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A B S T R A C T
Brain volume decrease is usually connected to neurodegeneration and aging. In this environment,
an important percentage of elderly persons suffer from mild cognitive impairment (MCI), a kind of
dementia that can lead to Alzheimer’s disease (AD). Since the symptoms of cognitive impairment are
scarcely discernible, developing a safe and effective method for early MCI detection has emerged as
an important challenge. According to this regard, numerous cognitive training tests can be targeted
to help aging people retain a good quality of life, especially in the case of fragility disorders. A
Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) task was initially created to
detect the early stages of AD. This task specifically targets various tests related to specific cognitive
domains. However, it has since developed into a popular diagnostic tool for many kinds of dementia,
such as MCI. Several low-cost equipment, such as electroencephalography (EEG) and heart rate
variability (HRV), may be useful for predicting MCI. On the other side, various machine learning
(ML) models can be employed to extract/analyse relevant features from biomedical and physiological
signals, especially in the context of anomaly detection and classification. To this regard, we developed
a new method based on ML models to categorize MCI and healthy control (HC) patients during
the CERAD task using EEG and HRV multimodal data. Our dataset includes 15 subjects who were
randomly assigned to training and testing groups of 7 HC and 8 MCI, respectively. Our raw EEG
and HRV data are analyzed to extract time, frequency, and non-linear features. A scaling step is
employed to reduce the significant disparity between features. For the classification task, five ML
models are evaluated, including support vector machine (SVM), k-nearest neighbors (KNN), decision
tree (DT), random forest (RF), and gradient boosting (GB). To enhance accuracy, a hybrid ML model
with a voting system is developed, combining the top ML models with the highest accuracy rates.
A comparison step is performed between the use of ML and hybrid ML models. The experimental
findings demonstrated the efficacy of our proposed technique, which included a hybrid ML model. An
average accuracy of 93.86%, a sensitivity of 93.87%, and a specificity of 93.53% are achieved. The
obtained results allow one to conclude that the first CERAD test plays a prominent role as a novel
biomarker with an ultra-short duration for early MCI identification through the combination of EEG
and HRV signals.

1. Introduction
Memory loss is a common result of aging [1], and if the

impairment level rises above what is expected with normal
aging [2], it may lead to mild cognitive impairment (MCI).
MCI is a condition that occurs between normal aging and
dementia [3] and is often associated with Alzheimer’s dis-
ease (AD), which is the most typical factor in dementia [4, 5].
Approximately 50 million people worldwide are affected
by AD, and there is a 54% risk that MCI may progress to
AD or other related dementias [6, 7]. However, MCI is not
easily detected, and AD can result in billions of dollars in
annual costs and a loss of brain health [8]. Early detection
of MCI is therefore crucial for improving the treatment of
AD and dementia. There are two primary forms of MCI [9]:
amnestic MCI (aMCI) and non-amnestic MCI (naMCI).
aMCI is characterized by memory loss and is linked to a
high probability of progression to AD [10, 11], while naMCI
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affects other thinking abilities, such as decision-making and
visual perception [12]. Functional magnetic resonance imag-
ing (fMRI), magnetoencephalography (MEG), and positron
emission tomography (PET) are among the main diagnosis
tools for MCI [13]. Various studies have proposed multiple
learning views and deep learning (DL) techniques for early
MCI detection using brain imaging, achieving high classifi-
cation rates between MCI and healthy control (HC) groups.
However, these diagnostic techniques are expensive and not
portable.
MCI patients have a greater likelihood of developing non-
AD dementias, such as frontotemporal dementia and Lewy
body dementia [14]. Thus, distinguishing between these two
forms of MCI is critical for accurate diagnosis and appropri-
ate treatment. There have been various attempts to detect and
diagnose MCI, including cognitive assessments, imaging
techniques, and biomarker tests. However, none of these
methods alone can provide a definitive diagnosis of MCI
or predict its progression to AD or other dementias. There-
fore, researchers are exploring the potential of combining
different methods and developing new approaches, such as
machine learning (ML) algorithms, to improve the accuracy
of MCI detection and diagnosis [15, 16]. In [15], the authors
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propose multiple learning views based on numerous mod-
els for MCI diagnosis using MRI images. An accuracy of
87.50% was achieved for MCI and HC classification. A DL
technique is presented in [17] for early MCI detection using
MRI. For the classification of early MCI and HC, the best
classifier has an accuracy of 94.2%. In [18], a transfer learn-
ing strategy is suggested for early AD diagnosis using brain
imaging. The highest classification rate between AD and HC
is 98.73%. Despite the fact that these types of equipment
give us multidimensional data about the brain, there are also
expensive and not portable techniques. Recently, researchers
employed low-cost wearable devices or sensors [19] to de-
tect MCI. Among them, electroencephalography (EEG), a
relatively inexpensive method, is being explored to detect
various neurological disorders such as epilepsy [20], hypo-
vigilance [21], drowsiness [22], MCI [19], dementia [23],
and AD [24]. Furthermore, heart rate variability (HRV) sig-
nals can be investigated to detect this cognitive disease [25].
In parallel, there are multiple kinds of AD biomarkers,
including those based on blood [26], cerebrospinal fluid
(CSF) [27], and neuroimaging [28]. the main drawback of
using such biomarkers lies mainly in their cost and in-
vasivity. Physiological data-based biomarkers may hence
be very helpful [29, 30]. A variety of EEG biomarkers
could therefore be useful in the development of innovative
therapies. According to [31], researchers looked into a new
EEG biomarker linked to slowing down EEG and decreasing
EEG complexity and connectivity based on brainwaves and
selected channels. In [32], the authors proposed to use eight
selected biomarkers including power spectral density, kurto-
sis, spectral kurtosis, skewness, spectral skewness, spectral
entropy, spectral crest factor, and fractal dimension to clas-
sify MCI, dementia, and healthy subjects using a support
vector machine (SVM) model. The best achieved accuracy
is from 73.4% to 89.8%. A technique for differentiating be-
tween subjects with subjective cognitive impairment (SCI),
AD, MCI, and additional diseases has been proposed in [33]
where accuracy rates of 91.6% are reached. In [34], the
authors choose the best configuration of channels using a
wearable EEG device for MCI detection based on the ML
technique. In [19], only one EEG electrode was used in
MCI identification with voice brain reactions. As published
in [35], a method based on five EEG electrodes was sug-
gested to classify MCI and HC patients. A novel kernel
eigen-relative-power (KERP) feature was extracted from the
EEG signals. In [36], a method based on EEG signals during
sleep is developed to classify MCI and HC. Spindle features
and sleep slow waves are extracted and mixed with spectral
and complexity features. Using a SVM model associated
with a gated recurrent unit (GRU) network the greatest
accuracy reached 93.46%. As developed in [37], nineteen
spectral features are generated from each EEG electrode.
Using a correlation-based approach, these characteristics
are analyzed. K-nearest neighbor (KNN) classifier and the
neuro-fuzzy algorithm are used in combination to classify
the selected features. In order to identify aMCI using EEG
signals, a novel technique is proposed [38] based on spectral

