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Abstract

We are concerned in the present work with the existence and uniqueness
of absolutely continuous solutions to a class of evolution problems governed
by time-dependent subdifferential operators of the form

f(t) +Bu(t)−Adu
dt

(t) ∈ ∂ϕ(t,
du

dt
(t))

with various applications.

1 Introduction

In this work we are concerned with the existence and uniqueness of absolutely
continuous solution to an evolution inclusion in a separable Hilbert space H in
the form

f(t) +Bu(t)−Adu
dt

(t) ∈ ∂ϕ(t,
du

dt
(t)), t ∈ [0, T ]. (1.1)

Above f : [0, T ] → H is a continuous mapping, B : H → H is an operator, A :
H → H is a linear continuous coercive and symmetric operator, ϕ : [0, T ]×H →
]−∞,+∞] is a normal lower semicontinuous convex integrand, and ∂ϕ(t, .) is the
subdifferential of ϕ(t, .). Problem (1.1) is interpreted as an evolution variational
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inequality (EVI) with the velocity inside the subdifferential. Generally, the model
for parabolic evolution inclusion is a differential inclusion of the form

B(t, u(t)) ∈ du
dt

(t) +A(t)u(t) + ∂ϕ(t, u(t)), t ∈ [0, T ], (1.2)

where A(t) is a time dependent maximal monotone operator, B(t, u) defined for
(t, u) ∈ [0, T ]×H is Lipschitz with respect to u. Then the existence and uniqueness
of absolutely continuous solution to (1.2) is known in some particular cases in the
literature, see e.g [4, 16] and Barbu and Rascanu in [6] dealing with existence
of generalized solutions for parabolic variational inequalities with singular inputs
and operators of the form

f(t) +
dM

dt
(t) ∈ du

dt
(t) +Au(t) + ∂ϕ(u(t)),

where A is a linear coercive operator and ϕ is a lower semicontinuous convex
function. There is an increasing activity around problem (1.2) since it contains
several new applications such as sweeping process, relaxed problem and Skorohod
problem etc. In this framework, problem (1.1) constitutes a new variational evolu-
tion inequality with the velocity inside the subdifferential in constrast to problem
(1.2). Likewise problem (1.2), the study of (1.1) leads to several applications
in a new setting such as the sweeping process, Skorohod problem, second order
evolution and fractional differential equation [16]. Although (1.1) deals with the
deterministic case, it is a step towards the Skorohod problem in the stochastic set-
ting, see the recent articles by Castaing-Raynaud de Fitte [15, 17], Rascanu [31],
and L.Maticiuc, A. Rascanu, L. Slominski and M.Topolewski [22] for references
on this stochastic subject. Let us mention the current situation of problem (1.1)
in the literature. In [16] it was dealt with the existence of absolutely continuous
solutions to variational evolution inequalities in separable Hilbert space H of the
forms

f(t)−Au(t) ∈ ∂ϕ(t,
du

dt
(t)) (1.3)

f(t)−Au(t) ∈ NC(t)(
du

dt
(t)), (1.4)

where f : [0, T ]→ H is a continuous mapping, A : H → H is a linear continuous
coercive symmetric operator, ϕ : [0, T ] × H →] − ∞,+∞] is a normal convex
integrand, and NC(t)(x) denotes the normal cone to a closed convex moving set
C(t) ⊂ H. Some related variants of problem (1.4) dealing with two positive
operators A and B are given in a series of papers by Adly et al [1, 2, 3]. We note
that there is a new variant of problem (1.1) in a recent work by Bacho, Emmrich
and Mielke [7] dealing with the following inclusion

B(t, u(t)) ∈ ∂ϕ(t,
du

dt
(t))
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or more generally with two subdifferentials, namely

B(t, u(t)) ∈ ∂ϕ(t,
du

dt
(t)) + ∂ψ(t,

du

dt
(t)),

where B is a continuous mapping. In Mielke’s paper, in order to solve the problem,
it is proposed an algorithm due to De Giorgi combined with regularization of
subdifferentials. Consult also a recent article by Migorski, Sofonea and Zeng [24]
dealing with the inclusion of the form

−du
dt

(t) ∈ NC(t)(A
du

dt
(t) +Bu(t))

where B : H → H is Lipschitz continuous. Note that in [24] B is not assumed to
be a positive operator in contrast to the results obtained by Adly et al [1, 2, 3].

Our aim in the present paper is to develop several variants of problem (1.1)
along with diverse applications via some related variational limits.

2 Preliminaries

Throughout the paper, H is a real separable Hilbert space.
If I is an interval of R the spaces L1

H(I) and L∞H (I) denote the usual spaces
with respect the Lebesgue measure endowed with their canonical norms ‖ · ‖1 and
‖ · ‖∞ respectively. For any subset Q ⊂ I the function 1Q is defined by 1Q(t) = 1
if t ∈ Q and 1Q(t) = 0 otherwise.

Given a convex function ϕ : H → R ∪ {−∞,+∞}, its effective domain domϕ
is given by

domϕ := {x ∈ H : ϕ(x) < +∞},

so the function ϕ is proper whenever domϕ 6= ∅ and ϕ does not take the value
−∞. At any x ∈ H where ϕ is finite its subdifferential ∂ϕ(x) is defined by

∂ϕ(x) := {ζ ∈ H : 〈ζ, y − x〉 − ϕ(x) ≤ ϕ(y), ∀y ∈ H.

If f(x) is not finite ∂ϕ(x) = ∅. Considering the Legendre-Fenchel conjugate
ϕ∗ : H → R ∪ {−∞,+∞} with

ϕ∗(y) := sup{〈y, x〉 − f(x) : x ∈ H},

it is known that, when ϕ is a proper lower semicontinuous convex function, ϕ∗ is
also proper lower semicontinuous and

y ∈ ∂ϕ(x) ⇔ 〈y, x〉 = ϕ(x) + ϕ∗(y).

Given a nonempty closed convex subset S of H, its indicator function δ(·, S) :
H → R ∪ {+∞} is defined by δ(X,S) = 0 if x ∈ S and δ(x, S) = +∞ if x ∈
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H \ S. Clearly, δ(·, S) is a proper lower semicontinuous convex function. Its
subdifferential is called the normal cone of S, and obviously

NS(x) = {ζ ∈ H : 〈ζ, y − x〉 ≤ 0, ∀y ∈ S} if x ∈ S (2.1)

and NS(x) = ∅ if x ∈ H \ S. The Legendre-Fenchel conjugate δ∗(·, S) : H →
R ∪ {+∞} is the support function of S, so

δ∗(y, S) = sup
x∈S
〈y, x〉 for all y ∈ H.

If S, S′ are both nonempty closed bounded convex sets of H, the Hausdorff dis-
tance between S and S′ can be defined by

haus (S, S′) = sup
x∈H
|dS(x)− dS′(x)|,

and it is known that (see, e.g., *****)

haus (S, S′) = sup
‖u‖≤1

|δ∗(u, S)− δ∗(u, S′)|, (2.2)

which entails

|δ∗(y, S)− δ∗(y, S′)| ≤ |y‖ haus(S, S′) for all y ∈ H. (2.3)

We recall and summarize two useful results, see for example [5, Corollary 2.9,
Corollary 2.10]. Remind that a linear operator A : H → H is coercive if there is
a real ω > 0 such that

〈Ax, x〉 ≥ ω ‖x‖2 for all x ∈ H. (2.4)

Proposition 2.1. Let A : H → H be a linear continuous and coercive operator.
(a) If ϕ : H → [0,∞] is a proper lower semicontinuous convex function, then for
each f ∈ H the problem f ∈ Ay + ∂ϕ(y) admits a unique solution y.
(b) If K is a closed convex subset in H, then for each f ∈ H the problem f ∈
Ay +NK(y) admits a unique solution y.

3 Preparatory variational limit theorems

Proposition 3.1. Let H be a separable Hilbert space and I = [0, T ]. Let C :
I ⇒ H be a closed convex valued scalarly measurable multimapping for which
there is some real r > 0 such that C(t) ⊂ rBH for all t ∈ I. Let A be a linear
continuous coercive symmetric operator on H and let B be a linear continuous
compact operator on H. Let (θn)n∈N be a sequence of measurable functions from
I into I such that for each t ∈ I one has θn(t)→ t and haus

(
C(θn(t)), C(t)

)
→ 0

as n→∞.
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Let (fn, f)n∈N be a bounded sequence in L∞H (I) with ||fn(t)|| ≤ β, ||f(t)|| ≤ β
(β > 0) for all n ∈ N such that fn(t) converges to f(t) for each t ∈ [0, T ].
Let (vn, v)n∈N be a bounded sequence in L∞H (I) with ||vn(t)|| ≤ γ, ||v(t)|| ≤ γ
(γ > 0) for all n ∈ N such that (vn(t))n converges weakly to v(t) for each t ∈ I.
Let (ζn)n∈N be an integrable sequence in L1

H(I) such that ζn(t) ∈ C(θn(t)) for all
t ∈ I and such that (ζn)n∈N σ(L1

H , L
∞
H ) converges in L1

H(I) to ζ. Assume that

fn(t) +Bvn(t)−Aζn(t) ∈ NC(θn(t))(ζn(t)) for all n ∈ N, a.e. t ∈ I.

Then for a.e. t ∈ I one has

ζ(t) ∈ C(t) and f(t) +Bv(t)−Aζ(t) ∈ NC(t)(ζ(t)).

Proof. We first verify that u(t) ∈ C(t) a.e.t ∈ I. Indeed, for every measurable set
Z ⊂ I and for any x ∈ H, the function 1Zx ∈ L∞H . By the inequality

〈x, ζn(t)〉 ≤ δ∗(x,C(θn(t)))

integrating on Z gives∫
I
〈1Zx, ζn(t), 〉dt =

∫
Z
〈x, u̇n(t)〉dt ≤

∫
Z
δ∗(x,C(θn(t)))dt.

Passing to the upper limit in this inequality we obtain∫
Z
〈1Zx, u̇(t)〉dt ≤ lim sup

n

∫
Z
δ∗(x,C(θn(t)))dt

≤
∫
Z

lim sup
n

δ∗(x,C(θn(t))) ≤
∫
Z
δ∗(x,C(t))dt.

This being true for any Lebesgue measurable set Z ⊂ I we deduce that for every
x ∈ H

〈x, u̇(t)〉 ≤ δ∗(x,C(t)) a.e.t ∈ I.

By the separability of H and the weak compactness and convexity of C(t) (see,
e.g., Castaing-Valadier [19, Proposition III- 35]), we get the desired inclusion
u̇(t) ∈ C(t) a.e. t ∈ I

For each t ∈ I keeping in mind that vn(t) → v(t) weakly in H and B is a
linear continuous compact operator, we see that Bvn(t))→ Bu(t) strongly in H,
so that Bvn(.)) → Bv(.) weakly in L1

H(I). Indeed, let any h ∈ L∞H (I). Then we
have∣∣∣∣∫ T

0
〈h(t), Bvn(t)〉dt−

∫ T

0
〈h(t), Bv(t)〉dt

∣∣∣∣ ≤ ∫ T

0
|〈h(t), Bvn(t)−Bv(t)〉|dt

≤ |h|∞
∫ T

0
||Bvn(t)−Bu(t)||dt.
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As
∫ T

0 ‖Bun(δn(t)) − Bu(t)‖dt → 0 as n → ∞ (by Lebesgue dominated conver-
gence theorem), our assertion follows. Similarly as A is symmetric, we note that
Aζ̇n → Aζ̇ weakly in L1

H(I). As a main consequence fn+Bvn−Aζn → f+Bu−Aζ
weakly in L1

H(I). Then given any Lebesgue measurable subset Z ⊂ I we may ap-
ply the lower semicontinuity of integral convex functional ([18], Theorem 8.1.16)
to deduce that∫
Z
δ∗(f(t)+Bv(t)−Aζ(t), C(t))dt ≤ lim inf

n

∫
Z
δ∗(fn(t)+Bvn(t)−Aζn(t), C(t))dt.

(3.1)
This need a careful look. Indeed, we note that (t, x) 7→ δ∗(x,C(t)) is a nor-
mal lower semicontinuous convex integrand defined on [0, T ]×H and δ∗(fn(t) +
Bun(δn(t)) − Au̇n(t), C(t)) is measurable and integrable since taking some real
constant α with ‖fn(t) +Bvn(t)−Aζn(t)‖ ≤ α for all n ∈ N and t ∈ I we have

|δ∗(fn(t) +Bvn(t)−Aζn(t), C(t))| ≤ ρ(t)‖fn(t) +Bvn(t)−Aζn(t)‖ ≤ αr.

Furthermore

δ∗(fn(t) +Bvn(t)−Aζn(t), C(t)) ≥ 〈fn(t) +Bvn(t)−Aζn(t), u(t)〉

where u(t) is a measurable selection of C(·). Write

|δ∗(fn(t) +Bvn(t)−Aζn(t), C(t))− δ∗(fn(t) +Bvn(t)−Aζn(t), C(θn(t)))|
≤ ‖fn(t) +Bvn(t)−Aζn(t))‖haus

(
C(t), C(θn(t))

)
≤ α haus

(
C(t), C(θn(t))

)
,

so that

lim inf
n

∫
Z
δ∗(fn(t) +Bvn(t)−Aζn(t), C(θn(t)))dt

≥ lim inf
n

∫
Z
δ∗(fn(t) +Bvn(t)−Aζn(t), C(t))dt

≥
∫
Z
δ∗(f(t) +Bv(t)−Aζ(t), C(t))dt. (3.2)

Let us set ψA(x) = 〈Ax, x〉 if x ∈ rBH and ψA(x) = +∞ if x /∈ r(t)BH . Then
it is clear ψ is a positive lower semicontinuous convex integrand. Apply again
the lower semicontinuity of the integral convex functional ([18], Theorem 8.1.6)
associated with the positive normal convex integrand ψA we obtain

lim inf
n

∫
Z
ψA(ζn(t))dt ≥

∫
Z
ψA(ζ(t))dt,

that is,

lim inf
n

∫
Z
〈Aζn(t), ζn(t))dt ≥

∫
Z
〈Aζ(t), ζ(t)dt. (3.3)
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Since we already saw that Bvn(t) → Bv(t) strongly in H for each t ∈ I, we also
have

lim
n

∫
Z
〈Bvn(t), ζn(t)〉dt =

∫
Z
〈Bv(t), ζ(t)〉dt. (3.4)

Similarly we have

lim
n

∫
Z
〈fn(t), ζn(t)〉dt =

∫
Z
〈f(t), ζ(t)〉dt (3.5)

because fn is uniformly bounded and pointwise strongly converge to f and ζn → ζ
weakly in L1

H(I) by noting that a bounded sequence is L∞H (I) which pointwise
converges to 0, converges to 0 uniformly on any uniformly integrable subset of
L1
H([0, T ]), in other terms it converges to 0 with respect to the Mackey topology

τ(L∞H (I), L1
H(i)) (see[9]).1 Now integrating on Z ⊂ [0, T ] the inequality ( here

measurability and integrability are guaranted)

δ∗(fn(t) +Bvn(t)−Aζn(t), C(θn(t)))

+〈−fn(t)−Bvn(t), ζn(t)〉+ 〈Aζn(t), ζn(t)〉 ≤ 0

gives ∫
Z
δ∗(fn(t) +Bvn(t)−Aζn(t), C(θn(t)))dt

+

∫
Z
〈Avn(t), ζn(t)〉dt+

∫
Z
〈−fn(t)−Bvn(t), ζn(t)〉dt ≤ 0, (3.6)

so passing to the limit as n→∞ in this equality and using (3.1)—(3.6) yield∫
Z

[
δ∗(f(t) +Bv(t)−Aζ(t), C(t)) + 〈Aζ(t)−Bv(t)− f(t), ζ(t)〉

]
dt ≤ 0.

