2−α], λ ≥ 0, γ > 0 are given constants, Dα is the standard
Riemann-Liouville fractional derivative , Γ is the Classical gamma function.

For the convenience of the reader, we begin with a few reminders of the con-
cepts which will be used in this subsection.

Definition 5.1 (Fractional Bochner integral). Let E be a separable Banach space
and f : I = [0, 1] → E. The fractional Bochner-integral of order α > 0 of the
function f is defined by

Iα0+f(t) :=

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds, t > 0.
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In the above definition, the sign “
∫

” denotes the classical Bochner integral.

Lemma 5.5 ([37]). Let f ∈ L1(I, E, dt) with I = [0, 1].

(a) If α ∈]0, 1[ then Iα0+f exists almost everywhere on I and Iα0+f ∈ L
1(I, E, dt).

(b) If α ∈ [1,∞) then Iα0+f ∈ CE(I).

Definition 5.2. Let E be a separable Banach space and let f ∈ L1
E(I, E, dt) with

I := [0, 1]. One defines the Riemann-Liouville fractional derivative of order α > 0
of f by

Dαf(t) := Dα
0+f(t) =

dn

dtn
In−α

0+
f(t) =

dn

dtn

∫ t

0

(t− s)n−α−1

Γ(n− α)
f(s)ds,

where n = [α] + 1 and [α] is the integer part of α.

We denote by Wα,1
B,E(I) the space of all continuous functions in CE(I) such that

their Riemann-Liouville fractional derivatives of order α − 1 are continuous and
their Riemann-Liouville fractional derivatives of order α are Bochner integrable.
Green function and its properties.
In all the rest of this subsection α ∈]1, 2], β ∈ [0, 2 − α], λ ≥ 0, γ > 0. Let
G : [0, 1]× [0, 1]→ R be the Green function defined by

G(t, s) = ϕ(s)Iα−1
0+

(exp(−λt)) +


exp(λs)Iα−1

s+
(exp(−λt)), 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1,
(5.4)

where

ϕ(s) =
exp(λs)

µ0

[(
Iα−1+γ
s+

(exp(−λt))
)

(1)−
(
Iα−1
s+

(exp(−λt))
)

(1)
]

(5.5)

with
µ0 =

(
Iα−1

0+
(exp(−λt))

)
(1)−

(
Iα−1+γ

0+
(exp(−λt))

)
(1). (5.6)

We recall and summarize a useful result ([16]).

Lemma 5.6. Let E be a separable Banach space and let G be the function defined
by (5.4)-(5.6). For α ∈]1, 2] the following hold:

(a) G(·, ·) satisfies the estimate

|G(t, s)| ≤ 1

Γ(α)

(
1 + Γ(γ + 1)

|µ0|Γ(α)Γ(γ + 1)
+ 1

)
= MG.

(b) If u ∈Wα,1
B,E ([0, 1]) satisfying boundary conditions (5.3), then

u(t) =

∫ 1

0
G(t, s)

(
Dαu (s) + λDα−1u(s)

)
ds for every t ∈ [0, 1].
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(c) Let f ∈ L1
E ([0, 1]) and let uf : [0, 1]→ E be the function defined by

uf (t) :=

1∫
0

G(t, s)f(s)ds for t ∈ [0, 1].

Then
Iβ

0+
uf (t) |t=0 = 0 and uf (1) =

(
Iγ

0+
uf
)

(1).

Moreover uf ∈Wα,1
B,E([0, 1]) and one has for every t ∈ [0, 1]

(
Dα−1uf

)
(t) =

∫ t

0
exp(−λ(t− s))f(s)ds+ exp(−λt)

∫ 1

0
ϕ(s)f(s)ds,

(Dαuf ) (t) + λ
(
Dα−1uf

)
(t) = f (t) .

From Lemma 5.6 we derive a crucial feature.

Lemma 5.7. Let E be a separable Banach space and let f ∈ L1(I, E, dt) with
I := [0, 1]. Then the boundary value problem{

Dαu(t) + λDα−1u(t) = f(t), t ∈ I
Iβ

0+
u(t) |t=0 = 0, u(1) = Iγ

0+
u(1)

has a unique Wα,1
B,E(I)-solution defined by

u(t) =

∫ 1

0
G(t, s)f(s)ds, textforall t ∈ I.

Theorem 5.8. Let E be a separable Banach space, α ∈]1, 2) and I := [0, 1].
Let X : I ⇒ E be a compact convex valued measurable multimapping such that
X(t) ⊂ γBE for all t ∈ I, where γ is a positive constant. Let S1

X be the set of all

measurable selections of X. Then the Wα,1
B,E(I)-solutions set of problem{

Dαu(t) + λDα−1u(t) = f(t), f ∈ S1
X , a.e. t ∈ I

Iβ
0+
u(t) |t=0 = 0, u(1) = Iγ

0+
u(1)

is compact in CE(I).

Proof. By virtue of Lemma 5.7 the Wα,1
B,E(I)-solutions set X to the above inclusion

is characterized by

X = {uf : I → E, uf (t) =

∫ 1

0
G(t, s)f(s)ds, f ∈ S1

X , t ∈ I}. (5.7)

Claim: X is bounded, convex, equicontinuous and compact in CE(I).
From the definition of the Green function G, it is not difficult to show that
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{uf : f ∈ S1
X} is bounded, equicontinuous in CE(I). To show first the rela-

tive compactness take any sequence (ufn)n in X . We note that, for each n ∈ N,

we have ufn ∈W
α,1
B,E(I) , and

ufn(t) =

∫ 1

0
G(t, s)fn(s)ds, t ∈ I,

with by Lemma 5.6

• Iβ
0+
ufn(t)|t=0 = 0, ufn(1) = Iγ

0+
u(1),

•
(
Dα−1ufn

)
(t) =

∫ t

0
exp(−λ(t− s))fn(s)ds+ exp(−λt)

∫ 1

0
ϕ(s)fn(s)ds, t ∈ I,

• (Dαufn) (t) + λ
(
Dα−1ufn

)
(t) = fn(t), t ∈ I.

Consider any t1, t2 ∈ I with t1 < t2. Let us write

ufn(t2)− ufn(t1) =

∫ 1

0
G(t, s)(fn(s)− fn(s))ds

=

∫ 1

0
ϕ(s)fn(s)ds

(∫ t2

0

e−λτ

Γ(α− 1)
(t2 − τ)α−2dτ−

∫ t1

0

e−λτ

Γ(α− 1)
(t1 − τ)α−2dτ

)
+

∫ t2

0
eλs
(∫ t2

s

(t2 − τ)α−2

Γ(α− 1)
e−λτdτ

)
fn(s)ds

−
∫ t1

0
eλs
(∫ t1

s

e−λτ

Γ(α− 1)
(t1 − τ)α−2dτ

)
fn(s)ds,

which gives with Φ(t, τ) := (t− τ)α−2/Γ(α− 1)

ufn(t2)− ufn(t1)

=

∫ 1

0
ϕ(s)fn(s)ds

[∫ t1

0
e−λτ

(
Φ(t2, τ)− Φ(t1, τ)

)
dτ +

∫ t2

t1

e−λτΦ(t2, τ)dτ

]
+

∫ t1

0
eλs
(∫ t1

s
e−λτ

(
Φ(t2, τ)− Φ(t1, τ)

)
dτ

)
fn(s)ds

+

∫ t1

0
eλs
(∫ t2

t1

e−λτΦ(t2, τ)dτ

)
fn(s)ds+

∫ t2

t1

eλs
(∫ t2

s
e−λτΦ(t2, τ)dτ

)
fn(s)ds.

Then, putting |X(s)| := sup{‖y‖ : y ∈ X(s)} it follows that

‖ufn(t2)− ufn(t1)‖

≤
∫ 1

0

(
|ϕ(s)|+ eλs

)
|X(s)|ds

∫ t1

0
e−λτ

(t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ

+

∫ 1

0

(
|ϕ(s)|+ eλs

)
|X(s)|ds

∫ t2

t1

e−λτ
(t2 − τ)α−2

Γ(α− 1)
dτ

+

∫ t2

t1

eλs|X(s)|ds
∫ t2

t1

e−λτ
(t2 − τ)α−2

Γ(α− 1)
dτ.
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It is easy to see, after an integration by parts, that∫ t2

t1

e−λτ
(t2 − τ)α−2

Γ(α− 1)
dτ = e−λt1

(t2 − t1)α−2

Γ(α)
+ λ

∫ t2

t1

e−λτ
(t2 − τ)α−1

Γ(α)
dτ

≤ 1 + λ

Γ(α)
(t2 − t1)α−1

and ∫ t1

0
e−λτ

(t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ ≤

∫ t1

0

(t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ

=
(t2 − t1)α−1 + tα−1

1 − tα−1
2

Γ(α)
.

Using for p ∈]0, 1] the inequality |ap − bp| ≤ |a − b|p for all a, b ≥ 0, we deduce
that ∫ t1

0
e−λτ

(t2 − τ)α−2 − (t1 − τ)α−2

Γ(α− 1)
dτ ≤ 2

Γ(α)
(t2 − t1)α−1.

Then, since α ∈]1, 2], we can estimate ‖ufn(t2)− ufn(t1)‖ by

‖ufn(t2)− ufn(t1)‖ ≤ K|t2 − t1|α−1

with K=
∫ 1

0

[
(3 + λ)|φ(s)|+ (4 + 2λ)eλs

]
|X(s)|ds. This shows that {ufn : n ∈ N}

is equicontinuous in CE(I). Moreover, for each t ∈ I the set {ufn(t) : n ∈ N}
is contained in the compact convex set

∫ 1
0 G(t, s)X(s)ds [?, 24], so that X is

relatively compact in CE(I) as claimed. It remains to justify that X is closed in
CE(I). Let (ufn)n in X converging to u∞ in CE(I). As S1

X is σ(L1
E , L

∞
E∗)-compact

(see, e.g, [24]) we may suppose that (fn)n σ(L1
E , L

∞
E∗)-converges to f∞ ∈ S1

X . Then
(ufn)n pointwise weakly converges to uf∞ , with u∞ ∈ CE(I) given by uf∞(t) =∫ 1

0 G(t, s)f∞(s)ds. Therefore, for each t ∈ I

u∞(t) = w- lim
n→∞

ufn(t) = w- lim
n→∞

∫ 1

0
G(t, s)fn(s)ds

=

∫ 1

0
G(t, s)f∞(s)ds = uf∞(t),

so u∞ = uf∞ , and the desired closedness of X in CE(I) is confirmed. The proof
of the theorem is complete.

