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Abstract
Insecticide resistance and behavioural adaptation of malaria mosquitoes affect the efficacy of long-lasting insecticide nets - currently the main tool for malaria vector control. To develop and deploycomplementary, efficient and cost-effective control interventions, a good understanding of the dri-vers of these physiological and behavioural traits is needed. In this data-mining exercise, we mod-elled a set of indicators of physiological resistance to insecticide (prevalence of three target-sitemutations) and behavioural resistance phenotypes (early- and late-biting, exophagy) of anophelesmosquitoes in two rural areas of West-Africa, located in Burkina Faso and Cote d’Ivoire. To this aim,we used mosquito field collections along with heterogeneous, multi-source and multi-scale environ-mental data. The objectives were i) to assess the small-scale spatial and temporal heterogeneity ofphysiological resistance to insecticide and behavioural resistance phenotypes, ii) to better under-stand their drivers, and iii) to assess their spatio-temporal predictability, at scales that are consistentwith operational action. The explanatory variables covered a wide range of potential environmentaldeterminants of vector resistance to insecticide or behavioural resistance phenotypes: vector con-trol, human availability and nocturnal behaviour, macro and micro-climatic conditions, landscape,etc. The resulting models revealed many statistically significant associations, although their predic-tive powers were overall weak. We interpreted and discussed these associations in light of severaltopics of interest, such as: respective contribution of public health and agriculture in the selection ofphysiological resistances, biological costs associated with physiological resistances, biological mech-anisms underlying biting behaviour, and impact of micro-climatic conditions on the time or placeof biting. To our knowledge, our work is the first modeling insecticide resistance and feeding be-haviour of malaria vectors at such fine spatial scale with such a large dataset of both mosquito andenvironmental data.
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Introduction
Malaria remains a major public health concern in Africa, with 234 million cases and 593000 death over the continent in 2021 (WHO, 2022). After years of steady reduction in the dis-ease transmission mainly due to the scale-up of vector control (VC) interventions (in particularinsecticide-based tools such as long lasting insecticide nets (LLIN) and indoor residual spraying(IRS)) (Bhatt et al., 2015), progress is now stalling since 2015 (WHO, 2022). Involved in such wor-rying trends are a combination of biological, environmental and socio-economical factors. Themosquito biology, with the buildup of adaptive changes in the mosquito vectors populations en-abling them to avoid or circumvent the lethal effects of insecticides, is most likely playing a veryimportant contribution (Killeen, 2014). These changes are framed as vector resistance to insecti-cides. As a consequence of the widespread use of insecticides (in agriculture and public health),vector resistance has arisen rapidly in malaria vectors in many areas of Africa and above (Durnezand Coosemans, 2013; Riveron et al., 2018); and as previously indicated, is now at such levelthat it compromises the effectiveness of the most efficient malaria control interventions (Gattonet al., 2013; Hemingway et al., 2016; Killeen, 2014; Sokhna et al., 2013). Complementary andlocally-tailored VC strategies taking into account the great diversity of vectors resistance mech-anisms (see below) are therefore needed to target these vectors contributing to residual malariatransmission (Corbel and N’Guessan, 2013; Durnez and Coosemans, 2013; Hemingway et al.,2016; Moiroux, 2012; Riveron et al., 2018; Sokhna et al., 2013; WHO, 2017).
Vector resistances to insecticide are usually split into two categories: physiological and be-havioural resistance (Lockwood et al., 1984; Sokhna et al., 2013). Physiological resistance refersto biochemical and morphological mechanisms (e.g. target-site modifications, metabolic resis-tance, cuticular thickness) that enable the mosquito to withstand the effects of insecticide de-spite its contact with it (Davidson, 1957). Among the physiological resistances, the target-sitemutations L1014F (kdr-w) (Martinez-Torres et al., 1998), L1014S (kdr-e) (Ranson et al., 2000), andG119S (ace-1) (Weill et al., 2004), conferring insecticide resistance to pyrethroids (kdr-w andkdr-e) and to carbamates and organophosphates (ace-1), have been extensively described. Be-havioural resistance, on its side, refers to any modification of mosquito behaviour that facilitatesavoidance or circumvention of insecticides (Carrasco et al., 2019; Gatton et al., 2013; Riveron etal., 2018). Behavioural resistance of mosquitoes to insecticides can be qualitative (i.e. modifica-tions that prevent or limit the contact with the insecticide) or quantitative (i.e. modifications thatstop, limit or reduce insecticide action once contact has occurred, e.g. escaping, behavioural ther-moregulation or curative self-medication) (Carrasco et al., 2019). Up-to-date, the behavioural re-sistance mechanisms described in the literature are mainly qualitative and consist in spatial, tem-poral, or trophic avoidance. In particular, in the anopheline populations, the following behaviouralqualitative resistance mechanisms have been described after the scale-up of insecticide-basedVC tools (Durnez and Coosemans, 2013): i) increase of exophagic or exophilic behaviours (spa-tial avoidance), where mosquitoes shifted from biting or resting indoor to outdoor, ii) increaseof early- or late-biting behaviours (temporal avoidance), where mosquitoes shifted from bitingat night to earlier in the evening or later in the morning, iii) increase of zoophagic behaviours(trophic avoidance), where mosquitoes shifted from biting on humans to biting on animals.
To help develop and deploy complementary VC strategies that are efficient and cost-effective,a better understanding of the spatiotemporal distribution and drivers of both vector physiologi-cal resistance and feeding behaviour is needed at a local scale. We raise here a set of questionsthat, among others, must be explored further at local scale towards this aim:
> What is the respective contribution of public health and agriculture in the selection of physi-ological resistances in Anopheles vectors ? The molecular and genetic basis of physiological resis-tance has been widely acknowledged: under the pressure of insecticides, mutations that enablethe vectors to survive are naturally selected and then spread over the generations (Labbé et al.,2017; Martinez-Torres et al., 1998). The main force that governs the selection of a physiological
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mechanism of resistance in a population of insects is therefore the pressure induced by insec-ticide exposure. This pressure can be induced by the vector control tools, or by the runoff ofpesticides used in agriculture (in many cases, the same as those used for impregnation of bednets) into the malaria vectors breeding sites (Chandre et al., 1999; Hien et al., 2017; Reid andMcKenzie, 2016; Yadouleton et al., 2011). Assessing the relative contribution of these two pres-sures on the selection of resistant phenotypes is critical to further predict the relative impactsof public health and agriculture on the growth of physiological resistances and act consequently.
> What are the biological mechanisms underlying behavioural resistances ? Contrary to physi-ological resistance, the biological mechanisms underlying behavioural resistance are still poorlyknown (Carrasco et al., 2019; Durnez and Coosemans, 2013; Killeen, 2014; Main et al., 2016).In particular, a pending question, having important implications for vector control, is whetherbehavioural shifts reflect evolutionary adaptations in response to selection pressures from vec-tor control tools, as for physiological resistances (constitutive resistance) or are manifestations ofpre-existing phenotypic plasticity which is triggeredwhen facing the insecticide or in response toenvironmental variation that reduces human host availability (inducible resistance). Inducible re-sistance imply that vectors rapidly revert to baseline behaviourswhenVC interventions are lifted,whereas constitutive resistance might progressively and durably erode the effectiveness of cur-rent VC tools. Understanding the biological mechanisms underlying behavioural resistances istherefore important to assess the long-term efficacy of insecticide-based VC interventions.
> Aremosquito biting behaviours modulated by local-scale environmental conditions other thaninsecticide-related ones ? As aforementioned, the overall rise of behavioural resistances is likelycaused by the widespread of insecticide-based vector control interventions. However, local en-vironmental conditions can modulate vector behaviours at the time of foraging activity. Localclimatic conditions – e.g. wind, rain, temperature, humidity, luminosity - may for example af-fect the timing and location of vector biting, as it has been noted in some studies (Kirby andLindsay, 2004; Kreppel et al., 2020; Ngowo et al., 2017). Mosquitoes with natural endophagic /endophilic preferences might, for example, bite or rest outside if temperature inside is too highor humidity too low, in order to decrease their risk of desiccation-relatedmortality (Kreppel et al.,2020; Ngowo et al., 2017). Land cover, as well, can affect biting rhythms. It has been noted forexample that distance to breeding sites may influence nocturnal host-seeking behaviour, withvectors biting on average earlier in the night in households located close to the breeding sites(Njan Nloga et al., 1993; Snow and Gilles, 2002). Assessing whether and to which extent be-havioural resistance traits are influenced by local environmental (climatic or landscape) settingsmay help design VC tools exploiting the vulnerabilities of vectors.
> Are there associations between behavioural and physiological resistances ? Physiological andbehavioural resistances may likely coexist in mosquito populations, with the first possibly in-fluencing the second. In fact, physiologically resistant mosquitoes may, theoretically, use therecognition of insecticide-based control tool as a proxy for host presence (framed as behaviouralexploitation (Carrasco et al., 2019)). Several studies have actually showed that the kdr mutationcan modify the host-seeking or biting behaviour of Anopheles in presence of insecticide-treatednet (Malal M Diop et al., 2021, 2015; Porciani et al., 2017). Such behavioural exploitation couldpotentially lead to a better host recognition/localization and have a dramatic impact, with thecontrol intervention having the opposite effect to the one expected. It is hence important toassess if and to which extent physiologically resistant mosquitoes exhibit different biting be-haviours than their susceptible counterparts.
>Which adaptative strategy (physiological or behavioural resistance) arises faster ?Understand-ing the relative capacity of mosquitoes to develop physiological resistance and to shift theirbehaviour in response to vector control is necessary to highlight where and when mitigation ef-forts should be prioritized (Sanou et al., 2021). After introduction / re-introduction of insecticide-based tools, if vectors rapidly shift their behaviour to feed outside or at times when people are
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not protected by an LLIN, interventions that target such mosquitoes should be quickly deployed.In contrast, the rapid emergence of physiological resistance in vectors who continue to feedindoors and at night indicates that switching to alternative insecticide classes in indoor-basedinterventions may have a greater impact. Additionally, for a given environment, assessing therelative rate of selection of physiological and behavioural resistances is of direct epidemiologicalimportance: it has been showed for example that under a scenario where LLIN and IRS are bothheavily used, changes in the susceptibility to insecticide is likely to have a bigger epidemiologicalimpact than changes in biting times (Sherrard-Smith et al., 2019).
> Are resistance rates heterogeneous at small spatiotemporal scales ? Mosquito presence andabundance has already been found heterogeneous in space and time at fine-scale, calling forlocally-tailored (species-, season-, and village-specific) control interventions (Moiroux et al., 2013,2014; Taconet et al., 2021). However, little is known about the small-scale spatiotemporal het-erogeneity of vector resistance. The potential drivers of the selection or triggering of resistantphenotypes (vector control use, land cover, micro-climate, human behaviour, etc.) are likely tovary at small spatiotemporal scales, and so may, at the end of the line, vector resistance. As forabundances, assessing the level of heterogeneity of resistance rates in space and time is impor-tant to assess the spatiotemporal scale at which management of vector resistance should beconsidered.
> To what extent can we explain and predict vector resistance and biting behaviour in space andtime ? Assessing the levels of explainability and predictability of vector resistance and biting be-haviour is important for both scientific and operational purposes. Towards this aim, generatingstatistical models linking vector resistances or biting behaviours to their potential drivers and as-sessing their explanatory and predictive powers can help (Shmueli, 2010; Shmueli and Koppius,2010). High explanatory or predictive powers in the models might suggest that the conditionsdriving a vector to resist are well understood, and conversely, low explanatory powers mightsuggest that resistances are driven by factors either yet undiscovered or not included in themodels. Additionally, assessing the predictability of resistances in vector populations in spaceand time is an important step towards mapping vector resistance at every place (e.g. village) andtime (e.g. season) in the area, with such decision-support tools important to deploy the rightintervention, at the right place and time (Taconet et al., 2021).
In this study, we used field mosquito collections and environmental data collected simultane-ously in two rural areas of West-Africa to bring elements of answer to these questions for ourareas. Guided by these questions, our overall objectives were i) to assess the fine-scale preva-lence and spatiotemporal heterogeneity of physiological resistances and at-risk biting behavioursof malaria vectors in these areas and ii) to better understand their drivers. To do so, we modeleda set of indicators of physiological resistances and behavioural resistance phenotypes (namelykdr-w, kdr-e, ace-1 target-site mutations, exophagy, early-biting, and late-biting) at the individualmosquito level using this fine-grained dataset and advanced statistical methods in an exploratoryand holistic-inductive approach. Patterns found in the data were interpreted and discussed inlight of the topics aforementioned, of importance for the management of malaria residual trans-mission.We concludedwith a set of recommendations tomanage vector resistances in our studyareas.