As t 7→ δ∗(f(t) +Bv(t)−Aζ(t), C(t)) + 〈Aζ(t)−Bv(t)− f(t), ζ(t)〉 is integrable
and as the latter inequality holds true for any Lebesgue measurable set Z ⊂ I, it
follows that for a.e. t ∈ I

δ∗(f(t) +Bv(t)−Aζ(t), C(t)) + 〈Aζ(t)−Bv(t)− f(t), ζ(t)〉 ≤ 0.

This and the inclusion ζ(t) ∈ C(t) a.e. t ∈ I allow is to conclude that

f(t) +Bv(t)−Aζ(t)) ∈ NC(t)(ζ(t)) a.e. t ∈ I

according to the definition of the normal cone.

1If H = Re, one may invoke a classical fact that on bounded subsets of L∞H the topology
of convergence in measure coincides with the topology of uniform convergence on uniformly
integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a
lemma due to Grothendieck [21] [Ch.5 §4 no 1 Prop. 1 and exercice]
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An easy adaptation of the arguments in the above proposition furnishes the
following variant.

Proposition 3.2. Let H be a separable Hilbert space and I = [0, T ]. Let C : I ⇒
H be a closed convex valued scalarly measurable multimapping for which there is
some real r > 0 such that C(t) ⊂ rBH for all t ∈ I. Let A be a linear continuous
coercive symmetric operator on H and let B : H → H be a Lipschitz mapping.
Let (θn)n∈N be a sequence of measurable functions from I into I such that for each
t ∈ I one has θn(t)→ t and haus

(
C(θn(t)), C(t)

)
→ 0 as n→∞.

Let (fn, f)n∈N be a bounded sequence in L∞H (I) with ||fn(t)|| ≤ β, ||f(t)|| ≤ β
(β > 0) for all n ∈ N such that fn(t) converges to f(t) for each t ∈ [0, T ].
Let (vn, v)n∈N be a bounded sequence in L∞H (I) with ||vn(t)|| ≤ γ, ||v(t)|| ≤ γ
(γ > 0) for all n ∈ N such that (vn(t))n converges to v(t) for each t ∈ I. Let
(ζn)n∈N be an integrable sequence in L1

H(I) such that ζn(t) ∈ C(θn(t)) for all t ∈ I
and such that (ζn)n∈N σ(L1

H , L
∞
H ) converges in L1

H(I) to ζ. Assume that

fn(t) +Bvn(t)−Aζn(t) ∈ NC(θn(t))(ζn(t)) for all n ∈ N, t ∈ I.

Then for a.e. t ∈ I one has

ζ(t) ∈ C(t) and f(t) +Bv(t)−Azeta(t) ∈ NC(t)(ζ(t)).

Another variant of Proposition 3.1 is available by assuming that C is compact
valued and the operator B is a Lipschitz mapping: ||Bx − By|| ≤ M |Lx − y||.
These results convex related to the evolution variational inequality of the form
f(t) + Bv(t) − Au(t) ∈ NC(t)(u(t)) a.e t stated in Theorem 4.1 and Theorem
4.3. The following result is a stability result related to the evolution variational
inequality of the form f(t) + ∇g(u(t)) − Au̇(t) ∈ NC(t)(u̇(t)) here ∇g is a spe-
cific gradient of a convex continuous Gateaux differentiable such that g(v(t)) is
absolutely continuous for v : [0, T ]→ H absolutely continuous. There is no confu-
sion with the linear compact operator B considered in Theorem 1.1 and Lipschitz
operator B considered in Theorem 1.2.

Proposition 3.3. H = Re. Let C : [0, T ] → H be a convex compact valued
measurable mapping such that C(t) ⊂ r(t)BH , for all t ∈ [0, T ] for some r ∈
L1
R+([0, T ]). Let A be linear continuous coercive symmetric operator on H and

B = ∇g where ∇g is the gradient of a convex continuous Gateaux differentiable
function g : H → R+ such that g(v(t)) is absolutely continuous for v : [0, T ]→ H
absolutely continuous.
Let (fn, f)n∈N be a bounded sequence in L∞H ([0, T ]) with ||fn(t)|| ≤ β, ||f(t)|| ≤ β
(β > 0) for all n ∈ N such that fn(t) pointwise converges to f(t) for each t ∈ [0, T ].
Let (un, u)n∈N be a sequence of absolutely continuous mappings

un(t) = u0 +

∫ t

0
u̇n(s)ds, u̇n(t) ∈ C(t)
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u(t) = u0 +

∫ t

0
u̇(s)ds, u̇(t) ∈ C(t)

such that un(t) → u(t) uniformly in H and u̇n → u̇ weakly in L1
H [0, T ]. Assume

that fn(t) +∇g(un(t))−Au̇n(t) ∈ NC(t)(u̇n(t)) for all n ∈ N and for all t ∈ [0, T ],
then f(t) +∇g(u(t))−Au̇(t) ∈ NC(t)(u̇(t)) a.e.

Proof. Note that fn are uniformly bounded and pointwise converges to f(t) then
we have

(2.2.1) lim
n

∫
Z
〈fn, u̇n〉dt =

∫
Z
〈f, u̇〉dt

for every measurable set Z ⊂ [0, T ]. By integrating on Z (we are ensured that
the functions given are measurable) the inequality

δ∗(fn(t) +∇g(un(t))−Au̇n(t), Cn(t)) + 〈Au̇n(t)−∇g(un(t))− fn, u̇n(t)〉 ≤ 0

we get
(2.2.2)∫
Z
δ∗(fn(t)+∇g(un(t))−Au̇n(t), Cn(t))dt+

∫
Z
〈Au̇n−fn, u̇n(t)〉dt−

∫
Z
〈∇g(un(t)), u̇n(t)〉dt ≤ 0.

Set gn(t) = fn(t) +∇g(un(t))−Au̇n(t). We claim that Aun(t)→ Au(t) weakly in
L1
H([0, T ]) and ∇g(un(t)) → ∇g(u̇(t)) weakly in L1

H([0, T ]).So gn(t) = fn(t) +
∇g(un(t)) − Au̇n(t) → g(t) := f(t) + ∇g(u(t)) − Au̇(t weakly in L1

H([0, T ]).
Indeed, as un(t) → u(t) pointwise, 〈x,Aun(t)〉 → 〈x,Au(t)〉. As consequence,
for any h ∈ L∞H ([0, T ]), we have 〈h(t), Aun(t)〉 → 〈h(t), Au(t)〉 pointwise. But
then the uniformly bounded sequence of bounded measurable functions (〈h,Aun〉)
pointwise converge to the bounded measurable function 〈h,Au〉. As consequence,
〈h,Aun〉 → 〈h,Au〉 weakly in L1

R([0, T ]. This shows that Aun → Au weakly in
L1
H([0, T ]). Similarly we show that ∇g(un(t)) → ∇g(u(t)) weakly in L1

H([0, T ]).
Now we have to consider the term 〈∇g(un(t), u̇n(t)〉 by using the special prop-
erty of ∇g. In fact un is absolutely continuous with derivative u̇n and g(un) is
absolutely continuous, so that by Moreau-Valadier [28],

〈∇g(un(t)), u̇n(t)〉 =
d

dt
g(un(t))

From this fact, it is easy to deduce that

lim inf
n

∫ T

0
〈∇g(un(t)), u̇n(t)〉dt = lim inf

n

∫ T

0

d

dt
g(un(t))〉dt

(2.2.3) = lim inf
n

(g(un(T )− un(0)) ≥ g(u(T )− u(0)) =

∫ T

0

d

dt
g(u(t))〉dt
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=

∫ T

0
〈∇g(u(t)), u̇(t)〉dt

Let us set ϕ(t, x) = 〈Ax, x〉 if x ∈ K and ϕ(t, x) = +∞ if x /∈ K. Then it is clear
ϕ is a positive lower semicontinuous convex normal integrand. By the lower semi-
continuity of the integral convex functional ([18], Theorem 8.1.6) associated with
the positive normal convex integrand ϕ we obtain, for every Lebesgue measurable
set Z ⊂ [0, T ]

lim inf
n

∫
Z
ϕ(t, u̇n(t))dt ≥

∫
Z
ϕ(t, u̇(t))dt

that is

(2.2.4) lim inf
n

∫
Z
〈Au̇n(t), u̇n(t)〉dt ≥

∫
Z
〈Au̇(t), u̇(t)〉dt

To finish the proof we apply the lower semicontinuity of the integral convex
functional ([18], Theorem 8.1.6) associated with the normal convex integrand
(t, x) 7→ δ∗(x,C(t)) by noting that
(j) δ∗(gn(t), C(t)) is minored by 〈h(t), gn(t)〉; with h ∈ S∞C .
(jj) the minored sequence 〈gn(t), h(t)〉 is uniformly integrable.
Then we are ensured by the lower semicontinuity of the integral convex functional
theorem ([18], Theorem 8.1.6)

(2.2.5) lim inf
n

∫
Z
δ∗(gn(t), C(t))dt ≥

∫
Z
δ∗(g(t), C(t))dt

By combining (2.2.3)−−(2.2.5) we get∫ T

0
δ∗(f(t)+∇g(u(t))−Au̇(t), C(t))dt+

∫ T

0
〈−f(t)+∇g(u(t))+Au̇(t), u̇(t)〉dt ≤ 0

But since u̇(t) ∈ C(t) a.e. we have

δ∗(f(t) +∇g(u(t))−Au̇(t), C(t)) ≥ 〈f(t) +∇g(u(t))−Au̇(t), u̇(t)〉

a.e. that implies∫ T

0
[δ∗(f(t) +∇g(u(t))−Au̇(t), C(t)) + 〈−f(t)−∇g(u(t)) +Au̇(t), u̇(t)]dt = 0

so we conclude that

δ∗(f(t) +∇g(u(t))−Au̇(t), C(t)) = 〈f(t) +∇g(u(t))−Au̇(t), u̇(t)

a.e. with u̇(t) ∈ C(t) a.e., just proving that f(t) +∇g(u(t))−Au̇(t) ∈ NC(t)(u̇(t))
a.e.
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4 Well-posedness of inclusion (1.1)

Our main proofs in this section are build upon the variational inequalities in
Proposition 2.1 and the variational limits in Section 3 as well as upon an ex-
plicit catching-up algorithm (alias Moreau’s algorithm). We stress the fact that
our algorithm and tools are self contained apart from the use of the mentioned
variational inequalities.

Theorem 4.1. Let f : [0, T ] → H be a continuous mapping and let v : [0, T ] →
R+ be a positive nondecreasing continuous function with v(0) = 0. Let C : [0, T ]→
H be a weakly compact convex valued multimapping such that

haus (C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ [0, T ].

Let A : H → H be a linear continuous coercive symmetric operator and let B :
H → H be a linear continuous compact operator. Then, for any u0 ∈ H, the
evolution inclusion {

f(t) +Bu(t)−Au̇(t) ∈ NC(t)(
du
dt (t))

u(0) = u0

admits a unique W 1,∞
H ([0, T ]) solution u : [0, T ]→ H. Further, one has ‖u̇(t)‖ ≤

ρ, where ρ := sup{‖y‖ : y ∈ C([0, T ])}.

Proof. Put I := [0, T ] and denote β := max{‖f(t)‖ : t ∈ I} (by continuity of
f). Noticing that the multimapping C(·) is upper semicontinuous from I into
H endowed with the weak topology, the set C(I) is weakly compact, and hence
ρ := sup{‖y‖ : y ∈ C(I)} is finite and L := ρBH is weakly compact and convex.

Step I. Construction of a sequence (un)n
We will use the Moreau ’s catching-up algorithm [26]. We consider for each n ∈ N
the following partition of the interval ]0, T ] given by

tni = i
T

n
:= iηn for 0 ≤ i ≤ n, Ini :=]tni , t

n
i+1] for 0 ≤ i ≤ n− 1.

Put un0 = u0 and fni = f(tni ) for all i = 1, .., n. By Proposition 2.1(b), there is
zn1 ∈ C(tn1 ) ⊂ L such that

fn1 +Bun0 −Azn1 ∈ NC(tn1 )(z
n
1 ).

Put un1 = un0 + ηnz
n
1 . Suppose that un0 , u

n
1 , .., u

n
i , z

n
1 , z

n
2 , ..z

n
i are constructed. As

above by Proposition 2.1(b) there exists zni+1 ∈ C(tni+1) ⊂ L such that

fni+1 +Buni −Azni+1 ∈ NC(tni+1)(z
n
i+1),

11



and we set uni+1 = uni + ηnz
n
i+1. Then by induction there are finite sequences

(uni )ni=0 and (zni )ni=1 such that

fni+1 +Buni −Azni+1 ∈ NC(tni+1)(z
n
i+1) (4.1)

uni+1 = uni + ηnz
n
i+1.

From (uni )ni=0, (zni )ni=1 (fni )ni=0, we construct two sequences of mappings (un)n∈N
and (fn)n∈N from I to H, by setting fn(0) = fn1 , un(0) = un0 and for each
i = 0, .., ..n− 1 we set fn(t) = fni+1 and

fn(t) = fni+1 and un(t) = uni +
t− tni
ηn

(uni+1 − uni ) for t ∈]tni , t
n
i+1].

Keeping in mind that C(t) ⊂ L = ρBH we have ui ∈ C(tni+1) ⊂ ρBH , so∥∥∥∥ 1

ηn
(uni+1 − uni )

∥∥∥∥ = ‖zni+1‖ ≤ ρ.

From this it is clear that un(·) is Lipschitz continuous on I with ρ as a Lipschitz
constant. This Lipschitz property of un(·) ensures that ‖un(t)‖ ≤ ‖u0‖+ ρT and
un(t) = u0 +

∫ t
t0
u̇n(s)ds for every t ∈ I. We also note that ‖fn(t)‖ ≤ β for

all n ∈ N and t ∈ I. Now, let us define the step functions θn, δn : I −→ I by
θn(0) = δn(0) = 0 and

θn(t) = tni+1, δn(t) = tni if t ∈]tni , t
n
i+1],

so the inclusion (4.1) becomes

fn(t) +Bun(δn(t))−Au̇n(t) ∈ NC(θn(t))(u̇n(t)) a.e. t ∈ I.

For each t ∈ I we observe that there is some i ∈ {0, ..., n−1} such that t ∈ [tni , t
n
i+1[,

and then
|θn(t)− t| → 0 and |δn(t)− t| → 0 as n→ +∞.

We also note that the latter inclusion above yields

δ∗(fn(t)+Bun(δn(t))−Au̇n(t), C(θn(t)))+〈−fn(t)−Bun(δn(t))+Au̇n(t), u̇n(t)〉 ≤ 0

with
u̇n(t)inC(θn(t)) ⊂ L a.e. t ∈ I,

so that u̇n ∈ S1
L where S1

L := {ξ ∈ L1
H(I) : ξ(t) ∈ L a.e. t ∈ I }.