We can now state and prove the theorem concerned with a fractional inclusion
coupled with an EVI.

Theorem 5.9. Let I := [0, 1] and H be a separable Hilbert space. Let K be a
compact convex equilibrated subset of H. Let ϕ : I ×H →]−∞,+∞] be a normal
lower semicontinuous convex integrand such that domϕ(t, ·) = K for all t ∈ I and
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(i {ϕ(., u(.)), u ∈ S1
K} is uniformly integrable;

(ii) ϕ(t, x) ≤ ϕ(τ, x) + |v(t)− v(τ)| for all t, τ ∈ I, x ∈ K, where v : I → R+ is a
positive nondecreasing continuous function with v(0) = 0.
Let A : H → H be a continuous coercive symmetric linear operator and B : H →
H be a continuous linear operator. Let f : I ×H → H be a bounded continuous
mapping, say ‖f(t, x)‖ ≤M for all (t, x) ∈ I ×H.

Then for any u0 ∈ H, there exist a Wα,1
B,H([0, 1]) mapping x : I → H and an

absolutely continuous mapping u : I → H satisfying
u(0) = u0 ∈ H
Dαx(t) + λDα−1x(t) = u(t), t ∈ [0, 1]

Iβ
0+
x(t) |t=0 = 0, x(1) = Iγ

0+
x(1)

f(t, x(t)) +Bu(t)−Adu
dt (t) ∈ ∂ϕ(t, dudt (t)), a.e. t ∈ [0, 1].

Proof. Let us consider the compact convex (cf Theorem 5.8 and (5.7)) subset X
in the Banach space CH(I) defined by

X := {uf : I → H : uf (t) =

∫ 1

0
G(t, s)f(s)ds, f ∈ S1

u0+K , t ∈ I},

where S1
u0+K denotes the set of all integrable selections of the compact convex

valued constant multimapping u0 + K. For each h ∈ X , by Theorem 4.5 and
the assumptions on f , there is a unique absolutely continuous solution vh to the
inclusion {

vh(0) = u0 ∈ H
f(t, h(t)) +Bvh(t)−Advh

dt (t) ∈ ∂ϕ(t, dvhdt (t)), a.e. t ∈ I

with dvh
dt (t) ∈ K a.e. t ∈ I, so that vh(t) = u0+

∫ t
0
dvh
ds (s)ds ∈ u0+

∫ t
0 Kds ⊂ u0+K

for all t ∈ I.
For each h ∈ X consider the mapping Φ(h) defined on I by

Φ(h)(t) :=

∫ t

0
G(t, s)vh(s)ds for all t ∈ I.

It is clear that Φ(h) ∈ X . Let us check that Φ is continuous on X . It is sufficient
to show that, if (hn)n uniformly converges to h in X , then for vhn denoting the
absolutely continuous solution of the inclusion{

vhn(0) = u0 ∈ H
f(t, hn(t)) +Bvhn(t)−Advhn

dt (t) ∈ ∂ϕ(t,
dvhn
dt (t)), a.e. t ∈ I,

the sequence (vhn)n uniformly converges to the absolutely continuous solution vh
of the inclusion{

vh(0) = u0 ∈ H
f(t, h(t)) +Bvh(t)−Advh

dt (t) ∈ ∂ϕ(t, dvhdt (t)), a.e. t ∈ I.

76



As (vhn)n is equi-absolutely continuous with vhn(t) ∈ u0 +
∫ t

0 Kds ⊂ u0 + K
for all t ∈ I we may suppose that (vhn)n uniformly converges to an absolutely

continuous mapping u on I. Since vhn(t) = u0 +
∫

]0,t]
dvhn
ds (s)ds, for all t ∈ I and

dvhn
ds (s) ∈ K a.e. s ∈ I, we may also suppose that (

dvhn
dt )n weakly converges in

L1
H(I) to w ∈ L1

H(I) with w(t) ∈ K for all t ∈ I, so that

lim
n
vhn(t) = u0 +

∫ t

0
w(s)ds for all t ∈ I.

Identifying the limits yields for every t ∈ I

u(t) = u0 +

∫ t

0
w(s)ds,

so u̇ = w. Therefore, by applying the arguments in the above variational limit
result Cf. Proposition 3.6we get

f(t, h(t)) +Bu(t)−Adu
dt

(t) ∈ ∂ϕ(t,
du

dt
(t)), a.e. t ∈ I

with u(0) = u0 ∈ H, so that by uniqueness u = vh.
On the other hand, writing

Φ(hn)(t)− Φ(h)(t) =

∫ 1

0
G(t, s)vhn(s)ds−

∫ 1

0
G(t, s)vh(s)ds

=

∫ 1

0
G(t, s)[vhn(s)− vh(s)]ds

we see by Lemma 5.6(a) that

sup
t∈[0,1]

‖Φ(hn)(t)− Φ(h)(t)‖ ≤
∫ 1

0
MG‖vhn(·)− vh(·)‖ds.

This inequality and the uniform convergence of (vhn)n to vh on I entail that
Φ(hn)→ Φ(h) in CH(I), so Φ : X → X is continuous. This continuity of Φ : X →
X on the comapct convex set X of CH(I) tells us that Φ has a fixed point, say
h = Φ(h) ∈ X . This means that

h(t) = Φ(h)(t) =

∫ 1

0
G(t, s)vh(s)ds for all t ∈ I

with 
vh(0) = u0 ∈ H
Dαh(t) + λDα−1h(t) = vh(t), t ∈ [0, 1]

Iβ
0+
h(t) |t=0 = 0, h(1) = Iγ

0+
h(1)

f(t, h(t)) +Bvh(t)−Advh
dt (t) ∈ ∂ϕ(t, dvhdt (t)), a.e. t ∈ I.
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So by putting x = h and u = vh we conclude that (x, u) solves the dynamic EVI
u(0) = u0 ∈ H
Dαx(t) + λDα−1x(t) = u(t), t ∈ [0, 1]

Iβ
0+
x(t) |t=0 = 0, x(1) = Iγ

0+
x(1)

f(t, x(t)) +Bu(t)−Adu
dt (t) ∈ ∂ϕ(t, dudt (t)), a.e. t ∈ [0, 1]

The proof is complete.

Further variants of the above results are available. For instance, we are able
to state the existence of solution to the dynamic system

Dαh(t) + λDα−1h(t) = u(t), t ∈ [0, 1]

Iβ
0+
h(t) |t=0 = 0, h(1) = Iγ

0+
h(1)

u(0) = u0

f(t, h(t)) +Bu(t)−Adu
dt (t) ∈ NC(t)(

du
dt (t)), a.e. t ∈ [0, 1]

Our tools also allow to treat other variants by considering other class of FDI given
in [11, 13, 14, 15, 16].

We study below an example of a Caputo fractional differential inclusion gov-
erned by an EVI. For the sake of completeness, we recall some needed properties
for the fractional calculus and provide a series of lemmas on the fractional integral.
Throughout we assume α ∈]1, 2].

Definition 5.3. The Caputo fractional derivative of order γ > 0 of a function
h : I = [0, T ]→ H, cDγh : [0, T ]→ H, is defined by

cDγh(t) =
1

Γ(n− γ)

∫ t

0

h(n)(s)

(t− s)1−n+γ
ds.

Here n = [γ] + 1 and [γ] denotes the integer part of γ.

Denote by

Wα,∞
H (I) = {u ∈ C1

H(I) : cDα−1u ∈ CH(I); cDαu ∈ L∞H (I)},

where cDα−1u and cDαu are the fractional Caputo derivatives of order α− 1 and
α of u, respectively.

We summarize some properties of a Green function given in Lemma 2.1 of
[15].

Lemma 5.10. Let I = [0, T ] and let G : I × I → R be a function defined by

G(t, s) =


(t−s)α−1

Γ(α) − 1+t
T+2

[
(T−s)α−1

Γ(α) + (T−s)α−2

Γ(α−1)

]
, if 0 ≤ s < t,

− 1+t
T+2

[
(T−s)α−1

Γ(α) + (T−s)α−2

Γ(α−1)

]
if t ≤ s < T.
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Let f ∈ L∞H (I). Then the system defined by
cDαu(t) = f(t), t ∈ [0, T ]

u(0)− du
dt (0) = 0

u(T ) + du
dt (T ) = 0

has a unique Wα,∞
H ([0, T ])-solution u given by u(t) =

∫ T
0 G(t, s)f(s)ds, ∀t ∈ I.

with |G(t, s)| ≤MG := 2Tα−1+(α−1)Tα−2

Γ(α) .

We recall and summarize a crucial lemma (Lemma 3.5 of [15]) for our next
theorem.

Lemma 5.11. Let X : [0, T ] ⇒ H be a convex compact valued measurable map-
ping such that |X(t)| ≤ γ(t) < +∞, ∀t ∈ I with γ ∈ L1(I). Then the Wα,∞

H (I)-
solutions set X to 

cDαu(t) ∈ X(t), t ∈ I
u(0)− du

dt (0) = 0

u(T ) + du
dt (T ) = 0,

is convex compact in CH(I).

Now comes an existence result with a Caputo fractional differential inclusion.