entropy images and convolutional neural networks (CNNs).
During rest state, an innovative method [39] was developed
to automatically identify MCI patients using EEG data.
To efficiently separate MCI patients from HC, three ML
techniques including Extreme Learning Machine (ELM),
SVM, and KNN were used. In [40], the authors proposed to
use a spectral-temporal analysis algorithm to extract features
in order to identify MCI patients. An ideal feature subset can
be produced using a three-dimensional method. As designed
in [41], time and frequency features are extracted from EEG
signals using Fourier and wavelet transforms to recognize
AD, MCI, and HC classes. Using tree-based supervised
methods, the achieved accuracy of MCI vs HC is equal
to 92%. In [25], physiological functions such as oxygen
saturation, respiratory rate, heart rate (HR), and HRV were
collected to classify MCI and HC patients. Using two ML
algorithms, gradient boosting decision tree (GBDT) and
eXtreme gradient boosting (XGBoost) the highest accuracy
was achieved at 84.04%. In [42], a non-invasive solution
is proposed based on HRV signals using a wearable CorS-
ense sensor to differentiate between MCI and HC patients.
Using a 10-fold cross-validation technique with the logistic
regression (LR) model the best accuracy is equal to 76.5%.
Recently, the multimodal concept has been used in a number
of anomaly detection investigations. In [43, 44, 45], the
authors suggested using multimodal DL and ML for early
AD detection. Consequently, different types of data can be
analyzed based on a multimodality system, providing a good
interpretation of each participant’s neurological disorders.
On the other hand, numerous cognitive tests [46, 47, 48]
have been made to help clinicians in making an early MCI
diagnosis. According to [49, 50, 51, 52], the most correlated
attributes which impacts neuropsychological tests are age,
gender, and educational level. These measurements aid neu-
rologists and researchers in keeping track of each patient’s
mental state. Therefore, we can focus on different cognitive
examinations like Neurotrack [53, 54], Consortium to Estab-
lish a Registry for Alzheimer’s Disease (CERAD) [55, 56],
Mini-Mental State Examination (MMSE) [57, 58], Montreal
Cognitive Assessment (MoCA) [48, 59], Stroop [60, 61],
etc. These measures may be useful in assisting clinicians in
identifying MCI early on. To this regard, simple tests and
questions are addressed for the participant during the exam
to focus on a variety of mental processes. Each test verifies
one or more of the requirements, such as the comprehension
of place, time, and people. Additionally, each senior partici-
pant’s speed of concentration, attention, and memory can be
evaluated by these tests.
In this study, a data acquisition protocol is made using EEG
and HRV signals during the CERAD task. An Emotiv EPOC
X and polar H10 devices are used during this experiment to
collect both EEG and HRV signals. Time, frequency, and
non-linear features are extracted from raw EEG and HRV
signals. After that, various ML models are targeted in this
work as SVM with a Gaussian kernel, decision tree (DT),
random forest (RF), gradient boosting (GR), and KNN al-
gorithms. To improve the accuracy of the used models, we
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propose to use a hybrid ML algorithm. Our key contribution
in this work is the development of a method for early MCI
detection using ML, and this is by jointly analysing EEG
and HRV data acquired during CERAD cognitive task. As
we can deduce from the results, the first CERAD test is a
special biomarker with an ultra-short duration for the early
MCI identification via the combination of EEG and HRV
signals based on ML techniques.
The rest of this paper is organized as follows. The data
acquisition protocol is described in Section 2, while the pro-
posed method is developed in Section 3. Our experimental
validation which presents both ML and hybrid ML results is
detailed in Section 4. Discussion which include advantages,
limitations, and future direction is developed in Section 5.
Finally, the conclusion are drawn in Section 6 with some
perspectives.

2. Data acquisition protocol
During the data acquisition protocol, a questionnaire

of 10 min is done in order to evaluate the general health
of each individual. Then, a participant feels more relaxed
during 5 min rest period. After that, the record of EEG
and HRV signals starts during the CERAD task. The third
CERAD test has been ignored due to the difficulty in iden-
tifying MCI [62]. Specialists in neurodegenerative diseases
have proposed our procedure, which combines cognitive and
physiological tests to determine MCI at an initial stage. To
simultaneously record EEG and HRV data, the patient is
equipped with the Emotiv Epoc X and Polar H10. Figure 1
illustrates our data acquisition protocol.
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Figure 1: Data acquisition protocol.

2.1. Participants description
This clinical study is approved by a diverse researchers

team from Department of Sport Science, German Center for
Neurodegenerative Diseases, and Medical Faculty of Otto
von Guericke University of Magdeburg. Before starting the
experimentation, a questionnaire of 10 min is performed to
assess general patient health. In this sense, we can define
this assessment as a collection of queries with associated
response options. The participant’s general health state is
therefore established. Sleep quality and physical activity are
the most evaluated criteria for each participant. Age, height,
weight, education, drinking habits, employment position,
body mass index (BMI), smoking (number of cigarettes
smoked), and chronic diseases are all included in this ques-
tionnaire. Additionally, numerous exclusion and inclusion
criteria should be checked for each participant. In this sense,
to meet the inclusion criteria, a patient must be between the

Table 1
General description of each participant.