Step II. Convergence to a solution.
We note that S1

L is a weakly compact convex set of L1
H(I) (see, e.g., [18] and the

references therein). Set

X := {ξ : I → H : ξ(t) = u0 +

∫ t

0
ξ̇(s)ds, t ∈ [0, T ]; v̇ ∈ S1

L}.
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It is clear that X is convex, equicontinuous and weakly compact [32] in CH([0, T ])
(see [32]). As un ∈ X , one can extract from (un)n a (not relabelled) subsequence
which pointwise weakly converges to u : I → H such that u(t) = u0 +

∫ t
0 u̇(s)ds

for all t ∈ I and such that (u̇n)n σ(L1
H(I), L∞H (I))-converges to u̇ ∈ S1

L. Further,
the inequality

‖un(δn(t))− un(t)‖ ≤ ρ|δn(t)− t|

assures us that
(
un(δn(t))

)
n

converges weakly in H for each t ∈ I. This and the
σ(L1

H(I), L∞H (I)) convergence of (u̇n)n to u̇ in L1
H(I) along with the inclusion (4.1)

allow us (according to the pointwise convergence of (fn)n to f and the estimates
from the hypotheses) to obtain that for a.e. t ∈ I the inclusions u̇(t) ∈ C(t) and

f(t) +Bu(t)−Au̇(t) ∈ NC(t)(u̇(t))

hold true. This says that u(·) is solution of the inclusion of the theorem.

STEP III. Uniqueness.
The uniqueness of solutions follows easily from the coerciveness of the operator
A. Indeed let u1 and u2 be two solutions. An easy computation gives

〈Au̇2(t)−Au̇1(t), u̇2(t)− u̇1(t)〉+ 〈Bu2(t)−Bu1(t), u̇2(t)− u̇1(t)〉 ≤ 0,

so that

〈Au̇2(t)−Au̇1(t), u̇2(t)− u̇1(t)〉 ≤ |B| ‖u2(t)− u1(t)‖ ‖u̇2(t)− u̇1(t)‖.

By coerciveness of A we deduce that

ω‖u̇2(t)− u̇1(t)‖2 ≤ |B| ‖u2(t)− u1(t)‖ ‖u̇2(t)− u̇1(t)‖.

This entails that

‖u̇2(t)− u̇1(t)‖ ≤ |B|
ω
‖u2(t)− u1(t)‖ ≤ |B|

ω

∫ t

0
‖u̇2(s)− u̇1(s)‖ds.

By Gronwall lemma u̇1(t) = u̇2(t) a.e. t ∈ I, and so u1(t) = u2(t) for every t ∈ I
since u1(t) = u0 +

∫ t
0 u̇1(s)ds and u2(t) = u0 +

∫ t
0 u̇2(s)ds.

Remark 4.2. The tools developed above allow to obtain further variants. The
fact that C(t) is weakly compact is required, and mainly the coerciveness of A
and the compactness assumption for the operator B. An inspection of the proof
of Theorem 4.1, shows that the compactness assumption on B is required to prove
the Fatou property,

lim inf
n

∫
Z
〈B(un(δn(t)), u̇n(t)〉dt ≥

∫
Z
〈Bu(t), u̇(t)〉dt

So as a possible variant we may substitute the bounded operator B by the gradient
∇g of a positive convex continuous Gateaux differentiable function g : H → R

13



such that g(v(t)) is absolutely continuous for v : [0, T ]→ H absolutely continuous,
so that by invoking the chain rule formula, see Moreau-Valadier, [28], we have the
equality

〈∇g(v(t)), v̇(t)〉 =
d

dt
g(v(t))

Hence by using this fact and the tool developed in Theorem 1.1, we obtain a
variant of Theorem 1.1 by noting that

lim inf
n

∫ T

0
〈∇g(un(t)), u̇n(t)dt = lim inf

n

∫ T

0

d

dt
g(un(t))dt

≥
∫ T

0

d

dt
g(u(t))dt =

∫ T

0
〈∇g(u(t)), u̇(t)dt

It is obvious that a linear continuous operator and a gradient do not enjoy similar
properties, showing the interest of the new variant we give further. This remark
has some importance in further developments.

Now we present a variant dealing with the existence and uniqueness of abso-
lutely continuous solution to the evolution inclusion of the form

f(t) +Bu(t)−Au̇(t) ∈ NC(t)(t,
du

dt
(t))

where f is a continuous mapping f : I → H, A is a coercive symmetric operator,
and B : H → H is a Lipschitz mapping.

Theorem 4.3. Let f : [0, T ] → H be a continuous mapping and let v : [0, T ] →
R+ be a non-negative nondecreasing continuous function with v(0) = 0. Let C :
[0, T ]→ H be a convex compact valued multimapping such that haus(C(t), C(τ)) ≤
|v(t) − v(τ)| for all t, τ ∈ [0, T ]. Let A : H → H be a linear continuous coercive
symmetric operator and let B : H → H be a Lipschitz mapping, that is, for some
real constant M > 0, ‖Bx − By‖ ≤ M‖x − y‖ for all x, y ∈ H for some positive
constant M . Then, for any u0 ∈ H, the evolution inclusion{

f(t) +Bu(t)−Au̇(t) ∈ NC(t)(
du
dt (t))

u(0) = u0

admits a unique W 1,∞
H ([0, T ]) solution u : [0, T ] → H. Further, ‖u̇(t)‖ ≤ ρ a.e.

t ∈ [0, T ], where ρ := max{‖y‖ : y ∈ C([0, T ])}.

Proof. Put I := [0, T ] and denote β := max{‖f(t)‖ : t ∈ I} (by continuity of
f). Noticing that the multimapping C(·) is upper semicontinuous from I into
H endowed with the norm topology, the set C(I) is norm compact, and hence
ρ := sup{‖y‖ : y ∈ C(I)} is finite and L := co

(
C(I)

)
is convex and norm compact.

Step I. The sequence (un)n is constructed as in Theorem 4.1.
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Step II. With the strongly compact set L = co
(
C(I)

)
at hands, we see that

the set X in the proof of Theorem 4.1 is strongly compact in CH(I). Since
un ∈ X we can extract from (un)n a (not relabelled) sequence which pointwise
converges to u : I → H such that u(t) = u0 +

∫ t
0 u̇(s)ds, for all t ∈ I and (u̇n)n

σ(L1
H([0, T ]), L∞H ([0, T ]))-converges to u̇ ∈ S1

L. The inequality

‖un(δn(t))− un(t)‖ ≤ ρ|δn(t)− t|

ensures that the sequence
(
un(δn(t))

)
n

strongly converges to u(t) for each t ∈ I.
Consequently, we can follow Step II in the proof of Theorem 4.1 by applying
Proposition 3.2 in place of Proposition 3.1, to arrive to the fact that u(·) is a
solution of the inclusion in the present theorem.

Step III. The arguments for the uniqueness are the same as for Theorem 4.1.

We present another variant dealing with the existence and uniqueness of ab-
solutely continuous solution to the evolution inclusion of the form

f(t) +Bu(t)−Au̇(t) ∈ ∂ϕ(t,
du

dt
(t))

where f is a bounded continuous mapping f : I → H, A is a coercive symmetric
operator, and B : H → H be a linear continuous mapping ∂ϕ is the subdifferential
of a normal lower semicontinuous convex integrand ϕ.

Theorem 4.4. Let H be a separable Hilbert space.Let K be a convex compact
subset of H. Let ϕ : [0, T ] ×K →] −∞,+∞] be a normal lower semicontinuous
convex integrand such that
(i {ϕ(., u(.)), u ∈ S1

K} is uniformly integrable.
(ii) ϕ(t, x) ≤ ϕ(τ, x)+|v(t)−v(τ)| for all t, τ ∈ [0, T ], x ∈ K where v : [0, T ]→ R+

is a positive nondecreasing continuous function with v(0) = 0.
Let A : H → H be a linear continuous coercive symmetric operator and B : H →
H be a linear continuous mapping. Then, for any u0 ∈ H, the evolution inclusion

f(t) +Bu(t)−Au̇(t) ∈ ∂ϕ(t,
du

dt
(t))

u(0) = u0

admits a unique W 1,∞
H ([0, T ]) solution u : [0, T ]→ H.

Proof. We will use again the Moreau ’s catching-up algorithm. We consider for
each n ∈ N the following partition of the interval I = [0, T ].
tni = iTn := iηn for 0 ≤ i ≤ n. Ini :=]tni , t

n
i+1] for 0 ≤ i ≤ n− 1.

Put un0 = u0 and fni = f(tni ) for all i = 1, .., n. By Proposition 1.1 1) , there is
zn1 ∈ K such that

fn1 +Bun0 −Azn1 ∈ ∂ϕ(tn1 , z
n
1 ).
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Put un1 = un0 + ηnz
n
1 . Suppose that un0 , u

n
1 , .., u

n
i , z

n
1 , z

n
2 , ..z

n
i are constructed. As

above by Proposition 1.1 1) there exists zni+1 ∈ K such that

fni+1 +Buni −Azni+1 ∈ ∂ϕ(tni+1, z
n
i+1).

and we set uni+1 = uni + ηnz
n
i+1. Then by induction there are finite sequences

(uni )ni=0 and (zni )ni=1 such that

fni+1 +Buni −Azni+1 ∈ ∂ϕ(tni+1, z
n
i+1)

uni+1 = uni + ηnz
n
i+1

From (uni )ni=0, (zni )ni=1 (fni )ni=0, we construct two sequences un from [0, T ] to H, fn
from [0, T ] to H, by setting fn(0) = fn1 , un(0) = un0 and for each i = 0, .., ..n− 1
we set fn(t) = fni+1 and

un(t) = uni +
t− tni
ηn

(uni+1 − uni )

for t ∈]tni , t
n
i+1]. Clearly, the mapping un(.) is Lipschitz continuous on [0, T ], and

ρ is a Lipschitz constant of un(.) on [0, T ] since for every t ∈]tni , t
n
i+1]

u̇n(t) =
uni+1 − uni

ηn
= zni+1 ∈ K ⊂ ρBH .

Furthermore, for every t ∈ [0, T ], one has un(t) = u0+
∫ t

0 u̇n(s)ds, hence ||un(t)|| ≤
||u0||+ ρT . We have

fni+1 +Buni −Azni+1 ∈ ∂ϕ(tni+1, z
n
i+1).

Now, let us define the step functions θn, δn : I −→ I by

θn(t) = tni+1, δn(t) = tni

if t ∈]tni , t
n
i+1] and θn(0) = δn(0) = 0, and observe that for each t ∈ I, there is

i ∈ {0, ..., n− 1} such that t ∈ [tni , t
n
i+1[, and then,

|θn(t)− t| → 0 and |δn(t)− t| → 0 as n→ +∞,

So, the last inclusion becomes

fn(t) +Bun(δn(t))−Au̇n(t) ∈ ∂ϕ(θn(t), u̇n(t))

a.e. t ∈ [0, T ] . We note that ||un(t)|| ≤ ||u0||+ ρT , ||fn(.)|| ≤ β for all t ∈ [0, T ]
and un(t) = u0 +

∫ t
0 u̇n(s)ds for all t ∈ [0, T ] with u̇n ∈ K a.e.

Step 2 Convergence of the algorithm and final conclusion
Let S1

K := {h ∈ L1
H([0, T ]) : h(t) ∈ K a.e.} and let

X := {v : [0, T ]→ H : v(t) = u0 +

∫ t

0
v̇(s)ds, t ∈ [0, T ]; v̇ ∈ S1

K}.
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Then it is clear that S1
K is convex and weakly compact in L1

H([0, T ]) (see e.g. [18]
and the references therein) and that X is convex, equicontinuous and compact in
CH([0, T ]). As (un) ⊂ X , one can extract from (un) a subsequence not relabelled
which pointwise converges to u : [0, T ]→ H such that u(t) = u0+

∫ t
0 u̇(s)ds, for all

t ∈ [0, T ] and (u̇n) σ(L1
H([0, T ]), L∞H ([0, T ]))-converges to u̇ ∈ S1

K . As ϕ is normal
lower semicontinuous convex, the conjugate function ϕ∗ : [0, T ]×H →]−∞,+∞]

(1.3.1) ϕ∗(t, y) = sup
x∈K

[〈x, y〉 − ϕ(t, x)]

is normal, see e.g Castaing-Valadier [19] and satisfies

ϕ∗(t, y) ≤ ϕ∗(τ, y) + |v(t)− v(τ)|

for all t, τ ∈ [0, T ], y ∈ H using assumption (ii) ([29], Proposition 27). By using
the normality of ϕ, the mappings t 7→ ϕ(θn(t), u̇n(t)) and t 7→ ϕ(t, u̇n(t)) are
measurable and integrable. By construction we have

gn(t) := fn(t) +Bun(δn(t))−Au̇n(t) ∈ ∂ϕ(θn(t), u̇n(t))

so that by the normality of ϕ∗, the mapping t 7→ ϕ∗(θn(t), gn(t)) is measurable
and integrable. Further by (1.3.1) and (iii) we have
(1.3.2)
−ϕ(t, u̇n(t)) + 〈u̇n(t), gn(t)〉 ≤ ϕ∗(t, gn(t)) ≤ ϕ∗(θn(t), gn(t)) + |v(t)− v(θn(t))|

so that t 7→ −ϕ(t, u̇n(t)) + 〈u̇n(t), gn(t)〉 is uniformly integrable thank to (iii).
We note that (hn(t) := fn(t) − Bun(δn(t))) is uniformly bounded and pointwise
converges to h(t) = f(t)−Bu(t) in H. Hence (hn(·)−h(·)) is uniformly bounded
and pointwise converges to 0, so that it converges to 0 uniformly on any uniformly
integrable subset of L1

H([0, T ]), in other terms it converges to 0 with respect to the
Mackey topology τ(L∞H ([0, T ]), L1

H([0, T ])) so that, for every Lebesgue measurable
set B ⊂ [0, T ],

lim
n→∞

∫
B
〈hn(t)− h(t), u̇n(t)〉dt = 0

because (u̇n) is uniformly integrable. Consequently

lim
n→∞

∫
B
〈hn(t), u̇n(t)〉dt

= lim
n→∞

∫
B
〈hn(t)− h(t), u̇n(t)〉dt+ lim

n→∞

∫
B
〈h(t), u̇n(t)〉dt

(1.3.3) = lim
n→∞

∫
B
〈h(t), u̇n(t)〉dt =

∫
B
〈h(t), u̇(t)〉dt.

As A is symmetric, we show that Au̇n → Au̇(.) weakly in L1
H(I). As consequence

gn := fn + Bun(δn(.)) − Au̇n(.) → g := f + Bu − Au̇ weakly in L1
H(I). Further,
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let us set ψA(x) = 〈Ax, x〉 if x ∈ K and ψ(x) = +∞ if x /∈ K. Then it is clear
ψ is a positive lower semicontinuous convex integrand. Apply again the lower
semicontinuity of the integral convex functional ([18], Theorem 8.1.6) associated
with the positive normal lower semi continuous convex integrand ψA we obtain,

lim inf
n

∫
Z
ψA(un(t))dt ≥

∫
Z
ψA(u(t))dt

that is

(1.3.4) lim inf
n

∫
Z
〈Au̇n(t), u̇n(t))dt ≥

∫
Z
〈Au̇(t), u̇(t)dt

Now, we deduce using (1.3.2) and the lower semicontinuity of integral convex
functional ([18], Theorem 8.1.6) applied to ϕ∗,

(1.3.5)

∫
Z
ϕ∗(t, g(t))dt ≤ lim inf

n

∫
Z
ϕ∗(t, gn(t))dt ≤ lim inf

n

∫
Z
ϕ∗(θn(t), gn(t))dt

As
ϕ(t, u̇n(t)) ≤ ϕ(θn(t), u̇n(t)) + |v(t)− v(θn(t))|

we deduce that

lim inf
n

∫
Z
ϕ(t, u̇n(t))dt ≤ lim inf

n

∫
Z
ϕ(θn(t), u̇n(t))dt.