Theorem 5.12. Let I := [0, 1] and H be a separable Hilbert space. Let K be a
convex compact equilibrated subset of H. Let ϕ : [0, 1] × K →] − ∞,+∞] be a
normal lower semicontinuous convex integrand such that
(i {ϕ(., u(.)), u ∈ S1

K} is uniformly integrable.
(ii) ϕ(t, x) ≤ ϕ(τ, x)+ |v(t)−v(τ)| for all t, τ ∈ [0, 1], x ∈ K where v : [0, 1]→ R+

is a positive nondecreasing continuous function with v(0) = 0.
Let A : H → H be a linear continuous coercive symmetric operator and B : H →
H be a linear continuous mapping.
Let f : I×H → H be a bounded mapping : ||f(t, x)|| ≤M for all (t, x) ∈ [0, 1]×H
such that
(i) f(·, x) is L(I) measurable for all x ∈ H,
(ii) f(t, ·) is continuous on H for all t ∈ I.
Then given a ∈ H, there is a Wα,∞

H (I) mapping x : I → H and an absolutely
continuous mapping u : I → H satisfying

cDαx(t) = v(t), t ∈ I
x(0)− dx

dt (0) = 0

x(1) + dx
dt (1) = 0

v(0) = a

f(t, x(t)) +Bu(t)−Adu
dt (t) ∈ ∂ϕ(t, dudt (t)), a.e. t ∈ [0, 1]

Proof. For any continuous mapping h : I → H, the mapping fh : I × H →
H defined by fh(t) := f(t, h(t)) for all t ∈ I is L(I) measurable and satisfies
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|fh(t)| ≤M for all t ∈ I. Then by Theorem 4.4 and the assumptions on f , there
is a unique absolutely continuous solution vh to the inclusion{

vh(0) = a ∈ H∫ t
0 f(s, h(s))ds+Bvh(t)−Advh

dt (t) ∈ ∂ϕ(t, dvhdt (t)), a.e. t ∈ [0, 1]

with dvh
dt (t) ∈ K a.e. so that vh(t) = a+

∫ t
0
dvh
ds (s)ds ∈ a+

∫ t
0 Kds ⊂ a+K,∀t ∈

[0, 1] with vh uniformly bounded and equi-absolutely continuous: dvh
dt ∈ K. Now

let us consider the set X defined by

X := {ξf : I → H : f ∈ S1
a+K},

each mapping ξf being given for every t ∈ I by

ξf (t) =

∫ 1

0
G(t, s)f(s) ds, f ∈ S1

a+K

where G is the Green function given in Lemma 5.10. We note that X is convex
compact in CE(I) by Lemma 5.11. Now for each h ∈ X , by Theorem 4.4 again
denote by uh the unique absolutely continuous solution of the differential inclusion∫ t

0
f(s, h(s))ds+Buh(t)−Aduh

dt
(t) ∈ ∂ϕ(t,

duh
dt

(t)), a.e. t ∈ I

uh(0) = a ∈ H.

For each h ∈ X let us set (again with the above Green function G)

Φ(h)(t) =

∫ 1

0
G(t, s)uh(s) ds, for all t ∈ I.

Then it is clear that Φ(h) ∈ X because uh(t) ∈ a + K for all t ∈ I. Hence
Φ(X ) is equicontinuous and relatively compact in the Banach space CE(I) because
Φ(X ) ⊂ X . Now we check that Φ is continuous relative to X . It is enough to show
that, if (hn)n converges uniformly to h in X , then the sequence (uhn)n, where each
uhn is the unique absolutely continuous solution of the differential inclusion{

uhn(0) = a ∈ H∫ t
0 f(s, hn(s))ds+Buhn(t)−Aduhn

dt (t) ∈ ∂ϕ(t,
duhn
dt (t)), a.e. t ∈ I,

uniformly converges to the unique absolutely continuous solution uh of the differ-
ential inclusion{

uh(0) = a ∈ H∫ t
0 f(s, h(s))ds+Buh(t)−Aduh

dt (t) ∈ ∂ϕ(t, duhdt (t)), a.e. t ∈ I.

We note that (uhn)n is equicontinuous since for every n ∈ N one has u̇hn(t) ∈ K
for almost all t ∈ I. Further, {uhn(t) : n ∈ N} is included in the compact set
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a + K for every t ∈ I. The Arzelà-Ascoli theorem tells us that {uhn : n ∈ N}
is relatively compact in CH(I). So by extracting a subsequence, we may suppose
that (uhn)n converges uniformly on I to some mapping ζ : I → H with

ζ(t) = a+

∫ t

0
ζ̇(s) ds for all t ∈ I,

along with (u̇hn)n converging weakly in L1
H(I) to ζ̇ with ζ̇(t) ∈ K for a.e. t ∈ I.

Note that ∫ t

0
f(s, hn(s))ds→

∫ t

0
f(s, h(s)ds for all t ∈ I.

This combined with the variational limit theorem (Cf. Proposition 5.3) gives∫ t

0
f(s, h(s))ds+Bζ(t)−Adζ

dt
(t)) ∈ ∂ϕ(t,

dζ

dt
(t)), a.e. t ∈ I

So using the uniqueness of solution of the latter differential inclusion we obtain
that ζ = uh. Now let us write by Lemma 5.10 and boundedness of the Green
function G

Φ(hn)(t)− Φ(h)(t) =

∫ 1

0
G(t, s)uhn(s) ds−

∫ 1

0
G(t, s)uh(s) ds

=

∫ 1

0
G(t, s)[uhn(s)− uh(s)] ds

≤
∫ 1

0
MG‖uhn(s)− uh(s)‖ ds.

Since ‖uhn(·)− uh(·)‖ → 0 uniformly on I as n→∞, we deduce that

sup
t∈I
‖Φ(hn)(t)− Φ(h)(t)‖ ≤

∫ 1

0
MG‖uhn(·)− uh(·)‖ ds→ 0,

which entails that Φ(hn) → Φ(h) uniformly on I, as desired. Then Φ : X → X
is continuous, hence Φ has a fixed point, say h = Φ(h) ∈ X . This means that for
every t ∈ I

h(t) = Φ(h)(t) =

∫ 1

0
G(t, s)uh(s) ds,

with {
uh(0) = a∫ t

0 f(s, h(s))ds+Buh(t)−Aduh
dt (t) ∈ ∂ϕ(t, duhdt (t)), a.e. t ∈ I.
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Coming back to Lemma 5.10 and applying the above notations, this means that
we have just shown that there exists a mapping h ∈Wα,∞

B,H (I) satisfying

cDαh(t) = uh(t), t ∈ I
h(0)− dh

dt (0) = 0

h(1) + dh
dt (1) = 0

uh(0) = a, t ∈ I∫ t
0 f(s, h(s))ds+Buh(t)−Aduh

dt (t) ∈ ∂ϕ(t, duhdt (t)), a.e. t ∈ I.

The proof of the theorem is then complete

We finish this section with two variants.

Theorem 5.13. Let I = [0, 1] and let v : [0, 1]→ R+ be a positive nondecreasing
continuous function with v(0) = 0. Let C : [0, 1]→ H be a convex compact valued
multimapping such that

haus (C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ [0, 1].

Let A : H → H be a linear continuous coercive symmetric operator and let B :
H → H be a linear continuous compact operator.
Let f : I×H → H be a bounded mapping : ||f(t, x)|| ≤M for all (t, x) ∈ [0, 1]×H
such that
(i) f(·, x) is L(I) measurable for all x ∈ H,
(ii) f(t, ·) is continuous on H for all t ∈ I.
Then given a ∈ H, there is a Wα,∞

H (I) mapping x : I → H and an absolutely
continuous mapping u : I → H satisfying

cDαx(t) = u(t), t ∈ I
x(0)− dx

dt (0) = 0

x(1) + dx
dt (1) = 0

v(0) = a∫ t
0 f(s, x(s))ds+Bu(t)−Adu

dt (t) ∈ NC(t)(
du
dt (t)), a.e. t ∈ [0, 1]

Proof. For any continuous mapping h : I → H, the mapping fh : I × H →
H defined by fh(t) := f(t, h(t)) for all t ∈ I is L(I) measurable and satisfies
|fh(t)| ≤M for all t ∈ I. Then by Theorem 4.1 and the assumptions on f , there
is a unique absolutely continuous solution vh to the inclusion{

vh(0) = a ∈ H∫ t
0 f(s, h(s))ds+Bvh(t)−Advh

dt (t) ∈ NC(t)(
dvh
dt (t)), a.e. t ∈ [0, 1]

with dvh
dt (t) ∈ K, where K :=

⋃
t∈[0,1]C(t) a.e. so that vh(t) = a +

∫ t
0
dvh
ds (s)ds ∈

a+
∫ t

0 coKds ⊂ a+coK,∀t ∈ [0, 1] with vh uniformly bounded and equi-absolutely
continuous. Now let us consider the set X defined by

X := {ξf : I → H : f ∈ S1
a+coK},
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each mapping ξf being given for every t ∈ I by

ξf (t) =

∫ 1

0
G(t, s)f(s) ds, f ∈ S1

a+coK

where G is the Green function given in Lemma 5.10. We note that X is convex
compact in CE(I) by Lemma 5.11. Now for each h ∈ X , by Theorem 4.1 again
denote by uh the unique absolutely continuous solution of the differential inclusion∫ t

0
f(s, h(s))ds+Buh(t)−Aduh

dt
(t) ∈ NC(t)(

duh
dt

(t)), a.e. t ∈ I

uh(0) = a ∈ H.

For each h ∈ X let us set (again with the above Green function G)

Φ(h)(t) =

∫ 1

0
G(t, s)uh(s) ds, for all t ∈ I.

Then it is clear that Φ(h) ∈ X because uh(t) ∈ a + coK for all t ∈ I. Hence
Φ(X ) is equicontinuous and relatively compact in the Banach space CE(I) because
Φ(X ) ⊂ X . Now we check that Φ is continuous relative to X . It is enough to show
that, if (hn)n converges uniformly to h in X , then the sequence (uhn)n, where each
uhn is the unique absolutely continuous solution of the differential inclusion{

uhn(0) = a ∈ H∫ t
0 f(s, hn(s))ds+Buhn(t)−Aduhn

dt (t) ∈ NC(t)(
duhn
dt (t)), a.e. t ∈ I,

uniformly converges to the unique absolutely continuous solution uh of the differ-
ential inclusion{

uh(0) = a ∈ H∫ t
0 f(s, h(s))ds+Buh(t)−Aduh

dt (t) ∈ NC(t)(
duh
dt (t)), a.e. t ∈ I.

We note that (uhn)n is equicontinuous since for every n ∈ N one has u̇hn(t) ∈ coK
for almost all t ∈ I. Further, {uhn(t) : n ∈ N} is included in the convex compact
set a+coK for every t ∈ I. The Arzelà-Ascoli theorem tells us that {uhn : n ∈ N}
is relatively compact in CH(I). So by extracting a subsequence, we may suppose
that (uhn)n converges uniformly on I to some mapping ζ : I → H with

ζ(t) = a+

∫ t

0
ζ̇(s) ds for all t ∈ I,

along with (u̇hn)n converging weakly in L1
H(I) to ζ̇ with ζ̇(t) ∈ coK for a.e. t ∈ I.