1. Methods
1.1. Entomological and environmental data

The data used in this work were collected in the frame of the REACT project (Soma et al.,2020; Zogo et al., 2019b). In this projet, a total of fifty-five villages, distributed in two West-African rural areas (~ 50x50 km each) located in the areas of Diébougou (southwestern BurkinaFaso (BF)) and Korhogo (northern Ivory Coast (IC)) were selected according to the following crite-ria: accessibility during the rainy season, 200–500 inhabitants per village, and distance between
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Figure 1 – A/ Map showing the study areas and the villages where entomological collec-tions were performed ; B/ Timeline for vector control interventions and data collectionin the villages. Each color corresponds to a different type of data collected or vectorcontrol intervention implemented. The anopheles and human behavioural surveys arenumbered.

two villages higher than two kilometers. After an exhaustive census of the population in thesevillages at the beginning of the project, entomological and human behaviours surveys were reg-ularly conducted during 15 months (1.25 year) in the Diébougou area and 18 months (1.5 year)in the Korhogo area. Vector control interventions were implemented both as part of the projectand of the national malaria control programs (see below). Figure 1 shows the study areas andthe corresponding timelines for data collection and vector control interventions. The data ta-ble available in Moiroux et al. (2023) lists the villages included in the study: names, geographiccoordinates, vector control interventions implemented in each village. Entomological data werecollected in the field, and environmental data were collated from specific devices (see below) orcreated from heterogeneous field and satellite-based sources. Below is a description of the dataused in our work.
> Anopheles collections
Several rounds ofmosquito collections (eight in theKorhogo (IC) area, seven in theDiébougou(BF) area) were conducted in each village. The periods of the surveys span the typical climaticconditions of these tropical areas (except the peak of the rainy season - July to September) (seeAdditional file 1.A for the spatiotemporal trends of the meteorological conditions). Mosquitoeswere collected using the Human Landing Catch (HLC) technique from 17:00 to 09:00 both in-doors and outdoors at four sites per village (i.e. eight collection points) for one night during eachsurvey. The distance between indoor and outdoor collection points was at least 10 meters to
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minimize competition between mosquito collectors (Coffinet et al., 2009). Malaria vectors wereidentified using morphological keys. All individuals belonging to the Anopheles Funestus Group(in both study areas) and Anopheles Gambiae Complex (in BF) were identified to the species levelusing PCR. In IC, due to the very large numbers of An. gambiae s.l. vectors collected, a sub-sampleonly of these individuals (randomly selected in space and time) was identified to species. Finally,in BF, PCR assay were carried out on all the An. gambiae s.s. and An. coluzzii collected to detectthe L1014F (kdr-w), the L1014S (kdr-e) and the G119S (ace-1) target-site mutations. In IC, alsodue to the large numbers of individuals collected, a subsample only of the An. gambiae s.l. weregenotyped for the L1014F and G119S mutations. Due to the significant risk of bias associatedwith the sub-sampling strategy (not all villages were sampled in all surveys), we excluded thesedata from the analysis. Detailed descriptions of the methods used to obtain these data are pro-vided in Taconet et al. (2023c). These data were published in the Global Biodiversity InformationFacility (GBIF) (D Soma et al., 2023) and are available for reuse.
> Data on weather preceding mosquito collections and during mosquito collections
Weather can impact the fitness or the activity of resistant genotypes (Kliot and Ghanim,2012), as well as the biting behaviour of the mosquitoes (see Introduction). In this work, werecorded or retrieved weather conditions: (i) during mosquito collections (i.e. the HLC sessions),(ii) during the day of collection, and (iii) during the month preceding collection. Weather on theday of collection and during mosquito collection may impact the relative activity of each geno-type and phenotypes associated with resistances. Weather during the month preceding the sur-vey, on its side, can impact development and survival rates of both the current and parentalgenerations of collected mosquitoes (Carnevale et al., 2009; Holstein, 1952; Townson, 1993).Regarding our outputs (prevalence of behavioural phenotypes and target-site mutations - seenext section), weather during the month preceding collection may therefore impact the fitnessof the studied genotypes (for target-site mutations) or possible – and unknown - genotypes as-sociated with studied behavioural phenotypes.
Micro-climatic conditions (temperature, relative humidity, luminosity and atmospheric pres-sure) were simultaneously recorded where mosquito collections were being conducted. Instru-ments used to record these data were : for temperature and relative humidity : Hygro Buttons23 Data Loggers [Proges Plus DAL0084] (temporal resolution (TR): 15 minutes) ; for luminos-ity : HOBO Pendant® Temperature/Light 8K Data Logger (TR: 15 minutes) ; for atmosphericpressure : Extech SD700 Data Loggers (TR : 10 minutes). Hygro and Hobo loggers were posi-tioned both inside and outside the houses where mosquito sampling was conducted, close tothe sampling positions. The barometer was positioned at the center of the village. These fielddata were completed with satellite or modeled data available at coarse spatial but high temporalresolutions: rainfall (spatial resolution (SR) : ~ 11 km, TR : 30 min, source: Global PrecipitationMeasurement (GPM) IMERG (Huffman et al., 2019b), wind speed (SR : ~ 28 km,TR : 1h, source :ERA5 (Hersbach et al., 2020)), apparent magnitude of the Moon (SR : 0.001 degrees, TR : 1 day,source : Institute of celestial mechanics and ephemeris calculations).
Meteorological conditions on the day of collection and over one month preceding collectionwere extracted from satellite imagery. Namely, rainfall estimates were extracted from the GPM- IMERG daily Final products (Huffman et al., 2019a). Diurnal and nocturnal temperatures werederived from the Moderate Resolution Imaging Spectroradiometer (MODIS) daily Land SurfaceTemperature (LST) Terra and Aqua products (Wan et al., 2015a,b). These data were then croppedand averaged in 2-km buffer zones around each HLC collection point. From this, variables repre-senting meteorological conditions on the day of collection and over one month preceding collec-tion were constructed (for the latter, by averaging the 30-day time series). Detailed descriptionsof the methods used to collect and process these data are provided in Taconet et al. (2021).
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> Data on host availability and human behaviour
The nocturnal behaviour of humans (hours inside the dwellings, hours of use of LLINs) driveshost availability for the mosquitoes and can therefore impact their behaviour. For instance, highLLIN use rate can drive mosquitoes to feed outside, at times when people are not protected, oron alternative sources of blood (Durnez and Coosemans, 2013). Here, human population wascounted in each village, through an exhaustive census conducted at the beginning of the project.Then, several human behavioural surveys (two in IC, three in BF) were carried out in each village(see Figure 1). For each survey and village, several households (mean = 14 , SD = 2) were ran-domly selected, and for each household, one to three persons in each age class (0–5 years old,6–17 years old and ≥ 18 years old) were selected. The head of the household was then asked,for each selected person, on the night preceding the survey: i) whether he/she used an LLIN ornot, ii) the time at which he/she entered and exited his own house, and iii) the time at whichhe/she entered and exited his LLIN-protected sleeping space (where appropriate). Householdsfor human behavioural surveys were independently selected from households for entomologicalsurveys. The surveys were conducted after the distribution of the LLINs (see below), and spanthe typical climatic conditions of the areas. Detailed descriptions of the methods used to collectthese data are provided in Soma et al. (2021).
> Landscape data
Landscape can have an impact on mosquito foraging behaviour (e.g. the distance to breedingsites can impact biting rhythms) or physiological resistance (e.g. through pesticides used in crops)(see Introduction). Digital land cover maps were produced for each study area by carrying out aGeographic Object-Based Image Analysis (Hay and Castilla, 2008) using multisource very highand high resolution satellite-derived products. From these maps, several variables were derived :the percentage of landscape occupied respectively by cotton fields, by rice fields, and by theother crops (mainly leguminous crops, millet, sorghum) in a 2 km buffer size area around eachcollection point ; and the distance to the nearest stream (as a proxy for the distance to potentialbreeding sites, as shown in other studies conducted in these areas (Taconet et al., 2021; Zogoet al., 2019a)). For cotton, the variable was binarized as presence / absence of cotton cultivateddue to the small range of values. In addition, the geographical location of the households wasrecorded, and used to derive two indices: the degree of clustering of the households in each vil-lage, and the distance from each collection point to the edge of the village. The land cover mapsalong with detailed descriptions of the methods used to generate them are available at Taconetet al. (2023b) and Taconet et al. (2023a). The methods used to compute the statistical variablesfrom these data are detailed in Taconet et al. (2021).
> Vector control
Repeated exposure to insecticides used in vector control interventions is undoubtedly oneof the most important drivers of the selection of resistance (see Introduction). In both BurkinaFaso and Ivory Coast, LLINs have been universally distributed every 3-4 years since 2010 (PNLP,2014a,b). In BF, a mass distribution of LLINs (PermaNet 2.0) was carried out by the NationalMalaria Control Program in July 2016 (i.e. 6 months before our first entomological survey). InIC, our team distributed LLINs in the villages of the project in June 2017 (i.e. height months af-ter the first entomological survey and ten months before the last one). Complementary VC toolswere implemented in some of the villages in the middle of the project - namely IRS, ivermectin toperi-domestic animals (IVM), intensive Information Education and Communication to the popu-lations (IEC), and larval control (Larv.) as part of a randomized controlled trial aiming at assessingthe benefits of new, complementary VC strategies (Soma et al., 2020; Zogo et al., 2019b) (seeFigure 1, and Additional file 1 available online at this URL (along with the other supplementarymaterial): https://doi.org/10.23708/VJEEMU (Taconet et al., 2023e)).
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1.2. Statistical analyses
1.2.1. Dependent and independant variables. Six indicators of potential vector resistance to in-secticides were modelled:

• three indicators of physiological resistance to insecticide: kdr-wmutation, kdr-emutation,ace-1 mutation,
• three indicators of behavioural resistance phenotypes: early biting, late biting, exophagy.Here, it is unknown whether changes in prevalence of studied mosquito behavioursare the result of constitutive resistances (i.e. inherited traits selected by the insecticidepressure) or of inducible resistance (that rely on phenotypic plasticity). The latter doesnot fit an accepted definition of insecticide resistance that rely on the inheritance prop-erty (Zalucki and Furlong, 2017). Therefore in the remainder of this manuscript, we willqualify the three studied phenotypes, possibly constitutive or inducible, as ‘behaviouralresistance phenotypes’.

Exophagy was defined as the probability for a host-seeking mosquito to bite outdoor (as op-posed to indoor). Early biting was defined as the probability for a host-seeking mosquito to bitebefore 50 % of the LLIN users were declared to be under their bednet in the evening, and latebiting was defined as the probability for a host-seeking mosquito to bite after 50 % of the LLINusers were declared to be out of their bednet in the morning (based on the closest - in space andtime - human behaviour survey). Kdr-w, kdr-e and ace-1mutations were defined as the probabili-ties for an allele of a host-seeking mosquito to be mutated (as opposed to wild type). The statis-tical unit was therefore the mosquito for biting behaviour models and the allele for physiologicalresistance models. Dependent variables were all binary (0 = absence of resistance/mutation,1 = presence of resistance/mutation) and models outcomes were probabilities for a mosquito(resp. allele) to be resistant (resp. mutated). Each indicator was modeled separately for eachmain species in each study area, as determinants of resistance might be species- or site-specific(i.e. mosquitoes might respond differently to environmental variations depending on the speciesand study area, due to potential local chromosomal forms, adaptation, etc.) (Durnez and Coose-mans, 2013; Riveron et al., 2018). As three main species were found in BF and two in IC (seeResults section), a total of twenty-one dependent variableswere built (exophagy : 3 in BF and 2 inIC ; early biting : 3 in BF and 2 in IC ; late biting : 3 in BF and 2 in IC ; kdr-w : 2 in BF ; kdr-e : 2 in BF ;ace-1 : 2 in BF). Based on literature (see Introduction) and available data, we then built indepen-dent variables representing potential determinants of each of these resistant phenotypes. Thesevariables are provided in Table 1. To build these variables, the source data were possibly aggre-gated in space or time, at varying resolutions depending on the considered dependent variable.For example, we constructed a binary variable “Rainfall during collection” (presence/absenceof rainfall during the hour of collection) by summing the source data available at a 30-minutestemporal resolution and then applying a threshold (> 0 mm of rainfall = presence, otherwiseabsence). Replication data are available online at https://doi.org/10.23708/LV8GEW (Taconetet al., 2023d).
1.2.2. Modeling workflow. A graphical representation of the modeling workflow (explained be-low) is available in Additional figure 2. A replication R script (starting from the section ‘Multivari-ate modeling part 1: Explanatory model’) is available online at this URL: https://doi.org/10.
23708/LV8GEW (Taconet et al., 2023d).

Pre-processing. First, we excluded from the modeling process those dependent variables thatcould hardly be modelled due to the combination of very few ‘resistant‘ observations and ex-treme class imbalance (number of samples from the ‘resistant‘ class « number of samples fromthe ‘sensible‘ class). The following criteria were used for exclusion: ‘resistant’ class ≤ 50 obser-vations & ≤ 3% of the total observations.
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Next, we implemented the modeling workflow described below for each remaining depen-dent variable.
Bivariate modeling.We first excluded the independent variables that were poorly associatedwith the dependent variable (criteria for exclusion: p-value > 0.2 of a bivariate Generalized Linearbinomial Mixed-effect Model (GLMM) with nested random effects at the village and collectionsite level). Next, we calculated the Pearson correlation coefficient among the retained variablesand filtered-out collinear variables (correlation coefficient > 0.7) based on empirical knowledge(for instance, diurnal and nocturnal temperature over the month preceding collection were oftencorrelated and in such case we retained nocturnal temperatures ; % of the population indoor andunder an LLIN in the village on the hour of collection were often correlated and in such case weretained % of the population under an LLIN). With the set of remaining independent variables,two distinct multivariate models were built, with complementary objectives, as explained in theBox 1 below.
Multivariate modeling part 1: Explanatory model. A binomial GLMM was fitted to the data.Nested random effects were introduced in the model at the village and collection place level.Variables were deleted recursively using an automatic backward variable selection procedurebased on the reduction of the Akaike Information Criterion (AIC). Variables belonging to the‘vector control’ (for all resistance models) and ‘crops’ (for physiological resistance models only)groups were forced in the multivariate models (i.e. they were not filtered-out in the variable se-lection procedure) because there are strong a priori assumptions associated with these variables.Such variable selection procedure therefore retained all the ‘vector control’ and ‘crops’ variables(whether significantly associated or not with the dependent variable), and the additional vari-ables that decreased the AIC of the multivariate model.
Multivariate modeling part 2 : Predictive model. We additionally fitted a Random Forest (RF)model (Breiman, 2001a) to the data. Themodel hyperparameters were optimized using a random5-combinations grid search (Chicco, 2017). Whenever the dependent variable was imbalanced(more than 1/3 imbalance ratio between the positive and negative class), data were up-sampledwithin the model resampling procedure to cope with known problems of machine-learning (ML)models regarding class imbalance (Tyagi and Mittal, 2020).
Assessment of effect sizes and significance of independent variables. To interpret the effectof each independent variable in the GLMM model, we plotted, for each independent variableretained in the final model, the predicted probabilities of resistance across available values ofthat variable (all other things being equals) (i.e. “partial dependence plot” (PDP) (Friedman andPopescu, 2008)). For reporting and discussion in the manuscript, we kept only variables thathad a p-value < 0.05 (results containing the ‘full’ models are provided in supplementary mate-rial, see Results section). To uncover the possible complex relationships that the RF model hadlearned, we generated smoothed versions of PDPs for each independent variable. However, werestricted the generation of PDPs to the following cases : i) the Area Under the Receiver Oper-ating Characteristics (AUC) (see below) of the model was > 0.6 (because model interpretationtools of ML models (e.g. PDPs) should be trusted only if the predictive power of the underlyingmodel is good enough (Zhao and Hastie, 2021)) and ii) the range of predicted probabilities ofresistance was > 0.05 (i.e. the independent variable, over its range of available values, changedthe probability of resistance by at least 5 percentage points).
Assessment of models performance. The explanatory power of the GLMM was assessed bycalculating the marginal coefficient of determination (R2) (Nakagawa and Schielzeth, 2013) fromthe observed and in-sample predicted values. Marginal R2 is a goodness-of-fit metric that mea-sures the overall variance explained by the fixed effects in theGLMM. R2 valueswere interpretedaccording to the criteria defined by Cohen (2013) : R2 ∈ {0; 0.02{ : very weak ; R2 ∈ {0.02; 0.13{: weak ; R2 ∈ {0.13; 0.26{ : moderate ; R2 ∈ {0.26; 1} : substantial. The predictive power of the
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RF model was assessed by leave village - out cross-validation (CV), with the Area under theROC Curve (AUC) chosen as the performance metric. This CV strategy consisted in recursivelyleaving-out the observations belonging to one village of collection (i.e. the validation fold), train-ing the model with the observations coming from the other villages (i.e. the training fold), andpredicting on the left-out set of observations. We hence measured the ability of the model topredict resistance status (‘resistant’ or ‘non-resistant’) on individual mosquitoes caught on new- unseen villages of collection. AUC values were interpreted according to the following criteria :AUC ∈ {0.5; 0.6{ : very weak ; AUC ∈ {0.6; 0.65{ : weak ; AUC ∈ {0.65; 0.75{ : moderate ; AUC ∈{0.75; 1} : substantial.

