N
N

N

HAL

open science

Physiological and behavioural resistance of malaria

vectors in rural West-Africa: a data mining study to

address their fine-scale spatiotemporal heterogeneity,

drivers, and predictability

Paul Taconet, Dieudonné Diloma Soma, Barnabas Zogo, Karine Mouline,
Frédéric Simard, Alphonsine Amanan Koffi, Roch Kounbobr Dabiré, Cedric

Pennetier, Nicolas Moiroux

» To cite this version:

Paul Taconet, Dieudonné Diloma Soma, Barnabas Zogo, Karine Mouline, Frédéric Simard, et al..
Physiological and behavioural resistance of malaria vectors in rural West-Africa: a data mining study
to address their fine-scale spatiotemporal heterogeneity, drivers, and predictability. Peer Community
Journal, 2024, 4, pp.ell. 10.24072/pcjournal.367 . hal-04430713

HAL Id: hal-04430713
https://hal.science/hal-04430713
Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04430713
https://hal.archives-ouvertes.fr

-

LRS

Peer Community Journal

Research article

Published
2024-01-31

Cite as

Paul Taconet, Dieudonné Diloma
Soma, Barnabas Zogo, Karine
Mouline, Frédéric Simard,
Alphonsine Amanan Koffi, Roch
Kounbobr Dabiré, Cédric Pennetier
and Nicolas Moiroux (2024)
Physiological and behavioural
resistance of malaria vectors in rural
West-Africa: a data mining study to
address their fine-scale
spatiotemporal heterogeneity,
drivers, and predictability, Peer

Community Journal, 4: e11.

Correspondence
paul.taconet@ird.fr

Peer-review

Peer reviewed and
recommended by
PCI Infections,

https://doi.org/10.24072/pci.

infections.100157

S
This article is licensed
under the Creative Commons

Attribution 4.0 License.

Peer Community Journal is a member of the VVYVY A
Centre Mersenne for Open Scientific Publishing v A‘A W A A‘
http: // www.centre-mersenne.org/ v AA vv AA A

MERSENNE

e-ISSN 2804-3871

Section: Infections

Physiological and behavioural
resistance of malaria vectors in rural
West-Africa: a data mining study to
address their fine-scale spatiotemporal
heterogeneity, drivers, and
predictability

Paul Taconet*'!, Dieudonné Diloma Soma “*2, Barnabas
Zogo?3, Karine Mouline !, Frédéric Simard 1, Alphonsine
Amanan Koffi®, Roch Kounbobr Dabiré “2, Cédric
Pennetier 12, and Nicolas Moiroux “!

Volume 4 (2024), article e11

https://doi.org/10.24072/pcjournal.367

Abstract

Insecticide resistance and behavioural adaptation of malaria mosquitoes affect the efficacy of long-
lasting insecticide nets - currently the main tool for malaria vector control. To develop and deploy
complementary, efficient and cost-effective control interventions, a good understanding of the dri-
vers of these physiological and behavioural traits is needed. In this data-mining exercise, we mod-
elled a set of indicators of physiological resistance to insecticide (prevalence of three target-site
mutations) and behavioural resistance phenotypes (early- and late-biting, exophagy) of anopheles
mosquitoes in two rural areas of West-Africa, located in Burkina Faso and Cote d’lvoire. To this aim,
we used mosquito field collections along with heterogeneous, multi-source and multi-scale environ-
mental data. The objectives were i) to assess the small-scale spatial and temporal heterogeneity of
physiological resistance to insecticide and behavioural resistance phenotypes, ii) to better under-
stand their drivers, and iii) to assess their spatio-temporal predictability, at scales that are consistent
with operational action. The explanatory variables covered a wide range of potential environmental
determinants of vector resistance to insecticide or behavioural resistance phenotypes: vector con-
trol, human availability and nocturnal behaviour, macro and micro-climatic conditions, landscape,
etc. The resulting models revealed many statistically significant associations, although their predic-
tive powers were overall weak. We interpreted and discussed these associations in light of several
topics of interest, such as: respective contribution of public health and agriculture in the selection of
physiological resistances, biological costs associated with physiological resistances, biological mech-
anisms underlying biting behaviour, and impact of micro-climatic conditions on the time or place
of biting. To our knowledge, our work is the first modeling insecticide resistance and feeding be-
haviour of malaria vectors at such fine spatial scale with such a large dataset of both mosquito and
environmental data.
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Introduction

Malaria remains a major public health concern in Africa, with 234 million cases and 593
000 death over the continent in 2021 (WHO, 2022). After years of steady reduction in the dis-
ease transmission mainly due to the scale-up of vector control (VC) interventions (in particular
insecticide-based tools such as long lasting insecticide nets (LLIN) and indoor residual spraying
(IRS)) (Bhatt et al., 2015), progress is now stalling since 2015 (WHO, 2022). Involved in such wor-
rying trends are a combination of biological, environmental and socio-economical factors. The
mosquito biology, with the buildup of adaptive changes in the mosquito vectors populations en-
abling them to avoid or circumvent the lethal effects of insecticides, is most likely playing a very
important contribution (Killeen, 2014). These changes are framed as vector resistance to insecti-
cides. As a consequence of the widespread use of insecticides (in agriculture and public health),
vector resistance has arisen rapidly in malaria vectors in many areas of Africa and above (Durnez
and Coosemans, 2013; Riveron et al., 2018); and as previously indicated, is now at such level
that it compromises the effectiveness of the most efficient malaria control interventions (Gatton
et al.,, 2013; Hemingway et al., 2016; Killeen, 2014; Sokhna et al., 2013). Complementary and
locally-tailored VC strategies taking into account the great diversity of vectors resistance mech-
anisms (see below) are therefore needed to target these vectors contributing to residual malaria
transmission (Corbel and N'Guessan, 2013; Durnez and Coosemans, 2013; Hemingway et al.,
2016; Moiroux, 2012; Riveron et al., 2018; Sokhna et al., 2013; WHO, 2017).

Vector resistances to insecticide are usually split into two categories: physiological and be-
havioural resistance (Lockwood et al., 1984; Sokhna et al., 2013). Physiological resistance refers
to biochemical and morphological mechanisms (e.g. target-site modifications, metabolic resis-
tance, cuticular thickness) that enable the mosquito to withstand the effects of insecticide de-
spite its contact with it (Davidson, 1957). Among the physiological resistances, the target-site
mutations L1014F (kdr-w) (Martinez-Torres et al., 1998), L1014S (kdr-e) (Ranson et al., 2000), and
G119S (ace-1) (Weill et al., 2004), conferring insecticide resistance to pyrethroids (kdr-w and
kdr-e) and to carbamates and organophosphates (ace-1), have been extensively described. Be-
havioural resistance, on its side, refers to any modification of mosquito behaviour that facilitates
avoidance or circumvention of insecticides (Carrasco et al., 2019; Gatton et al., 2013; Riveron et
al., 2018). Behavioural resistance of mosquitoes to insecticides can be qualitative (i.e. modifica-
tions that prevent or limit the contact with the insecticide) or quantitative (i.e. modifications that
stop, limit or reduce insecticide action once contact has occurred, e.g. escaping, behavioural ther-
moregulation or curative self-medication) (Carrasco et al., 2019). Up-to-date, the behavioural re-
sistance mechanisms described in the literature are mainly qualitative and consist in spatial, tem-
poral, or trophic avoidance. In particular, in the anopheline populations, the following behavioural
qualitative resistance mechanisms have been described after the scale-up of insecticide-based
VC tools (Durnez and Coosemans, 2013): i) increase of exophagic or exophilic behaviours (spa-
tial avoidance), where mosquitoes shifted from biting or resting indoor to outdoor, ii) increase
of early- or late-biting behaviours (temporal avoidance), where mosquitoes shifted from biting
at night to earlier in the evening or later in the morning, iii) increase of zoophagic behaviours
(trophic avoidance), where mosquitoes shifted from biting on humans to biting on animals.

To help develop and deploy complementary VC strategies that are efficient and cost-effective,
a better understanding of the spatiotemporal distribution and drivers of both vector physiologi-
cal resistance and feeding behaviour is needed at a local scale. We raise here a set of questions
that, among others, must be explored further at local scale towards this aim:

> What is the respective contribution of public health and agriculture in the selection of physi-
ological resistances in Anopheles vectors ? The molecular and genetic basis of physiological resis-
tance has been widely acknowledged: under the pressure of insecticides, mutations that enable
the vectors to survive are naturally selected and then spread over the generations (Labbé et al.,
2017; Martinez-Torres et al., 1998). The main force that governs the selection of a physiological
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mechanism of resistance in a population of insects is therefore the pressure induced by insec-
ticide exposure. This pressure can be induced by the vector control tools, or by the runoff of
pesticides used in agriculture (in many cases, the same as those used for impregnation of bed
nets) into the malaria vectors breeding sites (Chandre et al., 1999; Hien et al., 2017; Reid and
McKenzie, 2016; Yadouleton et al., 2011). Assessing the relative contribution of these two pres-
sures on the selection of resistant phenotypes is critical to further predict the relative impacts
of public health and agriculture on the growth of physiological resistances and act consequently.

> What are the biological mechanisms underlying behavioural resistances ? Contrary to physi-
ological resistance, the biological mechanisms underlying behavioural resistance are still poorly
known (Carrasco et al., 2019; Durnez and Coosemans, 2013; Killeen, 2014; Main et al., 2016).
In particular, a pending question, having important implications for vector control, is whether
behavioural shifts reflect evolutionary adaptations in response to selection pressures from vec-
tor control tools, as for physiological resistances (constitutive resistance) or are manifestations of
pre-existing phenotypic plasticity which is triggered when facing the insecticide or in response to
environmental variation that reduces human host availability (inducible resistance). Inducible re-
sistance imply that vectors rapidly revert to baseline behaviours when VC interventions are lifted,
whereas constitutive resistance might progressively and durably erode the effectiveness of cur-
rent VC tools. Understanding the biological mechanisms underlying behavioural resistances is
therefore important to assess the long-term efficacy of insecticide-based VC interventions.