Note that ∫ t

0
f(s, hn(s))ds→

∫ t

0
f(s, h(s)ds for all t ∈ I.
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This combined with the variational limit theorem (Cf. Proposition 3.1) gives∫ t

0
f(s, h(s))ds+Bζ(t)−Adζ

dt
(t)) ∈ NC(t)(

dζ

dt
(t)), a.e. t ∈ I

So using the uniqueness of solution of the latter differential inclusion we obtain
that ζ = uh. Now let us write by Lemma 5.10 and boundedness of the Green
function G

Φ(hn)(t)− Φ(h)(t) =

∫ 1

0
G(t, s)uhn(s) ds−

∫ 1

0
G(t, s)uh(s) ds

=

∫ 1

0
G(t, s)[uhn(s)− uh(s)] ds

≤
∫ 1

0
MG‖uhn(s)− uh(s)‖ ds.

Since ‖uhn(·)− uh(·)‖ → 0 uniformly on I as n→∞, we deduce that

sup
t∈I
‖Φ(hn)(t)− Φ(h)(t)‖ ≤

∫ 1

0
MG‖uhn(·)− uh(·)‖ ds→ 0,

which entails that Φ(hn) → Φ(h) uniformly on I, as desired. Then Φ : X → X
is continuous, hence Φ has a fixed point, say h = Φ(h) ∈ X . This means that for
every t ∈ I

h(t) = Φ(h)(t) =

∫ 1

0
G(t, s)uh(s) ds,

with {
uh(0) = a∫ t

0 f(s, h(s))ds+Buh(t)−Aduh
dt (t) ∈ NC(t)(

duh
dt (t)), a.e. t ∈ I.

Coming back to Lemma 5.10 and applying the above notations, this means that
we have just shown that there exists a mapping h ∈Wα,∞

B,H (I) satisfying

cDαh(t) = uh(t), t ∈ I
h(0)− dh

dt (0) = 0

h(1) + dh
dt (1) = 0

uh(0) = a, t ∈ I∫ t
0 f(s, h(s))ds+Buh(t)−Aduh

dt (t) ∈ NC(t)(
duh
dt (t)), a.e. t ∈ I.

The proof of the theorem is then complete

Theorem 5.14. Let I = [0, 1] and let v : [0, 1]→ R+ be a positive nondecreasing
continuous function with v(0) = 0. Let C : [0, 1]→ H be a convex compact valued
multimapping such that

haus (C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ [0, 1].
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Let A : H → H be a linear continuous coercive symmetric operator and let g be
a convex function on H Lipschitz on bounded sets and continuously differentiable
on H whose gradient is locally Lipschitz. Let f : I × H → H be a bounded
mapping : ||f(t, x)|| ≤M for all (t, x) ∈ [0, 1]×H such that
(i) f(·, x) is L(I) measurable for all x ∈ H,
(ii) f(t, ·) is continuous on H for all t ∈ I.
Then given a ∈ H, there is a Wα,∞

H (I) mapping x : I → H and an absolutely
continuous mapping u : I → H satisfying

cDαx(t) = u(t), t ∈ I
x(0)− dx

dt (0) = 0

x(1) + dx
dt (1) = 0

v(0) = a∫ t
0 f(s, x(s))ds+∇g(u(t))−Adu

dt (t) ∈ NC(t)(
du
dt (t)), a.e. t ∈ [0, 1]

Proof. The proof is omitted by repeating the arguments given in the proof of
Theorem 5.13. Here we apply Theorem 4.4 with the variational limit given in
Proposition 3.3.

An easy inspection of the tool developed above lead to a second order evolution
like mechanical problem with dry friction.

Theorem 5.15. Let I = [0, 1] and let v : [0, 1]→ R+ be a positive nondecreasing
continuous function with v(0) = 0. Let C : [0, 1]→ H be a convex compact valued
multimapping such that

haus (C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ [0, 1].

Let A : H → H be a linear continuous coercive symmetric operator and let g be
a convex function on H Lipschitz on bounded sets and continuously differentiable
on H whose gradient is locally Lipschitz.
Let f : I×H → H be a bounded mapping : ||f(t, x)|| ≤M for all (t, x) ∈ [0, 1]×H
such that
(i) f(·, x) is L(I) measurable for all x ∈ H,
(ii) f(t, ·) is continuous on H for all t ∈ I.
Then given a, b ∈ H, there is an absolutely continuous mapping x : I → H and
an absolutely continuous mapping u : I → H satisfying

x(t) = a+
∫ t

0 u(s)ds, t ∈ I
u(0) = b∫ t

0 f(s, x(s))ds+∇g(u(t))−Adu
dt (t) ∈ NC(t)(

du
dt (t)), a.e. t ∈ [0, 1]

Proof. For any continuous mapping h : I → H, the mapping fh : I × H →
H defined by fh(t) := f(t, h(t)) for all t ∈ I is L(I) measurable and satisfies
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|fh(t)| ≤M for all t ∈ I. Then by Theorem 4.4 and the assumptions on f , there
is a unique absolutely continuous solution vh to the inclusion{

vh(0) = b ∈ H∫ t
0 f(s, h(s))ds+∇g(vh(t))−Advh

dt (t) ∈ NC(t)(
dvh
dt (t)), a.e. t ∈ [0, 1]

with dvh
dt (t) ∈ K, where K :=

⋃
t∈[0,1]C(t) a.e. so that vh(t) = b +

∫ t
0
dvh
ds (s)ds ∈

b +
∫ t

0 co(K ∪ 0)ds ⊂ b + co(K ∪ 0),∀t ∈ [0, 1] with vh uniformly bounded and
equi-absolutely continuous. Now let us consider the set X defined by

X := {ξf : I → H : f ∈ S1
b+co(K∪0)},

each mapping ξf being given for every t ∈ I by

ξf (t) = a+

∫ t

0
f(s) ds, t ∈ I, f ∈ S1

b+co(K∪0)

We note that X is convex compact in CH(I). Now for each h ∈ X , by Theorem 4.4
again denote by uh the unique absolutely continuous solution of the differential
inclusion∫ t

0
f(s, h(s))ds+∇g(uh(t))−Aduh

dt
(t) ∈ NC(t)(

duh
dt

(t)), a.e. t ∈ I

uh(0) = b ∈ H.

For each h ∈ X let us set

Φ(h)(t) = a+

∫ t

0
uh(s) ds, for all t ∈ I.

Then it is clear that Φ(h) ∈ X because uh(t) ∈ b + coK for all t ∈ I. Hence
Φ(X ) is equicontinuous and relatively compact in the Banach space CE(I) because
Φ(X ) ⊂ X . Now we check that Φ is continuous relative to X . It is enough to show
that, if (hn)n converges uniformly to h in X , then the sequence (uhn)n, where each
uhn is the unique absolutely continuous solution of the differential inclusion{

uhn(0) = b ∈ H∫ t
0 f(s, hn(s))ds+∇guhn(t)−Aduhn

dt (t) ∈ NC(t)(
duhn
dt (t)), a.e. t ∈ I,

uniformly converges to the unique absolutely continuous solution uh of the differ-
ential inclusion{

uh(0) = b ∈ H∫ t
0 f(s, h(s))ds+∇g(uh(t))−Aduh

dt (t) ∈ NC(t)(
duh
dt (t)), a.e. t ∈ I.

We note that (uhn)n is equicontinuous since for every n ∈ N one has u̇hn(t) ∈ coK
for almost all t ∈ I. Further, {uhn(t) : n ∈ N} is included in the convex compact
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set a+coK for every t ∈ I. The Arzelà-Ascoli theorem tells us that {uhn : n ∈ N}
is relatively compact in CH(I). So by extracting a subsequence, we may suppose
that (uhn)n converges uniformly on I to some mapping ζ : I → H with

ζ(t) = b+

∫ t

0
ζ̇(s) ds for all t ∈ I,

along with (u̇hn)n converging weakly in L1
H(I) to ζ̇ with ζ̇(t) ∈ coK for a.e. t ∈ I.

Note that ∫ t

0
f(s, hn(s))ds→

∫ t

0
f(s, h(s)ds for all t ∈ I.

This combined with the variational limit theorem (Cf. Proposition 3.3) gives∫ t

0
f(s, h(s))ds+∇g(ζ(t))−Adζ

dt
(t)) ∈ NC(t)(

dζ

dt
(t)), a.e. t ∈ I

So using the uniqueness of solution of the latter differential inclusion we obtain
that ζ = uh. Now let us write

Φ(hn)(t)− Φ(h)(t) =

∫ t

0
uhn(s) ds−

∫ t

0
uh(s) ds

=

∫ t

0
||uhn(s)− uh(s)|| ds

Since ‖uhn(·)− uh(·)‖ → 0 uniformly on I as n→∞, we deduce that

sup
t∈I
‖Φ(hn)(t)− Φ(h)(t)‖ ≤

∫ 1

0
‖uhn(·)− uh(·)‖ ds→ 0,

which entails that Φ(hn) → Φ(h) uniformly on I, as desired. Then Φ : X → X
is continuous, hence Φ has a fixed point, say h = Φ(h) ∈ X . This means that for
every t ∈ I

h(t) = Φ(h)(t) = a+

∫ t

0
uh(s) ds, t ∈ I

with {
uh(0) = b ∈ H∫ t

0 f(s, h(s))ds+∇g(uh(t))−Aduh
dt (t) ∈ NC(t)(

duh
dt (t)), a.e. t ∈ I.