As (u̇n) weakly converges to u̇ ∈ L1
H([0, T ]), by the lower semi continuity theo-

rem ([18], Theorem 8.1.6) applied to the lower semicontinuity of convex integral
functional associated with ϕ, we deduce that

(1.3.6)

∫
Z
ϕ(t, u̇(t))dt ≤ lim inf

n

∫
Z
ϕ(θn(t), u̇n(t))dt

with u̇(t) ∈ K a.e. and t 7→ ϕ(t, u̇(t)) is integrable. Now integrating on any
Lebesgue measurable set Z in [0, T ] the equality

ϕ(θn(t), u̇n(t)) + ϕ∗(θn(t), gn(t)) = 〈u̇n(t), gn(t)〉

gives ∫
Z
ϕ(θn(t), u̇n(t))dt+

∫
Z
ϕ∗(θn(t), gn(t))dt =

∫
Z
〈u̇n(t), hn(t)〉dt.

By passing to the limit when n goes to ∞ in this equality using (1.3.3)−−(1.3.6)
gives ∫

Z
ϕ(t, u̇(t))dt+

∫
Z
ϕ∗(t, g(t))dt ≤

∫
B
〈u̇(t), g(t)〉dt.
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By t 7→ ϕ(t, u̇(t)) + ϕ∗(t, g(t))− 〈u̇(t), g(t)〉 is integrable, we deduce that

ϕ(t, u̇(t)) + ϕ∗(t, g(t))− 〈u̇(t), g(t)〉 ≤ 0

a.e. with u̇(t) ∈ K a.e. So we conclude that ϕ(t, u̇(t)) + ϕ∗(t, g(t)) = 〈u̇(t), g(t)〉
a.e., equivalently g(t) = f(t) + Bu(t) − Au̇(t) ∈ ∂ϕ(t, u̇(t)) a.e. and equivalently
u̇(t) ∈ ∂ϕ∗(t, f(t) +Bu(t)−Au̇(t)) a.e.

Remarks 1) The uniqueness of solutions follows easily from the coerciveness of
the operator A. Indeed let u1 and u2 two solutions. then by an easy computation,

〈Au̇2(t)−Au̇1(t), u̇2(t)− u̇1(t)〉+ 〈Bu2(t)−Bu1(t), u̇2(t)− u̇1(t)〉 ≤ 0

so that

〈Au̇2(t)−Au̇1(t), u̇2(t)− u̇1(t)〉 ≤ |B|||u2(t)− u1(t)||||u̇2(t)− u̇1(t)||

By coerciveness, we deduce that

ω||u̇2(t)− u̇1(t)||2 ≤ |B|||u2(t)− u1(t)||||u̇2(t)− u̇1(t)||

Whence

||u̇2(t)− u̇1(t)|| ≤ |B|
ω
||u2(t)− u1(t)|| ≤ |B|

ω

∫ t

0
||u̇2(s−)u̇1(s)||ds

By Gronwall lemma u̇1(t) = u̇2(t) a and so u1(t) = u̇2(t) since u1(t) = u0 +∫ t
0 u̇1(s)ds,∀t ∈ [0, T ], u2(t) = u0 +

∫ t
0 u̇2(s)ds,∀t ∈ [0, T ].

2) Theorem 1.3 generalizes Theorem 6 in [16] dealing with finite dimensional
space.

In view of further applications we provide some variational limits theorems
below.

5 Some variational limit theorems

Proposition 5.1. Let H be a separable Hilbert space. Let C : [0, T ] → H be
a convex weakly compact valued scalarly measurable mappings such that C(t) ⊂
r(t)BH , for all t ∈ [0, T ] for some r ∈ L1

R+([0, T ]). Let A be linear continuous
coercive symmetric operator on H . Let B is a linear continuous compact operator
on H.
Let (fn, f)n∈N be a bounded sequence in L∞H ([0, T ]) with ||fn(t)|| ≤ β, ||f(t)|| ≤ β
(β > 0) for all n ∈ N such that fn(t) pointwise converges to f(t) for each t ∈ [0, T ].
Let (vn, v)n∈N be a bounded sequence in L∞H ([0, T ]) with ||vn(t)|| ≤ γ, ||v(t)|| ≤ γ
(γ > 0) for all n ∈ N such that vn(t) pointwise converges weakly to v(t) for each
t ∈ [0, T ]. Let (un) be an integrable sequence in L1

H([0, T ]) such that un(t) ∈ C(t)
for all t ∈ [0, T ] such that (un) σ(L1

H , L
∞
H ) converges in L1

H([0, T ] to u. Assume
that fn(t) + Bvn(t) − Aun(t) ∈ NC(t)(un(t)) for all n ∈ N and for all t ∈ [0, T ],
then u(t) ∈ C(t) a.e. and f(t) +Bv(t)−Au(t) ∈ NC(t)(u(t)) a.e.
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Proof. We first check that u(t) ∈ C(t) a.e. Indeed, we have 〈x, un(t)〉 ≤ δ∗(x,C(t)),
∀x ∈ H,∀t ∈ [0, T ]. Then by integrating on any Lebesgue measurable set
Z ⊂ [0, T ] ∫

Z
〈x, un(t)〉dt ≤

∫
Z
δ∗(x,C(t))dt.

By using (iii) and by passing to the limit when n goes to ∞ gives∫
Z
〈x, u(t)〉dt ≤ lim sup

n

∫
Z
δ∗(x,C(t))dt.

Then we deduce that 〈x, u(t)〉 ≤ δ∗(x,C(t)) a.e. so that by Castaing-Valadier
([19], Proposition III.35), we get u(t) ∈ C(t) a.e. Note that this fact requires that
C(t) is convex weakly compact. Note that fn + Bvn are uniformly bounded and
pointwise converges to f +Bv since B is compact operator. Since un is uniformly
integrable and σ(L1

H , L
∞
H ) converges to u, we have by the Castaing trick given in

the proof of Theorem 4.1

(2.1.1) lim
n

∫
Z
〈fn +Bvn, un〉dt =

∫
Z
〈f +Bv, u〉dt

for every measurable set Z ⊂ [0, T ]. By integrating on Z (we are ensured that
the functions given are measurable) the inequality

δ∗(fn(t) +Bvn(t)−Aun(t), Cn(t)) + 〈Avn(t)−Bvn(t)− fn, un(t)〉 ≤ 0

we get
(2.1.2)∫
Z
δ∗(fn(t)+Bvn(t)−Aun(t), Cn(t))dt+

∫
Z
〈Aun−fn, un(t)〉dt−

∫
Z
〈Bvn(t), vn(t)〉dt ≤ 0.

Set gn = fn +Bvn−Aun. It is already seen that Aun → Au weakly in L1
H([0, T ])

and Bvn → Bv weakly in L1
H([0, T ]) so that gn → g := f + Bv − Au weakly in

L1
H([0, T ]). Let us set ψ(t, x) = 〈Ax, x〉 if x ∈ K and ψ(t, x) = +∞ if x /∈ K. Then

it is clear ψ is a postive lower semicontinuous convex normal integrand. By the
lower semicontinuity of the integral convex functional ([18], Theorem 8.1.6) asso-
ciated with the positive normal convex integrand ψ we obtain, for every Lebesgue
measurable set Z ⊂ [0, T ]

lim inf
n

∫
Z
ψ(t, un(t))dt ≥

∫
Z
ψ(t, u(t))dt

that is

(2.1.3) lim inf
n

∫
Z
〈Aun(t), un(t)〉dt ≥

∫
Z
〈Au(t), u(t)〉dt

To finish the proof we apply the lower semicontinuity of the integral convex
functional ([18], Theorem 8.1.6) associated with the normal convex integrand
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(t, x) 7→ δ∗(x,C(t)) by noting that
(j) δ∗(gn(t), C(t)) is minored by 〈gn(t), h(t)〉 where h ∈ S1

C .
(jj) the minored sequence 〈gn(t), h(t)〉 is uniformly integrable.
Then by ([18], Theorem 8.1.6) we are ensured

(2.1.4) lim inf
n

∫
Z
δ∗(gn(t), C(t))dt ≥

∫
Z
δ∗(g(t), C(t))dt

By combining (2.1.2)−−(2.1.4) we get∫
Z
δ∗(f(t)−Au(t)−Bv(t), C(t))dt+

∫
Z
〈−f(t) +Au(t) +Bv(t), u(t)〉dt ≤ 0

for every Lebesgue measurable set Z. But since u(t) ∈ C(t) a.e. we have

δ∗(f(t) +Bv(t)−Au(t), C(t)) ≥ 〈f(t) +Bv(t)−Au(t), u(t)〉

a.e. that is

δ∗(f(t)−Bv(t)−Au(t), C(t)) + 〈−f(t)−Bv(t) +Au(t), u(t) ≥ 0

a.e. so we conclude that

δ∗(f(t)−Bv(t)−Au(t), C(t)) = 〈f(t) +Bv(t)−Au(t), u(t)〉 = 0

a.e. with u(t) ∈ C(t) a.e., just proving that f(t) + Bv(t) − Au(t) ∈ NC(t)(u(t))
a.e.

A variant of Proposition 2.1 is available by assuming that C is convex compact
valued and the operatorB is a Lipschitz mapping: ||Bx−By|| ≤M |Lx−y||. These
results related to the evolution variational inequality of the form f(t) + Bv(t) −
Au(t) ∈ NC(t)(u(t)) a.e stated in Theorem 1.1 and Theorem 1.2. The following
result is a stability result related to the evolution variational inequality of the form
f(t) +∇g(u(t)) − Au̇(t) ∈ NC(t)(u̇(t)) here ∇g is a specific gradient of a convex
continuous Gateaux differentiable such that g(v(t)) is absolutely continuous for v :
[0, T ]→ H absolutely continuous. There is no confusion with the linear compact
operator B considered in Theorem 1.1 and Lipschitz operator B considered in
Theorem 1.2.

Proposition 5.2. H = Re. Let C : [0, T ] → H be a convex compact valued
measurable mapping such that C(t) ⊂ r(t)BH , for all t ∈ [0, T ] for some r ∈
L1
R+([0, T ]). Let A be linear continuous coercive symmetric operator on H and

B = ∇g where ∇g is the gradient of a convex continuous Gateaux differentiable
function g : H → R+ such that g(v(t)) is absolutely continuous for v : [0, T ]→ H
absolutely continuous.
Let (fn, f)n∈N be a bounded sequence in L∞H ([0, T ]) with ||fn(t)|| ≤ β, ||f(t)|| ≤ β
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(β > 0) for all n ∈ N such that fn(t) pointwise converges to f(t) for each t ∈ [0, T ].
Let (un, u)n∈N be a sequence of absolutely continuous mappings

un(t) = u0 +

∫ t

0
u̇n(s)ds, u̇n(t) ∈ C(t)

u(t) = u0 +

∫ t

0
u̇(s)ds, u̇(t) ∈ C(t)

such that un(t) → u(t) uniformly in H and u̇n → u̇ weakly in L1
H [0, T ]. Assume

that fn(t) +∇g(un(t))−Au̇n(t) ∈ NC(t)(u̇n(t)) for all n ∈ N and for all t ∈ [0, T ],
then f(t) +∇g(u(t))−Au̇(t) ∈ NC(t)(u̇(t)) a.e.

Proof. Note that fn are uniformly bounded and pointwise converges to f(t) then
we have

(2.2.1) lim
n

∫
Z
〈fn, u̇n〉dt =

∫
Z
〈f, u̇〉dt

for every measurable set Z ⊂ [0, T ]. By integrating on Z (we are ensured that
the functions given are measurable) the inequality

δ∗(fn(t) +∇g(un(t))−Au̇n(t), Cn(t)) + 〈Au̇n(t)−∇g(un(t))− fn, u̇n(t)〉 ≤ 0

we get
(2.2.2)∫
Z
δ∗(fn(t)+∇g(un(t))−Au̇n(t), Cn(t))dt+

∫
Z
〈Au̇n−fn, u̇n(t)〉dt−

∫
Z
〈∇g(un(t)), u̇n(t)〉dt ≤ 0.

Set gn(t) = fn(t) +∇g(un(t))−Au̇n(t). We claim that Aun(t)→ Au(t) weakly in
L1
H([0, T ]) and ∇g(un(t)) → ∇g(u̇(t)) weakly in L1

H([0, T ]).So gn(t) = fn(t) +
∇g(un(t)) − Au̇n(t) → g(t) := f(t) + ∇g(u(t)) − Au̇(t weakly in L1

H([0, T ]).
Indeed, as un(t) → u(t) pointwise, 〈x,Aun(t)〉 → 〈x,Au(t)〉. As consequence,
for any h ∈ L∞H ([0, T ]), we have 〈h(t), Aun(t)〉 → 〈h(t), Au(t)〉 pointwise. But
then the uniformly bounded sequence of bounded measurable functions (〈h,Aun〉)
pointwise converge to the bounded measurable function 〈h,Au〉. As consequence,
〈h,Aun〉 → 〈h,Au〉 weakly in L1

R([0, T ]. This shows that Aun → Au weakly in
L1
H([0, T ]). Similarly we show that ∇g(un(t)) → ∇g(u(t)) weakly in L1

H([0, T ]).
Now we have to consider the term 〈∇g(un(t), u̇n(t)〉 by using the special prop-
erty of ∇g. In fact un is absolutely continuous with derivative u̇n and g(un) is
absolutely continuous, so that by Moreau-Valadier [28],

〈∇g(un(t)), u̇n(t)〉 =
d

dt
g(un(t))

From this fact, it is easy to deduce that

lim inf
n

∫ T

0
〈∇g(un(t)), u̇n(t)〉dt = lim inf

n

∫ T

0

d

dt
g(un(t))〉dt
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(2.2.3) = lim inf
n

(g(un(T )− un(0)) ≥ g(u(T )− u(0)) =

∫ T

0

d

dt
g(u(t))〉dt

=

∫ T

0
〈∇g(u(t)), u̇(t)〉dt

Let us set ϕ(t, x) = 〈Ax, x〉 if x ∈ K and ϕ(t, x) = +∞ if x /∈ K. Then it is clear
ϕ is a positive lower semicontinuous convex normal integrand. By the lower semi-
continuity of the integral convex functional ([18], Theorem 8.1.6) associated with
the positive normal convex integrand ϕ we obtain, for every Lebesgue measurable
set Z ⊂ [0, T ]

lim inf
n

∫
Z
ϕ(t, u̇n(t))dt ≥

∫
Z
ϕ(t, u̇(t))dt

that is

(2.2.4) lim inf
n

∫
Z
〈Au̇n(t), u̇n(t)〉dt ≥

∫
Z
〈Au̇(t), u̇(t)〉dt

To finish the proof we apply the lower semicontinuity of the integral convex
functional ([18], Theorem 8.1.6) associated with the normal convex integrand
(t, x) 7→ δ∗(x,C(t)) by noting that
(j) δ∗(gn(t), C(t)) is minored by 〈h(t), gn(t)〉; with h ∈ S∞C .
(jj) the minored sequence 〈gn(t), h(t)〉 is uniformly integrable.
Then we are ensured by the lower semicontinuity of the integral convex functional
theorem ([18], Theorem 8.1.6)

(2.2.5) lim inf
n

∫
Z
δ∗(gn(t), C(t))dt ≥

∫
Z
δ∗(g(t), C(t))dt

By combining (2.2.3)−−(2.2.5) we get∫ T

0
δ∗(f(t)+∇g(u(t))−Au̇(t), C(t))dt+

∫ T

0
〈−f(t)+∇g(u(t))+Au̇(t), u̇(t)〉dt ≤ 0

But since u̇(t) ∈ C(t) a.e. we have

δ∗(f(t) +∇g(u(t))−Au̇(t), C(t)) ≥ 〈f(t) +∇g(u(t))−Au̇(t), u̇(t)〉

a.e. that implies∫ T

0
[δ∗(f(t) +∇g(u(t))−Au̇(t), C(t)) + 〈−f(t)−∇g(u(t)) +Au̇(t), u̇(t)]dt = 0

so we conclude that

δ∗(f(t) +∇g(u(t))−Au̇(t), C(t)) = 〈f(t) +∇g(u(t))−Au̇(t), u̇(t)

a.e. with u̇(t) ∈ C(t) a.e., just proving that f(t) +∇g(u(t))−Au̇(t) ∈ NC(t)(u̇(t))
a.e.
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6 Applications

6.1 A Skorokhod problem

We present at first a new version of the Skorokhod problem in Castaing et al
[15, 17] dealing with the sweeping process associated with an absolutely continuous
(or continuous) closed convex moving set C(t) in H. Here the novelty is the
velocity is inside the subdifferential operator.