> Are mosquito biting behaviours modulated by local-scale environmental conditions other than
insecticide-related ones ? As aforementioned, the overall rise of behavioural resistances is likely
caused by the widespread of insecticide-based vector control interventions. However, local en-
vironmental conditions can modulate vector behaviours at the time of foraging activity. Local
climatic conditions - e.g. wind, rain, temperature, humidity, luminosity - may for example af-
fect the timing and location of vector biting, as it has been noted in some studies (Kirby and
Lindsay, 2004; Kreppel et al., 2020; Ngowo et al., 2017). Mosquitoes with natural endophagic /
endophilic preferences might, for example, bite or rest outside if temperature inside is too high
or humidity too low, in order to decrease their risk of desiccation-related mortality (Kreppel et al.,
2020; Ngowo et al., 2017). Land cover, as well, can affect biting rhythms. It has been noted for
example that distance to breeding sites may influence nocturnal host-seeking behaviour, with
vectors biting on average earlier in the night in households located close to the breeding sites
(Njan Nloga et al., 1993; Snow and Gilles, 2002). Assessing whether and to which extent be-
havioural resistance traits are influenced by local environmental (climatic or landscape) settings
may help design VC tools exploiting the vulnerabilities of vectors.

> Are there associations between behavioural and physiological resistances ? Physiological and
behavioural resistances may likely coexist in mosquito populations, with the first possibly in-
fluencing the second. In fact, physiologically resistant mosquitoes may, theoretically, use the
recognition of insecticide-based control tool as a proxy for host presence (framed as behavioural
exploitation (Carrasco et al., 2019)). Several studies have actually showed that the kdr mutation
can modify the host-seeking or biting behaviour of Anopheles in presence of insecticide-treated
net (Malal M Diop et al., 2021, 2015; Porciani et al., 2017). Such behavioural exploitation could
potentially lead to a better host recognition/localization and have a dramatic impact, with the
control intervention having the opposite effect to the one expected. It is hence important to
assess if and to which extent physiologically resistant mosquitoes exhibit different biting be-
haviours than their susceptible counterparts.

> Which adaptative strategy (physiological or behavioural resistance) arises faster ? Understand-
ing the relative capacity of mosquitoes to develop physiological resistance and to shift their
behaviour in response to vector control is necessary to highlight where and when mitigation ef-
forts should be prioritized (Sanou et al., 2021). After introduction / re-introduction of insecticide-
based tools, if vectors rapidly shift their behaviour to feed outside or at times when people are
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not protected by an LLIN, interventions that target such mosquitoes should be quickly deployed.
In contrast, the rapid emergence of physiological resistance in vectors who continue to feed
indoors and at night indicates that switching to alternative insecticide classes in indoor-based
interventions may have a greater impact. Additionally, for a given environment, assessing the
relative rate of selection of physiological and behavioural resistances is of direct epidemiological
importance: it has been showed for example that under a scenario where LLIN and IRS are both
heavily used, changes in the susceptibility to insecticide is likely to have a bigger epidemiological
impact than changes in biting times (Sherrard-Smith et al., 2019).

> Are resistance rates heterogeneous at small spatiotemporal scales ? Mosquito presence and
abundance has already been found heterogeneous in space and time at fine-scale, calling for
locally-tailored (species-, season-, and village-specific) control interventions (Moiroux et al., 2013,
2014; Taconet et al., 2021). However, little is known about the small-scale spatiotemporal het-
erogeneity of vector resistance. The potential drivers of the selection or triggering of resistant
phenotypes (vector control use, land cover, micro-climate, human behaviour, etc.) are likely to
vary at small spatiotemporal scales, and so may, at the end of the line, vector resistance. As for
abundances, assessing the level of heterogeneity of resistance rates in space and time is impor-
tant to assess the spatiotemporal scale at which management of vector resistance should be
considered.

> To what extent can we explain and predict vector resistance and biting behaviour in space and
time ? Assessing the levels of explainability and predictability of vector resistance and biting be-
haviour is important for both scientific and operational purposes. Towards this aim, generating
statistical models linking vector resistances or biting behaviours to their potential drivers and as-
sessing their explanatory and predictive powers can help (Shmueli, 2010; Shmueli and Koppius,
2010). High explanatory or predictive powers in the models might suggest that the conditions
driving a vector to resist are well understood, and conversely, low explanatory powers might
suggest that resistances are driven by factors either yet undiscovered or not included in the
models. Additionally, assessing the predictability of resistances in vector populations in space
and time is an important step towards mapping vector resistance at every place (e.g. village) and
time (e.g. season) in the area, with such decision-support tools important to deploy the right
intervention, at the right place and time (Taconet et al., 2021).

In this study, we used field mosquito collections and environmental data collected simultane-
ously in two rural areas of West-Africa to bring elements of answer to these questions for our
areas. Guided by these questions, our overall objectives were i) to assess the fine-scale preva-
lence and spatiotemporal heterogeneity of physiological resistances and at-risk biting behaviours
of malaria vectors in these areas and ii) to better understand their drivers. To do so, we modeled
a set of indicators of physiological resistances and behavioural resistance phenotypes (namely
kdr-w, kdr-e, ace-1 target-site mutations, exophagy, early-biting, and late-biting) at the individual
mosquito level using this fine-grained dataset and advanced statistical methods in an exploratory
and holistic-inductive approach. Patterns found in the data were interpreted and discussed in
light of the topics aforementioned, of importance for the management of malaria residual trans-
mission. We concluded with a set of recommendations to manage vector resistances in our study
areas.

1. Methods

1.1. Entomological and environmental data

The data used in this work were collected in the frame of the REACT project (Soma et al.,
2020; Zogo et al., 2019b). In this projet, a total of fifty-five villages, distributed in two West-
African rural areas (~ 50x50 km each) located in the areas of Diébougou (southwestern Burkina
Faso (BF)) and Korhogo (northern Ivory Coast (IC)) were selected according to the following crite-
ria: accessibility during the rainy season, 200-500 inhabitants per village, and distance between
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Figure 1 - A/ Map showing the study areas and the villages where entomological collec-
tions were performed ; B/ Timeline for vector control interventions and data collection
in the villages. Each color corresponds to a different type of data collected or vector
control intervention implemented. The anopheles and human behavioural surveys are

numbered.

two villages higher than two kilometers. After an exhaustive census of the population in these
villages at the beginning of the project, entomological and human behaviours surveys were reg-
ularly conducted during 15 months (1.25 year) in the Diébougou area and 18 months (1.5 year)
in the Korhogo area. Vector control interventions were implemented both as part of the project
and of the national malaria control programs (see below). Figure 1 shows the study areas and
the corresponding timelines for data collection and vector control interventions. The data ta-
ble available in Moiroux et al. (2023) lists the villages included in the study: names, geographic
coordinates, vector control interventions implemented in each village. Entomological data were
collected in the field, and environmental data were collated from specific devices (see below) or
created from heterogeneous field and satellite-based sources. Below is a description of the data

used in our work.

> Anopheles collections

Several rounds of mosquito collections (eight in the Korhogo (IC) area, seven in the Diébougou
(BF) area) were conducted in each village. The periods of the surveys span the typical climatic
conditions of these tropical areas (except the peak of the rainy season - July to September) (see
Additional file 1.A for the spatiotemporal trends of the meteorological conditions). Mosquitoes
were collected using the Human Landing Catch (HLC) technique from 17:00 to 09:00 both in-
doors and outdoors at four sites per village (i.e. eight collection points) for one night during each
survey. The distance between indoor and outdoor collection points was at least 10 meters to
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minimize competition between mosquito collectors (Coffinet et al., 2009). Malaria vectors were
identified using morphological keys. All individuals belonging to the Anopheles Funestus Group
(in both study areas) and Anopheles Gambiae Complex (in BF) were identified to the species level
using PCR. InIC, due to the very large numbers of An. gambiae s.I. vectors collected, a sub-sample
only of these individuals (randomly selected in space and time) was identified to species. Finally,
in BF, PCR assay were carried out on all the An. gambiae s.s. and An. coluzzii collected to detect
the L1014F (kdr-w), the L1014S (kdr-e) and the G119S (ace-1) target-site mutations. In IC, also
due to the large numbers of individuals collected, a subsample only of the An. gambiae s.I. were
genotyped for the L1014F and G119S mutations. Due to the significant risk of bias associated
with the sub-sampling strategy (not all villages were sampled in all surveys), we excluded these
data from the analysis. Detailed descriptions of the methods used to obtain these data are pro-
vided in Taconet et al. (2023c). These data were published in the Global Biodiversity Information
Facility (GBIF) (D Soma et al., 2023) and are available for reuse.

> Data on weather preceding mosquito collections and during mosquito collections

Weather can impact the fitness or the activity of resistant genotypes (Kliot and Ghanim,
2012), as well as the biting behaviour of the mosquitoes (see Introduction). In this work, we
recorded or retrieved weather conditions: (i) during mosquito collections (i.e. the HLC sessions),
(ii) during the day of collection, and (iii) during the month preceding collection. Weather on the
day of collection and during mosquito collection may impact the relative activity of each geno-
type and phenotypes associated with resistances. Weather during the month preceding the sur-
vey, on its side, can impact development and survival rates of both the current and parental
generations of collected mosquitoes (Carnevale et al., 2009; Holstein, 1952; Townson, 1993).
Regarding our outputs (prevalence of behavioural phenotypes and target-site mutations - see
next section), weather during the month preceding collection may therefore impact the fitness
of the studied genotypes (for target-site mutations) or possible - and unknown - genotypes as-
sociated with studied behavioural phenotypes.