So we have just shown that there is an absolutely continuous mapping x : I → H
with x(0) = a, ẋ(0) = b such that∫ t

0
f(s, x(s))ds+∇g(ẋ(t))−Aẍ(t) ∈ NC(t)(ẍ(t)), a.e. t ∈ I

87



Theorem 5.16. Let I := [0, 1] and H be a separable Hilbert space. Let K be a
convex compact equilibrated subset of H. Let ϕ : [0, 1] × K →] − ∞,+∞] be a
normal lower semicontinuous convex integrand such that
(i {ϕ(., u(.)), u ∈ S1

K} is uniformly integrable.
(ii) ϕ(t, x) ≤ ϕ(τ, x)+ |v(t)−v(τ)| for all t, τ ∈ [0, 1], x ∈ K where v : [0, 1]→ R+

is a positive nondecreasing continuous function with v(0) = 0.
Let A : H → H be a linear continuous coercive symmetric operator and let g be
a convex function on H Lipschitz on bounded sets and continuously differentiable
on H whose gradient is locally Lipschitz.
Let f : I×H → H be a bounded mapping : ||f(t, x)|| ≤M for all (t, x) ∈ [0, 1]×H
such that
(i) f(·, x) is L(I) measurable for all x ∈ H,
(ii) f(t, ·) is continuous on H for all t ∈ I.
Then given a, b ∈ H, there is an absolutely continuous mapping x : I → H and
an absolutely continuous mapping u : I → H satisfying

x(t) = a+
∫ t

0 u(s)ds, t ∈ I
u(0) = b∫ t

0 f(s, x(s))ds+∇g(u(t))−Adu
dt (t) ∈ ∂ϕ(t, dudt (t)), a.e. t ∈ [0, 1]

Proof. For any continuous mapping h : I → H, the mapping fh : I × H →
H defined by fh(t) := f(t, h(t)) for all t ∈ I is L(I) measurable and satisfies
|fh(t)| ≤M for all t ∈ I. Then by Theorem 4.5 and the assumptions on f , there
is a unique absolutely continuous solution vh to the inclusion{

vh(0) = b ∈ H∫ t
0 f(s, h(s))ds+∇g(vh(t))−Advh

dt (t) ∈ ∂ϕ(t, dvhdt (t)), a.e. t ∈ [0, 1]

with dvh
dt (t) ∈ K a.e. so that vh(t) = b+

∫ t
0
dvh
ds (s)ds ∈ b+

∫ t
0 Kds ⊂ b+K∀t ∈ [0, 1]

with vh uniformly bounded and equi-absolutely continuous. Now let us consider
the set X defined by

X := {ξf : I → H : f ∈ S1
b+K},

each mapping ξf being given for every t ∈ I by

ξf (t) = a+

∫ t

0
f(s) ds, t ∈ I, f ∈ S1

b+K

We note that X is convex compact in CH(I). Now for each h ∈ X , by Theorem 4.5
again denote by uh the unique absolutely continuous solution of the differential
inclusion∫ t

0
f(s, h(s))ds+∇g(uh(t))−Aduh

dt
(t) ∈ ∂ϕ(t,

duh
dt

(t)), a.e. t ∈ I
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uh(0) = b ∈ H.
For each h ∈ X let us set

Φ(h)(t) = a+

∫ t

0
uh(s) ds, for all t ∈ I.

Then it is clear that Φ(h) ∈ X because uh(t) ∈ b + K for all t ∈ I. Hence
Φ(X ) is equicontinuous and relatively compact in the Banach space CE(I) because
Φ(X ) ⊂ X . Now we check that Φ is continuous relative to X . It is enough to show
that, if (hn)n converges uniformly to h in X , then the sequence (uhn)n, where each
uhn is the unique absolutely continuous solution of the differential inclusion{

uhn(0) = b ∈ H∫ t
0 f(s, hn(s))ds+∇guhn(t)−Aduhn

dt (t) ∈ ∂ϕ(t,
duhn
dt (t)), a.e. t ∈ I,

uniformly converges to the unique absolutely continuous solution uh of the differ-
ential inclusion{

uh(0) = b ∈ H∫ t
0 f(s, h(s))ds+∇g(uh(t))−Aduh

dt (t) ∈ ∂ϕ(t, duhdt (t)), a.e. t ∈ I.

We note that (uhn)n is equicontinuous since for every n ∈ N one has u̇hn(t) ∈ K
for almost all t ∈ I. Further, {uhn(t) : n ∈ N} is included in the convex compact
set a+coK for every t ∈ I. The Arzelà-Ascoli theorem tells us that {uhn : n ∈ N}
is relatively compact in CH(I). So by extracting a subsequence, we may suppose
that (uhn)n converges uniformly on I to some mapping ζ : I → H with

ζ(t) = b+

∫ t

0
ζ̇(s) ds for all t ∈ I,

along with (u̇hn)n converging weakly in L1
H(I) to ζ̇ with ζ̇(t) ∈ K for a.e. t ∈ I.

Note that ∫ t

0
f(s, hn(s))ds→

∫ t

0
f(s, h(s)ds for all t ∈ I.

This combined with the variational limit theorem (Cf. Proposition 3.6) gives∫ t

0
f(s, h(s))ds+∇g(ζ(t))−Adζ

dt
(t)) ∈ NC(t)(

dζ

dt
(t)), a.e. t ∈ I

So using the uniqueness of solution of the latter differential inclusion we obtain
that ζ = uh. Now let us write

Φ(hn)(t)− Φ(h)(t) =

∫ t

0
uhn(s) ds−

∫ t

0
uh(s) ds

=

∫ t

0
||uhn(s)− uh(s)|| ds
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Since ‖uhn(·)− uh(·)‖ → 0 uniformly on I as n→∞, we deduce that

sup
t∈I
‖Φ(hn)(t)− Φ(h)(t)‖ ≤

∫ 1

0
‖uhn(·)− uh(·)‖ ds→ 0,

which entails that Φ(hn) → Φ(h) uniformly on I, as desired. Then Φ : X → X
is continuous, hence Φ has a fixed point, say h = Φ(h) ∈ X . This means that for
every t ∈ I

h(t) = Φ(h)(t) = a+

∫ t

0
uh(s) ds, t ∈ I

with {
uh(0) = b ∈ H∫ t

0 f(s, h(s))ds+∇g(uh(t))−Aduh
dt (t) ∈ ∂ϕ(t, duhdt (t)), a.e. t ∈ I.

So we have just shown that there is an absolutely continuous mapping x : I → H
with x(0) = a, ẋ(0) = b such that∫ t

0
f(s, x(s))ds+∇g(ẋ(t))−Aẍ(t) ∈ ∂ϕ(t, ẍ(t)), a.e. t ∈ I

Remark.Theorem 5.16 hold if we replace the gradient ∇g by a linear continuous
operator B : H → H.
Comments on second order variational problems We have stated the exis-
tence of solution to a class of second order evolution inclusion of the form

0 ∈ Aẍ(t)−Bẋ(t)−
∫ t

0
f(s, x(s))ds+ ∂ϕ(t, ẍ(t))

0 ∈ Aẍ(t)−∇g(ẋ(t))−
∫ t

0
f(s, x(s))ds+ ∂ϕ(t, ẍ(t))

with given operator A and B and given gradient ∇g, perturbation f and time
dependent subdifferential operator ∂ϕt and also in the context of sweeping process

0 ∈ Aẍ(t)−Bẋ(t))−
∫ t

0
f(s, x(s))ds+NC(t)(ẍ(t))

0 ∈ Aẍ(t)−∇g(ẋ(t))−
∫ t

0
f(s, x(s))ds+NC(t)(ẍ(t))

Existence and uniqueness of solution for a general second order evolution inclusion
in a separable Hilbert space of the form

0 ∈ ü(t) +A(t)u̇(t) + f(t, u(t)), t ∈ [0, T ]
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where A(t) is a time dependent Lipschitz variation maximal monotone operator
and the perturbation f(t, .) is boundedly Lipschitz is stated in [4] . In particular,
existence and uniqueness of solution to

0 = ü(t) +A(t)u̇(t) +∇ϕ(u(t)), t ∈ [0, T ]

where A(t) is a time dependent Lipschitz variation single valued maximal mono-
tone operator and ∇ϕ is the gradient of a smooth Lipschitz function ϕ is stated,
by constrast with classical cases dealing with some special fixed operators; cf.
Attouch et al [5], Paoli [31] and Schatzman [32]. Problems of second order have
some importance in Mechanics [30], which may require a more general evolution
inclusion of the form

0 ∈ ü(t) +A(t)u̇(t) + ∂ϕ(u(t)), t ∈ [0, T ]

here ∂ϕ(u(t)) denotes the subdifferential of a proper lower semicontinuous convex
function ϕ at the point u(t). Existence for this problem is stated in [17] via a vari-
ational approach. In this spirit, existence of solution for a second order problem
dealing with time and state dependent maximal monotone At,x and multivalued
perturbation F (t, x, y) of the form

−ü(t) ∈ At,u(t)u̇(t) + F (t, u(t), u̇(t))

is given in [15]. Second order evolution inclusion under consideration require
concise and original proofs. We will give below a main variational limit result
which help to give a meaning of the variational limit solution to the second order
evolution inclusion of the form

f(t) ∈ ü(t) +Au̇(t) + ∂ϕ(u(t))

where A is a linear continuous coercive symmetric operator and ∂ϕ is the subd-
ifferential of a lower convex lower semi continuous function and f ∈ L2

H([0, T ]).
In this context our results contains novelties since the second velocity is in inside
the subdifferential (resp. the normal cone). These variants are not comparable.

We recall below some notations and summarize some results which describe
the limiting behavior of a bounded sequence in L1

H([0, T ]). See ([22], Proposition
6.5.17).

Proposition 5.2. Let H be a separable Hilbert space. Let (ζn) be a bounded
sequence in L1

H([0, T ]). Then the following hold:
1) (ζn) (up to an extracted subsequence) stably converges to a Young measure ν
that is, there exist a subsequence (ζ ′n) of (ζn) and a Young measure ν belonging
to the space of Young measure Y([0, T ];Hσ) with t 7→ bar(νt) ∈ L1

H([0, T ]) (here
bar(νt) denotes the barycenter of νt) such that

lim
n→∞

∫ T

0
h(t, ζ ′n(t))) dt) =

∫ T

0
[

∫
H
h(t, x) νt(dx)] dt
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for all bounded Carathéodory integrands h : [0, T ]×Hσ → R,
2) (ζn) (up to an extracted subsequence) weakly biting converges to an integrable
function f ∈ L1

H([0, T ]), which means that, there is a subsequence (ζ ′m) of (ζn)
and an increasing sequence of Lebesgue-measurable sets (Ap) with limp λ(Ap) = 1
and f ∈ L1

H([0, T ]) such that, for each p,

lim
m→∞

∫
Ap

〈h(t), ζ ′m(t)〉 dt =

∫
Ap

〈h(t), f(t)〉 dt

for all h ∈ L∞H ([0, T ]),
3) (ζn) (up to an extracted subsequence) Komlós converges to an integrable func-
tion g ∈ L1

H([0, T ]), which means that, there is a subsequence (ζβ(m)) and an
integrable function g ∈ L1

H([0, T ]), such that

lim
n→∞

1

n
Σn
j=1ζγ(j)(t) = g(t), a.e. ∈ [0, T ],

for every subsequence (fγ(n)) of (fβ(n)).
4) There is a filter U finer than the Fréchet filter such that U − limn ζn = l ∈
(L∞H )′weak where (L∞H )′weak is the second dual of L1

H([0, T ]).
Let wla ∈ L1

H([0, T ]) be the density of the absolutely continuous part la of l in the
decomposition l = la + ls in absolutely continuous part la and singular part ls.
If we have considered the same extracted subsequence in 1), 2), 3), 4), then one
has

f(t) = g(t) = bar(νt) = wla(t) a.e. t ∈ [0, T ]

ByW 2,1
Rd ([0, T ]) (resp. W 2,2

Rd ([0, T ]) we denote the set of all continuous functions
in CRd([0, T ]) such that their first derivatives are continuous and their second
derivatives belong to L1

Rd([0, T ]) (resp. L2
Rd([0, T ])) and by W 1,1

BV ([0, T ]) we denote
the set of all continuous functions in CRd([0, T ]) such that their first derivatives
are of bounded variation (BV for short).