Theorem 6.1. Let I := [0, 1] and H = Re. Let v : I → R+ be a positive
nondecreasing continuous function with v(0) = 0. Let C : I ⇒ H be a convex
compact valued mapping such that
(i) C(t) ⊂MBH for all t ∈ I where M is a positive constant.
(ii) dH(C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ I.
Let A : H → H be a linear continuous coercive symmetric operator. Let B :
H → H be a linear continuous operator. Let z ∈ C1−var([0, 1],Rd) the space of
continuous functions of bounded variation defined on [0, 1] with values in Rd. Let
L(Rd,Re) the space of linear mappings f from Rd to Re endowed with the operator
norm

|f | := sup
x∈Rd,||x||Rd=1

|f(x)|Re .

Let us consider a class of continuous integrand operator b : [0, 1]×Re → L(Rd,Re)
satisfying
(a) |b(t, x)| ≤M, ∀(t, x) ∈ [0, 1]× Re.
(b) |b(t, x)−b(t, y)| ≤M ||x−y||Re , ∀(t, x, y) ∈ [0, 1]×Re×Re with the perturbed
Riemann-Stieljies integral

∫ t
0 b(τ, x(τ))dzτ defined on x ∈ C([0, 1],Re).

Let g : [0, 1]× Re → Re be a continuous mapping satisfying:
(i) ||g(s, x)|| ≤M for all (s, x) ∈ [0, 1]× Re.
(ii) ‖g(s, x) − g(s, y)‖ ≤ M ||x − y|| for all (s, x, y) ∈ [0, 1] × Re × Re with the
perturbed Lebesgue integral

∫ t
0 g(s, x(s))ds defined on in C([0, 1],Re).

Let a ∈ C(0). Then there exist a BVC function x : [0, 1] → H and an absolutely
continuous mapping function u : [0, 1]→ H satisfying

x(0) = u(0) = a
x(t) = h(t) + k(t) +Bu(t), ∀t ∈ I
h(t) =

∫ t
0 b(τ, x(τ))dzτ , ∀t ∈ I

k(t) =
∫ t

0 g(s, x(s))ds, ∀t ∈ I∫ t
0 b(s, x(s))dzs +

∫ t
0 g(s, x(s))ds+Bu(t)−Au̇(t) ∈ NC(t)(u̇(t)) a.e. t ∈ I

Proof. Let a ∈ C(0). Let us set for all t ∈ I = [0, 1]

x0(t) = a, h1(t) =

∫ t

0
b(τ, a)dzτ
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then by Proposition 2.2 in Friz-Victoir [20], we have

|
∫ t

0
b(τ, a)dzτ | ≤ |b(., a)|∞:[0,1]|z|1−var:[0,t].

Moreover ∫ t

0
b(τ, a)dzτ −

∫ s

0
b(τ, a)dzτ =

∫ t

s
b(τ, a)dzτ

so that by condition (a)

||h1(t)− h1(s)|| ≤M |z|1−var:[s,t]

for all 0 ≤ s ≤ t ≤ 1 and in particular

||h1(t)|| ≤M |z|1−var:[0,t] ≤M |z|1−var:[0,T ]

for all t ∈ [0, 1]. Let us set for all t ∈ I = [0, 1]

x0(t) = a, k1(t) =

∫ t

0
g(s, x0(s))ds,

then k1 is continuous with ‖k1(t)‖ ≤ M for all t ∈ I. By an easy computation,
using condition (i) and (ii) we have the estimate ||k1(t) − k1(τ)|| ≤ M |t − τ |,
for all τ, t ∈ I. By Theorem 1.1 there is a unique absolutely continuous mapping
u1 : I → H solution of the problem{

u1(0) = a
h1(t) + k1(t) +Bu1(t)−Au̇1(t) ∈ NC(t)(u̇

1(t)) a.e.

with u1(t) = a+
∫ t

0 u̇
1(s)ds, ∀t ∈ I and ||u̇1(t)|| ≤M , a.e. Set

x1(t) = h1(t) + k1(t) +Bu1(t) =

∫ t

0
b(τ, x0(τ)dzτ +

∫ t

0
g(t, s, x0(s))ds+Bu1(t).

Then x1 is BVC with x1(0) = a. Now we construct xn by induction as follows.
Let for all t ∈ I

hn(t) =

∫ t

0
b(τ, xn−1(τ))dzτ

kn(t) =

∫ t

0
g
(
s, xn−1(s)

)
ds.

Then kn is equi-Lipschitz: ||kn(t) − kn(τ)|| ≤ M |t − τ |, for all τ, t ∈ I with
‖kn(t)‖ ≤ M for all t ∈ I. By Proposition 2.2 in Friz-Victoir [20] we have the
estimate

||hn(t)− hn(s)|| ≤M |z|1−var:[s,t]
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for all 0 ≤ s ≤ t ≤ 1 and in particular

||hn(t)|| ≤M |z|1−var:[0,t] ≤M |z|1−var:[0,1]

for all 0 ≤ t ≤ 1. By Theorem 1.1 there is a unique absolutely continuous mapping
un : I → H solution of the problem{

un(0) = a,
hn(t) + kn(t) +Bun(t)−Au̇n(t) ∈ NC(t)(u̇

n(t)) a.e.

with un(t) = a+
∫ t

0 u̇
n(s)ds ∀t ∈ I and ||u̇n(t)|| ≤M a.e. Set for all t ∈ I

xn(t) = hn(t)+kn(t)+Bun(t) =

∫ t

0
b(τ, xn−1(τ))dzτ+

∫ t

0
g
(
s, xn−1(s)

)
ds+Bun(t)

so that xn is BVC. As (un) is equi-absolutely continuous we may assume that
(un) converges uniformly to an absolutely continuous mapping u : I → H with
u(t) = a +

∫ t
0 u̇(s)ds,∀t ∈ I. We may also assume that u̇n weakly converges in

L1
H to u̇, and by Ascoli theorem we may assume that kn converges uniformly to

a continuous mapping k : I → H. Now, recall that

||hn(t)− hn(s)|| ≤M |z|1−var:[s,t]
for all 0 ≤ s ≤ t ≤ T by using Proposition 2.2 in Friz-Victoir [20], and our
assumption (a) on the mapping b. So hn is bounded and equicontinuous. By
Ascoli theorem, we may assume that hn converge uniformly to a continuous
mapping h. Similarly kn is bounded and equi-Lipschitz. By Ascoli theorem,
we may assume that kn converge uniformly to a continuous mapping k. Hence
xn(t) = hn(t) + kn(t) +Bun(t) converge uniformly to x(t) := h(t) + k(t) +Bu(t),
and b(., xn−1(.)) converges uniformly to b(., x(.)) using the Lipschitz condition
(b). Then by Friz-Victoir [20] (Proposition 2.7)

∫ t
0 b(τ, x

n−1(τ))dzτ converge uni-

formly to
∫ t

0 b(τ, x(τ))dzτ . By hypothesis (i), g(s, xn−1(s)) pointwise converge to

g(s, x(s)). Hence
∫ t

0 g(s, xn−1(s))ds →
∫ t

0 g(s, x(s))ds for each t ∈ I by Lebesgue
theorem. So by identifying the limit

lim
n→∞

xn(t) = lim
n→∞

∫ t

0
b(τ, xn−1(τ))dzτ + lim

n→∞

∫ t

0
g(s, xn−1(s))ds+ lim

n→∞
Bun(t)

=

∫ t

0
b(τ, x(τ))dzτ +

∫ t

0
g(t, s, x(s))ds+Bu(t) = x(t).

From the inclusion

hn(t) + kn(t) +Bun(t)−Au̇n(t)) ∈ NC(t)(u̇
n(t)) a.e.

and the above convergence, repeating the argument involving variational tech-
niques in Proposition 1.2 we get

h(t) + k(t) +Bu(t)−Au̇(t) ∈ NC(t)(u̇(t)) a.e.

The proof is therefore complete.
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Our tools allow to state several variants of Theorem 3.1 according to the nature
of the perturbation and the operator. Actually Theorem 3.1 hold if B : H → H
is a Lipschitz mapping: ||Bx − By|| ≤ M ||x − y||, ∀x, y ∈ H for some positive
constant M . Also Theorem 3.1 holds if we replace B by the gradient ∇g of a
positive convex continuous Gateaux differentiable function g : H → R such that
g(v(t)) is absolutely continuous for v : [0, T ]→ H absolutely continuous,

6.2 Towards to some application in Optimal Control problem

In the previous results we have developed the Skorohod problem associated the
sweeping process with Riemann-Stieltjes integral perturbation. This led to some
problem in Optimal Control .

Proposition 6.1. Let I := [0, 1] and H = Re. Let v : I → R+ be a positive
nondecreasing continuous function with v(0) = 0. Let C : I ⇒ Re be a convex
compact valued mapping such that
(i) C(t) ⊂MBRe for all t ∈ I where M is a positive constant.
(ii) dRe(C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ I.
Let A : Re → Re be a linear continuous coercive symmetric operator. Let B :
Re → Re be a linear continuous operator. Let z ∈ C1−var([0, 1],Rd) the space of
continuous functions of bounded variation defined on [0, 1] with values in Rd. Let
L(Rd,Re) the space of linear mappings f from Rd to Re endowed with the operator
norm

|f | := sup
x∈Rd,||x||Rd=1

|f(x)|Re .

Let us consider a class of continuous integrand operator b : [0, 1]×Re → L(Rd,Re)
satisfying
(a) |b(t, x)| ≤M, ∀(t, x) ∈ [0, 1]× Re.
(b) |b(t, x)−b(t, y)| ≤M ||x−y||Re , ∀(t, x, y) ∈ [0, 1]×Re×Re with the perturbed
Riemann-Stieljies integral

∫ t
0 b(τ, x(τ))dzτ defined on x ∈ C([0, 1],Re).

Let V : Rd → Re be a bounded continuous mapping. Let L : [0, 1]×Re×Re×Re →
[0,∞[ be a lower semicontinuous integrand such that L(t, x, y, .) is convex on Re
for every (t, x, y) ∈ [0, 1] × Re × Re. Then the problem of minimizing the cost
function

∫ 1
0 L(t, x(t), y(t), ẏ(t))dt subject to
dxt = V (xt)dzt, t ∈ [0, 1]
x0 = ψ ∈ Re
y(0) = y0 ∈ C(0)∫ t

0 b(τ, x(τ))dzτ +By(t)−Aẏ(t) ∈ NC(t)(
dy
dt (t)), a.e. t ∈ [0, T ].

has an optimal solution.

Proof. Let us consider a minimizing sequence (xn, yn) that is

lim
n→∞

∫ T

0
L(t, xn(t), yn(t), ẏn(t))dt = inf

(u,v)∈Y

∫ T

0
L(t, u(t), v(t), v̇(t))dt
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where Y is the solutions set (x, y) to the above dynamical system. First by [20],
Theorem 3.4) we assert that the C1−var([0, T ],Re)-solution set to{

dxt = V (xt)dzt, t ∈ [0, 1]
x0 = ψ ∈ Re

is compact in C([0, T ],Re) and so is the W 1,∞([0, T ],Re)-solution set to{
y(0) = y0 ∈ C(0)∫ t

0 b(τ, x(τ))dzτ +By(t)−Aẏ(t) ∈ NC(t)(
dy
dt (t)), a.e. t ∈ [0, T ].

this need a careful. We may ensure that
(i) xn → x ∈ C1−var([0, T ],Re) with xt = ψ +

∫ t
0 V (xs)dzs.

(ii) yn → y ∈W 1,∞([0, T ],Re) and ẏn → ẏ weakly in L1
Re([0, T ]).

Applying the lower semicontinuity of the integral functional ([18] , Theorem 8.16)
gives

lim inf
n

∫ T

0
L(t, xn(t), yn(t), ẏn(t))dt ≥

∫ T

0
L(t, x(t), y(t), ẏ(t))dt

From the inclusion∫ t

0
b(τ, xn(τ))dzτ +Byn(t)−Aẏn(t) ∈ NC(t)(

dyn
dt

(t))

and the fact that limn

∫ t
0 b(τ, xn(τ))dzτ =

∫ t
0 b(τ, x(τ))dzτ uniformly (cf the proof

of Theorem 3.1) we conclude by using Proposition 2.1∫ t

0
b(τ, x(τ))dzτ +By(t)−Aẏ(t) ∈ NC(t)(

dy

dt
(t)) a.e.

Several variants of the preceding theorem are available using Theorem 1.2-1.3
and Proposition 2.2 -2.3

In the following we will examine a Bolza and Relaxation problem associated
with a sweeping process associated with a compact Lipschitzean moving set C(t):
dRe(C(t), C(s)) ≤ α|t− s| and Young integral perturbation. First, we need some
notation and background on Young integral and Young measures in this special
context.
Young integral Let z ∈ C1−var([0, T ],Rd) the space bounded variation continu-
ous defined on [0, T ] with values in Rd. Let L(Rd,Re) the space of linear mappings
f from Rd to Re endowed with the operator norm

|f | := sup
x∈Rd,||x||Rd=1

|f(x)|Re .
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Let us consider a class of continuous integrand operator b : [0, T ]×Re → L(Rd,Re)
satisfying

B1 : |b(t, x)| ≤M, ∀x ∈ Re

B2 : |b(t, x)− b(τ, y)| ≤ ρ(t)− ρ(τ) +M ||x− y||Re , 0 ≤ τ ≤ t ≤ T, ∀x, y ∈ Re

where ρ : [0, T ] → R+ is a positive nondecreasing continuous function and M is
a positive constant. If un : [0, T ] → Re is a uniformly bounded and uniformly
bounded in variation then the sequence yn(t) = b(t, un(t)) is continuous uniformly
bounded and uniformly bounded in variation from [0, T ] to L(Rd,Re), shortly
yn ∈ C1−var([0, T ],L(Rd,Re)). Indeed we have

|yn(t)− yn(τ)| ≤ ρ(t)− ρ(τ) +M ||un(t)− un(τ)||Re

for all τ ≤ t ≤ T , so that supn |yn|1−var;[s,t] < ∞ for all n ∈ N and 0 ≤ s ≤ t ≤
T . As consequence the Young integral

∫ t
0 yn(s)dzs of yn again z is well-defined

and belong to C1−var([0, T ],Re) according to Friz-Victoir [20], with the following
estimates

||
∫ t

s
yn(τ)dzτ || ≤

1

1− 21−θ |z|1−var;[s,t]|yn|1−var;[s,t] + |yn(s)|||z(t)− z(s)||Rd

≤ 1

1− 21−θ |z|1−var;[s,t]|yn|1−var;[s,t] +M ||z(t)− z(s)||Rd

for all 0 ≤ s ≤ t ≤ T with θ = 2 and

|
∫ .