Micro-climatic conditions (temperature, relative humidity, luminosity and atmospheric pres-
sure) were simultaneously recorded where mosquito collections were being conducted. Instru-
ments used to record these data were : for temperature and relative humidity : Hygro Buttons
23 Data Loggers [Proges Plus DALO084] (temporal resolution (TR): 15 minutes) ; for luminos-
ity : HOBO Pendant® Temperature/Light 8K Data Logger (TR: 15 minutes) ; for atmospheric
pressure : Extech SD700 Data Loggers (TR : 10 minutes). Hygro and Hobo loggers were posi-
tioned both inside and outside the houses where mosquito sampling was conducted, close to
the sampling positions. The barometer was positioned at the center of the village. These field
data were completed with satellite or modeled data available at coarse spatial but high temporal
resolutions: rainfall (spatial resolution (SR) : ~ 11 km, TR : 30 min, source: Global Precipitation
Measurement (GPM) IMERG (Huffman et al., 2019b), wind speed (SR : ~ 28 km,TR : 1h, source :
ERAS5 (Hersbach et al., 2020)), apparent magnitude of the Moon (SR : 0.001 degrees, TR : 1 day,
source : Institute of celestial mechanics and ephemeris calculations).

Meteorological conditions on the day of collection and over one month preceding collection
were extracted from satellite imagery. Namely, rainfall estimates were extracted from the GPM
- IMERG daily Final products (Huffman et al., 2019a). Diurnal and nocturnal temperatures were
derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) daily Land Surface
Temperature (LST) Terra and Aqua products (Wan et al., 2015a,b). These data were then cropped
and averaged in 2-km buffer zones around each HLC collection point. From this, variables repre-
senting meteorological conditions on the day of collection and over one month preceding collec-
tion were constructed (for the latter, by averaging the 30-day time series). Detailed descriptions
of the methods used to collect and process these data are provided in Taconet et al. (2021).
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> Data on host availability and human behaviour

The nocturnal behaviour of humans (hours inside the dwellings, hours of use of LLINs) drives
host availability for the mosquitoes and can therefore impact their behaviour. For instance, high
LLIN use rate can drive mosquitoes to feed outside, at times when people are not protected, or
on alternative sources of blood (Durnez and Coosemans, 2013). Here, human population was
counted in each village, through an exhaustive census conducted at the beginning of the project.
Then, several human behavioural surveys (two in IC, three in BF) were carried out in each village
(see Figure 1). For each survey and village, several households (mean = 14 , SD = 2) were ran-
domly selected, and for each household, one to three persons in each age class (0-5 years old,
6-17 years old and > 18 years old) were selected. The head of the household was then asked,
for each selected person, on the night preceding the survey: i) whether he/she used an LLIN or
not, ii) the time at which he/she entered and exited his own house, and iii) the time at which
he/she entered and exited his LLIN-protected sleeping space (where appropriate). Households
for human behavioural surveys were independently selected from households for entomological
surveys. The surveys were conducted after the distribution of the LLINs (see below), and span
the typical climatic conditions of the areas. Detailed descriptions of the methods used to collect
these data are provided in Soma et al. (2021).

> Landscape data

Landscape can have an impact on mosquito foraging behaviour (e.g. the distance to breeding
sites can impact biting rhythms) or physiological resistance (e.g. through pesticides used in crops)
(see Introduction). Digital land cover maps were produced for each study area by carrying out a
Geographic Object-Based Image Analysis (Hay and Castilla, 2008) using multisource very high
and high resolution satellite-derived products. From these maps, several variables were derived :
the percentage of landscape occupied respectively by cotton fields, by rice fields, and by the
other crops (mainly leguminous crops, millet, sorghum) in a 2 km buffer size area around each
collection point ; and the distance to the nearest stream (as a proxy for the distance to potential
breeding sites, as shown in other studies conducted in these areas (Taconet et al., 2021; Zogo
et al., 2019a)). For cotton, the variable was binarized as presence / absence of cotton cultivated
due to the small range of values. In addition, the geographical location of the households was
recorded, and used to derive two indices: the degree of clustering of the households in each vil-
lage, and the distance from each collection point to the edge of the village. The land cover maps
along with detailed descriptions of the methods used to generate them are available at Taconet
et al. (2023b) and Taconet et al. (2023a). The methods used to compute the statistical variables
from these data are detailed in Taconet et al. (2021).

> Vector control

Repeated exposure to insecticides used in vector control interventions is undoubtedly one
of the most important drivers of the selection of resistance (see Introduction). In both Burkina
Faso and Ivory Coast, LLINs have been universally distributed every 3-4 years since 2010 (PNLP,
2014a,b). In BF, a mass distribution of LLINs (PermaNet 2.0) was carried out by the National
Malaria Control Program in July 2016 (i.e. 6 months before our first entomological survey). In
IC, our team distributed LLINs in the villages of the project in June 2017 (i.e. height months af-
ter the first entomological survey and ten months before the last one). Complementary VC tools
were implemented in some of the villages in the middle of the project - namely IRS, ivermectin to
peri-domestic animals (IVM), intensive Information Education and Communication to the popu-
lations (IEC), and larval control (Larv.) as part of a randomized controlled trial aiming at assessing
the benefits of new, complementary VC strategies (Soma et al., 2020; Zogo et al., 2019b) (see
Figure 1, and Additional file 1 available online at this URL (along with the other supplementary
material): https://doi.org/10.23708/VJEEMU (Taconet et al., 2023e)).
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1.2. Statistical analyses

1.2.1. Dependent and independant variables. Six indicators of potential vector resistance to in-
secticides were modelled:

e three indicators of physiological resistance to insecticide: kdr-w mutation, kdr-e mutation,
ace-1 mutation,

e three indicators of behavioural resistance phenotypes: early biting, late biting, exophagy.
Here, it is unknown whether changes in prevalence of studied mosquito behaviours
are the result of constitutive resistances (i.e. inherited traits selected by the insecticide
pressure) or of inducible resistance (that rely on phenotypic plasticity). The latter does
not fit an accepted definition of insecticide resistance that rely on the inheritance prop-
erty (Zalucki and Furlong, 2017). Therefore in the remainder of this manuscript, we will
qualify the three studied phenotypes, possibly constitutive or inducible, as ‘behavioural
resistance phenotypes’.

Exophagy was defined as the probability for a host-seeking mosquito to bite outdoor (as op-
posed to indoor). Early biting was defined as the probability for a host-seeking mosquito to bite
before 50 % of the LLIN users were declared to be under their bednet in the evening, and late
biting was defined as the probability for a host-seeking mosquito to bite after 50 % of the LLIN
users were declared to be out of their bednet in the morning (based on the closest - in space and
time - human behaviour survey). Kdr-w, kdr-e and ace-1 mutations were defined as the probabili-
ties for an allele of a host-seeking mosquito to be mutated (as opposed to wild type). The statis-
tical unit was therefore the mosquito for biting behaviour models and the allele for physiological
resistance models. Dependent variables were all binary (O = absence of resistance/mutation,
1 = presence of resistance/mutation) and models outcomes were probabilities for a mosquito
(resp. allele) to be resistant (resp. mutated). Each indicator was modeled separately for each
main species in each study area, as determinants of resistance might be species- or site-specific
(i.e. mosquitoes might respond differently to environmental variations depending on the species
and study area, due to potential local chromosomal forms, adaptation, etc.) (Durnez and Coose-
mans, 2013; Riveron et al., 2018). As three main species were found in BF and two in IC (see
Results section), a total of twenty-one dependent variables were built (exophagy : 3in BF and 2 in
IC; early biting: 3in BFand 2in IC; late biting: 3inBFand 2in IC; kdr-w : 2 in BF ; kdr-e : 2 in BF ;
ace-1: 2 in BF). Based on literature (see Introduction) and available data, we then built indepen-
dent variables representing potential determinants of each of these resistant phenotypes. These
variables are provided in Table 1. To build these variables, the source data were possibly aggre-
gated in space or time, at varying resolutions depending on the considered dependent variable.
For example, we constructed a binary variable “Rainfall during collection” (presence/absence
of rainfall during the hour of collection) by summing the source data available at a 30-minutes
temporal resolution and then applying a threshold (> O mm of rainfall = presence, otherwise
absence). Replication data are available online at https://doi.org/10.23708/LVSGEW (Taconet
et al., 2023d).

1.2.2. Modeling workflow. A graphical representation of the modeling workflow (explained be-
low) is available in Additional figure 2. A replication R script (starting from the section ‘Multivari-
ate modeling part 1: Explanatory model’) is available online at this URL: https://doi.org/10.
23708/LV8GEW (Taconet et al., 2023d).

Pre-processing. First, we excluded from the modeling process those dependent variables that
could hardly be modelled due to the combination of very few ‘resistant’ observations and ex-
treme class imbalance (humber of samples from the ‘resistant’ class « number of samples from
the ‘sensible’ class). The following criteria were used for exclusion: ‘resistant’ class < 50 obser-
vations & < 3% of the total observations.
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Next, we implemented the modeling workflow described below for each remaining depen-
dent variable.

Bivariate modeling. We first excluded the independent variables that were poorly associated
with the dependent variable (criteria for exclusion: p-value > 0.2 of a bivariate Generalized Linear
binomial Mixed-effect Model (GLMM) with nested random effects at the village and collection
site level). Next, we calculated the Pearson correlation coefficient among the retained variables
and filtered-out collinear variables (correlation coefficient > 0.7) based on empirical knowledge
(for instance, diurnal and nocturnal temperature over the month preceding collection were often
correlated and in such case we retained nocturnal temperatures ; % of the population indoor and
under an LLIN in the village on the hour of collection were often correlated and in such case we
retained % of the population under an LLIN). With the set of remaining independent variables,
two distinct multivariate models were built, with complementary objectives, as explained in the
Box 1 below.