Box 1:What is the difference between explanatory and predictive models, and howwere they used for inference in this study ?
Explanatory and predictive models serve distinct but complementary functions in theproduction of scientific knowledge. In statistics, explanatory modeling refers to «theapplication of statistical models to data for testing causal hypotheses about theoreticalconstructs.» (Shmueli, 2010). Explanatory modeling, commonly used for inference inmany scientific disciplines such as biology or epidemiology, is useful to test existingtheories and to reach to "statistical" conclusions about causal relationships that exist atthe theoretical level, e.g.: vector control significantly impacts vector resistance (or not).Explanatory modeling needs transparent and interpretable models, such as linear oflogistic regression, to extract statistical information about the associations contained inthe data (e.g. effect size and statistical significance) and further discuss them. On its side,predictive modeling is «the process of applying a statistical model or data mining algorithmaimed at making empirical predictions, and then assessing its predictive power.» (Shmueli,2010). Predictive modeling requires models capable of capturing complex patterns inthe data, including interactions and non-linear associations, such as machine learningmodels like random forests or support vector machines. Predictive analytics is typicallyrecognised for its usefulness in practical applications, such as predicting the incidence ofdiseases. However, it can also play a crucial role in scientific knowledge production. Forinstance, predictive models can help generate new theories by capturing and revealingpotentially complex, unanticipated patterns within the data. They can as well be used toevaluate the overall relevance of a theory, through the interpretation of the predictivepower of the models (Shmueli and Koppius, 2010). In a "big data" context like that of thisstudy, with large datasets containing numerous observations and variables, predictiveanalytics is increasingly used to support scientific theory development (Breiman, 2001b;Karpatne et al., 2017; Shmueli and Koppius, 2010).
In our study, we use explanatory modeling with GLMMs to i) test whether vector controlsignificantly increases vector resistance, as could be expected, and ii) infer the potentialdeterminants of vector resistance and their effect size. We use predictive modeling withRFs to i) account for potential unhypothesized, complex associations between indepen-dent and dependent variables, and ii) infer the overall contribution of the independentvariables to the prevalence of vector resistance, allowing at the same time to formulatehypotheses on other potential determinants.

1.2.3. Software and libraries used. The softwares used in this work were all free and open source.The R programming language (R Core Team, 2018) and the R-studio environment (RStudio Team,2020) were used as the main programming tools. The QGIS software (QGIS Development Team,2021) and the ‘ggplot2‘ R package (Wickham, 2009) were used to create respectively the mapof the study area and the timeline for data collection. The ‘glmmTMB’ (Brooks et al., 2017) pack-age was used for the bivariate modeling. The ‘buildmer’ package (Voeten, 2020) was used tofit the GLMM models with stepwise selection in the multivariate modeling. The ‘caret’ (Kuhn
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et al., 2018) and ‘ranger’ (Wright and Ziegler, 2017) packages were used to fit the random forestmodels in the multivariate modeling. The ‘MLmetrics’ (Yan, 2016) and ‘MuMIn’ (Bartoń, 2020)packages were used to calculate respectively the AUC of the RFs and the marginal R2 of theGLMMs. The ‘jtools’ (Long, 2020) and ‘pdp’ (Greenwell, 2017) packages were used to generatethe partial dependence plots of respectively the GLMMs and the RFs. The ‘broom.mixed’ (Bolkerand Robinson, 2020) package was used to extract the coefficients / odd ratios, confidence inter-vals and p-values of the multivariate GLMMs. The ‘patchwork’ (Pedersen, 2019) and ‘gridExtra’(Auguie, 2017) packages were used to create various plot compositions. The ‘tidyverse’ meta-package (Wickham, 2017) was used throughout the entire analysis. A few additional R packageswere used to create, tidy, and transform the data used in this work (see Taconet et al., 2021).The LibreOffice suite was used to create the plot compositions in some of the figures.
2. Results

2.1. Spatio-temporal heterogeneity of vector abundance
In the Korhogo area (IC), a total of 1792 human-nights of HLC was conducted. A sum of 57722 vectors belonging to the Anopheles genus was collected. The main species/complex foundwere An. gambiae s.l. and An. funestus (respectively 56 267 (97% of all the Anopheles collected)and 714 (1%) individuals collected). Among the 56 267 An. gambiae s.l. collected, 3922 (7%)were identified to species: 3726 (95% of the individual identified to species) were An. gambiaes.s. and 196 (5%) were An. coluzzii. Hence, in the rest of this article, we will consider the An.gambiae s.l. collected in the Korhogo area as An. gambiae s.s. In the Diébougou area (BF), a totalof 1512 human-nights of HLCwas conducted. A sum of 3056 vectors belonging to theAnophelesgenus was collected. The main species found were An. coluzzii, An. gambiae s.s. and An. funestus(respectively 1321 (43% of all the Anopheles collected), 616 (20%) and 708 (23%) individualscollected). As expected, mosquito abundance was heterogeneous in time and space (except forAn. funestus in IC, for which the vast majority (93 %) of the individuals was collected in the firstentomological survey, and almost half of the individuals (42 %) were collected within one singlevillage) (see Additional file 1 and Additional figure 3 for maps and charts of the spatiotemporaldistribution of vector abundance).

2.2. Spatio-temporal heterogeneity of vector resistance
Table 2 and Figure 2 show, respectively, global and spatiotemporal descriptive statistics onthe resistances of the main vector species collected in the two areas.
Exophagy rates. In the Korhogo area (IC), the overall exophagy rate (% of bites received out-door) was 56 % for An. gambiae s.l. and 69 % for An. funestus. The exophagy rate of An. gambiaes.l. varied little, both amongst the entomological surveys and the villages (Temporal StandardDeviation (TSD) (see legend of Table 2 for definition) = ± 2 %, Spatial Standard Deviation (SSD)(see legend of Table 2 for definition) = ± 7 %). The exophagy rate of An. funestus was more het-erogeneously distributed in time and space (TSD = ± 7 %, SSD = ± 16 %). In the Diebougou area(BF), the overall exophagy rate was 44 % for An. coluzzii, 44 % for An. gambiae s.s. and 35 % forAn. funestus. For the three species, the exophagy rate varied quite sensibly among the entomo-logical surveys (TSD = ± 5%, ± 7%, ± 6% respectively) and the villages (SSD = ± 9%, ± 12%, ± 8%respectively).
Early and late biting rates. In the Korhogo area (IC), the early biting rate (i.e. % of bites receivedbefore 50% of the LLIN users were declared to be under their bednet at night) was 3% forAn. gambiae s.l. and 13% for An. funestus. The early biting rate was overall stable among thesurveys and villages for An. gambiae s.l. (TSD = ± 1%, SSD = ± 2%) andwasmore heterogeneouslydistributed forAn. funestus (TSD=±6%, SSD=±12%). The late biting rate (i.e. % of bites receivedafter 50% of the LLIN users were declared to be out of their bednet in the morning) was lowerthan the early biting rate: 1% for both An. gambiae s.l. and An. funestus (only 4 late-bites for An.funestus) and was overall stable among the surveys and villages (TSD = ± 0% and SSD = ± 1%
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Figure 2 – (Previous page) Spatio-temporal distributions of the physiological resistancesand behavioural resistance phenotypes of the main vector species collected (panel A:temporal distribution, panel B: spatial distribution). For behavioural resistance phenotypes,the y-axis represents the percentage of mosquitoes with resistant phenotypes for the consid-ered survey / village. For physiological resistances, the y-axis represents the allele frequencyof the considered mutation for the considered survey / village. Confidence intervals (A : rib-bons, B : lineranges) provide indicators of variability of the resistance indicator (A : mean ±standard deviation of the resistance indicator calculated at the village level for the consideredentomological survey ; B: mean ± standard deviation of the resistance indicator calculated atthe entomological survey level for the considered village). To avoid excessive consideration ofsmall sample sizes, the total number of mosquito collected was represented graphically usingthe size of dots (A) or the color of the bars (B).
Table 2 – Descriptive statistics for the physiological resistances and behavioural resis-tance phenotypes of the main vector species collected.

Resistanceindicator Study area Species n° collected n° resistant % resistant Temporalconfidenceinterval & range
Spatialconfidenceinterval & range

An. gambiae s.l. 56267 31295 56 % ± 2 % (44–60) ± 7 % (38–71)Korhogo An. funestus 714 493 69 % ± 7 % (0–100) ± 16 % (0–100)An. coluzzii 1321 577 44 % ± 5 % (38–64) ± 9 % (0–100)An. gambiae s.s. 616 268 44 % ± 7 % (18–56) ± 12 % (0–75)Exophagy Diébougou An. funestus 708 250 35 % ± 6 % (19–40) ± 8 % (0–100)
An. gambiae s.l. 56267 1670 3 % ± 1 % (1–6) ± 2 % (0–10)Korhogo An. funestus 714 92 13 % ± 6 % (0–100) ± 12 % (0–100)An. coluzzii 1321 28 2 % ± 1 % (0–4) ± 2 % (0–75)An. gambiae s.s. 616 19 3 % ± 1 % (0–6) ± 3 % (0–14)Early biting Diébougou An. funestus 708 9 1 % ± 1 % (0–2) ± 4 % (0–100)
An. gambiae s.l. 56267 499 1 % ± 0 % (0–1) ± 1 % (0–9)Korhogo An. funestus 714 4 1 % ± 1 % (0–12) ± 1 % (0–7)An. coluzzii 1321 46 3 % ± 3 % (0–14) ± 3 % (0–14)An. gambiae s.s. 616 8 1 % ± 3 % (0–11) ± 5 % (0–100)Late biting Diebougou An. funestus 708 82 12 % ± 3 % (0–22) ± 10 % (0–100)
An. coluzzii 1321 NA 59 % ± 5 % (55–69) ± 8 % (12–100)Kdr-wmutation An. gambiae s.s. 616 NA 90 % ± 8 % (59–100) ± 9 % (68–100)An. coluzzii 1321 NA 17 % ± 8 % (0–43) ± 10 % (0–50)Kdr-emutation An. gambiae s.s. 616 NA 4 % ± 4 % (0–19) ± 4 % (0–17)An. coluzzii 1321 NA 2 % ± 1 % (0–7) ± 1 % (0–6)Ace-1mutation

Diébougou
An. gambiae s.s. 616 NA 21 % ± 6 % (11–50) ± 8 % (0–75)

Descriptive statistics for the physiological resistances and behavioural resistance phenotypesof the main vector species collected, by area of interest. The columns ’Temporal confidenceinterval and range’ and ’Spatial confidence interval and range’ provide indicators of the vari-ability and range of resistance around the overall mean (percentage resistant) respectively intime (i.e. variability between the entomological surveys) and space (i.e. variability between thevillages). Format of these columns: confidence interval (minimum – maximum). Computationof confidence intervals (columns ’Temporal confidence interval and range’ and ’Spatial confi-dence interval and range’): to take into account the uneven sample size between entomologicalsurveys (resp. villages) (i.e. to avoid excessive consideration of small / very small sample size),confidence intervals for temporal (resp. spatial) variability were extracted by first calculatingthe resistance indicator for each entomologial survey (resp. village) and then computing thestandard deviation weighted by the number of mosquitoes collected in each entomologial sur-vey (resp. village).

for An. gambiae s.l.). In the Diébougou area (BF), the early biting rate was respectively 2%, 3%and 1% for An. coluzzii, An. gambiae s.s. and An. funestus. The early biting rate was overall stableamong the surveys (TSD = ± 1% for the three species) and to some extent more heterogeneousamong the villages (SSD = ± 2%, ± 3%, ± 4% respectively). The late biting rate was respectively
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3%, 1% and 12% for An. coluzzii, An. gambiae s.s. and An. funestus. Late biting rates were moreheterogeneously distributed than early biting rates, both among the surveys (TSD = ± 3% for thethree species) and villages (SSD = ± 3%, ± 5%, ± 10% respectively).
Allele frequencies of kdr-e, kdr-w, ace-1 mutations. In the BF area, the allele frequency of thekdr-w mutation was 90% for An. gambiae s.s. and 59% for An. coluzzii. It varied to some extentamong the surveys and villages (for An. gambiae s.s.: TSD = 8%, SSD = 9% ; for An. coluzzii: TSD =5%, SSD = 8%). The allele frequency of the kdr-e mutation was 4% for An. gambiae s.s. and 17%for An. coluzzii. For An. gambiae s.s., it remained low among the surveys and villages (TSD = SSD= 4%) and for An. coluzzii, it varied more sensibly (TSD = 8%, SSD = 10%). The allele frequencyof the ace-1mutation was 21 % for An. gambiae s.s. and 2% for An. coluzzii. For An. gambiae s.s, itvaried sensibly among the surveys and villages (TSD = 6%, SSD = 8%), and for An. coluzzii it wasoverall stably low (TSD = SSD = 1%).