0
yn(τ)dzτ |1−var;[s,t] ≤ C(1, 1)|z|1−var;[s,t](|yn|1−var;[s,t] + |yn|∞;[s,t])

for all 0 ≤ s ≤ t ≤ T . As consequence

||
∫ t

s
yndz|| ≤

1

1− 21−θ |z|1−var;[s,t]|yn|1−var;[s,t] + |yn(s)|||z(t)− z(s)||Rd

≤ 1

1− 21−θ |z|1−var;[s,t]|yn|1−var;[s,t] +M ||z(t)− z(s)||Rd

≤ 1

1− 21−θ |z|1−var;[s,t] sup
n
|yn|1−var;[s,t] + sup

s∈[0,T ]
M ||z(t)− z(s)||Rd

for all 0 ≤ s ≤ t ≤ T with θ = 2 and

|
∫ .

0
yndz|1−var;[s,t] ≤ C(1, 1)|z|1−var;[s,t] sup

n
(|yn|1−var;[s,t] + |yn|∞;[s,t])

for all 0 ≤ s ≤ t ≤ T . Shortly the sequence gn(.) =
∫ .

0 yndz of C1−var([0, T ],Re)
mappings is uniformly bounded, equicontinuous and uniformly bounded in varia-
tion. The above facts hold in the case when un : [0, T ]→ Re is uniformly bounded

29



and equi-Lipschitz and have some importance for our purpose.
Let E is a separable reflexive. Let us consider a convex weakly compact val-
ued mapping K : [0, 1] ⇒ BE with bounded right continuous retraction in the
sense, there is a bounded and right continuous function ρ : [0, 1]→ R+ such that
dH(K(t),K(τ)) ≤ ρ(τ) − ρ(t),∀t ≤ τ ∈ [0, 1] and such that its graph is Borel,
that is, Graph(C) ∈ B([0, T ])⊗ B(E). We consider the control sets given by

SBV RCK := {u : [0, 1]→ E, u is BVRC, u(t) ∈ K(t), ∀t ∈ [0, 1]}

S∞K := {u ∈ L∞([0, 1], E, dλ), u(t) ∈ K(t), ∀t ∈ [0, T ]}

By J.J. Moreau ([27], Prop.5 d, p. 198) and Valadier [33] these sets are non empty
and clSBV RCC = S∞C , here cl denotes the closure with respect to the σ(L∞E , L

1
E∗)-

topology. Shortly SBV RCK is dense in S∞K with respect to this topology. Then we
have the following relaxation results in a control problem governed by an EVI
sweeping process given above.We aim to present a Bolza problem and relaxation
problem in a Optimal Control where the control belong to SBV RCK and S∞K Here
A : Re → Re is a linear continuous coercive symmetric operator and let B is a
linear continuous operator on Re and b : [0, T ] × Re → L(Rd,Re) satisfying B1,
B2.

Theorem 6.2. Let E = Re. Let us consider the problem

inf
(PSBVRC

K
)

∫ T

0
〈
∫ t

0
b(s, u(s))dzs, ζ(t)〉dt

associated with the dynamical system

(PSBVRCK
)

{ ∫ t
0 ζ(s)ds+Bu(t) +Au̇(t) ∈ NC(t)(u̇(t)), t ∈ I, ζ ∈ SBV RCK

u(0) = a ∈ C(0)

and the problem

inf
(PV∞

K
)

∫ T

0
〈
∫ t

0
b(s, u(s))dzs, ζ(t)〉dt

associated with the dynamic system

(PV∞K )

{ ∫ t
0 ζ(s)ds+Bu(t) +Au̇(t) ∈ NC(t)(u̇(t)), t ∈ I, ζ ∈ V∞K
u(0) = a ∈ C(0)

Then we have inf (PV∞K ) = inf (PSBVRCK
) As consequence

inf
(PV∞

K
)

∫ T

0
〈
∫ t

0
b(s, u(s))dzs, ζ(t)〉dt

is a minimum.
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Proof. The inequality inf (PV∞K ) ≤ inf (PSBVRCK
) is a simple consequence of the

Valadier result above mentioned by observing that a BVRC function is Borel.
Take and any ζ ∈ V∞K . As SBV RCK is dense in V∞K with respect to the σ(L∞E , L

1
E)

topology, there exists a sequence (ζn) in SBV RCK such that (ζn) σ(L∞E , L
1
E) converge

to ζ. For simplicity set fn(t) =
∫ t

0 ζn(s)ds , and f(t) =
∫ t

0 ζ(s)ds for all t ∈ [0, T ].
Then it is clear that fn and f continuous uniformly bounded with fn(t) → f(t)
for every t ∈ [0, T ]. Let un be the unique Lipschitz solution to{ ∫ t

0 ζn(s)ds+Bun(t) +Au̇n(t) ∈ NC(t)(u̇n(t)), t ∈ I,
un(0) = a ∈ C(0)

and let v be the unique Lipschitz solution to{ ∫ t
0 ζ(s)ds+Bv(t) +Av̇(t) ∈ NC(t)(v̇(t)), t ∈ I,
u(0) = a ∈ C(0)

In view Theorem 1.1 and Proposition 2.1 the sequence (un) is equi-Lipchitz and
converges uniformly to v. For simplicity set gn(t) =

∫ t
0 b(s, un(s))dzs, ∀t ∈ [0, T ].

Apply the estimates given the preliminary fact, gn(t) =
∫ t

0 b(s, un(s))dzs is uni-
formly bounded, equicontinuous and uniformly bounded in variation. By the
Lipschitz condition b(., un(.)) converge uniformly to b(., v(.)). As b(., un(.)) and
b(., v(.)) are bounded and uniformly bounded in variation, by Friz-Victoir ([20]
Proposition 6.12) gn(t) converge uniformly to g(t) =

∫ t
0 b(s, v(s))dzs so that

lim
n→∞

∫ T

0
〈
∫ t

0
b(s, un(s))dzs, ζn(t)〉dt =

∫ T

0
〈
∫ t

0
b(s, v(s)dzs, ζ(t)〉dt

As ∫ T

0
〈
∫ t

0
b(s, un(s)dzs, ζn(t)〉dt ≥ inf

(PSBVRC
K

)

∫ T

0
〈
∫ t

0
b(s, u(s))dzs, ζ(t)〉dt

for all n ∈ N, it follows by taking the limit that∫ T

0
〈
∫ t

0
b(s, v(s))dzs, ζ(t)〉dt ≥ inf (PSBVRCK

)

This holds for every ζ ∈ V∞K hence inf (PV∞K ) ≥ inf (PSBVRCK
)

For simplicity we consider a simple perturbation control integral such as∫ t
0 ζ(s)ds. Theorem 3.2 is valid iwith the perturbation control integral

∫ t
0 Dζ(s)ds

where D : Re → Re is a linear continuous operator. Several variants of Theorem
3.2 are available using Theorem 1.2-1.3 and Proposition 2.2 -2.3.

Young measures For the sake of completeness, we summarize some useful
facts concerning Young measures. Let (Ω,F , P ) be a complete probability space.
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Let X be a Polish space and let Cb(X,R) be the space of all bounded continuous
functions defined onX. LetM1

+(X) be the set of all Borel probability measures on
X equipped with the narrow topology. A Young measure ν : Ω→M1

+(X) is, by
definition, a scalarly measurable mapping from Ω into M1

+(X), that is, for every
f ∈ Cb(X,R), the mapping ω 7→ 〈f, νω〉 :=

∫
X f(x) dνω(x) is F-measurable. A

sequence (νn) in the space of Young measures Y(Ω,F , P ;M1
+(X)) stably converges

to a Young measure ν ∈ Y(Ω,F , P ;M1
+(X)) if the following holds:

lim
n→∞

∫
A

(∫
X
f(x) dνnω(x)

)
dP (ω) =

∫
A

(∫
X
f(x) dνω(x)

)
dP (ω)

for every A ∈ F and for every f ∈ Cb(X,R). We recall and summarize some
results for Young measures.

In the remainder Z is a compact metric space,M1
+(Z) is the space of all prob-

ability Radon measures on Z. We will endow M1
+(Z) with the narrow topology

so that M1
+(Z) is a compact metrizable space. Let us denote by Y(I;M1

+(Z))
the space of all Young measures defined on I endowed with the stable topology
so that Y(I;M1

+(Z)) is a compact metrizable space with respect to this topology.
By the Portmanteau Theorem for Young measures [18, Theorem 2.1.3], a sequence
(νn) in Y(I;M1

+(Z)) stably converges to ν ∈ Y(I;M1
+(Z)) if

lim
n→∞

∫ T

0

(∫
Z
ht(z)dν

n
t (z)

)
dt =

∫ T

0

(∫
Z
ht(z)dνt(z)

)
dt

for all h ∈ L1(I, C(Z)); here C(Z) denotes the space of all continuous real valued
functions defined on Z endowed with the norm of uniform convergence. Finally
let Γ be a measurable mapping defined on I with nonempty compact values in Z
and SΓ the set of all Lebesgue measurable selections of Γ (alias original controls).
Let C : [0, T ]→ Re compact valued Lipschitzean mapping and let f : I ×Z → Re
be a function satisfying
(1) for every fixed t ∈ I, f(t, .) is continuous on Z,
(2) for every z ∈ Z, f(., z) is Lebesgue-measurable on I;
(3) there is a constant M > 0 such that ||f(t, z)|| ≤M for all (t, z) in I × Z.

We aim to present some relaxation problems in the framework of Optimal
Control Theory. We consider the evolution inclusion (PO) associated with original
controls

(PO)

{ ∫ t
0 f(s, ζ(s))ds+Buζ(t)−Au̇ζ(t) ∈ NC(t)(u̇ζ(t))), a.e. t ∈ I,
uζ(0) = u0 ∈ C(0)

where ζ belongs to the set Z := S1
Γ of all original controls, which means that ζ is a

Lebesgue-measurable selection of Γ, and the evolution inclusion (PR) associated
with relaxed controls

(PR)

{ ∫ t
0 [
∫
Z f(s, z)νs(dz)]ds+Buν(t)−Au̇ν(t) ∈ NC(t)(u̇ν(t))), a.e. t ∈ I

uν(0) = u0 ∈ C(0)
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where ν belongs to the set R := SΣ of all relaxed controls, which means that ν is
a Lebesgue-measurable selection of the mapping Σ defined by

Σ(t) :=
{
σ ∈M1

+(Z) : σ(Γ(t)) = 1
}

for all t ∈ I. Note that, for ν ∈ R, the mapping

hν : (t, z) 7→
∫
Z
f(t, z)νt(dz)

inherits the properties
(1) for every fixed t ∈ I, hν(t, .) is continuous on Z;
(2) for every z ∈ Z, hν(., z) is Lebesgue-measurable on I;
(3) there is a constant M > 0 such that ||hν(t, z)|| ≤M for all (t, z) in I × Z;
Consequently,, for each ζ ∈ Z (resp. ν ∈ R), the evolution inclusion (PO) (resp.
(PR)) has a unique Lipschitz continuous solution. Moreover, there is an a priori
bound for the Lipschitz ratio of solutions which easily implies that the solution
sets (SO) and (SR) (to (PO) and (PR)) are equi-Lipschitz.

Now we will state some topological properties of the solution sets (SO) and
(SR), namely we obtain the typical relaxation result that the former is dense in
the latter.

Theorem 6.3. Assume that for every t ∈ I, et C : [0, 1] → Re compact valued
Lipschitz mapping.Let f : I×Z → Re be a mapping satisfying (1), (2), (3). Then
the following hold:
(a) the solution set (SR) to

(PR)

{ ∫ t
0 [
∫
Z f(s, z)νs(dz)]ds+Buν(t)−Au̇ν(t) ∈ NC(t)(u̇ν(t))), a.e. t ∈ I, ν ∈ Z

uν(0) = u0 ∈ C(0)

is nonempty and compact in C(I,Re).
(b) the solution set (SO) to

(PO)

{ ∫ t
0 f(s, ζ(s))ds+Buζ(t)−Au̇ζ(t) ∈ NC(t)(u̇ζ(t))), a.e. t ∈ I, ζ ∈ Z
uζ(0) = u0 ∈ C(0)

is dense in (SR) with respect to the topology of uniform convergence.

Proof. (a) By Theorem 1.1, the solution set (SR) is bounded equi-Lipschitz. Then
(SR) is relatively compact in C(I,H), by Ascoli’s theorem. Therefore, if (νn) ⊂ R,
there is a subsequence still denoted by (uνn) which converges uniformly to a
Lipschitz continuous function u∞ with ||u̇∞(t)|| ≤ K a.e. and such that also (u̇νn)
σ(L1(I,Re; dt), L∞(I,Re; dt))-converges to u̇∞. As R is compact metrizable for
the stable topology, we may assume that (νn) stably converges to ν∞ ∈ R. Since
the continuous functions

gn(t) :=

∫ t

0
[

∫
Z
f(s, z)νns (dz)]ds
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and

g(t) :=

∫ t

0
[

∫
Z
f(s, z)ν∞s (dz)]ds

are uniformly bounded and with gn(t)→ g(t), from the inclusion

gn(t) +Bunν (t)−Au̇ν(t) ∈ NC(t)(u̇
n
ν (t)))

and Proposition 2.1, we deduce that

g(t) +Buν∞(t)−Au̇ν∞(t) ∈ NC(t)(u̇ν∞(t)))

This proves the first part of the theorem.
(b) The second part follows by continuity and density since Z is dense in R with
respect to the stable topology ([18], Lemma 7.1.1).

Theorem 6.4. Let us consider the problem

inf
(PR)

∫ T

0

〈 ∫ t

0
b(s, u(s))dzs,

∫ t

0
[

∫
Z
f(s, z)νs(dz)]ds

〉
dt

associated with the dynamic system

(PR)

{ ∫ t
0 [
∫
Z f(s, z)νs(dz)]ds+Buν(t)−Au̇ν(t) ∈ NC(t)(u̇ν(t))), a.e. t ∈ I, ν ∈ Z

uν(0) = u0 ∈ C(0)

and the problem ∫ T

0

〈 ∫ t

0
b(s, u(s))dzs,

∫ t

0
h(s, ζ(s))ds

〉
dt

associated with the dynamic system

(PO)

{ ∫ t
0 f(s, ζ(s))ds+Buζ(t)−Au̇ζ(t) ∈ NC(t)(u̇ζ(t))),

u(0) = a ∈ C(0)

Then we have inf (PR) = inf (PO) and

inf
(PR)

∫ T

0

〈 ∫ t

0
b(s, u(s))dzs,

∫ t

0
[

∫
Z
h(s, z)νs(dz)]ds

〉
dt

is a minimum.