Let us recall a useful Gronwall type lemma [23].

Lemma 5.17. (A Gronwall-like inequality.) Let p, q, r : [0, T ] → [0,∞[ be three
nonnegative Lebesgue integrable functions such that for almost all t ∈ [0, T ]

r(t) ≤ p(t) + q(t)

∫ t

0
r(s) ds.

Then

r(t) ≤ p(t) + q(t)

∫ t

0
[p(s) exp(

∫ t

s
q(τ) dτ)] ds

for all t ∈ [0, T ].

Here is a main variational limit result which help to give a meaning of the
variational limit solution to the second order evolution inclusion

f(t) ∈ ü(t) +Au̇(t) + ∂ϕ(u(t))

92



where A is a linear continuous coercive symmetric operator and ∂ϕ is the subdif-
ferential of a lower convex lower semi continuous function ϕ and f ∈ L2

H([0, T ]).

Proposition 5.3. Assume that β ∈ L2
R+([0, T ]) and A is a linear continuous

symmetric and coercive operator: 〈Ax, x〉 ≥ M ||x||2 for all x ∈ Rd where M is
a positive constant. Let n ∈ N and ϕn : Rd → R+ be a C1, convex, Lipschitz
function and let ϕ∞ be a nonnegative l.s.c proper function defined on Rd such
that ϕn(x) ≤ ϕ∞(x) for all n ∈ N and for all x ∈ Rd. Let fn ∈ L2

Rd([0, T ])
such that ||fn(t)|| ≤ β(t), ∀n ∈ N, ∀t ∈ [0, T ]. For each n ∈ N, let un be a
W 2,1

Rd ([0, T ])-solution to the problem{
fn(t) ∈ ün(t) +Au̇n(t) + ∂ϕn(un(t)), t ∈ [0, T ]
un(0) = un0 ; u̇n(0) = u̇n0 .

Assume that
(i) fn σ(L2

Rd , L
2
Rd)-converges to f∞ ∈ L2

Rd([0, T ]),
(ii) ϕn epi-converges to ϕ∞,
(iii) limn u

n(0) = u∞0 ∈ domϕ∞, limn ϕn(un(0)) = ϕ∞(u∞0 ), and limn u̇
n(0) =

u̇∞0 ,
(iv) There exist r0 > 0 and x0 ∈ Rd such that

sup
n∈N

sup
v∈BL∞

Rd
([0,T ])

∫ T

0
ϕ∞(x0 + r0v(t)) < +∞

here BL∞
Rd

([0,T ]) is the closed unit ball in L∞Rd([0, T ]).

(a) Then up to extracted subsequences, (un) converges uniformly to an
W 1,1
BV ([0, T ])-function u∞ and (u̇n) pointwisely converges to a BV function v∞

with v∞ = u̇∞, and (ün) biting converges to a function ζ∞ ∈ L1
Rd([0, T ]) so that

the limit function u∞, u̇∞ and the biting limit ζ∞ satisfy the variational inclusion

f∞ ∈ ζ∞ +Au̇∞ + ∂Iϕ∞(u∞)

here ∂Iϕ∞ denotes the subdifferential of the convex lower semicontinuous integral
functional Iϕ∞ defined on L∞Rd([0, T ])

Iϕ∞(u) :=

∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞Rd([0, T ]).

Furthermore limn ϕn(un(t)) = ϕ∞(u∞(t)) <∞ a.e. and limn

∫ T
0 ϕn(un(t))dt =∫ T

0 ϕ∞(u∞(t))dt. Subsequently, the energy estimate holds true almost everywhere
t ∈ [0, T ],

ϕ∞(u∞(t)) +
1

2
||u̇∞(t)||2 = ϕ∞(u∞0 ) +

1

2
||u̇∞0 ||2

−
∫ t

0
〈Au̇∞(s), u̇∞(s)〉ds+

∫ t

0
〈u̇∞(s), f∞(s)〉ds
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Further (ün) weakly converges to the vector measure m ∈Mb
Rd([0, T ]) so that the

limit functions u∞(.) and the limit measure m satisfy the following variational
inequality:∫ T

0
ϕ∞(v(t)) dt ≥

∫ 1

0
ϕ∞(u∞(t)) dt+

∫ 1

0
〈−Au̇∞(t) + f∞(t), v(t)− u∞(t)〉 dt

+ 〈−m, v − u∞〉(Mb
Rd

([0,T ]),CRd ([0,T ])).

In other words, the vector measure −m + [−Au̇∞ + f∞] dt belongs to the subdif-
ferential ∂Jϕ∞(u∞) of the convex functional integral Jϕ∞ defined on CRd([0, T ])

by Jϕ∞(v) =
∫ 1

0 ϕ∞(t, v(t)) dt, ∀v ∈ CRd([0, T ]).
(b) There are a filter U finer than the Fréchet filter, l ∈ L∞Rd([0, T ])′ such that

U − lim
n

[fn − ün −Au̇n] = l ∈ L∞Rd([0, T ])′weak

where L∞Rd([0, T ])′weak is the second dual of L1
Rd([0, T ]) endowed with the topology

σ(L∞Rd([0, T ])′, L∞Rd([0, T ])) and n ∈ CRd([0, T ])′weak such that

lim
n

[fn − ün −Au̇n] = n ∈ CRd([0, T ])′weak

here CRd([0, T ])′weak denotes the space CRd([0, T ])′ endowed with the weak topology
σ(CRd([0, T ])′, CRd([0, T ])). Let la be the density of the absolutely continuous part
la of l in the decomposition l = la+ls in absolutely continuous part la and singular
part ls. Then

la(h) =

∫ T

0
〈h(t), f∞(t)− ζ∞(t)−Au̇∞(t)〉dt

for all h ∈ L∞Rd([0, T ]) so that

I∗ϕ∞(l) = Iϕ∗∞(f∞ − ζ∞ −Au̇∞) + δ∗(ls, domIϕ∞)

here ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ the integral functional defined on L1
Rd([0, T ])

associated with ϕ∗∞, I∗ϕ∞ the conjugate of the integral functional Iϕ∞, domIϕ∞ :=
{u ∈ L∞Rd([0, T ]) : Iϕ∞(u) <∞} and

〈n, h〉 =

∫ T

0
〈f∞(t)− ζ∞(t)−Au̇∞(t), h(t)〉dt+ 〈ns, h〉, ∀h ∈ CRd([0, T ]).

with 〈ns, h〉 = ls(h), ∀h ∈ CRd([0, T ]). Further n belongs to the subdifferential
∂Jϕ∞(u∞) of the convex lower semicontinuous integral functional Jϕ∞ defined on
CRd([0, T ])

Jϕ∞(u) :=

∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ CRd([0, T ]).
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(c) Consequently the density f∞− ζ∞−Au̇∞ of the absolutely continuous part na

na(h) :=

∫ T

0
〈f∞(t)− ζ∞(t)−Au̇∞(t), h(t)〉dt, ∀h ∈ CRd([0, T ])

satisfies the inclusion

f∞(t)− ζ∞(t)−Au̇∞(t) ∈ ∂ϕ∞(u∞(t)), a.e..

and for any nonnegative measure θ on [0, T ] with respect to which ns is absolutely
continuous ∫ T

0
hϕ∗∞(

dns
dθ

(t))dθ(t) =

∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)

here hϕ∗∞ denotes the recession function of ϕ∗∞.

Proof. Step 1 ||u̇n(.)|| and ϕn(un(.)) are uniformly bounded.
Multiplying scalarly the inclusion

fn(t)− ün(t)−Au̇n(t) ∈ ∂ϕn(un(t))

by u̇n(t) and applying the chain rule theorem ([35], Theorem 2) yields

〈u̇n(t), fn(t)〉 − 〈u̇n(t), ün(t)〉 − 〈u̇n(t), Au̇n(t)〉 =
d

dt
[ϕn(un(t))]

that is

(3.3.1) −〈Au̇n(t), u̇n(t)〉+ 〈u̇n(t), fn(t)〉 =
d

dt
[ϕn(un(t)) +

1

2
||u̇n(t)||2].

By integrating on [0, t] this equality we get

ϕn(un(t)) +
1

2
||u̇n(t)||2 = ϕn(un(0)) +

1

2
||u̇n(0)||2

−
∫ t

0
〈Au̇n(s), u̇n(s)〉ds+

∫ t

0
〈u̇n(s), fn(s)〉ds

≤ ϕn(un(0)) +
1

2
||u̇n(0)||2

+M

∫ t

0
||u̇n(s)||2ds+ ||fn||L2

Rd
([0,T ])(

∫ t

0
||u̇n(s)||2ds)

1
2

≤ ϕn(un(0)) +
1

2
||u̇n(0)||2

+M

∫ t

0
||u̇n(s)||2ds+

1

2
||fn||L2

Rd
([0,T ])(1 +

∫ t

0
||u̇n(s)||2ds)

≤ ϕn(un(0)) +
1

2
||u̇n(0)||2

+M

∫ t

0
||u̇n(s)||2ds+

1

2
||β||L2

R([0,T ])(1 +

∫ t

0
||u̇n(s)||2ds).
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Then from (iii), the preceding estimate and the Gronwall like inequality (Lemma
3.1), it is immediate that

(3.3.2) sup
n≥1

sup
t∈[0,T ]

||u̇n(t)|| < +∞ and sup
n≥1

sup
t∈[0,T ]

ϕn(un(t)) < +∞.

Step 2 Estimation of ||ün(.)||. As

zn(t) := fn(t)− ün(t)−Au̇n(t) ∈ ∂ϕn(un(t))

by the subdifferential inequality for convex lower semi continuous functions we
have

ϕn(x) ≥ ϕn(un(t)) + 〈x− un(t), zn(t)〉

for all x ∈ Rd. Now let v ∈ BL∞
Rd

([0,T ]), the closed unit ball of L∞Rd [0, T ]). By

taking x = w(t) := x0 + r0v(t) in the preceding inequality we get

ϕn(w(t)) ≥ ϕn(un(t)) + 〈w(t)− un(t), zn(t)〉.