2.3. Dependent variables excluded from the modeling process
Seven of the original twenty-one dependent variables were excluded before statistical mod-eling due to the very small size of their ‘resistant’ class (see Table 2):

• early-biting in BF for the three species,
• late-biting in BF for An. coluzzii and An. gambiae s.s.,
• late-biting in IC for An. funestus,
• ace-1 in BF for An. coluzzii.

2.4. Associations between physiological resistance and environmental variables
For the remaining five models of physiological resistance in the Diébougou area (BF), Figure3 shows the PDPs of the independent variables retained in the modeling workflow. For theGLMMs, numerical values of odd-ratios, 95% confidence intervals, and p-values are provided inAdditional file 4.

Figure 3 – (Next page) Results of the statistical models of probability of physiologicalresistance in the malaria vectors. For each model, the top plot shows the explanatorypower (R2) and predictive power (AUC) of respectively the GLMM and the RF model.The other plots show the predicted probabilities of collecting a resistant vector acrossavailable values of each independent variable, holding everything else in the model equal(yellow line: probability predicted by the GLMMmodel ; green line: probability predictedby the RF model). Non-significant variables (p-value > 0.05) are not presented. Shortmethodological reminder : vector control and crops variables were forced-in, and theother variables were retained only if they improved the AIC of the model. In addition, forthe GLMMmodels, the other variables were plotted only if their p-value was < 0.05. Forthe RFmodels, the predicted probability (i.e. green line) was plotted only if the AUCof themodel was > 0.6 and the range of predicted probabilities of resistance for the consideredvariable was > 0.05. In these plots, the y-axis represents the probability for an allele tobe resistant. The red horizontal dashed line represents the overall rate of resistance (seeTable 2). The p-values of the GLMMs are indicated through the stars: * : p < 0.05, ** p< 0.01, *** p < 0.001. The coloured squared at the bottom-right represents the ‘family‘the variable belongs to (one color for each family, see legend inside the light green frameplaced on the left hand side of the plot). The grey squares distributed along the x-axis atthe top and bottom of each plot represent the measured values available in the data (thedarker the square, the more the number of observations) (NB: for atmospheric pressure,the values in the x-axis are centered around the mean).
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Associations with variables encoding vector control interventions. No statistically significantassociation was found between the likelihood of collecting an Anopheles carrying any of thetarget-site mutations and the type of VC intervention (LLIN + complementary tool comparedto LLIN only) within the time frame of the study. However, the likelihood of collecting a host-seeking An. gambiae s.s. or An. coluzzii carrying a resistant kdr-e allele increased with the timesince LLIN distribution, and as well with the % of users of LLINs in the village population. Note-worthy, for both species the random forest models predicted a significant linear increase in the12 first months after the distribution, and a slowdown in the increase from the 12th to the 21thmonth after LLIN distribution. Regarding the others target-site mutations (kdr-w or ace-1), thelikelihood of collecting a host-seeking Anopheles carrying them did not increase with the timesince LLIN distribution.
Associations with variables encoding crops. No statistically significant association was foundbetween the likelihood of collecting a host-seeking Anopheles carrying any of the target-sitemutations and the % of landscape occupied by crop fields (cotton, rice, or other crops) in a 2km-wide buffer area around the collection point.
Associations with variables encoding micro-climate at the time (hour) of foraging activity. Pos-itive associations were found between the likelihood of collecting a host-seeking An. coluzziicarrying the kdr-e mutation and atmospheric pressure, humidity and temperature at the timeof collection, as well as that of collecting an An. gambiae s.s. carrying the kdr-e mutation andatmospheric pressure at the time of collection. A negative association was found between thelikelihood of collecting a host-seeking An. gambiae s.s. carrying the kdr-wmutation and humidityat the time of collection.
Associations with variables encoding meteorological conditions during the month preceding col-lection. Negative associations were found between the likelihood of collecting a host-seeking:An. coluzzii carrying the kdr-wmutation and cumulated rainfall, An. gambiae s.s. carrying the kdr-wmutation and both cum. rainfall and mean diurnal temperatures, An. coluzzii carrying the kdr-emutation and mean nocturnal temperatures, An. gambiae s.s. carrying ace-1 mutation and bothmean diurnal and nocturnal temperatures during the month preceding collection. A positive as-sociation was found between the likelihood of collecting a host-seeking An. coluzzii carrying thekdr-e mutation and cumulated rainfall.
Association with variables encoding genotype for other insecticide resistance target-site muta-tions. The likelihood of collecting a host-seekingAn. gambiae s.s. orAn. coluzzii carrying a resistantkdr-e allele was negatively associated with the number of mutated kdr-w alleles in the collectedmosquito. Conversely, the likelihood of collecting a host-seeking An. gambiae s.s. carrying a re-sistant Ace-1 allele was higher in individuals also carrying kdr-w mutated alleles.

2.5. Associations between behavioural resistance phenotypes and environmental variables
For the remaining nine models of behavioural resistance phenotypes, Figure 4 shows thePDPs of the independent variables retained in the modeling workflow. For the GLMMs, numeri-cal values of odd-ratios, 95% confidence intervals and p-values are provided in Additional file 4.
Associations with variables encoding vector control interventions. No statistically significantassociation was found between the likelihood of collecting an exophagic, early- or late- bitingAnopheles and neither the type of VC intervention (LLIN + complementary tool compared toLLIN only) nor the time since LLIN distribution within the time frame of the study.
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Figure 4 – (Previous page) Results of the statistical models of probability of behaviouralresistance phenotypes in the malaria vectors. For each model, the top plot shows theexplanatory power (R2) and predictive power (AUC) of respectively the GLMM and theRFmodel. The other plots show the predicted probabilities of collecting a resistant vectoracross available values of each independent variable, holding everything else in themodelequal (yellow line: probability predicted by the GLMM model ; green line: probabilitypredicted by the RF model). Non-significant variables (p-value > 0.05) are not presented.Short methodological reminder: vector control variables were forced-in, and the othervariables were retained only if they improved the AIC of the model. In addition, othervariables were plotted only if their p-value was < 0.05. For the RF models, the predictedprobability (i.e. green line) was plotted only if the AUC of the model was > 0.6 and therange of predicted probabilities of resistance for the considered variable was > 0.05. Inthese plots, the y-axis represents the probability for a mosquito to be resistant. The redhorizontal dashed line represents the overall rate of resistance (see Table 2). The p-valuesof the GLMMs are indicated through the stars * : p < 0.05, ** p < 0.01, *** p < 0.001. Thecoloured squared at the bottom-right represents the ‘family‘ the variable belongs to (onecolor for each family, see legend inside the light green frame placed on the left hand sideof the plot). The grey squares distributed along the x-axis at the top and bottom of eachplot represent the measured values available in the data (the darker the square, the morethe number of observations) (NB: for atmospheric pressure, the values in the x-axis arecentered around the mean).

Associations with variables encoding host availability. In the Korhogo area (IC), the likelihoodof exophagy of An. gambiae s.s. slightly increased with the % of the population under an LLIN atthe time of collection. The likelihood of early-biting of An. gambiae s.s. increased with the % ofusers of LLINs in the village population. In the Diébougou (BF) area, the likelihood of exophagyof An. funestus increased with the % of the population under an LLIN at the time of collection.
Associations with variables encoding landscape. In the Korhogo area (IC), the likelihood of ex-ophagy of An. funestus increased with increasing distance to the edge of the village. The likeli-hood of early-biting of An. gambiae s.s. decreased with increasing distance to the edge of thevillage. In the Diébougou (BF) area, the likelihood of exophagy of An. coluzzii increased with in-creasing distance to the nearest stream.
Associations with variables encoding micro-climate at the time (hour) of foraging activity. In theKorhogo area (IC), the likelihood of exophagy of An. gambiae s.s. decreased when humidity in-doors increased and when humidity got relatively higher indoors compared to outdoors. In ad-dition, it increased when luminosity got relatively higher indoors compared to outdoors. In theDiébougou area (BF), the likelihood of exophagy of An. funestus increased when temperature orhumidity got relatively higher indoors compared to outdoors.
Associations with variables encoding meteorological conditions on the day or night of collection.Positive associations were found between the likelihood of: exophagy of An. coluzzii and rainfall(BF area), early-biting of An. gambiae s.s. and temperature (IC area), late-biting of An. gambiae s.s.and both rainfall and temperature (IC area), late-biting of An. funestus and temperature (BF area).A negative association was found between the likelihood of exophagy of An. gambiae s.s. andrainfall (IC area).
Associations with variables encoding meteorological conditions during the month preceding col-lection. Negative associations were found between the likelihood of: exophagy of An. gambiaes.s. and both cumulated rainfall and mean diurnal temperatures (IC area), exophagy of An. coluzziiand mean nocturnal temperatures (BF area), late biting of An. gambiae s.s. and mean nocturnaltemperature (IC area). A positive association was found between the likelihood of exophagy of
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An. gambiae s.s. and mean nocturnal temperatures (BF area).
Associationswith variables encodingphysiological resistances.As a reminder, the genotypes forthe target-site mutations of individual collected mosquitoes were introduced as independentvariables in the behavioural resistance phenotypes models in the Diébougou area (BF). Here,these variables were not retained in the variable selection procedure, i.e. no statistically signif-icant association was found between any of the behavioural resistance phenotypes indicatorsand kdr-w, kdr-e, or ace-1 mutations.

2.6. Explanatory and predictive power of the statistical models
Additional figure 5 provides boxplots of observed resistance status vs. predicted probabilitiesby each model.
Exophagy. For the models of exophagy, the explanatory power of the GLMM models was:‘very weak’ for An. gambiae s.s. in the Korhogo area (IC), ‘moderate’ for An. funestus in the Ko-rhogo area (IC)‘, weak’ for An. funestus, An. coluzzii and An. gambiae s.s. in the Diébougou area(BF). The predictive power of the RF models of exophagy was ‘very weak’ for all the species inthe two study areas.
Early and late biting. For the models of early biting, the explanatory power of the GLMMmodels was ‘weak’ for both An. gambiae s.s. and An. funestus in the Korhogo area (IC). For themodels of late biting, the explanatory power of the GLMMwas ‘weak’ for An. gambiae s.s. in theKorhogo area (IC) and ‘substantial’ for An. funestus in the Diébougou area (BF). The predictivepower of the RF models of early and late biting was ‘very weak’ for all species in the two studyareas, except for the model of late biting of An. gambiae s.s. in the Korhogo area (IC) for which itwas ‘weak’.
Kdr-w, kdr-e, ace-1. For the kdr-wmutation in theDiébougou area (BF), the explanatory powerof the GLMM models was ‘weak’ for An. coluzzii and ‘substantial’ for An. gambiae s.s. ; and thepredictive power of the RF models was ‘weak’ for An. coluzzii and ‘moderate’ for An. gambiae s.s.For the kdr-emutation in the Diébougou area (BF), the explanatory power of the GLMMmodelswas ‘substantial’ for both An. coluzzii and An. gambiae s.s. ; and the predictive power of the RFmodels was ‘moderate’ for An. coluzzii and ‘weak’ for An. gambiae s.s. For the ace-1 mutationin the Diébougou area (BF), the explanatory power of the GLMM models was ‘weak’ for An.gambiae s.s. ; and the predictive power of the RF model was ‘very weak’.

3. Discussion
In this data mining exercice, we studied indicators of physiological and behavioural resistancephenotypes of several malaria vectors in rural West-Africa at a fine spatial scale (approximatelythe extent of a health district), using longitudinal data collected in two areas belonging to twodifferent countries, respectively 27 and 28 villages per area, and across 1.25 to 1.5 year. Theobjectives were to describe the spatial and temporal heterogeneity of vector resistance, andto better understand their drivers, at scales that are consistent with operational action. To ourknowledge, our work is the first studying the heterogeneity of vector resistance at such finespatial scale with such a large dataset of mosquito collection and potential drivers of resistance.In this discussion, we first use our results to provide elements of answers to the questions raisedin introduction of this article. We then discuss some implications of the findings for the manage-ment of vector resistance in our areas.