Proof. The inequality inf (PR) ≥ inf (PO) is clear. Let ν ∈ R, limn

∫ t
0 h(s, ζn(s))ds =∫ t

0 [
∫
Z h(s, z)νs(dz)]ds for all t ∈ [0, T ]. Let un be the unique Lipschitz solution to{

−u̇n(t) ∈ NC(t)un(t) +
∫ t

0 h(s, ζn(s))ds, t ∈ I
un(0) = a ∈ C(0)
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and let v be the unique Lipschitz solution to{
−v̇(t) ∈ NC(t)v(t) +

∫ t
0 [
∫
Z h(s, z)νs(dz)]ds, t ∈ I

v(0) = a ∈ C(0).

In view of the first step of the proof of Theorem 4.3, the sequence (un) con-
verges uniformly to v. For simplicity set gn(t) =

∫ t
0 b(s, un(s))dzs, ∀t ∈ [0, T ].

Apply the estimates given the preliminary fact, gn(t) =
∫ t

0 b(s, un(s))dzs is uni-
formly bounded, equicontinuous and uniformly bounded in variation. By the
Lipschitz condition b(., un(.)) converge uniformly to b(., v(.)). As b(., un(.)) and
b(., v(.)) are bounded and uniformly bounded in variation, by Friz-Victoir ([20]
Proposition 6.12) gn(t) converge uniformly to g(t) =

∫ t
0 b(s, v(s))dzs. For sim-

plicity set kn(t) =
∫ t

0 h(s, ζn(s))ds and k(t) =
∫ t

0 [
∫
Z h(s, z)νs(dz)]ds so that

〈gn(t), kn(t)〉 = 〈g(t), k(t)〉. As gn(t), g(t), kn(t), k(t) are uniformly bounded, we
deduce that so that

lim
n→∞

∫ T

0
〈
∫ t

0
b(s, un(s))dzs,

∫ t

0
h(s, ζn(s))ds

〉
dt = lim

n→∞

∫ T

0
〈gn(t), kn(t)〉dt

=

∫ T

0
〈g(t), k(t)〉dt = 〈

∫ t

0
b(s, v(s)dzs,

∫ t

0
[

∫
Z
h(s, z)νs(dz)]ds〉dt

As∫ T

0
〈
∫ t

0
b(s, un(s)dzs,

∫ t

0
h(s, ζn(s))ds

〉
dt ≥ inf

(PO)

∫ T

0
〈
∫ t

0
b(s, u(s))dzs,

∫ t

0
h(s, ζ(s))ds

〉
dt

for all n ∈ N, it follows by taking the limit that∫ T

0
〈
∫ t

0
b(s, v(s))dzs,

∫ t

0
[

∫
Z
h(s, z)νs(dz)]ds〉dt ≥ inf(PO)

This holds for every ν ∈ R hence inf (PR) ≥ inf (PO).

6.3 Towards fractional inclusion coupled with EVI and sweeping
process

Now I = [0, 1] and we investigate a class of boundary value problem governed by a
fractional differential inclusion (FDI) (3.1) in a separable Hilbert space H coupled
with the evolution inclusion governed by the above EVI (3.3) and sweeping process
(3.4).

Dαh(t) + λDα−1h(t) = u(t), t ∈ I, (6.1)

Iβ
0+
h(t) |t=0 := lim

t→0

∫ t

0

(t− s)β−1

Γ(β)
h(s)ds = 0, h(1) = Iγ

0+
h(1) =

1∫
0

(1− s)γ−1

Γ(γ)
h(s)ds,

(6.2)

35



f(t, h(t) +Bu(t)−Au̇(t) ∈ ∂ϕ(t, u̇(t)) a.e. (6.3)

and
f(t, h(t) +Bu(t)−Au̇(t) ∈ NC(t)(u̇(t)) a.e. (6.4)

where α ∈]1, 2], β ∈ [0, 2−α], λ ≥ 0, γ > 0 are given constants, Dα is the standard
Riemann-Liouville fractional derivative , Γ is the gamma function.

For the convenience of the reader, we begin with a few reminders of the con-
cepts that will be used in the rest of the paper.

Definition 6.1 (Fractional Bochner integral). Let E be a separable Banach space.
Let f : I = [0, 1] → E. The fractional Bochner-integral of order α > 0 of the
function f is defined by

Iα0+f(t) :=

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds, t > 0.

In the above definition, the sign “
∫

” denotes the classical Bochner integral.

Lemma 6.5 ([30]). Let f ∈ L1([0, 1], E, dt). We have

(i) If α ∈]0, 1[ then Iα0+f exists almost everywhere on I and Iα0+f ∈ L
1(I, E, dt).

(ii) If α ∈ [1,∞) then Iα0+f ∈ CE(I).

Definition 6.2. Let E be a separable Banach space. Let f ∈ L1(I, E, dt). We
define the Riemann-Liouville fractional derivative of order α > 0 of f by

Dαf(t) := Dα
0+f(t) =

dn

dtn
In−α

0+
f(t) =

dn

dtn

∫ t

0

(t− s)n−α−1

Γ(n− α)
f(s)ds,

where n = [α] + 1.

We denote by Wα,1
B,E(I) the space of all continuous functions in CE(I) such that

their Riemann-Liouville fractional derivative of order α − 1 are continuous and
their Riemann-Liouville fractional derivative of order α are Bochner integrable.
Green function and its properties
Let α ∈]1, 2], β ∈ [0, 2− α], λ ≥ 0, γ > 0 and G : [0, 1]× [0, 1] → R be a function
defined by

G(t, s) = ϕ(s)Iα−1
0+

(exp(−λt)) +


exp(λs)Iα−1

s+
(exp(−λt)), 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1,
(6.5)

where

ϕ(s) =
exp(λs)

µ0

[(
Iα−1+γ
s+

(exp(−λt))
)

(1)−
(
Iα−1
s+

(exp(−λt))
)

(1)
]

(6.6)

with
µ0 =

(
Iα−1

0+
(exp(−λt))

)
(1)−

(
Iα−1+γ

0+
(exp(−λt))

)
(1). (6.7)

We recall and summarize a useful result ([14]).
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Lemma 6.6. Let E be a separable Banach space. Let G be the function defined
by (6.5)-(6.7).

(i) G(·, ·) satisfies the following estimate

|G(t, s)| ≤ 1

Γ(α)

(
1 + Γ(γ + 1)

|µ0|Γ(α)Γ(γ + 1)
+ 1

)
= MG.

(ii) If u ∈Wα,1
B,E ([0, 1]) satisfying boundary conditions (4.2), then

u(t) =

1∫
0

G(t, s)
(
Dαu (s) + λDα−1u(s)

)
ds for every t ∈ [0, 1].

(iii) Let f ∈ L1
E ([0, 1]) and let uf : [0, 1]→ E be the function defined by

uf (t) :=

1∫
0

G(t, s)f(s)ds for t ∈ [0, 1].

Then
Iβ

0+
uf (t) |t=0 = 0 and uf (1) =

(
Iγ

0+
uf
)

(1).

Moreover uf ∈Wα,1
B,E([0, 1]) and we have

(
Dα−1uf

)
(t) =

t∫
0

exp(−λ(t−s))f(s)ds+exp(−λt)
1∫

0

ϕ(s)f(s)ds for t ∈ [0, 1],

(6.8)
(Dαuf ) (t) + λ

(
Dα−1uf

)
(t) = f (t) for all t ∈ [0, 1]. (6.9)

From Lemma 6.6 we summarize a crucial fact.

Lemma 6.7. Let E be a separable Banach space. Let f ∈ L1(I, E, dt). Then the
boundary value problem{

Dαu(t) + λDα−1u(t) = f(t), t ∈ I
Iβ

0+
u(t) |t=0 = 0, u(1) = Iγ

0+
u(1)

has a unique Wα,1
B,E(I)-solution defined by

u(t) =

∫ 1

0
G(t, s)f(s)ds, t ∈ I.
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Theorem 6.8. Let E be a separable Banach space. Let X : I → E be a convex
compact valued measurable multifunction such that X(t) ⊂ γBE for all t ∈ I,
where γ is a positive constant and S1

X be the set of all measurable selections of X.

Then the Wα,1
B,E(I)-solutions set of problem{

Dαu(t) + λDα−1u(t) = f(t), f ∈ S1
X , a.e. t ∈ I

Iβ
0+
u(t) |t=0 = 0, u(1) = Iγ

0+
u(1)

(6.10)

is compact in CE(I).

Proof. By virtue of Lemma 6.7 the Wα,1
B,E([0, 1])-solutions set X to the above

inclusion is characterized by

X = {uf : I → E, uf (t) =

∫ 1

0
G(t, s)f(s)ds, f ∈ S1

X , t ∈ I}

Claim: X is bounded, convex, equicontinuous and compact in CE(I).
From definition of the Green function G, it is not difficult to show that {uf : f ∈
S1
X} is bounded, equicontinuous in CE(I). Indeed let (ufn) be a sequence in X .

We note that, for each n ∈ N, we have ufn ∈W
α,1
B,E(I) , and

ufn(t) =

∫ 1

0
G(t, s)fn(s)ds, t ∈ I,

with

• Iβ
0+
ufn(t)|t=0 = 0, ufn(1) = Iγ

0+
u(1),

•
(
Dα−1ufn

)
(t) =

∫ t

0
exp(−λ(t−s))fn(s)ds+exp(−λt)

∫ 1

0
ϕ(s)fn(s)ds, t ∈

I,

• (Dαufn) (t) + λ
(
Dα−1ufn

)
(t) = fn(t), t ∈ I.

For t1, t2 ∈ I, t1 < t2, we have

ufn(t2)− ufn(t1) =

∫ 1

0
G(t, s)(fn(t2, s)− fn(t1, s))ds

=

∫ 1

0
ϕ(s)fn(s)ds

(∫ t2

0

e−λτ

Γ(α− 1)
(t2 − τ)α−2dτ −

∫ t1

0

e−λτ

Γ(α− 1)
(t1 − τ)α−2dτ

)
+

∫ t2

0
eλs
(∫ t2

s

(t2 − τ)α−2

Γ(α− 1)
e−λτdτ

)
f(s)ds−

∫ t1

0
eλs
(∫ t1

s

e−λτ

Γ(α− 1)
(t1 − τ)α−2dτ

)
f(s)ds

=

∫ 1

0
φ(s)f(s)ds

[∫ t1

0
e−λτ

(t2 − τ)α−2 − (t1 − τ)α−2

Γ(α− 1)
dτ +

∫ t2

t1

e−λτ
(t2 − τ)α−2

Γ(α− 1)
dτ

]
+

∫ t1

0
eλs
(∫ t1

s
e−λτ

(t2 − τ)α−2 − (t1 − τ)α−2

Γ(α− 1)
dτ

)
f(s)ds

+

∫ t1

0
eλs
(∫ t2

t1

e−λτ
(t2 − τ)α−2

Γ(α− 1)
dτ

)
f(s)ds+

∫ t2

t1

eλs
(∫ t2

s

(t2 − τ)α−2

Γ(α− 1)
e−λτdτ

)
f(s)ds.
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Then, we get

‖ufn(t2)− ufn(t1)‖ ≤
∫ 1

0

(
|ϕ(s)|+ eλs

)
|X(s)|ds

∫ t1

0
e−λτ

(t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ

+

∫ 1

0

(
|ϕ(s)|+ eλs

)
|X(s)|ds

∫ t2

t1

e−λτ
(t2 − τ)α−2

Γ(α− 1)
dτ

+

∫ t2

t1

eλs|X(s)|ds
∫ t2

t1

e−λτ
(t2 − τ)α−2

Γ(α− 1)
dτ.

It is easy to obtain, after an integration by part, that∫ t2

t1

e−λτ
(t2 − τ)α−2

Γ(α− 1)
dτ = e−λt1

(t2 − t1)α−2

Γ(α)
+λ

∫ t2

t1

e−λτ
(t2 − τ)α−1

Γ(α)
dτ ≤ 1 + λ

Γ(α)
(t2−t1)α−1

and∫ t1

0
e−λτ

(t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ ≤

∫ t1

0

(t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ =

(t2 − t1)α−1 + tα−1
1 − tα−1

2

Γ(α)

Using the inequality that |ap − bp| ≤ |a − b|p for all a, b ≥ 0 and 0 < p ≤ 1, we
yield ∫ t1

0
e−λτ

(t2 − τ)α−2 − (t1 − τ)α−2

Γ(α− 1)
dτ ≤ 2

Γ(α)
(t2 − t1)α−1

Then, since α ∈]1, 2], we can increase ‖ufn(t2)− ufn(t1)‖ by

‖ufn(t2)− ufn(t1)‖ ≤ K|t2 − t1|α−1

with K =
∫ 1

0

[
(3 + λ)|φ(s)|+ (4 + 2λ)eλs

]
|X(s)|ds This shows that {ufn : n ∈ N}

is equicontinuous in CE(I). Moreover, for each t ∈ I the set {ufn(t) : n ∈ N}, is

contained in the convex compact set
∫ 1

0 G(t, s)X(s)ds [?, 19] so that X is relatively
compact in CE(I) as claimed. So, we can assume that

lim
n→∞

ufn = u∞ ∈ CE(I)

As S1
X is σ(L1

E , L
∞
E∗)-compact e.g [19] we may assume that (fn) σ(L1

E , L
∞
E∗)-

converges to f∞ ∈ S1
X . so that ufn weakly converges to uf∞ in CE(I) where

uf∞(t) =
∫ 1

0 G(t, s)f∞(s)ds and so for every t ∈ I,

u∞(t) = w- lim
n→∞

ufn(t) = w- lim
n→∞

∫ 1

0
G(t, s)fn(s)ds =

∫ 1

0
G(t, s)f∞(s)ds = uf∞(t),

and

w- lim
n→∞

(
Dα−1ufn

)
(t) = w- lim

n→∞

[∫ t

0
exp(−λ(t− s))fn(s)ds+ exp(−λt)

∫ 1

0
ϕ(s)fn(s)ds

]
=

∫ t

0
exp(−λ(t− s))f∞(s)ds+ exp(−λt)

∫ 1

0
ϕ(s)f∞(s)ds

=
(
Dα−1uf∞

)
(t), t ∈ I.
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This means u∞ ∈ X , and the proof of the theorem is complete.