ID M/FAge Group MCI Sleep
(H)

BMI
(kg/m2)

Education

P3 F 72 HC −− 7 24.1 PT
P5 M 65 MCI aMCI 8.5 25.2 PT
P7 F 63 HC −− 8 22.9 University
P9 F 65 HC −− 7 24.4 PT
P11 M 79 MCI naMCI 8 26.4 PS
P12 M 70 MCI naMCI 8 29.3 University
P14 F 72 MCI naMCI 9 25.4 TS
P15 M 78 MCI naMCI 7.5 25.3 University
P19 M 80 MCI aMCI 8 25.7 TS
P20 F 79 HC −− 8 30.8 University
P22 F 83 HC naMCI 5 24.7 TS
P23 F 78 MCI aMCI 8 29.7 University
P24 F 69 HC −− 6 31.2 University
P25 F 64 HC −− 7 25.9 PT
P26 M 70 MCI aMCI 8 27.1 PS

* M/F = Male/Female, H = hour, PT= Professional
Training, PS= Primary School, TS= Technical School.

ages of 50 and 85 and have an MCI diagnosis. Among the
exclusion criteria, the participant must not suffer from eye
disorders, psychiatric illnesses, orthopedic diseases, muscu-
lar disorders, and other neurological diseases. Furthermore,
patients must also refrain from consuming caffeine for the
preceding 24 hours.
During this study, our data was gathered from 24 participants
including 13 MCI (6 aMCI and 7 naMCI) and 11 HC aged
from 63 to 83. Based on the collected raw data and the calcu-
lated score of the CERAD task 9 participants are excluded.
Therefore, this work is limited on only 15 patients. Various
other factors should be taken into consideration as BMI,
sleep duration, and education level. A general description
of each patient is provided in Table 1.
2.2. Neurophysiological modalities

In this study, both EEG and HRV measurements were
collected during the CERAD task. Synchronization between
these two modalities is ensured for each patient. The EEG
and HRV signal data export is not available in an open
version. We made the software payment. The following
sections detail each of these modalities.
2.2.1. Electroencephalogram

The Emotiv EPOC X EEG headset (by Emotive) is
designed to record and analyze brain activity for various
applications, including neurofeedback and brain-computer
interface, in addition to specific studies. This headset uses
several electrodes placed on the scalp, following the inter-
national 10-20 system. During this study, we have used this
device which involves 14 EEG electrodes including AF3,
AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, O1, O2, P7, and
P8, as well as two references electrodes. The sampling rate
of this device is equal to 128 Hz. The software EmotivPRO
was used for the collection, examination, and storage of
brain activity measures (visualization, export raw EEG data,
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Table 2
Correlation between brain lobes and specific CERAD test and
EEG electrodes.

Brain lobes CERAD test EEG channels

Frontal Test 1 AF3, AF4, F3, F4,
F7, and F8

Temporal Tests 4, 6, 7, 8 T7 and T8
Parietal Test 3 P7 and P8
Occipital Test 2 and Test 5 O1 and O2

evaluation metrics, motion sensor data). Yet, particular lobes
and brain areas are frequently related to particular cognitive
tasks, and anomalies in these regions may help in iden-
tifying cognitive impairment [63]. Thus, the frontal lobe
controls executive functions like working memory, decision-
making, and problem-solving. In this sense, challenges with
organizing, planning, and finishing work may be caused
by abnormalities in the frontal lobe. Consequently, the first
CERAD test which refers to the executive function domain
can help in MCI detection based on the frontal lobes with
his associated EEG channels (AF3, AF4, F3, F4, F7, and F8).
The temporal lobe, on the other hand, is involved in language
and memory. Therefore, abnormalities in the temporal lobe
may have an impact on episodic memory and can be a
factor in language-related problems. With the use of T4,
T6, T7, and T8 CERAD tests based on the temporal lobes
and specific EEG channels (T7 and T8) can be an efficient
marker for MCI prediction. The parietal lobe also plays a
role in attention and spatial cognition. Attentional functions
and spatial orientation may be impacted by parietal lobe
disorders the third CERAD test can be used to identify AD at
his early stage using P7 and P8 EEG electrodes. While visual
processing is mainly handled by the occipital lobe. Accord-
ingly, abnormalities in the occipital lobe might be a factor in
visual-spatial impairments. In this way, MCI can be identi-
fied by integrating both T2 and T5 tests of the CERAD task
based on the occipital area using O1 and O2 EEG electrodes.
The correlation between brain lobes, specific CERAD tests
and EEG electrodes is shown in Table 2. We can infer from
the previous findings that all brain lobes may be involved in
the identification of MCI. In spite of the limited number of
EEG channels (14 channels) to collect comprehensive data
from deep brain structures, this number of electrodes can
yet provide important insights into neural functions related
to cognitive activities, including MCI. Depending on the
MCI types, we can restrict the area of the brain and the
number of EEG channels. Accordingly, MCI may appear in
different kinds [64], with the differentiation made between
them according to the type of cognitive impairment. Two
main types of MCI include amnestic MCI (aMCI) and Non-
Amnestic MCI (naMCI). In this sense, the main symptom
of aMCI, is memory impairment, while aMCI patients may
exhibit obvious memory issues, particularly when trying to
remember details or events from the recent past. AD has
been shown its antecedent in aMCI. On the other hand,
cognitive impairment occurs in naMCI, however, it does not

primarily affect memory. As an alternative, people might
have difficulty with cognitive abilities related to language,
executive function, attention, and visuospatial skills.
2.2.2. Heart rate variability

During this research, a Polar H10 device is used in order
to measure the electrical signals of the HR with a sampling
frequency of 10 Hz. This device (by Polar) is commonly used
for sports training and fitness technology, to measure heart
rate effectively, and to track and analyze HRV. To this regard,
HR refers to the amount of time that the heart is pumping
per minute. HRV is a term used to describe the variation
of the interval between successive HR. The fluctuation in
beat-to-beat duration, which is measured in milliseconds,
can change depending on a number of circumstances. Ad-
ditionally, HRV may be used as a non-invasive indicator to
monitor a person’s physiological status. Therefore, using an
HRV device allows us to monitor the HR, HRV, sleep quality
as well as stress levels and environmental factors. A number
of neurological disorders can therefore be characterized. To
keep track of the recorded data, a Polar Flow application is
used for HRV data visualization. As collected data corre-
spond to aged subjects, heart rates typically range from 60 to
100 beats per minute [65]. Moreover, the HRV range is lower
for aged MCI patients [66]. As presented in Figure 2, the
used devices during this experiment include Emotiv EPOC
X and polar H10. It is worth noting that a software license
was necessary to export raw data.

(a) (b)

Figure 2: (a) Emotiv EPOC X, and (b) Polar H10.