Integrating the preceding inequality gives∫ T

0
〈x0 + r0v(t)− un(t), zn(t)〉dt

=

∫ T

0
〈x0 − un(t), zn(t)〉dt+ r0

∫ T

0
〈v(t), zn(t)〉dt

≤
∫ T

0
ϕn(x0 + r0v(t))dt−

∫ T

0
ϕn(un(t))dt.

Whence follows

(3.3.3) r0

∫ T

0
〈v(t), zn(t)〉dt ≤

∫ T

0
ϕn(x0 + r0v(t))dt

−
∫ T

0
ϕn(un(t))dt−

∫ T

0
〈x0 − un(t), zn(t)〉dt.

We compute the last integral in the preceding inequality. For simplicity, let us set
vn(t) = un(t) − x0 for all t ∈ [0, T ]. By integration by parts and taking account
into (3.3.2) we have

(3.3.4) −
∫ T

0
〈x0 − un(t), zn(t)〉dt = −

∫ T

0
〈vn(t), v̈n(t) +Av̇n(t)〉 − fn(t)〉dt

= −[〈vn(t), v̇n(t) +Avn(t)]T0 +

∫ T

0
〈v̇n(t), v̇n(t) +Avn(t)〉dt+

∫ T

0
〈vn(t), fn(t)〉dt

≤ −〈vn(T ), v̇n(T )〉+ 〈vn(0), v̇n(0)〉 − 〈Avn(T ), vn(T )〉

+〈Avn(0), vn(0)〉+

∫ T

0
||v̇n(t)||2dt+

∫ T

0
〈v̇n(t), Avn(t)〉dt+

∫ T

0
〈vn(t), fn(t)〉dt.
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By (3.3.2)−−(3.3.4), we get

(3.3.5) r0

∫ T

0
〈v(t), zn(t)〉dt ≤

∫ T

0
ϕ∞(x0 + r0v(t))dt+ L

for all v ∈ BL∞
Rd

([0,T ]), here L is a generic positive constant independent of n ∈
N. By (iv) and (3.3.5) we conclude that (zn = fn − ün − Au̇n) is bounded in
L1
Rd([0, T ]), then so is (ün). It turns out that the sequence (u̇n) is uniformly

bounded by using (3.3.2) and is bounded in variation. By Helly theorem, we may
assume that (u̇n) pointwisely converges to a BV function v∞ : [0, T ]→ Rd and the
sequence (un) converges uniformly to an absolutely continuous function u∞ with
u̇∞ = v∞ a.e. At this point, it is clear that (u̇n) converges in L1

Rd([0, T ]) to v∞,
using (3.4.2) and the dominated convergence theorem. Hence (Au̇n(.)) converges
in L1

Rd([0, T ]) to Av∞(.).
Step 3. Young measure limit and biting limit of ün. As (ün) is bounded in
L1
Rd([0, T ]), we may assume that (ün) stably converges to a Young measure ν ∈
Y([0, T ]);Rd) with bar (ν) : t 7→ bar (νt) ∈ L1

Rd([0, T ]) (here bar (νt) denotes
the barycenter of νt). Further by Proposition 3.1, we may assume that (ün)
biting converges to a function ζ∞ : t 7→ bar (νt) that is, there exists a decreasing
sequence of Lebesgue-measurable sets (Bp) with limp λ(Bp) = 0 such that the
restriction of (ün) on each Bc

p converges weakly in L1
Rd([0, T ]) to ζ∞. Noting that

(Au̇n) converges in L1
Rd([0, T ]) to Av∞. It follows that the restriction of (zn =

fn−ün−Au̇n) to each Bc
p weakly converges in L1

Rd([0, T ]) to z∞ := f∞−ζ∞−Av∞,
because (fn) weakly converges in L1

Rd([0, T ]) to f∞, (Au̇n) converges in L1
Rd([0, T ])

to Av∞ and (ün) biting converges to ζ∞ ∈ L1
Rd([0, T ]). It follows that

(3.4.6) lim
n

∫
B
〈−ün−Wn(t), w(t)−un(t)〉 =

∫
B
〈−bar (νt)−W (t), w(t)−u(t)〉dt

for every B ∈ Bc
p ∩ L([0, T ]), and for every w ∈ L∞Rd([0, T ]), where Wn(t) =

Mu̇n(t) − fn(t) and W (t) = Mu̇∞ − f∞. Indeed, we note that (w(t) − un(t)) is
a bounded sequence in L∞Rd([0, 1]) which pointwisely converges to w(t)−u∞(t), it
converges uniformly on every uniformly integrable subset of L1

Rd([0, T ]) by virtue
of a Grothendieck Lemma [26], recalling here that the restriction of −ün −Wn

on each Bc
p is uniformly integrable. Now, since ϕn lower epiconverges to ϕ∞, for

every Lebesgue-measurable set A in [0, T ], by virtue of Corollary 4.7 in [21], we
have

(3.3.7) +∞ > lim inf
n

∫
A
ϕn(un(t))dt ≥

∫
A
ϕ∞(u∞(t))dt

Combining (3.3.2)-(3.3.5)-(3.3.6)-(3.3.7) and using the subdifferential inequality

ϕn(w(t)) ≥ ϕn(un(t)) + 〈−ün(t)−Wn(t), w(t)− un(t)〉
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gives∫
B
ϕ∞(w(t)) dt ≥

∫
B
ϕ∞(u∞(t)) dt+

∫
B
〈−bar (νt)−W (t), w(t)− u∞(t)〉 dt.

This shows that t 7→ −bar (νt) −W (t) is a subgradient at the point u∞ of the
convex integral functional Iϕ∞ restricted to L∞Rd(B

c
p), consequently,

−bar (νt)−W (t) ∈ ∂ϕ∞(u∞(t)), a.e. on Bc
p.

As this inclusion is true on each Bc
p and Bc

p ↑ [0, T ], we conclude that

−bar (νt)−W (t) ∈ ∂ϕ∞(u∞(t)), a.e. on [0, T ].

Step 4. Measure limit inMb
Rd([0, T ]) of ün. As (ün) is bounded in L1

Rd([0, T ]), we

may assume that (ün) weakly converges to the vector measure m ∈ Mb
Rd([0, T ])

so that the limit functions u∞(.) and the limit measure m satisfy the following
variational inequality:∫ T

0
ϕ∞(v(t)) dt ≥

∫ 1

0
ϕ∞(u∞(t)) dt+

∫ 1

0
〈−Au̇∞(t) + f∞(t), v(t)− u∞(t)〉 dt

+ 〈−m, v − u∞〉(Mb
E([0,T ]),CRd ([0,T ])).

In other words, the vector measure −m+ [−Au̇∞ + f∞] dt = −m−W.dt belongs
to the subdifferential ∂Jϕ∞(u∞) of the convex functional integral Jf∞ defined

on CRd([0, T ]) by Jϕ∞(v) =
∫ 1

0 ϕ∞(v(t)) dt, ∀v ∈ CRd([0, T ]). Indeed, let w ∈
CRd([0, T ]). Integrating the subdifferential inequality

ϕn(w(t)) ≥ ϕn(un(t)) + 〈−ün(t)−Wn(t), w(t)− un(t)〉

and noting that ϕ∞(w(t)) ≥ ϕn(w(t)) gives immediately∫ T

0
ϕ∞(w(t))dt ≥

∫ T

0
ϕn(w(t))dt

≥
∫ T

0
ϕn(un(t))dt+ 〈−ün(t)−Wn(t), w(t)− un(t)〉dt

We note that

lim
n

∫ T

0
〈−Wn(t), w(t)− un(t)〉dt =

∫ T

0
〈−W (t), w(t)− u∞(t)〉dt

because (Wn := Au̇n − fn) is uniformly integrable, and weakly converges to
W := Au̇∞ − f∞ and the bounded sequence in w(t)− un(t) pointwise converges
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to w−u∞ so that it converges uniformly on uniformly integrable subsets by virtue
of Grothendieck lemma. Whence follows∫ T

0
ϕ∞(w(t))dt ≥

∫ T

0
ϕ∞(u∞(t))dt+

∫ T

0
〈−W (t), w(t)− u∞(t)〉dt

〈−m,w − u∞〉(Mb
Rd

([0,T ]),CRd ([0,T ]))

which shows that that the vector measure −m − W.dt is a subgradient at the
point u∞ of the of the convex integral functional Jϕ∞ defined on CRd([0, T ])) by

Jϕ∞(v) :=
∫ T

0 ϕ∞(v(t))dt,∀v ∈ CRd([0, T ]).

Step 5. Claim limn ϕn(un(t)) = ϕ∞(u∞(t)) <∞ a.e, and limn

∫ T
0 ϕn(un(t))dt =∫ T

0 ϕ∞(u∞(t))dt < ∞, and subsequently, the energy estimate holds for a.e t ∈
[0, T ]:

ϕ∞(u∞(t)) +
1

2
||u̇∞(t)||2 = ϕ∞(u∞(0)) +

1

2
||u̇∞(0)||2

+

∫ t

0
〈Au̇∞(s), u̇∞(s)〉ds−

∫ t

0
〈u̇∞(s), f∞(s)〉ds

With the above results and notations, applying the subdifferential inequality

ϕn(w(t)) ≥ ϕn(un(t)) + 〈−ün(t)−Wn(t), w(t)− un(t)〉

with w = u∞, integrating on [0, T ], and passing to the limit when n goes to ∞,
gives the inequality∫

B
ϕ∞(u∞(t))dt ≥ lim inf

n

∫
B
ϕn(un(t))dt

≥
∫
B
ϕ∞(u∞(t))dt ≥ lim sup

n

∫
B
ϕn(un(t))dt

on B ∈ Bc
p ∩ L([0, T ]) so that

(3.3.8) lim
n

∫
B
ϕn(un(t))dt =

∫
B
ϕ∞(u∞(t))dt

on B ∈ Bc
p ∩ L([0, T ]). Now, from the chain rule theorem given in Step 1, recall

that

〈u̇n(t), fn(t)〉 − 〈u̇n(t), ün(t)−Au̇n(t)〉 =
d

dt
[ϕn(un(t))]

that is

〈u̇n(t), zn(t)〉 =
d

dt
[ϕn(un(t))].