3.1. Physiological resistances: potential drivers and spatiotemporal heterogeneity
The main drivers of physiological resistances are insecticides, used either in public healthfor vector control or in agriculture (see Introduction). In this study, we found that the probabil-ity of collecting a host-seeking An. gambiae s.s. or An. coluzzii in the Diébougou area carrying
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a kdr-e resistant allele significantly increased with both the time since LLIN distribution (up to12 months after distribution) and the % of LLIN users in the village population. PermaNet 2.0LLINs have been shown to retain their insecticidal efficacy under field conditions for at least oneyear after distribution (Djènontin et al., 2023; Kayedi et al., 2017; Kilian et al., 2008; Tan et al.,2016), exerting high selective pressure on vectors over this period at least. In contrast, there wasno significant association between any of the target-site mutations and any of the crop-relatedvariable. Altogether, this could indicate that within the spatiotemporal frame of our study, theselection of the kdr-e mutation in the vector population was more likely due to insecticidesused in public health than pesticides used in agriculture. In Burkina Faso, pesticides are widelyused for cotton and sugar cane (Ouédraogo et al., 2011), but only in lesser proportions in marketgardening and cereal production (maize and rice are the only cereals that are treated to a signif-icant extent (MERSI et al., 2016)). Here, in the 2-km wide buffer zones around our collectionpoints crops occupied up to 40 % of the total land, but were mainly made of leguminous crops,millet, sorghum, with cotton and rice being only marginally present. Hence, pesticides are likelynot much used (field surveys regarding the use of pesticides by the farmers could confirm thishypothesis). This could explain the absence of association between target-site mutations andthe crops-related variables. Noteworthy, the fact that there was no increase in the probabilityof collecting an An. gambiae s.l. carrying a kdr-e resistant allele 12 months post-LLIN distribution,as indicated by the RF model, could be attributed to a potential decrease in LLIN insecticidal ef-ficacy after this period (Tan et al., 2016), resulting in lower selection pressure. Finally, we notedthat the kdr-w and ace-1 mutations did not increase significantly with the time since LLIN distri-bution. The absence of increase of the kdr-wmutation may be explained by its very high baselineallelic frequencies ; while that of the ace-1mutation may be explained by the type of insecticideused to impregnate the LLINs - deltamethrin, which does not select the ace-1 mutation.
The statistical models captured many associations between the likelihood of collecting aphysiologically resistant Anopheles and the variables encoding weather, both during the monthpreceding collection and at the hour of collection. These associations could traduce biologicalcosts/advantages associated with target-site mutations, both in terms of fitness and activity,as found elsewhere for other mosquito species (Kliot and Ghanim, 2012). Regarding fitness, wefound that the likelihood of collecting a host-seeking mosquito (An. gambiae s.s. or An. coluzzii)carrying amutated allele, overall, decreased (to varying extents depending on the species andmu-tation) when diurnal or noctural temperatures during the month preceding collection got higher,i.e. in the hottest periods of the year (corresponding to ~ the months of March-April). Carryinga kdr mutation might be associated with a decreased propensity to locate optimal temperatures,potentially resulting in a decreased longevity, fecundity, or ovarian development rates (Fosteret al., 2003). Regarding activity, we observed that the likelihood of collecting a mosquito car-rying a mutated allele (for the kdr-e mutation) decreased when atmospheric pressure, humidity,or temperature at the hour of collection got lower; implying that mosquitoes carrying the kdr-e mutation could be less active in colder or drier conditions, or when atmospheric pressure islower. Noteworthy, our results could also be interpreted in terms of fitness advantages insteadof fitness costs: for instance, some studies have highlighted fitness advantages (e.g. for longevity)of the kdr-w mutation in An. gambiae s.l. in laboratory conditions (Alout et al., 2016; Adandé A.Medjigbodo et al., 2021b).
We also found interactions between some target-site mutations. Indeed, as the kdr-e andkdr-w are mutations of the same base pair, the allelic frequency of the kdr-e mutation was neg-atively correlated with the allelic frequency of the kdr-w mutation in both An. gambiae s.s. andAn. coluzzii. We also found a positive relationship between the allelic frequencies of the Ace-1and kdr-w mutations in An. gambiae s.s. This is consistent with laboratory observations in CulexQuinquefasciatus and An. gambiae s.s. showing that the cost of the Ace-1 mutation is reduced inpresence of the kdr mutation (Assogba et al., 2014; Berticat et al., 2008; Adandé A Medjigbodoet al., 2021a).
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Lastly, we observed that the allelic frequencies of the target-site mutations, within each vec-tor species and for eachmutation, were overall quite stable across the villages and seasonswithinthe spatiotemporal frame of the study. At larger spatial and temporal scales, physiological resis-tances were found more heterogeneous (Moyes et al., 2020). In our study, such homogeneitymight be due to a relative homogeneity in space and time of the main determinants of physio-logical resistance (access and use of insecticide-based vector control interventions). The quitestable rates of physiological resistance throughout the seasons might traduce the fact that thepossible fitness costs/advantages are likely rather limited, within the range of meteorologicalconditions in our area.
3.2. Behavioural resistance phenotypes: potential drivers and spatiotemporal heterogeneity

An important and pending question is the genetic (constitutive) or plastic (inducible) natureof behavioural resistances (see Introduction). In this study, we found no statistically significantassociation between any of the indicators of behavioural resistance phenotypes and neither thetime since LLIN distribution nor the VC tool implemented. There was hence no evidence ofgrowing frequencies of behavioural resistances (exophagy, early- and late-biting) in response tovector control within the 1.25 to 1.5 years of this study, i.e. no clear indication of constitutiveresistance.
Nonetheless, comparison of the exophagic phenotype rates found here with those of pre-vious studies in the same countries, suggests that there may still be a genetic component tomosquito foraging behaviour. Indeed, the exophagy rates measured here tended to be higherthan those historically reported for these species. For example, a recent review of An. gambiaes.l. biting behaviour from a range of African countries between 2000 and 2018 concluded thatduring this time period, ~ 80% of the vectors bite occured indoor (all countries included) andin particular ~ 75% in Burkina Faso (Sherrard-Smith et al., 2019) (hence respectively ~ 20% and25%outdoor). Herewemeasured substantially higher levels of exophagy: 44% (range ~ 18-56%)in the Diébougou (BF) area and 56% (44–60%) in the Korhogo (IC) area. Other recent studies,contemporaneous to ours, have found relatively high levels of exophagy for An. gambiae s.l. inrural areas, e.g. 54% in southwestern Burkina Faso (Sanou et al., 2021) or 55% in Ivory Coast(Assouho et al., 2020). Such high levels of outdoor biting, in comparison with past levels, suggestthat behavioural adaptations may be ongoing in the study areas, most probably in response tothe widespread and prolonged use of insecticide-based vector control tools.
We also found many statistically significant associations between the likelihood of collect-ing a behaviourally resistant phenotype and the meteorological conditions during the monthpreceding collection. This might indicate that these phenotypes could be induced by past envi-ronmental conditions, acting at the adult or larval stage, or through paternal/maternal effect.Such relationships between environmental condition at the larval stage and adult behaviour haveindeed been observed in other insects (Müller et al., 2016, and ref cited in).
The hypothesis of a hereditary component in the behaviour of malaria vectors (at least forthe biting hour) is supported by a recent study which has observed, for Anopheles arabiensis inTanzania, that F2 from early-biting F0 (grandmothers) were - to some extent - more likely to biteearly than F2 from mid or late-biting F0 (Govella et al., 2023). Under this hypothesis, the rela-tionship between the prevalence of behaviourally resistant phenotypes and the meteorologicalconditions during the month preceding collection could indicates a cost/advantage, at the adult,larval or both stages, of their associated genotypes.
In our study, the absence of significant association between the probability of behaviouralresistances and insecticide-related variables might be due to the relatively short length of thestudy (2 years). In a similar study conducted in another region of Burkina Faso over a two-yearperiod as well, researchers recorded, as we have, no changes in the biting behaviour of Anophelesgambiae s.l., including early biting, exophagy, and exophily, throughout the duration of the study
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(Sanou et al., 2021). Although resistance phenotypes can emerge in this time frame (Moirouxet al., 2012), a recent (almost) 4-years-study in Tanzania (Kreppel et al., 2020) detected shifts invector behaviour (i.e. increased rate of exophily for An. arabiensis and An. funestus) that could beobscured in shorter-term surveys, in agreement with the hypothesis that mosquito behavioursare likely complex multigenic traits (Main et al., 2016) and might therefore respond slowly toselection (at least, slower than target-site mutations, which are linked to single genes and mayhence respond rapidly and efficiently to selection). Anyhow, the results of these various longi-tudinal studies suggest that long-term monitoring of vector behaviour (> 2 years), particularlyin areas with a long history of use of insecticides in public health, is critical to better under-stand the biological mechanisms underlying behavioural resistances, to potentially assess theirdevelopment rate, and more broadly to assess residual malaria transmission risk (Durnez andCoosemans, 2013; Kreppel et al., 2020; Sanou et al., 2021).
Weather can impact the fitness of possible genotypes associated with behavioural resistantphenotypes, but may also directly influence the time and location of foraging activity (see Intro-duction for more details). Here, we found many associations between mosquito host-seekingbehaviour and variables representing meteorological conditions on the day or at the hour ofcollection. For instance, the probability for an An. gambiae s.s. to be collected outdoor in theKorhogo area increased when the air indoor was dry, or when the air outdoor became relativelymore humid than indoor. Likewise, in the Diébougou area, the probability for an An. funestusto be collected outdoor increased when the air outdoor became relatively cooler than indoor.These observations are consistent with the hypothesis of mosquitoes shifting from indoor tooutdoor host-seeking in case of desiccation-related mortality risk indoors, as observed and dis-cussed elsewhere (Kessler and Guerin, 2008; Kreppel et al., 2020; Ngowo et al., 2017). Themete-orological conditions seemed to cause not only spatial, but also temporal shifts in host-seekingactivity. For instance, we found that the probability of collecting a late-biting An. gambiae s.s.in the Korhogo area increased when the noctural temperature increased. Several associationsalso suggest that some malaria vectors may modify their behaviour in response to environmen-tal variation that reduces host availability, as hypothesized elsewhere (Durnez and Coosemans,2013). For instance, the likelihood of collecting an An. gambiae s.s. (in the Korhogo area) or anAn. funestus (in the BF area) outdoor increased at hours when people were protected by theirLLINs. Likewise, the likelihood of collecting an early-biting An. gambiae s.s. in the Korhogo areaincreased when the % of LLIN users in the village increased. Altogether, all these associationssuggest that in our study areas mosquito foraging behaviour is driven – to a certain extent -by environmental conditions at the time of foraging activity, i.e. that vectors likely modify theirtime or place of biting according to climatic conditions or host availability. Themany associationsthat were captured here in field conditions could be further tested experimentally, to quantifytheir effect more precisely and validate the underlying biological hypothesis.
Although many significant associations between environmental parameters and foraging be-haviours have been captured by the models, their explanatory and predictive powers were over-all weak. A low explanatory power can indicate either i) that variations in the dependent variable(here, individual vector resistance) are only marginally caused by the independent variables or ii)that the statistical model does not capture properly the true nature of the underlying relation-ships between the studied effect and its drivers (Karpatne et al., 2017) (e.g. a linear regressioncannot, by definition, capture non-linear relationships that might exist in nature). Here, we min-imized the risk of omitting important, complex associations by using, complementarily to thebinomial regression model, a machine-learning model (namely a random forest) that is inher-ently able to capture complex patterns contained in the data if any (e.g. non-linear relationships,interactions) (Breiman, 2001a). Still, the models had low predictive powers. Altogether, these re-sults indicate that very likely, despite the amount, granularity and diversity of potential factorsmeasured and introduced in the models, most of the factors driving the individual host-seekingbehaviours of the mosquitoes were not introduced in the models. Another possibility could bethat some of our independent variables did not represent the actual “reality” in the field (e.g. the
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distance to the nearest stream is not necessary an ideal proxy for the distance to the breedingsite). Nevertheless, since we used a wide range of variables encoding the environmental condi-tions at the time of foraging activity, we can hypothesize that within the spatiotemporal frameof the study, mosquito foraging behaviour was only marginally driven by environmental varia-tions. This leaves the floor to other factors, like genetics (see above), learning, or randomness.
To test whether physiological resistance impacts the behaviour of host-seeking mosquitoes,we introduced in the behaviour resistance models of An. coluzzii and An. gambiae s.s. in theDiébougou area two variables encoding the genotypes for respectively the kdr-w and kdr-e mu-tations. No statistically significant association was found. In other words, we could not find, inthe field, a behavioural phenotype (among those studied, i.e. exophagy, early- and late-biting)associated with a genotype for one of the target-site mutations. The only study, to our knowl-edge, having investigated the relationship between the kdr mutation and biting time or locationin the field has also reported no statistically significant association between these two mecha-nisms of resistance to insecticide (Djènontin et al., 2021). Noteworthy, in our study, there wasfew variabilities in the genotypes of the collected mosquitoes (i.e. few homozygote susceptiblemosquitoes captured, particularly for the kdr-w mutation), making it unfavorable to detect asso-cations between physiological and behavioural resistances. In the Korhogo area, such analysiscould not be performed because physiological resistance data was not available at the individualmosquito level.
Finally, we observed that the behavioural resistance phenotypes rates for each vector speciesin each health district were, overall, relatively homogeneous across the villages and seasonswithin the spatiotemporal frame of the study (as for physiological resistances). This could meanthat the overall dynamics of behavioural resistance occur at broader spatial and temporal scalesthan those of our study. At larger scales (i.e. among countries and across years in Africa), ex-ophagy rates of Anophelesmosquitoes seem, actually, to be more variable (Sherrard-Smith et al.,2019).

3.3. Implications of the findings for the management of vector resistance in the study areas
Long-lasting insecticidal nets have undoubtedly played a major role in reducing malaria casesthroughout Africa, thanks both to their barrier and killing effects. More locally, we highlightedthe efficacy of their barrier role in the Diébougou area by showing that, for their users, they pre-vented more than 80% of Anopheles bite exposure in the area (Soma et al., 2021). However, de-spite these successes, many studies strongly suggest that the insecticides they are impregnatedwith are responsible for the rise of physiological resistances in the malaria vectors susceptiblepopulations (Labbé et al., 2017; Riveron et al., 2018) (see Introduction). In our study, the positiveand significant associations found between the probability to collect a physiologically resistantmosquito and LLIN-related variables (time since LLIN distribution, LLIN use rate) supports thesefindings. We also highlighted that in response to an LLIN distribution, physiological resistanceseems to grow quite rapidly in a susceptible population. Besides the selection of physiologicalresistance, comparison with historical data suggests that the vectors may also be progressivelychanging their feeding behaviour to avoid the effects of the insecticides - although there wasno clear evidence of this in the strict context of this study. Such trends in vector resistance mayhave an important epidemiological impact (Sherrard-Smith et al., 2019). Altogether, these resultsshow, if still necessary, that we urgently need to think more strategically about our use of insec-ticides in public health tools in our areas. Switching to alternative insecticides, rotating or mixinginsecticides, using current or novel insecticides in vector control tools others than long-lastingnets, entirely removing the insecticides from the vector control toolbox, or fostering the useof insecticidal-free tools, are all actions that could be envisaged (Paaijmans and Huijben, 2020).Burkina Faso has, actually, distributed LLINs thatmixes pyrethroidwith Piperonyl butoxide (PBO)in the last universal LLIN distribution, in 2019.
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Here, we observed that both behavioural and physiological resistances of mosquitoes werequite stable across the villages and seasons within the spatiotemporal frame of the study. Thiscontrasts with their biting rates, which was found, in another study (Taconet et al., 2021), highlyvariable across the villages, seasons, and amongst the species. This calls for distinct spatio-temporal management of interventions targeted at reducing human-vector contact and reducingresistance selection (both essential) in the field. While the former should be highly locally tai-lored (i.e. specific to each village and season) (Taconet et al., 2021), the latter, due to its stabilityacross villages and seasons, would probably not benefit significantly from being customized atthese spatio-temporal scales in our areas. In other words, while resistancemanagement plans areundoubtedly urgently needed, there is no compelling evidence – in the current state of the knowl-edge - that they should be tailored at very fine scales (village, season). Noteworthy, mosquitoeswere collected during the dry season and at the beginning and end of the rainy season, but, forlogistical reasons, not at the peak of the rainy season (and therefore not at the likely peak ofmosquito abundance). It would be worth collecting mosquitoes at this season to confirm theobserved resistance rates.
Conclusions

In an attempt to better understand the drivers of the intensity and spatio-temporal hetero-geneity of physiological (genotypes) and behavioural (phenotypes) resistance in malaria vectors,at the scale of a rural health district over a period of 1.5 years, we have mainly (i) shown thatresistance (both physiological and behavioural) was quite homogeneous across the villages andseasons at theses scales, and (ii) hypothesized that at these spatiotemporal scales, vector resis-tance seemed to be only marginally driven by environmental factors other than those linkedto insecticide use in current vector control. Following the distribution of LLINs, the rapid wide-spread of physiological resistance occurring in tandem with probable lower acting behaviouraladaptations, are very likely contributing to the erosion of insecticide efficacy on malaria vectors.We believe thatwithoutwaiting to understand precisely the underlying drivers, mechanisms, andrates of selection of resistances, the malaria control community needs to think very strategicallyabout the use and usefulness of current and novel insecticide-based control interventions.
Acknowledgements

We thank populations of the villages for their kind support and collaboration. We also thankall the field and laboratory staff for their strong commitment to the REACT project. The authorsalso wish to thank the two reviewers who provided a critical review of an earlier version of thispaper. Preprint version 4 of this article has been peer-reviewed and recommended by Peer Com-munity In Infections (https://doi.org/10.24072/pci.infections.100157; De Meeûs, 2024).
Fundings

This work was part of the REACT project funded by the French Initiative 5%—ExpertiseFrance (no. 15SANIN213), and the ANORHYTHM project funded by the French National Re-search Agency (no. ANR-16-CE35-008). The funders had no role in study design, data collectionand analysis, decision to publish, or preparation of the manuscript. Paul Taconet was supportedby the French Institute of Research for Sustainable Development (IRD) through an internationalvolunteer fellowship.
Conflict of interest disclosure

The authors declare that they comply with the PCI rule of having no financial conflicts ofinterest in relation to the content of the article. Nicolas Moiroux, Frédéric Simard and CédricPennetier are recommenders for PCI Zoology.