2.3. CERAD task
In combination with neurophysiological modalities, sev-

eral cognitive tests can be helpful in MCI detection. To this
regard, individuals who practice a variety of cognitive activ-
ities are more determined to keep their cognitive functioning
at a higher level and develop less neurocognitive disorders.
In this sense, we have used a cognitive CERAD task which is
established by the National Institute on Aging in 1986 in or-
der to create standard and validated measures for evaluating
AD [67]. The several CERAD tests related to its cognitive
domains and duration are presented in Table 3. The CERAD
task is a short and comprehensive battery of standardized
exams used to assess basically cognitive impairments in
AD [68]. It may be a useful technique to distinguish between
MCI, dementia, and normal cognitive aging [69]. A maxi-
mum total score of 100 points [70] was obtained by adding
the results of all CERAD subscores, excluding the third test.
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Table 3
Description of each CERAD tests.

Test Cognitive domains Duration

T1: Verbal fluency Executive function 1 min
T2: Boston naming
test

Visual perception 1 min

T3: Mini-Mental
Status (MMS)

Orientation,
repetition, attention

5-10 min

T4: Word list learn-
ing

Short and long-term
memory

4.5 min

T5: Sign-off figures Visuo-construction 1 min
T6: Retrieve Word
List

Verbal episodic mem-
ory

1.5 min

T7: Word List
Recognition

Verbal episodic mem-
ory

1 min

T8: Retrieve Figures Non-verbal episodic
memory (recall)

1 min

In this sense, this excluding test (i.e., T3: MMSE) is effective
for AD detection [30, 71]. According to [55], the authors
combined all CERAD tests while ignoring the MMSE test,
as it is not particularly successful in detecting MCI. Each test
targets a distinct cognitive domain. For instance, the verbal
fluency test (T1) focuses on evaluating episodic memory by
giving the subject a list of 10 common words and asking
them to recall the words. Furthermore, evaluating construc-
tional and visuospatial skills is the aim of boston naming
test (T2). The procedure of this test is to involve copying
geometric designs. Moreover, word list learning test (T4)
is used to gauge how long it takes for participants to recall
words from the word list memory test. However, this method
is based on asking the person to repeat the words after a
delay. In addition to that, the purpose of sign-off figures
test (T5) is to assess language and identification skills by
involving naming objects depicted in pictures. Retrieve word
test (T6) ensures the assessment of processing speed, visual
attention, and executive function. Likewise, the goal of word
list recognition test (T7) is to assess semantic or category
fluency by the production of words that fall into a particular
category in a predetermined amount of time. The goal of
the last CERAD test is to evaluate if the candidate recognise
words that have already been given. The methodology of this
test is to give the subject a list of words, some of which are
from the original word list memory test. After that, subjects
are asked to mark the words they can still recall.

3. Proposed method for physiological data
analysis
Based on our data acquisition protocol, we focus on

EEG and HRV data analysis during CERAD task. Figure 3
presents the pipeline of the proposed method. The input
signals are both EEG and HRV which are divided into
segments. A panel of temporal, frequency and non-linear
features are extracted. A features fusion step is then applied.
The next phase is the preprocessing process which involves

feature scaling and reduction. The process ends with a clas-
sification of MCI and HC using both five ML and hybrid ML
models. Accordingly, the first CERAD test is considered as
our novel biomarker with a relatively short duration for the
early diagnosis of MCI using the combination of EEG and
HRV data.
3.1. Feature extraction

Feature extraction attempts to summarize the main in-
formation in the raw data. The following sections present a
detailed description of the used features for EEG and HRV
signals.
3.1.1. EEG features

Features in time and frequency domains are extracted for
EEG data.

1. Time domain: Statistical features like mean, median,
variance, skewness, kurtosis are extracted. Addition-
ally, we use Hjorth parameters that provide a sim-
ple and computationally efficient way to extract key
characteristics of EEG signals. Mobility, activity, and
complexity [72] are the first three derivatives of the
signal and the most-used Hjorth parameters.

• Coefficient of variation (CV): helps to measure
the degree of consistency and uniformity in the
distribution of a data sets. It is also called the
relative standard deviation (RSD). It helps de-
termining if the data standard deviation (SD) is
small or large with respect to the mean.

𝐶𝑉 = (𝑆𝐷∕𝑀𝑒𝑎𝑛) ∗ 100, (1)
with

𝑆𝐷 =

√

∑𝑛
𝑖=1(𝑥 − �̄�2)
𝑁 − 1

, (2)

where 𝑥 ∈ ℝ𝑁 is the input signal and �̄� is the
empirical mean.

• Hjorth parameters are indicators of statistical
properties, introduced by Bo Hjorth in 1970 [73].
The parameters are activity, mobility, and com-
plexity [74]. They are commonly used in the
analysis of EEG signals [75]. One of the ad-
vantages of using Hjorth parameters is that their
calculation involves variance, making the cost of
their computation very low. These parameters
are therefore mainly useful for real-time tasks.
The different Hjorth activity, mobility and com-
plexity equations are developed below.

– Hjorth activity (H activity) is the total power
of the signal. It represents the variance of a
time function:

𝐻𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟(𝑥(𝑡)). (3)
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Figure 3: Pipeline of the proposed method.

– Hjorth mobility (H mobility) is proportional
to the SD of the power spectrum:

𝐻𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =

√

𝐻𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑥′(𝑡))
𝐻𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑥(𝑡))

. (4)

– Hjorth complexity (H complexity) gives an
estimate of the bandwidth of the signal:

𝐻𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝐻𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥′(𝑡))
𝐻𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥(𝑡))

. (5)

where x(t) is the input signal and x’(t) is the
first derivative of x(t).

• Skewness is the characteristic parameter to at-
tribute asymmetry degree of probability density
curve with respect to the mean. Positive skew-
ness indicates that an EEG signal data set is
distributed more to the left of the mean point:

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 1
𝑛

∑𝑛
𝑖=1(𝑥 − �̄�)3

𝑆𝐷3
. (6)

• Kurtosis is a statistical metric used to character-
ize the form of a probability distribution, espe-
cially its tailedness. This feature can be used to
describe the distribution of the EEG amplitudes,
providing information about the peakedness of
the amplitude distribution.