Multivariate modeling part 1: Explanatory model. A binomial GLMM was fitted to the data.
Nested random effects were introduced in the model at the village and collection place level.
Variables were deleted recursively using an automatic backward variable selection procedure
based on the reduction of the Akaike Information Criterion (AIC). Variables belonging to the
‘vector control’ (for all resistance models) and ‘crops’ (for physiological resistance models only)
groups were forced in the multivariate models (i.e. they were not filtered-out in the variable se-
lection procedure) because there are strong a priori assumptions associated with these variables.
Such variable selection procedure therefore retained all the ‘vector control’ and ‘crops’ variables
(whether significantly associated or not with the dependent variable), and the additional vari-
ables that decreased the AIC of the multivariate model.

Multivariate modeling part 2 : Predictive model. We additionally fitted a Random Forest (RF)
model (Breiman, 2001a) to the data. The model hyperparameters were optimized using arandom
5-combinations grid search (Chicco, 2017). Whenever the dependent variable was imbalanced
(more than 1/3 imbalance ratio between the positive and negative class), data were up-sampled
within the model resampling procedure to cope with known problems of machine-learning (ML)
models regarding class imbalance (Tyagi and Mittal, 2020).

Assessment of effect sizes and significance of independent variables. To interpret the effect
of each independent variable in the GLMM model, we plotted, for each independent variable
retained in the final model, the predicted probabilities of resistance across available values of
that variable (all other things being equals) (i.e. “partial dependence plot” (PDP) (Friedman and
Popescu, 2008)). For reporting and discussion in the manuscript, we kept only variables that
had a p-value < 0.05 (results containing the ‘full’ models are provided in supplementary mate-
rial, see Results section). To uncover the possible complex relationships that the RF model had
learned, we generated smoothed versions of PDPs for each independent variable. However, we
restricted the generation of PDPs to the following cases : i) the Area Under the Receiver Oper-
ating Characteristics (AUC) (see below) of the model was > 0.6 (because model interpretation
tools of ML models (e.g. PDPs) should be trusted only if the predictive power of the underlying
model is good enough (Zhao and Hastie, 2021)) and ii) the range of predicted probabilities of
resistance was > 0.05 (i.e. the independent variable, over its range of available values, changed
the probability of resistance by at least 5 percentage points).

Assessment of models performance. The explanatory power of the GLMM was assessed by
calculating the marginal coefficient of determination (R?) (Nakagawa and Schielzeth, 2013) from
the observed and in-sample predicted values. Marginal R? is a goodness-of-fit metric that mea-
sures the overall variance explained by the fixed effects in the GLMM. R? values were interpreted
according to the criteria defined by Cohen (2013) : R? € {0; 0.02{ : very weak ; R? € {0.02; 0.13{
: weak ; R? € {0.13; 0.26{ : moderate ; R? € {0.26; 1} : substantial. The predictive power of the
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RF model was assessed by leave village - out cross-validation (CV), with the Area under the
ROC Curve (AUC) chosen as the performance metric. This CV strategy consisted in recursively
leaving-out the observations belonging to one village of collection (i.e. the validation fold), train-
ing the model with the observations coming from the other villages (i.e. the training fold), and
predicting on the left-out set of observations. We hence measured the ability of the model to
predict resistance status (‘resistant’ or ‘non-resistant’) on individual mosquitoes caught on new
- unseen villages of collection. AUC values were interpreted according to the following criteria :
AUC € {0.5; 0.6{ : very weak ; AUC € {0.6; 0.65{ : weak ; AUC < {0.65; 0.75{ : moderate ; AUC <
{0.75; 1} : substantial.

Box 1: What is the difference between explanatory and predictive models, and how
were they used for inference in this study ?

Explanatory and predictive models serve distinct but complementary functions in the
production of scientific knowledge. In statistics, explanatory modeling refers to «the
application of statistical models to data for testing causal hypotheses about theoretical
constructs.» (Shmueli, 2010). Explanatory modeling, commonly used for inference in
many scientific disciplines such as biology or epidemiology, is useful to test existing
theories and to reach to "statistical" conclusions about causal relationships that exist at
the theoretical level, e.g.: vector control significantly impacts vector resistance (or not).
Explanatory modeling needs transparent and interpretable models, such as linear of
logistic regression, to extract statistical information about the associations contained in
the data (e.g. effect size and statistical significance) and further discuss them. On its side,
predictive modeling is «the process of applying a statistical model or data mining algorithm
aimed at making empirical predictions, and then assessing its predictive power.» (Shmueli,
2010). Predictive modeling requires models capable of capturing complex patterns in
the data, including interactions and non-linear associations, such as machine learning
models like random forests or support vector machines. Predictive analytics is typically
recognised for its usefulness in practical applications, such as predicting the incidence of
diseases. However, it can also play a crucial role in scientific knowledge production. For
instance, predictive models can help generate new theories by capturing and revealing
potentially complex, unanticipated patterns within the data. They can as well be used to
evaluate the overall relevance of a theory, through the interpretation of the predictive
power of the models (Shmueli and Koppius, 2010). In a "big data" context like that of this
study, with large datasets containing numerous observations and variables, predictive
analytics is increasingly used to support scientific theory development (Breiman, 2001b;
Karpatne et al., 2017; Shmueli and Koppius, 2010).

In our study, we use explanatory modeling with GLMMs to i) test whether vector control
significantly increases vector resistance, as could be expected, and ii) infer the potential
determinants of vector resistance and their effect size. We use predictive modeling with
RFs to i) account for potential unhypothesized, complex associations between indepen-
dent and dependent variables, and ii) infer the overall contribution of the independent
variables to the prevalence of vector resistance, allowing at the same time to formulate
hypotheses on other potential determinants.

1.2.3. Software and libraries used. The softwares used in this work were all free and open source.
The R programming language (R Core Team, 2018) and the R-studio environment (RStudio Team,
2020) were used as the main programming tools. The QGIS software (QGIS Development Team,
2021) and the ‘ggplot2‘ R package (Wickham, 2009) were used to create respectively the map
of the study area and the timeline for data collection. The ‘glmmTMB’ (Brooks et al., 2017) pack-
age was used for the bivariate modeling. The ‘buildmer’ package (Voeten, 2020) was used to
fit the GLMM models with stepwise selection in the multivariate modeling. The ‘caret’ (Kuhn
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etal.,, 2018) and ‘ranger’ (Wright and Ziegler, 2017) packages were used to fit the random forest
models in the multivariate modeling. The ‘MLmetrics’ (Yan, 2016) and ‘MuMIn’ (Barton, 2020)
packages were used to calculate respectively the AUC of the RFs and the marginal R? of the
GLMMs. The ‘jtools’ (Long, 2020) and ‘pdp’ (Greenwell, 2017) packages were used to generate
the partial dependence plots of respectively the GLMMs and the RFs. The ‘broom.mixed’ (Bolker
and Robinson, 2020) package was used to extract the coefficients / odd ratios, confidence inter-
vals and p-values of the multivariate GLMMs. The ‘patchwork’ (Pedersen, 2019) and ‘gridExtra’
(Auguie, 2017) packages were used to create various plot compositions. The ‘tidyverse’ meta-
package (Wickham, 2017) was used throughout the entire analysis. A few additional R packages
were used to create, tidy, and transform the data used in this work (see Taconet et al., 2021).
The LibreOffice suite was used to create the plot compositions in some of the figures.

2. Results

2.1. Spatio-temporal heterogeneity of vector abundance

In the Korhogo area (IC), a total of 1792 human-nights of HLC was conducted. A sum of 57
722 vectors belonging to the Anopheles genus was collected. The main species/complex found
were An. gambiae s.l. and An. funestus (respectively 56 267 (97% of all the Anopheles collected)
and 714 (1%) individuals collected). Among the 56 267 An. gambiae s.l. collected, 3922 (7%)
were identified to species: 3726 (95% of the individual identified to species) were An. gambiae
s.s. and 196 (5%) were An. coluzzii. Hence, in the rest of this article, we will consider the An.
gambiae s.l. collected in the Korhogo area as An. gambiae s.s. In the Diébougou area (BF), a total
of 1512 human-nights of HLC was conducted. A sum of 3056 vectors belonging to the Anopheles
genus was collected. The main species found were An. coluzzii, An. gambiae s.s. and An. funestus
(respectively 1321 (43% of all the Anopheles collected), 616 (20%) and 708 (23%) individuals
collected). As expected, mosquito abundance was heterogeneous in time and space (except for
An. funestus in IC, for which the vast majority (93 %) of the individuals was collected in the first
entomological survey, and almost half of the individuals (42 %) were collected within one single
village) (see Additional file 1 and Additional figure 3 for maps and charts of the spatiotemporal
distribution of vector abundance).

2.2. Spatio-temporal heterogeneity of vector resistance

Table 2 and Figure 2 show, respectively, global and spatiotemporal descriptive statistics on
the resistances of the main vector species collected in the two areas.

Exophagy rates. In the Korhogo area (IC), the overall exophagy rate (% of bites received out-
door) was 56 % for An. gambiae s.I. and 69 % for An. funestus. The exophagy rate of An. gambiae
s.l. varied little, both amongst the entomological surveys and the villages (Temporal Standard
Deviation (TSD) (see legend of Table 2 for definition) = £ 2 %, Spatial Standard Deviation (SSD)
(see legend of Table 2 for definition) = £ 7 %). The exophagy rate of An. funestus was more het-
erogeneously distributed in time and space (TSD =+ 7 %, SSD = + 16 %). In the Diebougou area
(BF), the overall exophagy rate was 44 % for An. coluzzii, 44 % for An. gambiae s.s. and 35 % for
An. funestus. For the three species, the exophagy rate varied quite sensibly among the entomo-
logical surveys (TSD = + 5%, + 7%, + 6% respectively) and the villages (SSD = + 9%, + 12%, + 8%
respectively).