Paul Taconet et al. 27

Peer Community Journal, Vol. 4 (2024), article e11 https://doi.org/10.24072/pcjournal.367

https://doi.org/10.24072/pci.infections.100157
https://doi.org/10.24072/pcjournal.367


Ethics approval and consent to participate
Ethical clearance for the studywas granted by theNational ethics committee (No. 063/MSHP/CNER-kp) in Côte d’Ivoire and by the Institutional Ethics Committee of the Institut de Rechercheen Sciences de la Santé (No. A06/2016/CEIRES) in Bukina Faso. We received community agree-ment before the beginning of the study, and we obtained written informed consent from all themosquito collectors and supervisors. Yellow fever vaccines were administered to all the fieldstaff. Collectors were treated free of charge when they were diagnosed with malaria during thestudy period according to WHO recommendations. They were also free to withdraw from thestudy at any time without any consequences.

Data, script, code, and supplementary information availability
Data and scripts are available online: https://doi.org/10.23708/LV8GEW (Taconet et al.,2023d); Supplementary information is available online: https://doi.org/10.23708/VJEEMU(Taconet et al., 2023e).

References
Alout H, Dabiré RK, Djogbénou LS, Abate L, Corbel V, Chandre F, Cohuet A (2016). Interactivecost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae.Scientific Reports 6. https://doi.org/10.1038/srep29755.Assogba BS, Djogbénou LS, Saizonou J, Milesi P, Djossou L, Djegbe I, Oumbouke WA, ChandreF, Baba-Moussa L, Weill M, Makoutodé M (2014). Phenotypic effects of concomitant insensi-tive acetylcholinesterase (ace-1 R ) and knockdown resistance (kdr R ) in Anopheles gambiae: ahindrance for insecticide resistance management for malaria vector control. Parasites & Vectors 7.

https://doi.org/10.1186/s13071-014-0548-9.AssouhoKF, Adja AM,Guindo-CoulibalyN, Tia E, Kouadio AMN, ZohDD, KonéM, KesséN, KoffiB, Sagna AB, Poinsignon A, Yapi A (2020). Vectorial Transmission of Malaria in Major Districtsof Côte d’Ivoire. Journal of Medical Entomology 57. Ed. by Douglas Norris, 908–914. https:
//doi.org/10.1093/jme/tjz207.Auguie B (2017). gridExtra: Miscellaneous Functions for "Grid" Graphics. URL: https://CRAN.R-
project.org/package=gridExtra.Bartoń K (2020).MuMIn: Multi-Model Inference. R package version 1.43.17. URL: https://CRAN.
R-project.org/package=MuMIn.Berticat C, Bonnet J, Duchon S, Agnew P, Weill M, Corbel V (2008). Costs and benefits of multi-ple resistance to insecticides for Culex quinquefasciatus mosquitoes. BMC Evolutionary Biology 8,104. https://doi.org/10.1186/1471-2148-8-104.Bhatt S,Weiss DJ, Cameron E, Bisanzio D,Mappin B, Dalrymple U, Battle KE,Moyes CL, Henry A,Eckhoff PA, Wenger EA, Briët O, Penny MA, Smith TA, Bennett A, Yukich J, Eisele TP, GriffinJT, Fergus CA, Lynch M, et al. (2015). The effect of malaria control on Plasmodium falciparumin Africa between 2000 and 2015. Nature 526, 207–211. https : / / doi . org / 10 . 1038 /
nature15535.Bolker B, Robinson D (2020). broom.mixed: Tidying Methods for Mixed Models. R package version0.2.6. URL: https://CRAN.R-project.org/package=broom.mixed.Breiman L (2001a). Random forests. Machine Learning 45, 5–32. https://doi.org/10.1023/a:
1010933404324.Breiman L (2001b). Statistical Modeling: The Two Cultures (with comments and a rejoinder by theauthor). Statistical Science 16. https://doi.org/10.1214/ss/1009213726.BrooksME, Kristensen K, BenthemKJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, MächlerM,Bolker BM (2017). glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflatedGeneralized Linear Mixed Modeling. The R Journal 9, 378–400. https://doi.org/10.32614/
RJ-2017-066.

28 Paul Taconet et al.

Peer Community Journal, Vol. 4 (2024), article e11 https://doi.org/10.24072/pcjournal.367

https://doi.org/10.23708/LV8GEW
https://doi.org/10.23708/VJEEMU
https://doi.org/10.1038/srep29755
https://doi.org/10.1186/s13071-014-0548-9
https://doi.org/10.1093/jme/tjz207
https://doi.org/10.1093/jme/tjz207
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=MuMIn
https://CRAN.R-project.org/package=MuMIn
https://doi.org/10.1186/1471-2148-8-104
https://doi.org/10.1038/nature15535
https://doi.org/10.1038/nature15535
https://CRAN.R-project.org/package=broom.mixed
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.24072/pcjournal.367


Carnevale P, Robert V, Manguin S, Corbel V, Fontenille D, Garros C, Rogier C, Roux J (2009).Les anophèles : biologie, transmission du Plasmodium et lutte antivectorielle. Didactiques. IRD.
https://doi.org/10.4000/books.irdeditions.10382.Carrasco D, Lefèvre T, Moiroux N, Pennetier C, Chandre F, Cohuet A (2019). Behavioural adap-tations of mosquito vectors to insecticide control. Current Opinion in Insect Science 34, 48–54.
https://doi.org/10.1016/j.cois.2019.03.005.Chandre F, Darriet F, Manguin S, Brengues C, Carnevale P, Guillet P (1999). Pyrethroid crossresistance spectrum among populations of Anopheles gambiae s.s. from Côte d’Ivoire. Journal ofthe American Mosquito Control Association 15, 53–59. URL: https://www.documentation.
ird.fr/hor/fdi:010018255.Chicco D (2017). Ten quick tips for machine learning in computational biology. BioData Mining 10.
https://doi.org/10.1186/s13040-017-0155-3.Coffinet T, Rogier C, Pages F (2009). [Evaluation of the anopheline mosquito aggressivity and ofmalaria transmission risk: methods used in French Army]. Medecine tropicale : revue du Corps desante colonial 69, 109–122.Cohen J (2013). Statistical Power Analysis for the Behavioral Sciences. 0th ed. Routledge. https:
//doi.org/10.4324/9780203771587.Corbel V, N’Guessan R (2013). Distribution, Mechanisms, Impact and Management of InsecticideResistance in Malaria Vectors: A Pragmatic Review. Anopheles mosquitoes - New insights intomalaria vectors. https://doi.org/10.5772/56117.DavidsonG (1957). Insecticide Resistance in Anopheles Sundaicus.Nature 180, 1333–1335. https:
//doi.org/10.1038/1801333a0.De Meeûs T (2024). Large and complete datasets, and modelling reveal the major determinants ofphysiological and behavioral insecticide resistance of malaria vectors. Peer Community In Infec-tions, 100157. https://doi.org/10.24072/pci.infections.100157.Diop MM, Chandre F, Rossignol M, Porciani A, Chateau M, Moiroux N, Pennetier C (2021). Sub-lethal insecticide exposure affects host biting efficiency of Kdr-resistant Anopheles gambiae. PeerCommunity Journal 1, e28. https://doi.org/10.24072/pcjournal.15.Diop MM, Moiroux N, Chandre F, Martin-Herrou H, Milesi P, Boussari O, Porciani A, DuchonS, Labbé P, Pennetier C (2015). Behavioral Cost & Overdominance in Anopheles gambiae. PLOSONE 10. Ed. by Claudio R. Lazzari, e0121755. https://doi.org/10.1371/journal.pone.
0121755.Djènontin A, Alfa D, Bouraima A, Soares C, Dahounto A, Cornélie S, Egrot M, Damien G, RemouéF, Sagna AB, Moiroux N, Pennetier C (2023). Durability of the deltamethrin-treated polypropy-lene long-lasting net LifeNet® in a pyrethroid resistance area in south western Benin: A phase IIItrial. PLOS ONE 18. Ed. by Khin Thet Wai, e0291755. https://doi.org/10.1371/journal.
pone.0291755.Djènontin A, Bouraima A, Soares C, Egbinola S, Cottrell G (2021).Human biting rhythm of Anophe-les gambiaeGiles, 1902 (Diptera: Culicidae) and sleeping behaviour of pregnantwomen in a lagoonarea in Southern Benin. BMC Research Notes 14, 200. https://doi.org/10.1186/s13104-
021-05615-7.Durnez L, CoosemansM (2013). Residual Transmission ofMalaria: AnOld Issue for NewApproaches.In: Anopheles mosquitoes - New insights into malaria vectors. Ed. by Sylvie Manguin. InTech.
https://doi.org/10.5772/55925.Foster SP, Young S, Williamson MS, Duce I, Denholm I, Devine GJ (2003). Analogous pleiotropiceffects of insecticide resistance genotypes in peach–potato aphids and houseflies. Heredity 91,98–106. https://doi.org/10.1038/sj.hdy.6800285.Friedman JH, Popescu BE (2008). Predictive learning via rule ensembles. The Annals of AppliedStatistics 2, 916–954. https://doi.org/10.1214/07-AOAS148.Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HCJ, Gould F, HastingsI, Marshall J, Ranson H, Rowland M, Shaman J, Lindsay SW (2013). THE IMPORTANCE OFMOSQUITO BEHAVIOURAL ADAPTATIONS TO MALARIA CONTROL IN AFRICA. Evolution 67,1218–1230. https://doi.org/10.1111/evo.12063.

Paul Taconet et al. 29

Peer Community Journal, Vol. 4 (2024), article e11 https://doi.org/10.24072/pcjournal.367

https://doi.org/10.4000/books.irdeditions.10382
https://doi.org/10.1016/j.cois.2019.03.005
https://www.documentation.ird.fr/hor/fdi:010018255
https://www.documentation.ird.fr/hor/fdi:010018255
https://doi.org/10.1186/s13040-017-0155-3
https://doi.org/10.4324/9780203771587
https://doi.org/10.4324/9780203771587
https://doi.org/10.5772/56117
https://doi.org/10.1038/1801333a0
https://doi.org/10.1038/1801333a0
https://doi.org/10.24072/pci.infections.100157
https://doi.org/10.24072/pcjournal.15
https://doi.org/10.1371/journal.pone.0121755
https://doi.org/10.1371/journal.pone.0121755
https://doi.org/10.1371/journal.pone.0291755
https://doi.org/10.1371/journal.pone.0291755
https://doi.org/10.1186/s13104-021-05615-7
https://doi.org/10.1186/s13104-021-05615-7
https://doi.org/10.5772/55925
https://doi.org/10.1038/sj.hdy.6800285
https://doi.org/10.1214/07-AOAS148
https://doi.org/10.1111/evo.12063
https://doi.org/10.24072/pcjournal.367