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 1
𝑛

∑𝑛
𝑖=1(𝑥 − �̄�)4

𝑆𝐷4
. (7)

2. Frequency domain: The power spectral density (PSD)
of the signal is used as the basis for calculating the
frequency domain features. It can be calculated with
several parametric and nonparametric methods [76].
Non-parametric methods are used more often and
include methods like Fourier transform and Welch’s
method. Autoregressive (AR), multivariate autore-
gressive models or autoregressive-moving average
models are a few examples of parametric techniques
for PSD estimation [77].

• Brain waves are often linked to specific states of
the brain. Various features such as delta, theta,
alpha, beta, delta/theta, delta/alpha, theta/alpha,
and (delta+ theta)/alpha are extracted from our
EEG signals [78].

• Autoregression estimates the PSD of an input
window. This method fits an AR model to the
signal by minimizing the forward and backward
prediction errors. The order of this algorithm is
calculated as the half number of the input data.

3.1.2. HRV features
In this work, both temporal and non-linear features have

been used for HRV signals. A description of the different
used features is developed in the following.
1) Time domain:

• Mean Normal to Normal (NN) intervals presents the
interval between two heartbeats.

• SDNN is the standard deviation between successive
normal heartbeats of the time interval.

• SDSD is the standard deviation of differences between
adjacent NN intervals.

• MSSD presents the mean squared successive differ-
ence.

• MEDIAN NN presents the median absolute values of
the successive differences between the NN intervals.

• CVSD is the coefficient of variation of successive
differences equal to the Root Mean Square of the Suc-
cessive Differences (RMSSD) divided by the mean
NN intervals.

• CVNNI is a statistical metric used to evaluate the
variability of normal to normal intervals (nni). It is
determined as the ratio of the standard deviation di-
vided by the mean_nni and multiplied by 100, where
mean_nni stands for the average of normal-to-normal
characteristic of HRV signals, which describes the
time intervals between consecutive normal heartbeats.
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• Mean HR presents the mean of HR.
• STD HR presents the standard deviation of HR.

2) Non-linear domain: Poincaré plot features are the most
used non-linear features [79, 80]. This geometrical and non-
linear method assesses the dynamics of HRV. It presents a
diagram in which each R-R interval is plotted as a function
of the previous R-R interval. The values of each pair of
successive R-R intervals define a point in the plot. On the
Poincaré plot, SD1 is the width, and SD2 is the length of the
ellipse:

• SD1 is the means of the standard deviation of the
Poincaré plot perpendicular to the line of identity.

• SD2 represents the standard deviation of the Poincaré
plot along the line of identity.

3.2. Features preprocessing
To reduce the possible influence of significantly different

feature ranges on the learning process, a preprocessing step
is essential. Features having larger numerical ranges may
significantly affect the learning process in lack of normaliza-
tion or scaling, affecting the model results. We guarantee that
every feature contributes equally to the learning algorithm
by standardizing the features. Regardless of the original
numerical ranges of each feature, the scaling step promotes
a more equitable and efficient learning process, improving
the capacity of the model to identify patterns and generate
precise predictions. In this sense, a standardization phase is
applied to the input features. A Z-score method was used,
allowing to center the values around the mean:

𝑍𝑠𝑐𝑜𝑟𝑒 =
𝑣 − 𝜇
𝜎

, (8)

where 𝑣 presents the input value, 𝜇 the mean of features, and
𝜎 is the features standard deviation.
3.3. Proposed classification model

In this work, various ML models [81, 82] including SVM
with Gaussian kernel, DT, RF, GB, and KNN are used to
classify MCI and HC participants. These supervised models
have been employed in a number of similar anomaly detec-
tion and classification tasks as AD [83] and MCI [84]. SVM
with a Gaussian kernel is commonly used for non-linear
problems [85]. The kernel has two configurable parameters:
𝛾 , which determines the kernel width, and 𝐶 , which controls
the model’s tolerance for learning misclassification. When
a DT model is used, the classification between MCI and
HC participants is done based on each leaf node [86]. As
regards KNN, one first needs to fix the number of neighbors
to consider, and then classification can be performed. For RF
and GB classifiers [87, 88] an ensemble learning approach is
employed [89] using our input features based on the average
prediction of numerous DT algorithms to classify MCI and
HC patients. Ensemble and hybrid models have garnered
significant interest from researchers as they have been shown

to outperform single-weak learners in classification prob-
lems. Ensemble models combine several algorithms to pro-
duce more accurate predictions [90], while hybrid models
integrate two or more ML methods [91]. In this regard, nu-
merous ML hybridized classification algorithms that employ
optimization methodologies have been proposed to improve
and enhance the classification process [92]. In this paper,
we propose to use both EEG and HRV modalities to extract
significant time, frequency, and non-linear features in order
to detect MCI. After that, a preprocessing step is done based
on feature scaling. A hybrid ML model is then used to
classify MCI and HC elderly participants. In this sense, the
used hybrid ML model includes the following classifiers:
SVM with a Gaussian kernel (𝛾= 0.01 and 𝐶= 10), GB,
and RF. Initially, classifiers are created to append these three
models. The prediction of MCI and HC individuals is then
performed for each estimation using a hard voting (majority
voting) step. The used features, based on EEG and HRV
fusion, in relation to the first CERAD test, is claimed as a
new biomarker for MCI detection. Figure 4 illustrates the
main steps of the proposed model, where the training data go
through the three classifiers during the training phase. The
individual predictions are then used as input to the voting
system, which provides the final classification.

Training set

P1

SVM RF GB

Voting

Classification 

models

Predictions

Final 

prediction
{MCI, HC}

P2 P3

N
e

w
 d

a
ta

Figure 4: Flowchart of the proposed hybrid ML method for
MCI classification.