Theorem 6.9. Let I := [0, 1] and H be a separable Hilbert space. Let K be a
convex compact subset of H. Let ϕ : [0, T ] ×K →] −∞,+∞] be a normal lower
semicontinuous convex integrand such that
(i {ϕ(., u(.)), u ∈ S1

K} is uniformly integrable.
(ii) ϕ(t, x) ≤ ϕ(τ, x)+|v(t)−v(τ)| for all t, τ ∈ [0, T ], x ∈ K where v : [0, T ]→ R+

is a positive nondecreasing continuous function with v(0) = 0.
Let A : H → H be a linear continuous coercive symmetric operator and B : H →
H be a linear continuous mapping.
Let f : I × H → H be a bounded continuous mapping ||f(t, x)|| ≤ M for all
(t, x) ∈ [0, 1] × H. Then for any u0 ∈ H, there exist a Wα,1

B,H([0, 1]) mapping
x : [0, 1]→ H and an absolutely continuous mappings u : [0, 1]→ H satisfying

u(0) = u0 ∈ H
Dαx(t) + λDα−1x(t) = u(t), t ∈ [0, 1]

Iβ
0+
x(t) |t=0 = 0, x(1) = Iγ

0+
x(1)

f(t, x(t)) +Bu(t)−Adu
dt (t) ∈ ∂ϕ(t, dudt (t)), a.e. t ∈ [0, 1]

Proof. Let us consider the convex compact (cf Theorem 3.5) subset X in the
Banach space CH([0, 1]) defined by

X := {uf : [0, 1]→ H : uf (t) =

∫ 1

0
G(t, s)f(s)ds, f ∈ S1

u0+K , t ∈ [0, 1]}

where S1
u0+K denotes the set of all integrable selections of the convex compact

valued constant multifunction u0 + K. For each h ∈ X , by Theorem 4.4 and
the assumptions on f , there is a unique absolutely continuous solution vh to the
inclusion{

vh(0) = u0 ∈ H
f(t, h(t)) +Bvh(t)−Advh

dt (t)) ∈ ∂ϕ(t, dvhdt (t)), a.e. t ∈ [0, 1]

with dvh
dt (t) ∈ K a.e. so that vh(t) = u0 +

∫ t
0
dvh
ds (s)ds ∈ u0 +

∫ t
0 Kds ⊂ u0 +K,∀t ∈

[0, 1].
Now for each h ∈ X let us consider the mapping defined by

Φ(h)(t) :=

∫ t

0
G(t, s)vh(s)ds,

for t ∈ [0, 1]. Then it is clear that Φ(h) ∈ X . Now we check that Φ is continuous.
It is sufficient to show that, if (hn) uniformly converges to h in X , then the
absolutely continuous solution vhn associated with hn{

vhn(0) = u0 ∈ H
f(t, hn(t)) +Bvhn(t)−Advhn

dt (t) ∈ ∂ϕ(t,
dvhn
dt (t)), a.e. t ∈ [0, 1]
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uniformly converges to the absolutely continuous solution vh associated with h{
vh(0) = u0 ∈ H
f(t, h(t)) +Bvh(t)−Advh

dt (t) ∈ ∂ϕ(t, dvhdt (t)), a.e. t ∈ [0, 1]

As (vhn) is equi-absolutely continuous with vhn(t) ∈ u0 +
∫ t

0 )dsKds ⊂ u0 +K,∀t ∈
[0, 1] we may assume that (vhn) uniformly converges to an absolutely continuous

mapping z. Since vhn(t) = u0 +
∫

]0,t]
dvhn
ds (s)ds, t ∈ [0, 1] and

dvhn
ds (s) ∈ K, a.e. s ∈

[0, 1], we may assume that (
dvhn
dt ) weakly converges in L1

H([0, 1]) to w ∈ L1
H [0, 1])

with w(t) ∈ K, t ∈ [0, 1] so that

lim
n
vhn(t) = u0 +

∫ t

0
w(s)ds := u(t), t ∈ [0, T ].

By identifying the limits, we get

u(t) = z(t) = u0 +

∫ t

0
w(s)ds

with u̇ = w. Therefore by applying the arguments in the above variational limit
result we get

f(t, h(t)) +Bu(t)−Adu
dt

(t) ∈ ∂ϕ(t,
du

dt
(t)), a.e. t ∈ [0, 1]

with u(0) = u0 ∈ H, so that by uniqueness u = vh. Since hn → h, we have

Φ(hn)(t)− Φ(h)(t) =

∫ 1

0
G(t, s)vhn(s)ds−

∫ 1

0
G(t, s)vh(s)ds

=

∫ 1

0
G(t, s)[vhn(s)− vh(s)]ds

≤
∫ 1

0
MG||vhn(s)− vh(s)||ds

As ||vhn(·)− vh(·)|| → 0 uniformly, by using Lemma 3.3(i) we conclude that

sup
t∈[0,1]

||Φ(hn)(t)− Φ(h)(t)|| ≤
∫ 1

0
MG||vhn(·)− vh(·)||ds→ 0

so that Φ(hn)→ Φ(h) in CH([0, 1]). Since Φ : X → X is continuous Φ has a fixed
point, say h = Φ(h) ∈ X . This means that

h(t) = Φ(h)(t) =

∫ 1

0
G(t, s)vh(s)ds,
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with 
vh(0) = u0 ∈ H
Dαh(t) + λDα−1h(t) = vh(t), t ∈ [0, 1]

Iβ
0+
h(t) |t=0 = 0, h(1) = Iγ

0+
h(1)

f(t, h(t)) +Bvh(t)−Advh
dt (t) ∈ ∂ϕ(t, dvhdt (t)), a.e. t ∈ [0, 1]

So by putting x = h and u = vh we conclude that (x, u) solves the dynamic EVI
u(0) = u0 ∈ H
Dαx(t) + λDα−1x(t) = u(t), t ∈ [0, 1]

Iβ
0+
x(t) |t=0 = 0, x(1) = Iγ

0+
x(1)

f(t, x(t)) +Bu(t)−Adu
dt (t) ∈ ∂ϕ(t, dudt (t)), a.e. t ∈ [0, 1]

The proof is complete.

Further variants of the above results are available. For instance, we are able
to state the existence of solution to the dynamic system

Dαh(t) + λDα−1h(t) = u(t), t ∈ [0, 1]

Iβ
0+
h(t) |t=0 = 0, h(1) = Iγ

0+
h(1)

u(0) = u0

f(t, h(t)) +Bu(t)−Adu
dt (t) ∈ NC(t)(

du
dt (t)), a.e. t ∈ [0, 1]

Our tools allow to treat other variants by considering other class of FDI given in
[10, 11, 12, 13, 14]. We study below an example of a Caputo fractional differen-
tial inclusion governed by an EVI.For the sake of completeness, we recall some
needed properties for the fractional calculus and provide a series of lemmas on
the fractional integral. Throughout we assume α ∈]1, 2].

Definition 6.3. The Caputo fractional derivative of order γ > 0 of a function
h : I = [0, T ]→ H, cDγh : [0, T ]→ H, is defined by

cDγh(t) =
1

Γ(n− γ)

∫ t

0

h(n)(s)

(t− s)1−n+γ
ds.

Here n = [γ] + 1 and [γ] denotes the integer part of γ.

Denote by

Wα,∞
H (I) = {u ∈ C1

H(I) : cDα−1u ∈ CH(I); cDαu ∈ L∞H (I)},

where cDα−1u and cDαu are the fractional Caputo derivatives of order α− 1 and
α of u, respectively.

We summarize some properties of a Green function given in Lemma 2.1 of
[13].
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Lemma 6.10. Let I = [0, T ] and let G : I × I → R be a function defined by

G(t, s) =


(t−s)α−1

Γ(α) − 1+t
T+2

[
(T−s)α−1

Γ(α) + (T−s)α−2

Γ(α−1)

]
, if 0 ≤ s < t,

− 1+t
T+2

[
(T−s)α−1

Γ(α) + (T−s)α−2

Γ(α−1)

]
if t ≤ s < T.

Let f ∈ L∞H (I). Then the system defined by
cDαu(t) = f(t), t ∈ [0, T ]

u(0)− du
dt (0) = 0

u(T ) + du
dt (T ) = 0

has a unique Wα,∞
H ([0, T ])-solution u given by u(t) =

∫ T
0 G(t, s)f(s)ds, ∀t ∈ I.

with |G(t, s)| ≤MG := 2Tα−1+(α−1)Tα−2

Γ(α) .

We recall and summarize a crucial lemma (Lemma 3.5 of [13]) for our next
theorem.

Lemma 6.11. Let X : [0, T ] ⇒ H be a convex compact valued measurable map-
ping such that |X(t)| ≤ γ(t) < +∞, ∀t ∈ I with γ ∈ L1(I). Then the Wα,∞

H (I)-
solutions set X to 

cDαu(t) ∈ X(t), t ∈ I
u(0)− du

dt (0) = 0

u(T ) + du
dt (T ) = 0,

is s convex compact in CH(I).

Now comes an existence result with a Caputo fractional differential inclusion
driven by maximal monotone operator.

Theorem 6.12. Let I := [0, 1] and H be a separable Hilbert space. Let K be a
convex compact subset of H. Let ϕ : [0, T ] ×K →] −∞,+∞] be a normal lower
semicontinuous convex integrand such that
(i {ϕ(., u(.)), u ∈ S1

K} is uniformly integrable.
(ii) ϕ(t, x) ≤ ϕ(τ, x)+|v(t)−v(τ)| for all t, τ ∈ [0, T ], x ∈ K where v : [0, T ]→ R+

is a positive nondecreasing continuous function with v(0) = 0.
Let A : H → H be a linear continuous coercive symmetric operator and B : H →
H be a linear continuous mapping.
Let f : I ×H → H be a mapping such that
(i) f(·, x, y) is L(I) measurable for all (x, y) ∈ H ×H;
(ii) f(t, ·, ·) is continuous on H ×H for all t ∈ I;
(iii) ‖f(t, x, y)‖ ≤M for all (t, x, y) ∈ I ×H ×H.
Then given a ∈ H, there is a Wα,∞

H (I) mapping x : I → H and an absolutely
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continuous mapping v : I → H satisfying

cDαx(t) = v(t), t ∈ I
x(0)− dx

dt (0) = 0

x(T ) + dx
dt (T ) = 0

v(0) = a

f(t, x(t)) +Bu(t)−Adu
dt (t) ∈ ∂ϕ(t, dudt (t)), a.e. t ∈ [0, 1]

Proof. For any continuous mapping h : I → E, the mapping fh : I × E →
E defined by fh(t) := f(t, h(t)) for all t ∈ I is L(I) measurable and satisfies
|fh(t)| ≤M for all t ∈ I. Then by Theorem 4.4 and the assumptions on f , there
is a unique absolutely continuous solution vh to the inclusion{

vh(0) = u0 ∈ H
f(t, h(t)) +Bvh(t)−Advh

dt (t)) ∈ ∂ϕ(t, dvhdt (t)), a.e. t ∈ [0, 1]

with dvh
dt (t) ∈ K a.e. so that vh(t) = u0 +

∫ t
0
dvh
ds (s)ds ∈ u0 +

∫ t
0 Kds ⊂ u0 +K,∀t ∈

[0, 1]. with vh uniformly bounded and equi-absolutely continuous: dvh
dt ∈ KBH ,

where K is positive constant, so for some real constant L > 0 one has ‖vh(t)‖ ≤ L
for all t ∈ I. Now let us consider the set X defined by

X := {ξf : I → E : f ∈ S1
LBE
},

each mapping ξf being given for every t ∈ I by

ξf (t) =

∫ 1

0
G(t, s)f(s) ds, f ∈ S1

LBE

where G is the Green function given in Lemma 6.10. We note that X is convex
compact in CE(I) by Lemma 6.11. Now for each h ∈ X , by Theorem 4.4 again
denote by uh the unique absolutely continuous solution of the differential inclusion

f(t, h(t)) +Buh(t)−Aduh
dt

(t)) ∈ ∂ϕ(t,
duh
dt

(t)), a.e. t ∈ Iuh(0) = a ∈ Re.

For each h ∈ X let us set (again with the above Green function G)

Φ(h)(t) =

∫ T

0
G(t, s)uh(s) ds, for all t ∈ I.

Then it is clear that Φ(h) ∈ X because ‖uh(t)‖ ≤ L for all t ∈ I. Hence Φ(X ) is
equicontinuous and relatively compact in the Banach space CE(I) because Φ(X ) ⊂
X . Now we check that Φ is continuous relative to X . It is enough to show that,
if (hn)n converges uniformly to h in X , then the sequence (uhn)n, where each uhn
is the unique absolutely continuous solution of the differential inclusion{

uhn(0) = a ∈ Re

f(t, hn(t)) +Buhn(t)−Aduhn
dt (t)) ∈ ∂ϕ(t,

duhn
dt (t)), a.e. t ∈ I,
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uniformly converges to the unique absolutely continuous solution uh of the differ-
ential inclusion{

uh(0) = a ∈ Re

f(t, h(t)) +Buh(t)−Aduh
dt (t)) ∈ ∂ϕ(t, duhdt (t)), a.e. t ∈ I.

We note that (uhn)n is equicontinuous since for every n ∈ N one has ‖u̇hn(t)‖ ≤ K
for almost all t ∈ I. Further, {uhn(t) : n ∈ N} is included in the compact set LBE

for every t ∈ I. The Arzelà-Ascoli theorem tells us that {uhn : n ∈ N} is relatively
compact in CE(I). So by extracting a subsequence, we may suppose that (uhn)n
converges uniformly on I to some mapping ζ : I → E with

ζ(t) = ζ(0) +

∫ t

0
ζ̇(s) ds for all t ∈ I,

along with (u̇hn)n converging weakly in L1
H(I) to ζ̇ with ‖ζ̇(t)‖ ≤ K for a.e. t ∈ I.

Note that
f(t, uhn(t))→ f(t, ζ(t)) for all t,∈ I.

For simplicity, denote

zn(t) := f(t, uhn(t)) , for all t ∈ I,

z(t) = f(t, ζ(t)) , for all t ∈ I.
First, we notice that these mappings are Lebesgue measurable. Second, by con-
dition (iii) and the uniform boundedness of (uhn)n and uh, we also notice that
(zn)n and z are uniformly bounded, since

‖zn(t)‖ ≤M and ‖z(t)‖ ≤M, for all n ∈ N and t ∈ I.

Consequently, (zn)n is a sequence of measurable and uniformly bounded mappings
which converges pointwise to the measurable mapping z. Therefore, the sequence
(u̇hn+zn)n converges weakly to ζ̇+z in L1

E(I). This combined with the variational
limit theorem gives

f(t, h(t)) +Bζ(t)−Adζ
dt

(t)) ∈ ∂ϕ(t,
dζ

dt
(t)), a.e. t ∈ I

. So using the uniqueness of solution of the latter differential inclusion we obtain
that ζ = uh. Now let us write by Lemma 6.10 and boundedness of the Green
function G

Φ(hn)(t)− Φ(h)(t) =

∫ 1

0
G(t, s)uhn(s) ds−

∫ 1

0
G(t, s)uh(s) ds

=

∫ 1

0
G(t, s)[uhn(s)− uh(s)] ds

≤
∫ 1

0
MG‖uhn(s)− uh(s)‖ ds.
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Since ‖uhn(·)− uh(·)‖ → 0 uniformly on I as n→∞, we deduce that

sup
t∈I
‖Φ(hn)(t)− Φ(h)(t)‖ ≤

∫ 1

0
MG‖uhn(·)− uh(·)‖ ds→ 0,

which entails that Φ(hn)→ Φ(h) uniformly on I, as desired. Then Φ : X → X is
continuous hence by the Schauder theorem Φ has a fixed point, say h = Φ(h) ∈ X .
This means that for every t ∈ I

h(t) = Φ(h)(t) =

∫ 1

0
G(t, s)uh(s) ds,

with {
uh(0) = a

f(t, h(t)) +Buh(t)−Aduh
dt (t)) ∈ ∂ϕ(t, duhdt (t)), a.e. t ∈ I.

Coming back to Lemma 6.10 and applying the above notations, this means that
we have just shown that there exists a mapping h ∈Wα,∞

B,H (I) satisfying

cDαh(t) = uh(t), t ∈ I
h(0)− dh

dt (0) = 0

h(T ) + dh
dt (T ) = 0

uh(0) = a t ∈ I
f(t, h(t)) +Buh(t)−Aduh

dt (t)) ∈ ∂ϕ(t, duhdt (t)), a.e. t ∈ I.

The proof of the theorem is then complete
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