Govella NJ, Johnson PCD, Killeen GF, Ferguson HM (2023). Heritability of biting time behavioursin the major African malaria vector Anopheles arabiensis. Tech. rep. 1. https://doi.org/10.
1186/s12936-023-04671-7.Greenwell BM (2017). pdp: An R Package for Constructing Partial Dependence Plots. The R Journal9, 421–436. https://doi.org/10.32614/RJ-2017-016.Hay GJ, Castilla G (2008).GeographicObject-Based Image Analysis (GEOBIA): A new name for a newdiscipline. In:Object-Based Image Analysis. Ed. by Thomas Blaschke, Stefan Lang, and GeoffreyJ. Hay. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 75–89. https://doi.org/10.
1007/978-3-540-77058-9_4.Hemingway J, RansonH,Magill A, Kolaczinski J, Fornadel C, Gimnig J, CoetzeeM, Simard F, RochDK, Hinzoumbe CK, Pickett J, Schellenberg D, Gething P, Hoppé M, Hamon N (2016). Avert-ing a malaria disaster: will insecticide resistance derail malaria control? The Lancet 387, 1785–1788. https://doi.org/10.1016/S0140-6736(15)00417-1.Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C,Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, BiavatiG, Bidlot J, Bonavita M, Chiara G, et al. (2020). The ERA5 global reanalysis. Quarterly Journalof the Royal Meteorological Society 146, 1999–2049. https://doi.org/10.1002/qj.3803.Hien AS, Soma DD, Hema O, Bayili B, Namountougou M, Gnankiné O, Baldet T, Diabaté A,Dabiré KR (2017). Evidence that agricultural use of pesticides selects pyrethroid resistance withinAnopheles gambiae s.l. populations from cotton growing areas in Burkina Faso, West Africa. PLOSONE 12. Ed. by Luzia Helena Carvalho, e0173098. https://doi.org/10.1371/journal.
pone.0173098.Holstein M (1952). Biologie d’Anopheles gambiae : recherches en Afrique-Occidentale Française.Monographies - OMS 9. Genève: OMS. URL: https://horizon.documentation.ird.fr/
exl-doc/pleins_textes/2021-05/42581.pdf.Huffman G, Stocker E, Bolvin D, Nelkin E, Tan J (2019a). GPM IMERG Final Precipitation L3 1 day0.1 degree x 0.1 degree V06. NASAGoddard Earth Sciences Data and Information Services Center.
https://doi.org/10.5067/GPM/IMERGDF/DAY/06.Huffman G, Stocker E, Bolvin D, Nelkin E, Tan J (2019b). GPM IMERG Final Precipitation L3 HalfHourly 0.1 degree x 0.1 degree V06. NASAGoddard Earth Sciences Data and Information ServicesCenter. https://doi.org/10.5067/GPM/IMERG/3B-HH/06.Karpatne A, Atluri G, Faghmous JH, Steinbach M, Banerjee A, Ganguly A, Shekhar S, SamatovaN, Kumar V (2017). Theory-Guided Data Science: A New Paradigm for Scientific Discovery fromData. IEEE Transactions on Knowledge and Data Engineering 29, 2318–2331. https://doi.
org/10.1109/TKDE.2017.2720168.Kayedi MH, Khamisabadi K, Haghdoost AA, Kayedi Z, Fallahi S, Abdali N (2017). Short and longterm evaluation of the efficiency of permanet® 2.0 bed net against environmental factors andwashing using bioassay tests. Revista Do Instituto De Medicina Tropical De São Paulo 59 (0).
https://doi.org/10.1590/s1678-9946201759018.Kessler S, Guerin PM (2008). Responses of Anopheles gambiae, Anopheles stephensi, Aedes aegypti,and Culex pipiens mosquitoes (Diptera: Culicidae) to cool and humid refugium conditions. Journalof Vector Ecology 33, 145–149. https://doi.org/10.3376/1081- 1710(2008)33[145:
ROAGAS]2.0.CO;2.Kilian A, ByamukamaW, PigeonO, Atieli F, Duchon S, Phan C (2008). Long-term field performanceof a polyester-based long-lasting insecticidal mosquito net in rural uganda. Malaria Journal 7 (1).
https://doi.org/10.1186/1475-2875-7-49.Killeen GF (2014). Characterizing, controlling and eliminating residual malaria transmission.MalariaJournal 13, 330. https://doi.org/10.1186/1475-2875-13-330.KirbyM, Lindsay S (2004).Responses of adultmosquitoes of two sibling species, Anopheles arabiensisand A. gambiae s.s. (Diptera: Culicidae), to high temperatures. Bulletin of Entomological Research94, 441–448. https://doi.org/10.1079/BER2004316.Kliot A, Ghanim M (2012). Fitness costs associated with insecticide resistance: Fitness cost and in-secticide resistance. Pest Management Science 68, 1431–1437. https://doi.org/10.1002/
ps.3395.

30 Paul Taconet et al.

Peer Community Journal, Vol. 4 (2024), article e11 https://doi.org/10.24072/pcjournal.367

https://doi.org/10.1186/s12936-023-04671-7
https://doi.org/10.1186/s12936-023-04671-7
https://doi.org/10.32614/RJ-2017-016
https://doi.org/10.1007/978-3-540-77058-9_4
https://doi.org/10.1007/978-3-540-77058-9_4
https://doi.org/10.1016/S0140-6736%2815%2900417-1
https://doi.org/10.1002/qj.3803
https://doi.org/10.1371/journal.pone.0173098
https://doi.org/10.1371/journal.pone.0173098
https://horizon.documentation.ird.fr/exl-doc/pleins_textes/2021-05/42581.pdf
https://horizon.documentation.ird.fr/exl-doc/pleins_textes/2021-05/42581.pdf
https://doi.org/10.5067/GPM/IMERGDF/DAY/06
https://doi.org/10.5067/GPM/IMERG/3B-HH/06
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1590/s1678-9946201759018
https://doi.org/10.3376/1081-1710%282008%2933[145:ROAGAS]2.0.CO;2
https://doi.org/10.3376/1081-1710%282008%2933[145:ROAGAS]2.0.CO;2
https://doi.org/10.1186/1475-2875-7-49
https://doi.org/10.1186/1475-2875-13-330
https://doi.org/10.1079/BER2004316
https://doi.org/10.1002/ps.3395
https://doi.org/10.1002/ps.3395
https://doi.org/10.24072/pcjournal.367


Kreppel KS, Viana M, Main BJ, Johnson PCD, Govella NJ, Lee Y, Maliti D, Meza FC, Lanzaro GC,Ferguson HM (2020). Emergence of behavioural avoidance strategies of malaria vectors in areasof high LLIN coverage in Tanzania. Scientific Reports 10. https://doi.org/10.1038/s41598-
020-71187-4.Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, KenkelB, Benesty M, Lescarbeau R, Ziem A, Scrucca L, Tang Y, Candan C, HuntTyler (2018). caret:Classification and Regression Training. R package version 6.0-81. URL: https : / / CRAN . R -
project.org/package=caret.Labbé P, David JP, Alout H, Milesi P, Djogbénou L, Pasteur N, Weill M (2017). Evolution of Resis-tance to Insecticide in Disease Vectors. In: Genetics and Evolution of Infectious Diseases. Elsevier,pp. 313–339. https://doi.org/10.1016/B978-0-12-799942-5.00014-7.Lockwood JA, Sparks TC, Story RN (1984). Evolution of Insect Resistance to Insecticides: A Reeval-uation of the Roles of Physiology and Behavior. Bulletin of the Entomological Society of America30, 41–51. https://doi.org/10.1093/besa/30.4.41.Long JA (2020). jtools: Analysis and Presentation of Social Scientific Data. R package version 2.1.0.URL: https://cran.r-project.org/package=jtools.Main BJ, Lee Y, Ferguson HM, Kreppel KS, Kihonda A, Govella NJ, Collier TC, Cornel AJ, Eskin E,Kang EY, Nieman CC, Weakley AM, Lanzaro GC (2016). The Genetic Basis of Host Preferenceand Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis. PLOS Genetics12. Ed. by Laurence J. Zwiebel, e1006303. https://doi.org/10.1371/journal.pgen.
1006303.Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P,Pasteur N, PauronD (1998).Molecular characterization of pyrethroid knockdown resistance (kdr)in the major malaria vector Anopheles gambiae s.s. Insect Molecular Biology 7, 179–184. https:
//doi.org/10.1046/j.1365-2583.1998.72062.x.MedjigbodoAA, Sonounameto EG, DjihintoOY, Abbey E, Salavi EB, Djossou L, Badolo A, Djogbé-nou LS (2021a). Interplay BetweenOxytetracycline and the Homozygote kdr (L1014F) ResistanceGenotype on Fecundity in Anopheles gambiae (Diptera: Culicidae) Mosquitoes. Journal of InsectScience 21. Ed. by Russell Jurenka. https://doi.org/10.1093/jisesa/ieab056.Medjigbodo AA, Djogbénou LS, Djihinto OY, Akoton RB, Abbey E, Kakossou RM, SonounametoEG, Salavi EBJ, Djossou L, Badolo A (2021b). Putative pleiotropic effects of the knockdown resis-tance (L1014F) allele on the life-history traits of Anopheles gambiae. Malaria Journal 20. https:
//doi.org/10.1186/s12936-021-04005-5.MERSI, CNRST, IRSS (2016). Utilisation des pesticides agricoles dans trois régions à l’ouest du Burk-ina Faso et évaluation de leur impact sur la santé et l’environnement: cas des Régions de la Boucledu Mouhoun, des Cascades et des Hauts-Bassins. URL: http://www.pic.int/Portals/5/
download.aspx?d=UNEP-FAO-RC-Workshop-BurkinaFaso-Report-201212.Fr.pdf.Moiroux N (2012). Modélisation du risque d’exposition aux moustiques vecteurs de Plasmodiumspp. dans un contexte de lutte anti-vectorielle. PhD thesis. Ecologie, Environnement, UniversitéMontpellier II - Sciences et Techniques du Languedoc. URL: https://theses.hal.science/
tel-00812118.Moiroux N, Bio-Bangana AS, Djènontin A, Chandre F, Corbel V, Guis H (2013).Modelling the riskof being bitten by malaria vectors in a vector control area in southern Benin, west Africa. Parasites& Vectors 6, 71. https://doi.org/10.1186/1756-3305-6-71.Moiroux N, Djènontin A, Bio-Bangana AS, Chandre F, Corbel V, Guis H (2014). Spatio-temporalanalysis of abundances of three malaria vector species in southern Benin using zero-truncatedmodels. Parasites & Vectors 7, 103. https://doi.org/10.1186/1756-3305-7-103.Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, Djègbé I, Guis H, CorbelV (2012). Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. The Journal of infectious diseases 206, 1622–1629. https:
//doi.org/10.1093/infdis/jis565.Moiroux N, Pennetier C, Dabiré RK, Koffi A (2023). REACT project (Burkina Faso and Côte d’Ivoire,2016-2018): study sites information. https://doi.org/10.23708/IX5Z7U.

Paul Taconet et al. 31

Peer Community Journal, Vol. 4 (2024), article e11 https://doi.org/10.24072/pcjournal.367

https://doi.org/10.1038/s41598-020-71187-4
https://doi.org/10.1038/s41598-020-71187-4
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://doi.org/10.1016/B978-0-12-799942-5.00014-7
https://doi.org/10.1093/besa/30.4.41
https://cran.r-project.org/package=jtools
https://doi.org/10.1371/journal.pgen.1006303
https://doi.org/10.1371/journal.pgen.1006303
https://doi.org/10.1046/j.1365-2583.1998.72062.x
https://doi.org/10.1046/j.1365-2583.1998.72062.x
https://doi.org/10.1093/jisesa/ieab056
https://doi.org/10.1186/s12936-021-04005-5
https://doi.org/10.1186/s12936-021-04005-5
http://www.pic.int/Portals/5/download.aspx?d=UNEP-FAO-RC-Workshop-BurkinaFaso-Report-201212.Fr.pdf
http://www.pic.int/Portals/5/download.aspx?d=UNEP-FAO-RC-Workshop-BurkinaFaso-Report-201212.Fr.pdf
https://theses.hal.science/tel-00812118
https://theses.hal.science/tel-00812118
https://doi.org/10.1186/1756-3305-6-71
https://doi.org/10.1186/1756-3305-7-103
https://doi.org/10.1093/infdis/jis565
https://doi.org/10.1093/infdis/jis565
https://doi.org/10.23708/IX5Z7U
https://doi.org/10.24072/pcjournal.367


Moyes CL, Athinya DK, Seethaler T, Battle KE, Sinka M, Hadi MP, Hemingway J, Coleman M,Hancock PA (2020). Evaluating insecticide resistance across African districts to aid malaria con-trol decisions. Proceedings of the National Academy of Sciences 117, 22042–22050. https :
//doi.org/10.1073/pnas.2006781117.Müller T, Küll CL, Müller C (2016). Effects of larval versus adult density conditions on reproductionand behavior of a leaf beetle. Behavioral Ecology and Sociobiology 70, 2081–2091. https://
doi.org/10.1007/s00265-016-2212-1.Nakagawa S, Schielzeth H (2013). A general and simple method for obtaining R 2 from generalizedlinear mixed-effects models.Methods in Ecology and Evolution 4. Ed. by Robert B. O’Hara, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x.Ngowo H, Kaindoa E, Matthiopoulos J, Ferguson H, Okumu F (2017). Variations in household mi-croclimate affect outdoor-biting behaviour of malaria vectors. Wellcome Open Research 2, 102–102. https://doi.org/10.12688/wellcomeopenres.12928.1.Njan Nloga A, Robert V, Toto J, Carnevale P (1993). La durée du cycle gonotrophique d’Anophelesmoucheti varie de trois à quatre jours en fonction de la proximité par rapport aux gites de ponte.Bulletin de Liaison et de Documentation - OCEAC 26, 69–72.Ouédraogo M, Toé AM, Ouédraogo TZ, Guissou PI (2011). Pesticides in Burkina Faso: Overview ofthe Situation in a Sahelian African Country. In: Pesticides in the Modern World. Ed. by MargaritaStoytcheva. IntechOpen, pp. 35–48. https://doi.org/10.5772/16507.Paaijmans KP, Huijben S (2020). Taking the ‘I’ out of LLINs: using insecticides in vector control toolsother than long-lasting nets to fight malaria. Malaria Journal 19. https://doi.org/10.1186/
s12936-020-3151-x.Pedersen TL (2019). patchwork: The Composer of Plots. URL: https://CRAN.R-project.org/
package=patchwork.PNLP (2014a). Directives nationales pour la prise en charge du paludisme dans les formations sani-taires du Burkina Faso. Ministère de la Santé/Burkina Faso.PNLP (2014b). ProgrammeNational de LutteContre le Paludisme enCôte d’Ivoire. 2014. Plan stratégi-que national de lutte contre le paludisme 2012–2015 (période replanifiée 2014–2017). Approchestratifiée de mise à l’échelle des interventions de lutte contre le paludisme en Côte d’Ivoire et con-solidation des acquis. Abidjan: Ministère de La Santé et l’Hygiène Publique. 149 p.Porciani A, Diop M, Moiroux N, Kadoke-Lambi T, Cohuet A, Chandre F, Dormont L, Pennetier C(2017). Influence of pyrethroïd-treated bed net on host seeking behavior of Anopheles gambiaes.s. carrying the kdr allele. PLOS ONE 12. Ed. by Guido Favia, e0164518. https://doi.org/
10.1371/journal.pone.0164518.QGIS Development Team (2021). QGIS Geographic Information System. QGIS Association. URL:
https://www.qgis.org.R Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: RFoundation for Statistical Computing. URL: https://www.R-project.org/.Ranson H, Jensen B, Vulule JM,Wang X, Hemingway J, Collins FH (2000). Identification of a pointmutation in the voltage-gated sodium channel gene of KenyanAnopheles gambiae associatedwithresistance to DDT and pyrethroids. Insect Molecular Biology 9, 491–497. https://doi.org/
10.1046/j.1365-2583.2000.00209.x.Reid MC, McKenzie FE (2016). The contribution of agricultural insecticide use to increasing insec-ticide resistance in African malaria vectors. Malaria Journal 15. https://doi.org/10.1186/
s12936-016-1162-4.Riveron JM, Tchouakui M, Mugenzi L, Menze BD, Chiang MC, Wondji CS (2018). Insecticide Re-sistance in Malaria Vectors: An Update at a Global Scale. In: Towards Malaria Elimination - ALeap Forward. Ed. by Sylvie Manguin and Vas Dev. InTech. https://doi.org/10.5772/
intechopen.78375.RStudio Team (2020). RStudio: Integrated Development Environment for R. Boston, MA: RStudio,PBC. URL: http://www.rstudio.com/.Sanou A, Nelli L, Guelbéogo WM, Cissé F, Tapsoba M, Ouédraogo P, Sagnon N, Ranson H,Matthiopoulos J, Ferguson HM (2021). Insecticide resistance and behavioural adaptation asa response to long-lasting insecticidal net deployment in malaria vectors in the Cascades region of