By the estimate (3.4.2) and the boundedness in L1
Rd([0, T ]) of (zn), it is imme-

diate that ( ddt [ϕn(un(t))]) is bounded in L1
R([0, T ]) so that (ϕn(un(.)) is bounded
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in variation. By Helly theorem, we may assume that (ϕn(un(.)) pointwisely con-
verges to a BV function ψ. By (3.4.2), (ϕn(un(.)) converges in L1

R([0, T ]) to ψ. In
particular, for every k ∈ L∞R+([0, T ]) we have

(3.3.9) lim
n→∞

∫ T

0
k(t)ϕn(un(t))dt =

∫ T

0
k(t)ψ(t)dt.

Combining (3.3.8)–(3.3.9) yields∫
B
ψ(t) dt = lim

n→∞

∫
B
ϕn(un(t)) dt =

∫
B
ϕ∞(u∞(t)) dt

for all ∈ Bc
p ∩ L([0, T ]). As this inclusion is true on each Bc

p and Bc
p ↑ [0, T ], we

conclude that
ψ(t) = lim

n
ϕn(un(t)) = ϕ∞(u∞(t)) a.e.

Hence we get limn ϕn(un(t)) = ϕ∞(u∞(t)) a.e. Subsequently, using (iii) the pas-
sage to the limit when n goes to ∞ in the equation

ϕn(un(t)) +
1

2
||u̇n(t)||2 = ϕn(un(0)) +

1

2
||u̇n(0)||2

−
∫ t

0
〈Au̇n(s), u̇n(s)〉ds+

∫ t

0
〈u̇n(s), fn(s)〉ds

yields for a.e t ∈ [0, T ]

ϕ∞(u∞(t)) +
1

2
||u̇∞(t)||2 = ϕ∞(u∞0 ) +

1

2
||u̇∞0 ||2

−
∫ t

0
〈Au̇∞(s), u̇∞(s)〉ds+

∫ t

0
〈u̇∞(s), f∞(s)〉ds

By noting that (fn) is uniformly integrable and u̇n is uniformly bounded and
pointwise converges to u̇∞, by virtue of Grothendieck lemma [26], it converges uni-
formly on uniformly integrable (= relatively weakly compact) subsets of L1

Rd([0, T ]),
so that

lim
n

∫ t

0
〈u̇n(s), fn(s)〉ds =

∫ t

0
〈u̇∞(s), f∞(s)〉ds.

Step 6. Localization of further limits and final step.
As (zn = fn − ün − Au̇n) is bounded in L1

Rd([0, T ]) in view of Step 3, it is
relatively compact in the second dual L∞Rd([0, T ])′ of L1

Rd([0, T ]) endowed with the
weak topology σ(L∞Rd([0, T ])′, L∞Rd([0, T ])). Furthermore, (zn) can be viewed as a
bounded sequence in CRd([0, T ])′. Hence there are a filter U finer than the Fréchet
filter, l ∈ L∞Rd([0, T ])′ and n ∈ CRd([0, T ])′ such that

(3.3.10) U − lim
n
zn = l ∈ L∞Rd([0, T ])′weak
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and

(3.3.11) lim
n
zn = n ∈ CRd([0, T ])′weak

where L∞Rd([0, T ])′weak is the second dual of L1
Rd([0, T ]) endowed with the topol-

ogy σ(L∞Rd([0, T ])′, L∞Rd([0, T ])) and CRd([0, T ])′weak denotes the space CRd([0, T ])′

endowed with the weak topology σ(CRd([0, T ])′, CRd([0, T ])), because CRd([0, T ]) is
a separable Banach space for the norm sup, so that we may assume by extracting
subsequences that (zn) weakly converges to n ∈ CRd([0, T ])′. Using Step 4, we
note that n = −m −W.dt = −m − (Au̇∞ − f∞).dt. Let la be the density of the
absolutely continuous part la of l in the decomposition l = la + ls in absolutely
continuous part la and singular part ls, in the sense there is an decreasing sequence
(An) of Lebesgue measurable sets in [0, T ] with An ↓ ∅ such that ls(h) = ls(1Anh)
for all h ∈ L∞Rd([0, T ]) and for all n ≥ 1. As (zn = fn− ün−Au̇n) biting converges
to z∞ = f∞− ζ∞(t)−Au̇∞ in Step 4, it is already seen (cf. Proposition 3.1) that

la(h) =

∫ T

0
〈h(t), f∞ − ζ∞(t)−Mu̇∞(t)〉dt

for all h ∈ L∞Rd([0, T ]), shortly z∞ = f∞ − ζ∞(t) − Au̇∞ coincides a.e. with the
density of the absolutely continuous part la. By ([24], [39]) we have

I∗ϕ∞(l) = Iϕ∗∞(f∞ − ζ∞ −Au̇∞) + δ∗(ls, domIϕ∞)

here ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ is the integral functional defined on L1
Rd([0, T ])

associated with ϕ∗∞, I∗ϕ∞ is the conjugate of the integral functional Iϕ∞ and

domIϕ∞ := {u ∈ L∞Rd([0, T ]) : Iϕ∞(u) <∞}.

Using the inclusion

z∞ = f∞ − ζ∞ −Au̇∞ ∈ ∂Iϕ∞(u∞).

that is

Iϕ∗∞(f∞ − ζ∞ −Au̇∞) = 〈f∞ − ζ∞ −Au̇∞, u∞〉 − Iϕ∞(u∞)

we see that

I∗ϕ∞(l) = 〈f∞ − ζ∞ −Au̇∞, u∞〉 − Iϕ∞(u∞) + δ∗(ls, domIϕ∞).

Coming back to the inclusion zn(t) ∈ ∂ϕn(un(t)), we have

ϕn(x) ≥ ϕn(un(t)) + 〈x− un(t), zn(t)〉
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for all x ∈ Rd. By substituting x by h(t) in this inequality, here h ∈ L∞Rd([0, T ]),
and by integrating∫ T

0
ϕn(h(t)) dt ≥

∫ T

0
ϕn(un(t)) dt+

∫ T

0
〈h(t)− un(t), zn(t)〉 dt.

Arguing as in Step 4 by passing to the limit in the preceding inequality, in-
volving the epiliminf property for integral functionals

∫ T
0 ϕn(h(t))dt defined on

L∞Rd([0, T ]), it is easy to see that∫ T

0
ϕ∞(h(t)) dt ≥

∫ T

0
ϕ∞(u∞(t)) dt+ 〈h− u∞, n〉.

Since this holds, in particular, when h ∈ CRd([0, T ]), we conclude that n belongs
to the subdifferential ∂Jϕ∞(u∞) of the convex lower semicontinuous integral func-
tional Jϕ∞ defined on CRd([0, T ])

Jϕ∞(u) :=

∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ CRd([0, T ]).

Now let B : CRd([0, T ]) → L∞Rd([0, T ]) be the continuous injection and let
B∗ : L∞Rd([0, T ])′ → CRd([0, T ])′ be the adjoint of B given by

〈B∗l, h〉 = 〈l, Bh〉 = 〈l, h〉, ∀l ∈ L∞Rd([0, T ])′, ∀h ∈ CRd([0, T ]).

Then we have B∗l = B∗la + B∗ls, l ∈ L∞Rd([0, T ])′ being the limit of (zn =
fn − ün − Au̇n) under the filter U given in section 4 and l = la + ls being the
decomposition of l in absolutely continuous part la and singular part ls. It follows
that

〈B∗l, h〉 = 〈B∗la, h〉+ 〈B∗ls, h〉 = 〈la, h〉+ 〈ls, h〉

for all h ∈ CRd([0, T ]). But it is already seen that

〈la, h〉 = 〈f∞ − ζ∞ −Au̇∞, h〉

=

∫ T

0
〈f∞(t)− ζ∞(t)−Au̇∞(t), h(t)〉dt, ∀h ∈ L∞Rd([0, T ])

so that the measure B∗la is absolutely continuous

〈B∗la, h〉 =

∫ T

0
〈f∞ − ζ∞(t)−Au̇∞(t), h(t)〉dt, ∀h ∈ CRd([0, T ])

and its density f∞ − ζ∞ −Au̇∞ satisfies the inclusion

f∞(t)− ζ∞(t)−Au̇∞(t) ∈ ∂ϕ∞(u∞(t)), a.e..
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and the singular part B∗ls satisfies the equation

〈B∗ls, h〉 = 〈ls, h〉, ∀h ∈ CRd([0, T ]).

As B∗l = n, using (3.3.10)–(3.3.11), it turns out that n is the sum of the absolutely
continuous measure na with

〈na, h〉 =

∫ T

0
〈f∞ − ζ∞(t)−Au̇∞(t), h(t)〉dt, ∀h ∈ CRd([0, T ])

and the singular part ns given by

〈ns, h〉 = 〈ls, h〉, ∀h ∈ CRd([0, T ]).

which satisfies the property: for any nonnegative measure θ on [0, T ] with respect
to which ns is absolutely continuous∫ T

0
hϕ∗∞(

dns
dθ

(t))dθ(t) =

∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)

here hϕ∗∞ denotes the recession function of ϕ∗∞. Indeed, as n belongs to ∂Jϕ∞(u∞)
by applying Theorem 5 in [39] we have

(3.3.12) J∗ϕ∞(n) = Iϕ∗∞(
dna
dt

) +

∫ T

0
hϕ∗∞(

dns
dθ

(t))dθ(t)

with

Iϕ∗∞(v) :=

∫ T

0
ϕ∗∞(v(t))dt,∀v ∈ L1

Rd([0, T ]).

Recall that
dna
dt

= f∞ − ζ∞ −Au̇∞ ∈ ∂Iϕ∞(u∞)

that is

(3.3.13) Iϕ∗∞(
dna
dt

) = 〈f∞ − ζ∞ −Au̇∞, u∞〉〈L1
Rd

([0,T ]),L∞
Rd

([0,T ])〉 − Iϕ∞(u∞)

From (3.3.13) we deduce

J∗ϕ∞(n) = 〈u∞,n〉〈CRd ([0,T ]),CRd ([0,T ])′〉 − Jϕ∞(u∞)

= 〈u∞,n〉〈CRd ([0,T ]),CRd ([0,T ])′〉 − Iϕ∞(u∞)

=

∫ T

0
〈u∞(t), f∞(t)− ζ∞(t)−Au̇∞(t)〉dt

+

∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)− Iϕ∞(u∞)

= Iϕ∗∞(
dna
dt

) +

∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)).
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Coming back to (3.3.12) we get the equality∫ T

0
hϕ∗∞(

dns
dθ

(t))dθ(t) =

∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)).
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