4. Experimental validation
This section includes three experiments: two of them

focus on unimodal classification with EEG and HRV re-
spectively, while the third one proceeds by features fusion
to investigate the effectiveness of bimodal classification.
4.1. Setup

Our purpose is to extract a new marker and ultra-short
(3, 6, and 9s) duration based on the use of each CERAD
task. For each test, we separated our data into 75% for
the training set and 25% for the testing set. To boost the
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effectiveness of ML model accuracy and to reduce the rate of
overfitting, we applied the shuffling strategy throughout the
data partitioning process. Various metrics such as accuracy
(Acc), precision (Pre), sensitivity (Sen), specificity (Spec),
and F1-score (F1-S) are used for numerical validation:

𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁)∕(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁), (9)

𝑃𝑟𝑒 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ), (10)

𝑆𝑒𝑛 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁), (11)

𝑆𝑝𝑒𝑐 = 𝑇𝑁∕(𝑇𝑁 + 𝐹𝑃 ), (12)

𝐹1 − 𝑆 = (2 ∗ 𝑃𝑟𝑒 ∗ 𝑆𝑒𝑛)∕(𝑃𝑟𝑒 + 𝑆𝑒𝑛), (13)
where TP, TN, FP, and FN stand respectively for true pos-
itive, true negative, false positive, and false negative val-
ues. Furthermore,, we used the receiver operating charac-
teristic (ROC) curve as a criteria for evaluation metrics.
Two parameters are plotted on this curve: the True Positive
Rate (TPR) which presents the sensitivity, and the False
Positives rate (FPR) which presents the specificity. The Area
Under the ROC Curve (AUC) is an indicator of classification
performance presented at different threshold levels. In this
sense, higher AUC values indicate more accurate model
predictions, while lower AUC values indicate inaccurate
model predictions.
4.2. Unimodal classification

To determine the best window duration, various time
intervals such as 3s, 6s, and 9s are tested using EEG and
HRV signals. In this context, the above-mentioned ML algo-
rithms are compared: SVM, DT, RF, GB, and KNN. Table
4 presents the comparison of the average classification ac-
curacy using data acquired for all CERAD tests using static
time segment without overlap. According to the findings, the
best time window corresponds to the lowest duration (i.e,
3s) for both EEG and HRV signals. The highest accuracy
obtained for the EEG signals is 91.05%, while the highest
result for the HRV is 74.10%. These best performances are
obtained with the KNN algorithm with 𝑘 = 5 neighbors.
At this level, one can conclude that EEG data is more
informative for MCI detection than HRV. However, our
goal is to make both modalities collaborate to reach better
classification performance. The detailed results of each test
with a 3s time interval using the EEG and HRV signals are
presented in Table 5. This table provides accuracy scores
for all tests, using the same ML classifiers for independent
EEG and HRV data analysis. The best average (over all
tests) results are obtained by the KNN algorithm with 𝑘=

Table 4
Comparison of the average accuracy for all CERAD tests based
on ML models during different window durations using EEG
and HRV signals.

Mod. Time SVM DT RF GB KNN
k=1 k=3 k=5

Accuracy (%)
EEG 3s 89.36 75.45 87.06 84.79 89.55 90.91 91.05

6s 80.53 68.93 83.88 82.37 77.90 79.34 77.83
9s 85.15 73.44 85.07 78.25 85.64 82.91 81.31

HRV 3s 73.11 72.43 72.51 73.55 70.05 72.30 74.10
6s 64.49 70.22 73.33 69.57 66.42 65.18 63.91
9s 66.73 62.63 65.00 67.17 67.17 63.34 63.07

Mod.= Modality.

5 for both EEG and HRV signals. To increase classifica-
tion accuracy, a multimodal technique is proposed. To this
regard, we suggest a features-level fusion method for these
modalities. The outcomes of this experiment are described
in the following subsection.
4.3. Multimodal classification

Multimodal classification is a promising strategy that
uses several and complementary sources of data with ML
techniques to enhance the precision and reliability of the
target task (e.g. classification). In the same line, hybrid ML
systems can leverage the advantages of using conventional
ML techniques. The outcomes of applying both ML and
hybrid ML classifiers are shown in the sections below.
4.3.1. ML classifiers results

By combining the EEG and HRV features, fusion was
accomplished as follows. Table 6 presents the experimental
results obtained for the different CERAD tests. For each test,
accuracy scores are provided for the 5 used classifiers. The
best average accuracy results are taken by the GB algorithm
with 92.15% followed by respectively SVM with 91.43% and
RF with 90.93%. These findings lead to different conclusions
in Section 4.2 where the two modalities were analysed sep-
arately, and where the KNN model outperformed the others.
In this sense, using EEG and HRV fusion together yields
better results than using each modality alone as presented
respectively in Table 5 and Table 6. As a result, KNN scored
better for unimodal classification than the other employed
algorithms, demonstrating its ability to find specific local
patterns in the features that were used. It was more ad-
vantageous to adapt to the complexity of the data for our
specific dataset and problem attributes. Indeed, individual
ML classifiers may lead to slightly different results for such
a specific dataset due to the properties of the classifier
and its ability to learn local/global patterns, as well as its
vulnerability to overfit. Based on the previous results, we
propose a hybrid ML approach to enhance the efficiency and
precision of the suggested methods with stable performance.
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Table 5
ML algorithms results using EEG and HRV signals for 3s duration.

Test Mod. SVM DT RF GB KNN
k=1 k=3 k=5

T1 EEG 85.33% 73.33% 84.00% 89.33% 90.66% 94.66% 90.66%
HRV 68.42% 69.73% 73.68% 72.36% 69.73% 65.78% 65.78%

T2 EEG 91.13% 86.07% 91.13% 87.34% 91.13% 88.60% 94.93%
HRV 79.01% 77.77% 77.77% 83.95% 72.84% 80.24% 80.24%

T4 EEG 90.66% 65.33% 81.33% 82.66% 89.33% 90.66% 90.66%
HRV 78.16% 78.16% 77.58% 75.86% 75.86% 79.31% 77.58%

T5 EEG 90.66% 72.00% 92.00% 81.33% 90.66% 86.66% 89.33%
HRV 61.53% 62.50% 58.65% 62.50% 59.61% 59.61% 61.53%

T6 EEG 94.59% 82.43% 90.54% 86.48% 93.24% 94.59% 94.59%
HRV 76.13% 72.72% 72.72% 75.36% 70.45% 73.86% 79.54%

T7 EEG 90.54% 75.67% 86.48% 83.78% 89.18% 90.54% 90.54%
HRV 76.13% 72.72% 72.72% 69.31% 70.45% 73.86% 79.54%

T8 EEG 82.66% 73.33% 84.00% 82.66% 82.66% 90.66% 86.66%
HRV 72.44% 73.47% 74.49% 75.51% 71.42% 73.47% 74.49%

Avg EEG 89.36% 75.45% 87.06% 84.79% 89.55% 90.91% 91.05%
HRV 73.11% 72.43% 72.51% 73.55% 70.05% 72.30% 74.10%

Avg= Average.