32 Paul Taconet et al.

Peer Community Journal, Vol. 4 (2024), article e11 https://doi.org/10.24072/pcjournal.367

https://doi.org/10.1073/pnas.2006781117
https://doi.org/10.1073/pnas.2006781117
https://doi.org/10.1007/s00265-016-2212-1
https://doi.org/10.1007/s00265-016-2212-1
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.12688/wellcomeopenres.12928.1
https://doi.org/10.5772/16507
https://doi.org/10.1186/s12936-020-3151-x
https://doi.org/10.1186/s12936-020-3151-x
https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=patchwork
https://doi.org/10.1371/journal.pone.0164518
https://doi.org/10.1371/journal.pone.0164518
https://www.qgis.org
https://www.R-project.org/
https://doi.org/10.1046/j.1365-2583.2000.00209.x
https://doi.org/10.1046/j.1365-2583.2000.00209.x
https://doi.org/10.1186/s12936-016-1162-4
https://doi.org/10.1186/s12936-016-1162-4
https://doi.org/10.5772/intechopen.78375
https://doi.org/10.5772/intechopen.78375
http://www.rstudio.com/
https://doi.org/10.24072/pcjournal.367


Burkina Faso. Scientific Reports 11, 17569. https://doi.org/10.1038/s41598-021-96759-
w.Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, Mihreteab S, CharlwoodJD, Bhatt S, Winskill P, Griffin JT, Churcher TS (2019). Mosquito feeding behavior and how itinfluences residual malaria transmission across Africa. Proceedings of the National Academy ofSciences 116, 15086–15095. https://doi.org/10.1073/pnas.1820646116.Shmueli G (2010). To Explain or to Predict? Statistical Science 25, 289–310. https://doi.org/
10.1214/10-STS330.Shmueli G, Koppius O (2010). Predictive Analytics in Information Systems Research. SSRN ElectronicJournal. https://doi.org/10.2139/ssrn.1606674.Snow RW, Gilles HM (2002). The epidemiology of malaria. In Essential Malariology, 4Ed. CRC Press4, 85–106.Sokhna C, NdiathMO, Rogier C (2013). The changes inmosquito vector behaviour and the emergingresistance to insecticides will challenge the decline of malaria. Clinical Microbiology and Infection19, 902–907. https://doi.org/10.1111/1469-0691.12314.Soma D, Zogo B, Taconet P, Mouline K, Alou LPA, Dabiré RK, Koffi AA, Pennetier C, MoirouxN (2023). Anopheles collections in the health districts of Korhogo (Côte d’Ivoire) and Diébougou(Burkina Faso) (2016-2018). Type: dataset. https://doi.org/10.15468/V8FVYN.Soma, Zogo B, Taconet P, Somé A, Coulibaly S, Baba-Moussa L, Ouédraogo GA, Koffi A, Pen-netier C, Dabiré KR, Moiroux N (2021). Quantifying and characterizing hourly human exposureto malaria vectors bites to address residual malaria transmission during dry and rainy seasons inrural Southwest Burkina Faso. BMC Public Health 21. https://doi.org/10.1186/s12889-
021-10304-y.Soma, Zogo B, Somé A, Tchiekoi BN, Hien DFdS, Pooda HS, Coulibaly S, Gnambani JE, Ouari A,Mouline K, Dahounto A, Ouédraogo GA, Fournet F, KoffiAA, Pennetier C, Moiroux N, DabiréRK (2020). Anopheles bionomics, insecticide resistance and malaria transmission in southwestBurkina Faso: A pre-intervention study. PLOS ONE 15, e0236920. https : / / doi . org / 10 .
1371/journal.pone.0236920.Taconet P, Dabiré RK, Moiroux N (2023a). Land use land cover very high resolution map (1.5-m) forthe area of Diébougou, Burkina Faso, 2018. Datasuds. https://doi.org/10.23708/ARSJNB.Taconet P, Koffi Amanan A, Moiroux N (2023b). Land use land cover very high resolution map (1.5-m) for the area of Korhogo, Côte d’Ivoire, 2018. DataSuds. https : / / doi . org / 10 . 23708 /
MTF4S8.Taconet P, Porciani A, SomaDD,Mouline K, Simard F, KoffiAA, Pennetier C, Dabiré RK,MangeasM, Moiroux N (2021). Data-driven and interpretable machine-learning modeling to explore thefine-scale environmental determinants of malaria vectors biting rates in rural Burkina Faso. Para-sites & Vectors 14. https://doi.org/10.1186/s13071-021-04851-x.Taconet P, Soma DD, Zogo B, Mouline K, Simard F, Koffi AA, Dabiré RK, Pennetier C, MoirouxN (2023c). Anopheles sampling collections in the health districts of Korhogo (Côte d’Ivoire) andDiébougou (Burkina Faso) between 2016 and 2018. Gigabyte. https://doi.org/10.46471/
gigabyte.83.Taconet P, Soma DD, Zogo B, Mouline K, Simard F, Koffi Amanan A, Dabiré RK, Pennetier C,Moiroux N (2023d). Data and code for: Physiological and behavioural resistance of malaria vec-tors in ruralWest-Africa: a datamining study to adress their fine-scale spatiotemporal heterogene-ity, drivers, and predictability. DataSuds, V5. https://doi.org/10.23708/LV8GEW.Taconet P, Soma DD, Zogo B, Mouline K, Simard F, Koffi Amanan A, Dabiré RK, Pennetier C,Moiroux N (2023e). Supplementary information for: Physiological and behavioural resistance ofmalaria vectors in rural West-Africa: a data mining study to adress their fine-scale spatiotemporalheterogeneity, drivers, and predictability. DataSuds, V2. https://doi.org/10.23708/VJEEMU.Tan KR, Coleman J, Smith B, Hamainza B, Katebe-Sakala C, Kean C, Kowal A, Vanden Eng J,Parris TK, Mapp CT, Smith SC, Wirtz R, Kamuliwo M, Craig AS (2016). A longitudinal study ofthe durability of long-lasting insecticidal nets in Zambia.Malaria Journal 15. https://doi.org/
10.1186/s12936-016-1154-4.

Paul Taconet et al. 33

Peer Community Journal, Vol. 4 (2024), article e11 https://doi.org/10.24072/pcjournal.367

https://doi.org/10.1038/s41598-021-96759-w
https://doi.org/10.1038/s41598-021-96759-w
https://doi.org/10.1073/pnas.1820646116
https://doi.org/10.1214/10-STS330
https://doi.org/10.1214/10-STS330
https://doi.org/10.2139/ssrn.1606674
https://doi.org/10.1111/1469-0691.12314
https://doi.org/10.15468/V8FVYN
https://doi.org/10.1186/s12889-021-10304-y
https://doi.org/10.1186/s12889-021-10304-y
https://doi.org/10.1371/journal.pone.0236920
https://doi.org/10.1371/journal.pone.0236920
https://doi.org/10.23708/ARSJNB
https://doi.org/10.23708/MTF4S8
https://doi.org/10.23708/MTF4S8
https://doi.org/10.1186/s13071-021-04851-x
https://doi.org/10.46471/gigabyte.83
https://doi.org/10.46471/gigabyte.83
https://doi.org/10.23708/LV8GEW
https://doi.org/10.23708/VJEEMU
https://doi.org/10.1186/s12936-016-1154-4
https://doi.org/10.1186/s12936-016-1154-4
https://doi.org/10.24072/pcjournal.367


Townson H (1993). The biology of mosquitoes. Volume 1. Development, nutrition and reproduction.By A.N. Clements. (London: Chapman &amp; Hall, 1992). viii 509 pp. Hard cover £50. ISBN 0-412-40180-0. Bulletin of Entomological Research 83, 307–308. https://doi.org/10.1017/
S0007485300034830.Tyagi S, Mittal S (2020). Sampling Approaches for Imbalanced Data Classification Problem in Ma-chine Learning. In: Proceedings of ICRIC 2019. Ed. by Pradeep Kumar Singh, Arpan Kumar Kar,Yashwant Singh, Maheshkumar H. Kolekar, and Sudeep Tanwar. Vol. 597. Cham: Springer In-ternational Publishing, pp. 209–221. https://doi.org/10.1007/978-3-030-29407-6_17.Voeten CC (2020). buildmer: Stepwise Elimination and Term Reordering for Mixed-Effects Regression.URL: https://CRAN.R-project.org/package=buildmer.Wan Z, Hook S, Hulley G (2015a). MOD11A1 MODIS/Terra Land Surface Temperature/EmissivityDaily L3 Global 1km SIN Grid V006. type: dataset. https : / / doi . org / 10 . 5067 / MODIS /
MOD11A1.006.Wan Z, Hook S, Hulley G (2015b). MYD11A1 MODIS/Aqua Land Surface Temperature/EmissivityDaily L3 Global 1km SIN Grid V006. type: dataset. https : / / doi . org / 10 . 5067 / MODIS /
MYD11A1.006.Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, Raymond M (2004).The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquitovectors. Insect Molecular Biology 13, 1–7. https://doi.org/10.1111/j.1365-2583.2004.
00452.x.WHO (2017). WHO | Global vector control response 2017–2030. Geneva: World Health Organiza-tion. URL: https://www.who.int/publications/i/item/9789241512978.WHO (2022).World malaria report 2022. Geneva: World Health Organization. URL: https://www.
who.int/publications/i/item/9789240064898.Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer New York. https://doi.
org/10.1007/978-0-387-98141-3.Wickham H (2017). tidyverse: Easily Install and Load the ’Tidyverse’. R package version 1.2.1. URL:
https://CRAN.R-project.org/package=tidyverse.WrightMN, Ziegler A (2017). ranger: A Fast Implementation of RandomForests forHighDimensionalData in C++ and R. Journal of Statistical Software 77, 1–17. https://doi.org/10.18637/jss.
v077.i01.Yadouleton A, Martin T, Padonou G, Chandre F, Asidi A, Djogbenou L, Dabiré R, Aïkpon R,Boko M, Glitho I, Akogbeto M (2011). Cotton pest management practices and the selectionof pyrethroid resistance in Anopheles gambiae population in Northern Benin. Parasites & Vectors4. https://doi.org/10.1186/1756-3305-4-60.Yan Y (2016). MLmetrics: Machine Learning Evaluation Metrics. R package version 1.1.1. URL:
https://CRAN.R-project.org/package=MLmetrics.Zalucki M, Furlong M (2017). Behavior as a mechanism of insecticide resistance: evaluation of theevidence. Current opinion in insect science 21, 19–25. https://doi.org/10.1016/j.cois.
2017.05.006.ZhaoQ,Hastie T (2021).Causal Interpretations of Black-BoxModels. Journal of Business & EconomicStatistics 39, 272–281. https://doi.org/10.1080/07350015.2019.1624293.Zogo B, Koffi AA, Alou LPA, Fournet F, Dahounto A, Dabiré RK, Baba-Moussa L, Moiroux N,Pennetier C (2019a). Identification and characterization of Anopheles spp. breeding habitats inthe Korhogo area in northern Côte d’Ivoire: a study prior to a Bti-based larviciding intervention.Parasites & Vectors 12, 146. https://doi.org/10.1186/s13071-019-3404-0.Zogo B, Soma DD, Tchiekoi BN, Somé A, Ahoua Alou LP, Koffi AA, Fournet F, Dahounto A,Coulibaly B, Kandé S, Dabiré RK, Baba-Moussa L, Moiroux N, Pennetier C (2019b). Anophe-les bionomics, insecticide resistance mechanisms, and malaria transmission in the Korhogo area,northern Côte d’Ivoire: a pre-intervention study. Parasite 26, 40. https://doi.org/10.1051/
parasite/2019040.

34 Paul Taconet et al.

Peer Community Journal, Vol. 4 (2024), article e11 https://doi.org/10.24072/pcjournal.367

https://doi.org/10.1017/S0007485300034830
https://doi.org/10.1017/S0007485300034830
https://doi.org/10.1007/978-3-030-29407-6_17
https://CRAN.R-project.org/package=buildmer
https://doi.org/10.5067/MODIS/MOD11A1.006
https://doi.org/10.5067/MODIS/MOD11A1.006
https://doi.org/10.5067/MODIS/MYD11A1.006
https://doi.org/10.5067/MODIS/MYD11A1.006
https://doi.org/10.1111/j.1365-2583.2004.00452.x
https://doi.org/10.1111/j.1365-2583.2004.00452.x
https://www.who.int/publications/i/item/9789241512978
https://www.who.int/publications/i/item/9789240064898
https://www.who.int/publications/i/item/9789240064898
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1007/978-0-387-98141-3
https://CRAN.R-project.org/package=tidyverse
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1186/1756-3305-4-60
https://CRAN.R-project.org/package=MLmetrics
https://doi.org/10.1016/j.cois.2017.05.006
https://doi.org/10.1016/j.cois.2017.05.006
https://doi.org/10.1080/07350015.2019.1624293
https://doi.org/10.1186/s13071-019-3404-0
https://doi.org/10.1051/parasite/2019040
https://doi.org/10.1051/parasite/2019040
https://doi.org/10.24072/pcjournal.367