Early and late biting rates. In the Korhogo area (IC), the early biting rate (i.e. % of bites received
before 50% of the LLIN users were declared to be under their bednet at night) was 3% for
An. gambiae s.I. and 13% for An. funestus. The early biting rate was overall stable among the
surveys and villages for An. gambiae s.I. (TSD =+ 1%, SSD = + 2%) and was more heterogeneously
distributed for An. funestus (TSD = + 6%, SSD = + 12%). The late biting rate (i.e. % of bites received
after 50% of the LLIN users were declared to be out of their bednet in the morning) was lower
than the early biting rate: 1% for both An. gambiae s.I. and An. funestus (only 4 late-bites for An.
funestus) and was overall stable among the surveys and villages (TSD = + 0% and SSD = + 1%
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A | Temporal distribution

1 dot = 1 entomological survey (all villages combined)

ribbons = spatial variability for the considered survey

dot sizes = % of mosquitoes collected in the considered survey over all the surveys (the biggest, the more)
red dashed horizontal line = overall weighted mean (all surveys considered)

Korhogo (IC) Diébougou (BF)

An. gambiae s.1. An. funestus An. funestus An. coluzzii An. gambiae s.s.

T

1

1

1

1

1
ABeydox3

754
50

25 1 |
rMeceae o DA e

100 —— =
754 a A
50 & & & @ T

sadfouayd aouelsisal [einoineyag

Buq aye Eﬁu;q Ae3

25 A
0
100
75 -
50 ¥
25 A
04
100
75 4 =
50 °b° 4
25 A == = -\

% resistant mosquitoes

saoue)sisal [ealbojoisAyd

ST T T -
entomological survey

B | Spatial distribution

1 bar = 1 village (all entomological surveys combined)

error bars = temporal variability for the considered village

bar colors = % of mosquitoes collected in the considered village over all the villages (the brighter, the more)
red dashed horizontal line = overall weighted mean (all villages considered)

Korhogo (IC) Diébougou (BF)

An. gambiae s.1. An. funestus An. funestus An. coluzzii An. gambiae s.s.

Buniq Ajeg | ABeydoxg

%uu-»-“ AL ﬂl‘l'l _Ijl ----- | ST [y

Y

sadAouayd aouessisal [einoineyag

Buniqg are

% resistant mosquitoes
=)
=
S5

X0 N @

50 4 4 4
QO ¢} o]
25 k-
0 -

2
%

saouesisal [ealbojoisAyd

1
1-20y 2-1py| M-1py|

village

Peer Community Journal, Vol. 4 (2024), article e11 https://doi.org/10.24072/pcjournal.367


https://doi.org/10.24072/pcjournal.367

Paul Taconet et al. 15

Figure 2 - (Previous page) Spatio-temporal distributions of the physiological resistances
and behavioural resistance phenotypes of the main vector species collected (panel A:
temporal distribution, panel B: spatial distribution). For behavioural resistance phenotypes,
the y-axis represents the percentage of mosquitoes with resistant phenotypes for the consid-
ered survey / village. For physiological resistances, the y-axis represents the allele frequency
of the considered mutation for the considered survey / village. Confidence intervals (A : rib-
bons, B : lineranges) provide indicators of variability of the resistance indicator (A : mean *
standard deviation of the resistance indicator calculated at the village level for the considered
entomological survey ; B: mean + standard deviation of the resistance indicator calculated at
the entomological survey level for the considered village). To avoid excessive consideration of
small sample sizes, the total number of mosquito collected was represented graphically using
the size of dots (A) or the color of the bars (B).

Table 2 - Descriptive statistics for the physiological resistances and behavioural resis-
tance phenotypes of the main vector species collected.

Resistance Study area  Species n° collected n°resistant % resistant Temporal Spatial
indicator confidence confidence
interval & range interval & range
Korhogo An. gambiae s.l. 56267 31295 56 % +2%(44-60) +7 % (38-71)
An. funestus 714 493 69 % +7 % (0-100) +16 % (0-100)
Exophagy An. coluzzii 1321 577 44 % +5 % (38-64) +9 % (0-100)
Diébougou An. gambiaes.s. 616 268 44 % +7%(18-56) +12 % (0-75)
An. funestus 708 250 35% +6 % (19-40) +8 % (0-100)
Korhogo An. gambiae s.|. 56267 1670 3% +1%(1-6) +2 % (0-10)
An. funestus 714 92 13 % +6%(0-100) +12 % (0-100)
Early biting An. coluzzii 1321 28 2% +1%(0-4) +2 % (0-75)
Diébougou An. gambiaes.s. 616 19 3% +1 % (0-6) +3 % (0-14)
An. funestus 708 9 1% +1%(0-2) +4 % (0-100)
Korhogo An. gambiae s.|. 56267 499 1% +0%(0-1) +1%(0-9)
An. funestus 714 4 1% +1%(0-12) +1%(0-7)
Late biting An. coluzzii 1321 46 3% + 3% (0-14) + 3% (0-14)
Diebougou An. gambiaes.s. 616 8 1% +3 % (0-11) +5 % (0-100)
An. funestus 708 82 12 % +3 % (0-22) +10 % (0-100)
Kdr-w An. coluzzii 1321 NA 59 % +5%(55-69) +8%(12-100)
mutation An. gambiae s.s. 616 NA 90 % +8 % (59-100) *9 % (68-100)
Kdr-e Digbougou An. coluzzii 1321 NA 17 % +8 % (0-43) +10 % (0-50)
mutation An. gambiae s.s. 616 NA 4% +4 % (0-19) +4 % (0-17)
Ace-1 An. coluzzii 1321 NA 2% +1%(0-7) +1%(0-6)
mutation An. gambiae s.s. 616 NA 21% +6 % (11-50) +8 % (0-75)

Descriptive statistics for the physiological resistances and behavioural resistance phenotypes
of the main vector species collected, by area of interest. The columns 'Temporal confidence
interval and range’ and 'Spatial confidence interval and range’ provide indicators of the vari-
ability and range of resistance around the overall mean (percentage resistant) respectively in
time (i.e. variability between the entomological surveys) and space (i.e. variability between the
villages). Format of these columns: confidence interval (minimum - maximum). Computation
of confidence intervals (columns "Temporal confidence interval and range’ and 'Spatial confi-
dence interval and range’): to take into account the uneven sample size between entomological
surveys (resp. villages) (i.e. to avoid excessive consideration of small / very small sample size),
confidence intervals for temporal (resp. spatial) variability were extracted by first calculating
the resistance indicator for each entomologial survey (resp. village) and then computing the
standard deviation weighted by the number of mosquitoes collected in each entomologial sur-
vey (resp. village).

for An. gambiae s.l.). In the Diébougou area (BF), the early biting rate was respectively 2%, 3%
and 1% for An. coluzzii, An. gambiae s.s. and An. funestus. The early biting rate was overall stable
among the surveys (TSD = + 1% for the three species) and to some extent more heterogeneous
among the villages (SSD = £ 2%, + 3%, + 4% respectively). The late biting rate was respectively
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3%, 1% and 12% for An. coluzzii, An. gambiae s.s. and An. funestus. Late biting rates were more
heterogeneously distributed than early biting rates, both among the surveys (TSD = + 3% for the
three species) and villages (SSD = + 3%, + 5%, + 10% respectively).

Allele frequencies of kdr-e, kdr-w, ace-1 mutations. In the BF area, the allele frequency of the
kdr-w mutation was 90% for An. gambiae s.s. and 59% for An. coluzzii. It varied to some extent
among the surveys and villages (for An. gambiae s.s.: TSD = 8%, SSD = 9% ; for An. coluzzii: TSD =
5%, SSD = 8%). The allele frequency of the kdr-e mutation was 4% for An. gambiae s.s. and 17%
for An. coluzzii. For An. gambiae s.s., it remained low among the surveys and villages (TSD = SSD
= 4%) and for An. coluzzii, it varied more sensibly (TSD = 8%, SSD = 10%). The allele frequency
of the ace-1 mutation was 21 % for An. gambiae s.s. and 2% for An. coluzzii. For An. gambiae s.s, it
varied sensibly among the surveys and villages (TSD = 6%, SSD = 8%), and for An. coluzzii it was
overall stably low (TSD = SSD = 1%).

2.3. Dependent variables excluded from the modeling process

Seven of the original twenty-one dependent variables were excluded before statistical mod-
eling due to the very small size of their ‘resistant’ class (see Table 2):

early-biting in BF for the three species,

late-biting in BF for An. coluzzii and An. gambiae s.s.,
late-biting in IC for An. funestus,

ace-1 in BF for An. coluzzii.

2.4. Associations between physiological resistance and environmental variables

For the remaining five models of physiological resistance in the Diébougou area (BF), Figure
3 shows the PDPs of the independent variables retained in the modeling workflow. For the
GLMMs, numerical values of odd-ratios, 95% confidence intervals, and p-values are provided in
Additional file 4.