Table 6
ML algorithms results based on EEG and HRV fusion.

Test SVM DT RF GB KNN
k=1 k=3 k=5

Accuracy (%)
T1 96.05 78.94 89.47 93.42 90.78 88.15 84.21
T2 87.34 87.34 89.87 92.40 83.54 82.27 79.74
T4 95.29 90.58 95.29 95.29 94.11 94.11 92.94
T5 92.94 83.52 91.76 92.94 80.00 85.88 84.70
T6 91.30 92.75 91.30 95.65 78.26 84.05 82.60
T7 90.47 88.09 91.66 91.66 84.52 86.90 88.09
T8 86.04 76.74 87.20 83.72 79.06 83.72 84.88
Average 91.34 85.42 90.93 92.15 84.32 86.44 85.30

4.3.2. Hybrid ML results
Our hybrid ML model combines the best findings of

these three models: SVM, GB, and RF. To identify MCI and
HC participants, a voting step is performed after training all
models on the same data. Evaluation metrics as accuracy, F1
score, sensitivity, specificity, and precision, are summarized
in Table 7. Notably, an impressive enhancement in average
accuracy of all tests, reaching 93.86%, is observed. This
confirms the usefulness of the performed data fusion at the
features level. In light of the previous findings, the first test
called "Verbal fluency" related to the executive function had
the highest accuracy (97.43%). However, this test is not the
most sensitive and specific one. Indeed, an excellent F1-
score is obtained for T4 (i,e: word list learning related to
short and long-term memory) which demonstrates a good
ability to identify MCI patients as positive. On the other
hand, a high specificity is noted for T6 (i,e: retrieve word list
related to verbal episodic memory) which refers to the true
capacity to label HC patients. In this way, we can conclude
that MCI can be identified based on the integration of

Table 7
Hybrid ML algorithm results based on EEG and HRV fusion.

Test Acc. F1-S Sens. Spec. Pre.

T1 97.43% 97.74% 97.71% 97.77% 97.72%
T2 95.88% 95.80% 97.14% 94.63% 93.95%
T4 96.20% 96.65% 95.42% 95.42% 97.92%
T5 95.10% 95.76% 95.67% 95.67% 95.86%
T6 95.59% 95.59% 97.05% 97.08% 94.18%
T7 90.63% 91.45% 91.53% 91.54% 91.36%
T8 86.19% 87.64% 82.60% 82.60% 93.35%
AVG 93.86% 94.37% 93.87% 93.53% 94.90%

AVG= Average

verbal episodic memory, executive function, and short-long-
term memory. Based on the first test, Figure 5 presents the
confusion matrix results using the hybrid ML model. where
the corresponding TP and TN classified sets are 34 and
39. While the ROC curve is shown in Figure 6, displaying

TP= 34 FP= 1

FN= 2 TN= 39
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Figure 5: Confusion matrix of Test 1 using a hybrid ML model.

a higher AUC value of 94.91%. It illustrates the capacity
for discrimination of the architecture. The results show that
our model can effectively distinguish between MCI and HC
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classes with a high degree of predictive accuracy, making
it suitable for classification tasks. To further investigate
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Figure 6: ROC curves of the hybrid ML model.

the performance reproducibility of our model, two cross-
validation methods are used, including k-fold and leave-
one-out over 100 runs. K-fold cross-validation proceeds by
splitting the dataset into 𝑘 smaller folds. In this work, we
fixed the 𝑘 to 10. Using distinct folds for testing and training,
the model is trained and evaluated 𝑘 times. The average of
the measurements from each iteration generates the final per-
formance metric. As regards leave-one-out cross-validation
(LOOCV) method, the model is evaluated on an instance that
was left out following the training on all other instances. This
process is repeated for each instance achieving 𝑛 iterations
for a dataset with 𝑛 samples. Despite being computationally
costly, this method is generally used for small datasets.
Table 8 reports the average and the standard deviation (STD)
accuracy values obtained using k-fold and LOOCV over 100
runs. We can infer from these outcomes that the reported
STDs indicate moderate variability across runs. As a result,
the performance of our model appears to be consistent and
stable according to the close values between k-fold and
LOOCV. Additionally, T1 demonstrates the best test results
for both k-fold and LOOCV with respectively 95.23% and
96.14% compared to the other tests. With an extremely short
processing time, our model performs successfully, making it
possible to identify MCI using the CERAD test quickly and
accurately. As a result, k-fold cross-validation executes faster
than LOOCV, which usually takes a few minutes compared
to a few seconds. The performance of our used approach
guarantees the diagnostic process for early detection of
cognitive decline for elderly peoples.
4.4. Comparison

To evaluate the efficiency of our method, we compare it
with some existing close methods in the literature. In [93],
the authors developed an novel ML algorithm using EEG,
eye tracking, and neuropsychological evaluations to distin-
guish MCI from HC. To remove external noises, two filters
were applied to raw EEG data. Frequency domain features
are extracted from EEG signals. The feature selection step

Table 8
k-fold and leave-one-out cross-validation accuracy values.

Test k-fold Leave-one-out

T1 95.23% ±0.034 96.14% ±0.166
T2 93.40% ±0.046 94.40% ±0.229
T4 94.60% ±0.026 95.76% ±0.176
T5 93.01% ±0.047 93.52% ±0.246
T6 94.60%±0.039 94.35% ±0.187
T7 90.37% ±0.052 90.34% ±0.281
T8 86.03% ±0.052 86.02%±0.250