Figure 3 - (Next page) Results of the statistical models of probability of physiological
resistance in the malaria vectors. For each model, the top plot shows the explanatory
power (R?) and predictive power (AUC) of respectively the GLMM and the RF model.
The other plots show the predicted probabilities of collecting a resistant vector across
available values of each independent variable, holding everything else in the model equal
(yellow line: probability predicted by the GLMM model ; green line: probability predicted
by the RF model). Non-significant variables (p-value > 0.05) are not presented. Short
methodological reminder : vector control and crops variables were forced-in, and the
other variables were retained only if they improved the AIC of the model. In addition, for
the GLMM models, the other variables were plotted only if their p-value was < 0.05. For
the RF models, the predicted probability (i.e. green line) was plotted only if the AUC of the
model was > 0.6 and the range of predicted probabilities of resistance for the considered
variable was > 0.05. In these plots, the y-axis represents the probability for an allele to
be resistant. The red horizontal dashed line represents the overall rate of resistance (see
Table 2). The p-values of the GLMMs are indicated through the stars: * : p < 0.05, ** p
< 0.01, *** p < 0.001. The coloured squared at the bottom-right represents the ‘family"
the variable belongs to (one color for each family, see legend inside the light green frame
placed on the left hand side of the plot). The grey squares distributed along the x-axis at
the top and bottom of each plot represent the measured values available in the data (the
darker the square, the more the number of observations) (NB: for atmospheric pressure,
the values in the x-axis are centered around the mean).
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Associations with variables encoding vector control interventions. No statistically significant
association was found between the likelihood of collecting an Anopheles carrying any of the
target-site mutations and the type of VC intervention (LLIN + complementary tool compared
to LLIN only) within the time frame of the study. However, the likelihood of collecting a host-
seeking An. gambiae s.s. or An. coluzzii carrying a resistant kdr-e allele increased with the time
since LLIN distribution, and as well with the % of users of LLINs in the village population. Note-
worthy, for both species the random forest models predicted a significant linear increase in the
12 first months after the distribution, and a slowdown in the increase from the 12th to the 21th
month after LLIN distribution. Regarding the others target-site mutations (kdr-w or ace-1), the
likelihood of collecting a host-seeking Anopheles carrying them did not increase with the time
since LLIN distribution.

Associations with variables encoding crops. No statistically significant association was found
between the likelihood of collecting a host-seeking Anopheles carrying any of the target-site
mutations and the % of landscape occupied by crop fields (cotton, rice, or other crops) in a 2
km-wide buffer area around the collection point.

Associations with variables encoding micro-climate at the time (hour) of foraging activity. Pos-
itive associations were found between the likelihood of collecting a host-seeking An. coluzzii
carrying the kdr-e mutation and atmospheric pressure, humidity and temperature at the time
of collection, as well as that of collecting an An. gambiae s.s. carrying the kdr-e mutation and
atmospheric pressure at the time of collection. A negative association was found between the
likelihood of collecting a host-seeking An. gambiae s.s. carrying the kdr-w mutation and humidity
at the time of collection.

Associations with variables encoding meteorological conditions during the month preceding col-
lection. Negative associations were found between the likelihood of collecting a host-seeking:
An. coluzzii carrying the kdr-w mutation and cumulated rainfall, An. gambiae s.s. carrying the kdr-w
mutation and both cum. rainfall and mean diurnal temperatures, An. coluzzii carrying the kdr-e
mutation and mean nocturnal temperatures, An. gambiae s.s. carrying ace-1 mutation and both
mean diurnal and nocturnal temperatures during the month preceding collection. A positive as-
sociation was found between the likelihood of collecting a host-seeking An. coluzzii carrying the
kdr-e mutation and cumulated rainfall.

Association with variables encoding genotype for other insecticide resistance target-site muta-
tions. The likelihood of collecting a host-seeking An. gambiae s.s. or An. coluzzii carrying a resistant
kdr-e allele was negatively associated with the number of mutated kdr-w alleles in the collected
mosquito. Conversely, the likelihood of collecting a host-seeking An. gambiae s.s. carrying a re-
sistant Ace-1 allele was higher in individuals also carrying kdr-w mutated alleles.

2.5. Associations between behavioural resistance phenotypes and environmental variables

For the remaining nine models of behavioural resistance phenotypes, Figure 4 shows the
PDPs of the independent variables retained in the modeling workflow. For the GLMMs, numeri-
cal values of odd-ratios, 95% confidence intervals and p-values are provided in Additional file 4.

Associations with variables encoding vector control interventions. No statistically significant
association was found between the likelihood of collecting an exophagic, early- or late- biting
Anopheles and neither the type of VC intervention (LLIN + complementary tool compared to
LLIN only) nor the time since LLIN distribution within the time frame of the study.
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Figure 4 (see caption below)
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Figure 4 - continued (see caption below)
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Figure 4 - (Previous page) Results of the statistical models of probability of behavioural
resistance phenotypes in the malaria vectors. For each model, the top plot shows the
explanatory power (R?) and predictive power (AUC) of respectively the GLMM and the
RF model. The other plots show the predicted probabilities of collecting a resistant vector
across available values of each independent variable, holding everything else in the model
equal (yellow line: probability predicted by the GLMM model ; green line: probability
predicted by the RF model). Non-significant variables (p-value > 0.05) are not presented.
Short methodological reminder: vector control variables were forced-in, and the other
variables were retained only if they improved the AIC of the model. In addition, other
variables were plotted only if their p-value was < 0.05. For the RF models, the predicted
probability (i.e. green line) was plotted only if the AUC of the model was > 0.6 and the
range of predicted probabilities of resistance for the considered variable was > 0.05. In
these plots, the y-axis represents the probability for a mosquito to be resistant. The red
horizontal dashed line represents the overall rate of resistance (see Table 2). The p-values
of the GLMM s are indicated through the stars * : p < 0.05, ** p < 0.01, *** p < 0.001. The
coloured squared at the bottom-right represents the ‘family‘ the variable belongs to (one
color for each family, see legend inside the light green frame placed on the left hand side
of the plot). The grey squares distributed along the x-axis at the top and bottom of each
plot represent the measured values available in the data (the darker the square, the more
the number of observations) (NB: for atmospheric pressure, the values in the x-axis are
centered around the mean).

Associations with variables encoding host availability. In the Korhogo area (IC), the likelihood
of exophagy of An. gambiae s.s. slightly increased with the % of the population under an LLIN at
the time of collection. The likelihood of early-biting of An. gambiae s.s. increased with the % of
users of LLINs in the village population. In the Diébougou (BF) area, the likelihood of exophagy
of An. funestus increased with the % of the population under an LLIN at the time of collection.

Associations with variables encoding landscape. In the Korhogo area (IC), the likelihood of ex-
ophagy of An. funestus increased with increasing distance to the edge of the village. The likeli-
hood of early-biting of An. gambiae s.s. decreased with increasing distance to the edge of the
village. In the Diébougou (BF) area, the likelihood of exophagy of An. coluzzii increased with in-
creasing distance to the nearest stream.

Associations with variables encoding micro-climate at the time (hour) of foraging activity. In the
Korhogo area (IC), the likelihood of exophagy of An. gambiae s.s. decreased when humidity in-
doors increased and when humidity got relatively higher indoors compared to outdoors. In ad-
dition, it increased when luminosity got relatively higher indoors compared to outdoors. In the
Diébougou area (BF), the likelihood of exophagy of An. funestus increased when temperature or
humidity got relatively higher indoors compared to outdoors.

Associations with variables encoding meteorological conditions on the day or night of collection.
Positive associations were found between the likelihood of: exophagy of An. coluzzii and rainfall
(BF area), early-biting of An. gambiae s.s. and temperature (IC area), late-biting of An. gambiae s.s.
and both rainfall and temperature (IC area), late-biting of An. funestus and temperature (BF area).
A negative association was found between the likelihood of exophagy of An. gambiae s.s. and
rainfall (IC area).

Associations with variables encoding meteorological conditions during the month preceding col-
lection. Negative associations were found between the likelihood of: exophagy of An. gambiae
s.s. and both cumulated rainfall and mean diurnal temperatures (IC area), exophagy of An. coluzzii
and mean nocturnal temperatures (BF area), late biting of An. gambiae s.s. and mean nocturnal
temperature (IC area). A positive association was found between the likelihood of exophagy of

Peer Community Journal, Vol. 4 (2024), article e11 https://doi.org/10.24072/pcjournal.367



https://doi.org/10.24072/pcjournal.367

22 Paul Taconet et al.

An. gambiae s.s. and mean nocturnal temperatures (BF area).

Associations with variables encoding physiological resistances. As a reminder, the genotypes for
the target-site mutations of individual collected mosquitoes were introduced as independent
variables in the behavioural resistance phenotypes models in the Diébougou area (BF). Here,
these variables were not retained in the variable selection procedure, i.e. no statistically signif-
icant association was found between any of the behavioural resistance phenotypes indicators
and kdr-w, kdr-e, or ace-1 mutations.

2.6. Explanatory and predictive power of the statistical models

Additional figure 5 provides boxplots of observed resistance status vs. predicted probabilities
by each model.

Exophagy. For the models of exophagy, the explanatory power of the GLMM models was:
‘very weak’ for An. gambiae s.s. in the Korhogo area (IC), ‘moderate’ for An. funestus in the Ko-
rhogo area (IC), weak’ for An. funestus, An. coluzzii and An. gambiae s.s. in the Diébougou area
(BF). The predictive power of the RF models of exophagy was ‘very weak’ for all the species in
the two study areas.

Early and late biting. For the models of early biting, the explanatory power of the GLMM
models was ‘weak’ for both An. gambiae s.s. and An. funestus in the Korhogo area (IC). For the
models of late biting, the explanatory power of the GLMM was ‘weak’ for An. gambiae s.s. in the
Korhogo area (IC) and ‘substantial’ for An. funestus in the Diébougou area (BF). The predictive
power of the RF models of early and late biting was ‘very weak’ for all species in the two study
areas, except for the model of late biting of An. gambiae s.s. in the Korhogo area (IC) for which it
was ‘weak.

Kdr-w, kdr-e, ace-1. For the kdr-w mutation in the Diébougou area (BF), the explanatory power
of the GLMM models was ‘weak’ for An. coluzzii and ‘substantial’ for An. gambiae s.s. ; and the
predictive power of the RF models was ‘weak’ for An. coluzzii and ‘moderate’ for An. gambiae s.s.
For the kdr-e mutation in the Diébougou area (BF), the explanatory power of the GLMM models
was ‘substantial’ for both An. coluzzii and An. gambiae s.s. ; and the predictive power of the RF
models was ‘moderate’ for An. coluzzii and ‘weak’ for An. gambiae s.s. For the ace-1 mutation
in the Diébougou area (BF), the explanatory power of the GLMM models was ‘weak’ for An.
gambiae s.s. ; and the predictive power of the RF model was ‘very weak'.

3. Discussion

In this data mining exercice, we studied indicators of physiological and behavioural resistance
phenotypes of several malaria vectors in rural West-Africa at a fine spatial scale (approximately
the extent of a health district), using longitudinal data collected in two areas belonging to two
different countries, respectively 27 and 28 villages per area, and across 1.25 to 1.5 year. The
objectives were to describe the spatial and temporal heterogeneity of vector resistance, and
to better understand their drivers, at scales that are consistent with operational action. To our
knowledge, our work is the first studying the heterogeneity of vector resistance at such fine
spatial scale with such a large dataset of mosquito collection and potential drivers of resistance.
In this discussion, we first use our results to provide elements of answers to the questions raised
in introduction of this article. We then discuss some implications of the findings for the manage-
ment of vector resistance in our areas.

3.1. Physiological resistances: potential drivers and spatiotemporal heterogeneity

The main drivers of physiological resistances are insecticides, used either in public health
for vector control or in agriculture (see Introduction). In this study, we found that the probabil-
ity of collecting a host-seeking An. gambiae s.s. or An. coluzzii in the Diébougou area carrying
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a kdr-e resistant allele significantly increased with both the time since LLIN distribution (up to
12 months after distribution) and the % of LLIN users in the village population. PermaNet 2.0
LLINs have been shown to retain their insecticidal efficacy under field conditions for at least one
year after distribution (Djénontin et al., 2023; Kayedi et al., 2017; Kilian et al., 2008; Tan et al.,
2016), exerting high selective pressure on vectors over this period at least. In contrast, there was
no significant association between any of the target-site mutations and any of the crop-related
variable. Altogether, this could indicate that within the spatiotemporal frame of our study, the
selection of the kdr-e mutation in the vector population was more likely due to insecticides
used in public health than pesticides used in agriculture. In Burkina Faso, pesticides are widely
used for cotton and sugar cane (Ouédraogo et al., 2011), but only in lesser proportions in market
gardening and cereal production (maize and rice are the only cereals that are treated to a signif-
icant extent (MERSI et al., 2016)). Here, in the 2-km wide buffer zones around our collection
points crops occupied up to 40 % of the total land, but were mainly made of leguminous crops,
millet, sorghum, with cotton and rice being only marginally present. Hence, pesticides are likely
not much used (field surveys regarding the use of pesticides by the farmers could confirm this
hypothesis). This could explain the absence of association between target-site mutations and
the crops-related variables. Noteworthy, the fact that there was no increase in the probability
of collecting an An. gambiae s.I. carrying a kdr-e resistant allele 12 months post-LLIN distribution,
as indicated by the RF model, could be attributed to a potential decrease in LLIN insecticidal ef-
ficacy after this period (Tan et al., 2016), resulting in lower selection pressure. Finally, we noted
that the kdr-w and ace-1 mutations did not increase significantly with the time since LLIN distri-
bution. The absence of increase of the kdr-w mutation may be explained by its very high baseline
allelic frequencies ; while that of the ace-1 mutation may be explained by the type of insecticide
used to impregnate the LLINs - deltamethrin, which does not select the ace-1 mutation.

The statistical models captured many associations between the likelihood of collecting a
physiologically resistant Anopheles and the variables encoding weather, both during the month
preceding collection and at the hour of collection. These associations could traduce biological
costs/advantages associated with target-site mutations, both in terms of fitness and activity,
as found elsewhere for other mosquito species (Kliot and Ghanim, 2012). Regarding fitness, we
found that the likelihood of collecting a host-seeking mosquito (An. gambiae s.s. or An. coluzzii)
carrying a mutated allele, overall, decreased (to varying extents depending on the species and mu-
tation) when diurnal or noctural temperatures during the month preceding collection got higher,
i.e. in the hottest periods of the year (corresponding to ~ the months of March-April). Carrying
a kdr mutation might be associated with a decreased propensity to locate optimal temperatures,
potentially resulting in a decreased longevity, fecundity, or ovarian development rates (Foster
et al., 2003). Regarding activity, we observed that the likelihood of collecting a mosquito car-
rying a mutated allele (for the kdr-e mutation) decreased when atmospheric pressure, humidity,
or temperature at the hour of collection got lower; implying that mosquitoes carrying the kdr-
e mutation could be less active in colder or drier conditions, or when atmospheric pressure is
lower. Noteworthy, our results could also be interpreted in terms of fitness advantages instead
of fitness costs: for instance, some studies have highlighted fitness advantages (e.g. for longevity)
of the kdr-w mutation in An. gambiae s.I. in laboratory conditions (Alout et al., 2016; Adandé A.
Medjigbodo et al., 2021b).

We also found interactions between some target-site mutations. Indeed, as the kdr-e and
kdr-w are mutations of the same base pair, the allelic frequency of the kdr-e mutation was neg-
atively correlated with the allelic frequency of the kdr-w mutation in both An. gambiae s.s. and
An. coluzzii. We also found a positive relationship between the allelic frequencies of the Ace-1
and kdr-w mutations in An. gambiae s.s. This is consistent with laboratory observations in Culex
Quinquefasciatus and An. gambiae s.s. showing that the cost of the Ace-1 mutation is reduced in
presence of the kdr mutation (Assogba et al., 2014; Berticat et al., 2008; Adandé A Medjigbodo
et al., 2021a).
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Lastly, we observed that the allelic frequencies of the target-site mutations, within each vec-
tor species and for each mutation, were overall quite stable across the villages and seasons within
the spatiotemporal frame of the study. At larger spatial and temporal scales, physiological resis-
tances were found more heterogeneous (Moyes et al., 2020). In our study, such homogeneity
might be due to a relative homogeneity in space and time of the main determinants of physio-
logical resistance (access and use of insecticide-based vector control interventions). The quite
stable rates of physiological resistance throughout the seasons might traduce the fact that the
possible fitness costs/advantages are likely rather limited, within the range of meteorological
conditions in our area.

3.2. Behavioural resistance phenotypes: potential drivers and spatiotemporal heterogeneity

An important and pending question is the genetic (constitutive) or plastic (inducible) nature
of behavioural resistances (see Introduction). In this study, we found no statistically significant
association between any of the indicators of behavioural resistance phenotypes and neither the
time since LLIN distribution nor the VC tool implemented. There was hence no evidence of
growing frequencies of behavioural resistances (exophagy, early- and late-biting) in response to
vector control within the 1.25 to 1.5 years of this study, i.e. no clear indication of constitutive
resistance.

Nonetheless, comparison of the exophagic phenotype rates found here with those of pre-
vious studies in the same countries, suggests that there may still be a genetic component to
mosquito foraging behaviour. Indeed, the exophagy rates measured here tended to be higher
than those historically reported for these species. For example, a recent review of An. gambiae
s.l. biting behaviour from a range of African countries between 2000 and 2018 concluded that
during this time period, ~ 80% of the vectors bite occured indoor (all countries included) and
in particular ~ 75% in Burkina Faso (Sherrard-Smith et al., 2019) (hence respectively ~ 20% and
25 % outdoor). Here we measured substantially higher levels of exophagy: 44% (range ~ 18-56%)
in the Diébougou (BF) area and 56% (44-60%) in the Korhogo (IC) area. Other recent studies,
contemporaneous to ours, have found relatively high levels of exophagy for An. gambiae s.I. in
rural areas, e.g. 54% in southwestern Burkina Faso (Sanou et al., 2021) or 55% in Ivory Coast
(Assouho et al., 2020). Such high levels of outdoor biting, in comparison with past levels, suggest
that behavioural adaptations may be ongoing in the study areas, most probably in response to
the widespread and prolonged use of insecticide-based vector control tools.

We also found many statistically significant associations between the likelihood of collect-
ing a behaviourally resistant phenotype and the meteorological conditions during the month
preceding collection. This might indicate that these phenotypes could be induced by past envi-
ronmental conditions, acting at the adult or larval stage, or through paternal/maternal effect.
Such relationships between environmental condition at the larval stage and adult behaviour have
indeed been observed in other insects (Mller et al., 2016, and ref cited in).

The hypothesis of a hereditary component in the behaviour of malaria vectors (at least for
the biting hour) is supported by a recent study which has observed, for Anopheles arabiensis in
Tanzania, that F2 from early-biting FO (grandmothers) were - to some extent - more likely to bite
early than F2 from mid or late-biting FO (Govella et al., 2023). Under this hypothesis, the rela-
tionship between the prevalence of behaviourally resistant phenotypes and the meteorological
conditions during the month preceding collection could indicates a cost/advantage, at the adult,
larval or both stages, of their associated genotypes.