was done using a Minimum Redundancy-Maximum Rel-
evance (MRMR) algorithm. Using the SVM model and
various kernel functions, a classification step is carried out.
The best accuracy of 84.5 ± 4.34% is achieved by using
the SVM with a Gaussian kernel with 𝐶= 1.1 and 𝛾=
0.001. Other related work [94], presents multi-modal fea-
tures based on ML models for categorizing EEG records
for dementia. This study aims to distinguish HC from MCI
and AD patients. Time-frequency and non-linear features
are extracted from EEG signals. In this sense, a Continous
Wavelet Transform (CWT) is used to calculate the extracted
time-frequency features. Non-linear features are extracted
from the bispectrum (BiS) representation. The greatest ac-
curacy of 91.80 ± 0.9% is delivered for MCI and HC classi-
fication using the Multilayer Perceptron (MLP) algorithm.
According to [32], the authors proposed to extract eight
EEG biomarkers recorded from 44 participants. Continuous
performance test (CPT) and finger tapping test (FTT) were
involved to assess sustained attention and motor speed. To
select the best markers, a feature selection step is done. The
classifier output contains three states, including dementia,
MCI, and HC, based on the SVM classifier. The achieved
accuracy ranges from 73.4% to 89.8%. Using data collected
from 169 patients under clinical conditions, an automated
EEG diagnosis is carried out [33]. To distinguish between
individuals with SCI, MCI, AD, and patients with other
pathologies, a polynomial SVM classifier is employed. A
pair of EEG features are employed to effectively differentiate
between these categories. A classification accuracy of 91.6%
was obtained while distinguishing between these different
groups. With our dataset, we put these methods into prac-
tice. For each CERAD test, the comparison between our
suggested method and these works is shown in Table 9. The
best average accuracy of 93.86% was obtained using our
suggested method. The comparison findings obtained with
the first CERAD test are presented in Table 10. Based on
the above results, we can assume that our proposed approach
gives us the best results with the highest accuracy of 97.43%
given by the first CERAD test. As a result, a new marker for
early MCI identification could be a verbal fluency test related
to executive function.
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Table 9
Performance comparison for each CERAD test using state of the art methods.

Test C. Ieracitano et al. [94] J. Jiang et al. [93] N. Sharma et al. [32] N. Houmani et al. [33] Proposed
method

T1 96.47% 89.41% 84.21% 92.10% 97.43%
T2 86.27% 80.95% 79.74% 75.94% 95.88%
T4 90.19% 85.88% 87.05% 85.88% 96.20%
T5 84.31% 91.66% 84.70% 78.82% 95.10%
T6 94.11% 91.76% 85.50% 82.60% 95.59%
T7 90.19% 89.28% 90.47% 90.47% 90.63%
T8 69.23% 84.88% 77.90% 84.88% 86.19%
Avg 87.25% 87.68% 84.22% 84.38% 93.86%

Table 10
Comparison with existing works for the best accuracy test.

Proposed approach Best ACC Classification method

C. Ieracitano et al. [94] 96.47% MLP
J. Jiang et al. [93] 91.76% SVM RBF
Sharma et al. [32] 89.8% Gaussian SVM
N. Houmani et al. [33] 91.6% Polynomial SVM
Proposed method 97.43% Hybrid ML

5. Discussion
The present section includes three main parts: advan-

tages, limitations, and future directions.
5.1. Advantages

Despite some limitations, EEG is still a useful and ef-
ficient tool in clinical research and cognitive neuroscience.
The importance of EEG in early MCI identification is also
beeing confirmed. The sensitivity and specificity of EEG-
based techniques for the early diagnosis of cognitive impair-
ment continues to be investigated by researchers as an inex-
pensive and non-invasive neuroimaging modality. Thanks to
its high temporal resolution, researchers can monitor brain
activity with millisecond precision. In light of this, it is an
ideal tool to record rapid alterations in brain activity con-
nected with cognitive functions. Furthermore, brain activity
monitoring is offered in real-time, allowing the observation
of dynamic shifts in cognitive processes. Investigating cog-
nitive processes and identifying early indicators of impair-
ment can benefit from this. Moreover, alteration in neural os-
cillations (alpha, beta, theta, and delta) rhythms is associated
with cognitive impairment. On the other hand, HRV signals
is responsible for the autonomic nervous system based on the
balance between sympathetic and parasympathetic branches.
HRV is a possible diagnostic for early-stage detection since
alterations in autonomic control may occur before cognitive
decline. To prevent MCI at its earliest stage, the previously
mentioned benefits are combined to create an effective so-
lution based on EEG and HRV fusion during the CERAD
cognitive test employing a variety of ML techniques. A
robust, stable and efficient hybrid ML model is proposed and
validated.

5.2. Limitations
The primary constraint of our work is the usage of a

limited database. On the other hand, using a limited number
of electrodes for EEG data recording may be considered as
a limitation, even if using more sophisticated headsets may
interfere with patients comfort and concentration. On the
other hand, despite EEG signals can offer significant details
about brain activity, its poor spatial resolution may be raised
as a limitation. It may ignore important crucial information
from the deepest brain regions like the hippocampus, which
is relevant in MCI and AD identification. As regards the ML
model, and since it is relying on a voting system, a lack of
consensus between weak classifiers may lead to performance
decrease. Even if this effect has not been observed in our
experimental setting, testing on larger databases may be
helpful to better characterize the proposed model.
5.3. Future directions

Future research will focus on using additional cognitive
tasks and integrating other physiological, postural, and video
data to identify MCI. Additionally, a deeper knowledge of
brain anatomy and activity can be obtained by combining
EEG with other neuroimaging modalities, such as structural
Magnetic Resonance Imaging (MRI). Also we can integrate
postural stability in our upcoming projects using smart bal-
ance master system. To this respect, multimodal approaches
are frequently required for a more precise assessment of
MCI. Furthermore, various DL techniques can be targeted
in our future work in order to increase the accuracy findings,
although explainability of such models is more difficult to
assess.
Finally, as stated hereabove, validations on larger datasets
with additional experimentation on volunteers will be con-
sidered.

6. Conclusion
Assuming that the symptoms of cognitive deterioration

are hardly perceptible, developing a reliable approach for
identifying MCI earlier has become a major issue. Therefore,
early recognition of this neurodegenerative disease can help
clinicians better understand the patient’s situation. In this
work, a CERAD task is used to evaluate the general mental
health of each participant. This task includes 8 tests that are
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related to specific cognitive domains. This study’s objective
was to create a multimodal approach that utilizes both EEG
and HRV signals to identify MCI during this cognitive task.
The approach consisted of several steps, including extracting
significant features from the signals and standardizing them,
followed a dimension reduction step. Different ML models
were then utilized to classify patients as either HC or MCI.
Finally, the best-performing models were combined into a
hybrid ML model. The results were highly effective, achiev-
ing a maximum accuracy of 97.43% during the first CERAD
task, which indicates that this method can be used as an
early indicator of MCI. The results demonstrate a correlation
between three tests related to executive function (T1), short
and long-term memory (T4), and verbal episodic memory
(T6). The highest accuracy is achieved by the use of an ultra-
short duration based on the first CERAD test, which can be
a new marker for MCI identification.
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