In our study, the absence of significant association between the probability of behavioural
resistances and insecticide-related variables might be due to the relatively short length of the
study (2 years). In a similar study conducted in another region of Burkina Faso over a two-year
period as well, researchers recorded, as we have, no changes in the biting behaviour of Anopheles
gambiae s.l., including early biting, exophagy, and exophily, throughout the duration of the study
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(Sanou et al., 2021). Although resistance phenotypes can emerge in this time frame (Moiroux
et al., 2012), a recent (almost) 4-years-study in Tanzania (Kreppel et al., 2020) detected shifts in
vector behaviour (i.e. increased rate of exophily for An. arabiensis and An. funestus) that could be
obscured in shorter-term surveys, in agreement with the hypothesis that mosquito behaviours
are likely complex multigenic traits (Main et al., 2016) and might therefore respond slowly to
selection (at least, slower than target-site mutations, which are linked to single genes and may
hence respond rapidly and efficiently to selection). Anyhow, the results of these various longi-
tudinal studies suggest that long-term monitoring of vector behaviour (> 2 years), particularly
in areas with a long history of use of insecticides in public health, is critical to better under-
stand the biological mechanisms underlying behavioural resistances, to potentially assess their
development rate, and more broadly to assess residual malaria transmission risk (Durnez and
Coosemans, 2013; Kreppel et al., 2020; Sanou et al., 2021).

Weather can impact the fithess of possible genotypes associated with behavioural resistant
phenotypes, but may also directly influence the time and location of foraging activity (see Intro-
duction for more details). Here, we found many associations between mosquito host-seeking
behaviour and variables representing meteorological conditions on the day or at the hour of
collection. For instance, the probability for an An. gambiae s.s. to be collected outdoor in the
Korhogo area increased when the air indoor was dry, or when the air outdoor became relatively
more humid than indoor. Likewise, in the Diébougou area, the probability for an An. funestus
to be collected outdoor increased when the air outdoor became relatively cooler than indoor.
These observations are consistent with the hypothesis of mosquitoes shifting from indoor to
outdoor host-seeking in case of desiccation-related mortality risk indoors, as observed and dis-
cussed elsewhere (Kessler and Guerin, 2008; Kreppel et al., 2020; Ngowo et al., 2017). The mete-
orological conditions seemed to cause not only spatial, but also temporal shifts in host-seeking
activity. For instance, we found that the probability of collecting a late-biting An. gambiae s.s.
in the Korhogo area increased when the noctural temperature increased. Several associations
also suggest that some malaria vectors may modify their behaviour in response to environmen-
tal variation that reduces host availability, as hypothesized elsewhere (Durnez and Coosemans,
2013). For instance, the likelihood of collecting an An. gambiae s.s. (in the Korhogo area) or an
An. funestus (in the BF area) outdoor increased at hours when people were protected by their
LLINs. Likewise, the likelihood of collecting an early-biting An. gambiae s.s. in the Korhogo area
increased when the % of LLIN users in the village increased. Altogether, all these associations
suggest that in our study areas mosquito foraging behaviour is driven - to a certain extent -
by environmental conditions at the time of foraging activity, i.e. that vectors likely modify their
time or place of biting according to climatic conditions or host availability. The many associations
that were captured here in field conditions could be further tested experimentally, to quantify
their effect more precisely and validate the underlying biological hypothesis.

Although many significant associations between environmental parameters and foraging be-
haviours have been captured by the models, their explanatory and predictive powers were over-
all weak. A low explanatory power can indicate either i) that variations in the dependent variable
(here, individual vector resistance) are only marginally caused by the independent variables or ii)
that the statistical model does not capture properly the true nature of the underlying relation-
ships between the studied effect and its drivers (Karpatne et al., 2017) (e.g. a linear regression
cannot, by definition, capture non-linear relationships that might exist in nature). Here, we min-
imized the risk of omitting important, complex associations by using, complementarily to the
binomial regression model, a machine-learning model (namely a random forest) that is inher-
ently able to capture complex patterns contained in the data if any (e.g. non-linear relationships,
interactions) (Breiman, 2001a). Still, the models had low predictive powers. Altogether, these re-
sults indicate that very likely, despite the amount, granularity and diversity of potential factors
measured and introduced in the models, most of the factors driving the individual host-seeking
behaviours of the mosquitoes were not introduced in the models. Another possibility could be
that some of our independent variables did not represent the actual “reality” in the field (e.g. the
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distance to the nearest stream is not necessary an ideal proxy for the distance to the breeding
site). Nevertheless, since we used a wide range of variables encoding the environmental condi-
tions at the time of foraging activity, we can hypothesize that within the spatiotemporal frame
of the study, mosquito foraging behaviour was only marginally driven by environmental varia-
tions. This leaves the floor to other factors, like genetics (see above), learning, or randomness.

To test whether physiological resistance impacts the behaviour of host-seeking mosquitoes,
we introduced in the behaviour resistance models of An. coluzzii and An. gambiae s.s. in the
Diébougou area two variables encoding the genotypes for respectively the kdr-w and kdr-e mu-
tations. No statistically significant association was found. In other words, we could not find, in
the field, a behavioural phenotype (among those studied, i.e. exophagy, early- and late-biting)
associated with a genotype for one of the target-site mutations. The only study, to our knowl-
edge, having investigated the relationship between the kdr mutation and biting time or location
in the field has also reported no statistically significant association between these two mecha-
nisms of resistance to insecticide (Djénontin et al., 2021). Noteworthy, in our study, there was
few variabilities in the genotypes of the collected mosquitoes (i.e. few homozygote susceptible
mosquitoes captured, particularly for the kdr-w mutation), making it unfavorable to detect asso-
cations between physiological and behavioural resistances. In the Korhogo area, such analysis
could not be performed because physiological resistance data was not available at the individual
mosquito level.

Finally, we observed that the behavioural resistance phenotypes rates for each vector species
in each health district were, overall, relatively homogeneous across the villages and seasons
within the spatiotemporal frame of the study (as for physiological resistances). This could mean
that the overall dynamics of behavioural resistance occur at broader spatial and temporal scales
than those of our study. At larger scales (i.e. among countries and across years in Africa), ex-
ophagy rates of Anopheles mosquitoes seem, actually, to be more variable (Sherrard-Smith et al.,
2019).

3.3. Implications of the findings for the management of vector resistance in the study areas

Long-lasting insecticidal nets have undoubtedly played a major role in reducing malaria cases
throughout Africa, thanks both to their barrier and killing effects. More locally, we highlighted
the efficacy of their barrier role in the Diébougou area by showing that, for their users, they pre-
vented more than 80% of Anopheles bite exposure in the area (Soma et al., 2021). However, de-
spite these successes, many studies strongly suggest that the insecticides they are impregnated
with are responsible for the rise of physiological resistances in the malaria vectors susceptible
populations (Labbé et al., 2017; Riveron et al., 2018) (see Introduction). In our study, the positive
and significant associations found between the probability to collect a physiologically resistant
mosquito and LLIN-related variables (time since LLIN distribution, LLIN use rate) supports these
findings. We also highlighted that in response to an LLIN distribution, physiological resistance
seems to grow quite rapidly in a susceptible population. Besides the selection of physiological
resistance, comparison with historical data suggests that the vectors may also be progressively
changing their feeding behaviour to avoid the effects of the insecticides - although there was
no clear evidence of this in the strict context of this study. Such trends in vector resistance may
have an important epidemiological impact (Sherrard-Smith et al., 2019). Altogether, these results
show, if still necessary, that we urgently need to think more strategically about our use of insec-
ticides in public health tools in our areas. Switching to alternative insecticides, rotating or mixing
insecticides, using current or novel insecticides in vector control tools others than long-lasting
nets, entirely removing the insecticides from the vector control toolbox, or fostering the use
of insecticidal-free tools, are all actions that could be envisaged (Paaijmans and Huijben, 2020).
Burkina Faso has, actually, distributed LLINs that mixes pyrethroid with Piperonyl butoxide (PBO)
in the last universal LLIN distribution, in 2019.
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Here, we observed that both behavioural and physiological resistances of mosquitoes were
quite stable across the villages and seasons within the spatiotemporal frame of the study. This
contrasts with their biting rates, which was found, in another study (Taconet et al., 2021), highly
variable across the villages, seasons, and amongst the species. This calls for distinct spatio-
temporal management of interventions targeted at reducing human-vector contact and reducing
resistance selection (both essential) in the field. While the former should be highly locally tai-
lored (i.e. specific to each village and season) (Taconet et al., 2021), the latter, due to its stability
across villages and seasons, would probably not benefit significantly from being customized at
these spatio-temporal scales in our areas. In other words, while resistance management plans are
undoubtedly urgently needed, there is no compelling evidence - in the current state of the knowl-
edge - that they should be tailored at very fine scales (village, season). Noteworthy, mosquitoes
were collected during the dry season and at the beginning and end of the rainy season, but, for
logistical reasons, not at the peak of the rainy season (and therefore not at the likely peak of
mosquito abundance). It would be worth collecting mosquitoes at this season to confirm the
observed resistance rates.

Conclusions

In an attempt to better understand the drivers of the intensity and spatio-temporal hetero-
geneity of physiological (genotypes) and behavioural (phenotypes) resistance in malaria vectors,
at the scale of a rural health district over a period of 1.5 years, we have mainly (i) shown that
resistance (both physiological and behavioural) was quite homogeneous across the villages and
seasons at theses scales, and (ii) hypothesized that at these spatiotemporal scales, vector resis-
tance seemed to be only marginally driven by environmental factors other than those linked
to insecticide use in current vector control. Following the distribution of LLINs, the rapid wide-
spread of physiological resistance occurring in tandem with probable lower acting behavioural
adaptations, are very likely contributing to the erosion of insecticide efficacy on malaria vectors.
We believe that without waiting to understand precisely the underlying drivers, mechanisms, and
rates of selection of resistances, the malaria control community needs to think very strategically
about the use and usefulness of current and novel insecticide-based control interventions.
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