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Résumé - Cette étude porte sur un système de distribution multi-échelon avec retour inspirés de la chaı̂ne d’approvisionnement en
boucle fermée des bouteilles de gaz de Air Liquide. La structure de distribution multi-échelons et la complexité induite par les retours
de bouteilles renforcent les difficultés de la gestion des stocks dans cette chaı̂ne d’approvisionnement. Notre objectif est de trouver
une politique optimale de gestion périodique des stocks globalement plutôt que localement optimisée dans chaque usine de remplissage
comme c’est fait par l’entreprise. La malédiction de la dimensionnalité induite par les ventes perdues de demandes clients insatisfaites
disqualifie la programmation stochastique pour résoudre notre problème. Par conséquent, nous utilisons une approche de simulation-
optimisation. Notre analyse numérique comparant le coût total moyen des stocks obtenu par l’approche de simulation-optimisation par
rapport à l’heuristique locale appliquée par l’entreprise montre que les écarts entre les coûts de chaque méthode augmentent lorsque la
variance de la demande augmente. Cet écart atteint 11% lorsque la variance de la demande est élevée. Nous montrons également que les
écarts entre les coûts totaux moyens des stocks de différentes méthodes augmentent lorsque la variance de la distribution des échanges
inégaux de bouteilles avec les clients augmente. Il atteint 13% lorsque cette variance est élevée. Ces résultats illustrent le gain que nous
pouvons attendre lorsque nous optimisons les politiques de gestion périodique des stocks globalement plutôt que localement dans un
système de distribution à plusieurs échelons. Ils mettent l’accent sur les impacts sur le coût des stocks de la relation entre la demande
satisfaite et les bouteilles retournées.
Mots clés - Chaı̂ne d’approvisionnement en boucle fermée, gestion multi-échelon des stocks, système de distribution, simulation-
optimisation.

Abstract - This study focuses on a multi-echelon distribution system with returns inspired by the closed-loop supply chain of Air
Liquide gas cylinders. The multi-echelon distribution structure and the complexity brought by cylinder returns strengthen the inventory
control difficulties. We aim to find the optimal periodic review inventory control policies globally rather than locally optimized in each
filling plant as done by the company. The curse of dimensionality induced by lost sales of unsatisfied customer demands disqualifies
stochastic programming approaches. Therefore, we use a simulation-optimization approach. Our numerical analysis comparing the
average total inventory cost found by the simulation-optimization approach against the local heuristic applied by the company show that
the gaps between the cost of each method increase when demand variance increases. This gap reaches 11% when the demand variance
is higher. We also show that the average inventory costs increase when the unequal exchange cylinder distribution’s variance increases.
It reaches 13% when this variance is higher. Those results illustrate the gain we can expect when we optimize inventory control policies
globally rather than locally in a multi-echelon distribution system. They emphasize impacts on the inventory cost of the relations
between satisfied demand and returned cylinders.
Keywords - Closed-loop supply chain, multi-level inventory control, distribution system, simulation-optimisation.

1 INTRODUCTION

Reusable packaging represents a critical asset for companies (Breen,
2006), mainly when they are not interchangeable and cannot be re-
placed temporarily with generic low-cost alternatives. It is the case
for Air Liquide company which is specialised in producing and dis-
tributing industrial gases and providing services related to these gases.
These gases are used in various applications, particularly in healthcare
and industry, but also by individuals. Air Liquide uses three distribu-
tion channels to deliver its products: pipelines for the continuous sup-
ply of products in gaseous form to heavy industry, cryogenic tankers

for the supply of liquefied products in large quantities to manufactur-
ers and hospitals, and gas cylinders for the supply of smaller volume
to a wide range of customers like artisans. Air Liquide records 9,487
Million Euros of annual revenue in 2021 for Industrial Merchant ac-
tivities and uses 20 million cylinders in its closed-loop supply chain
of packaged gas cylinders. It represents 65% of the supply chain’s
overall cost.

From the company’s inventory manager’s point of view, setting
the inventory control policies in closed-loop systems of packaged gas
cylinders is challenging. Indeed, company managers reported difficul-
ties managing return flows representing operational challenges. How
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Figure 1: Air Liquide gas cylinder supply chain.

to determine the number of cylinders needed in the supply chain to en-
sure the quality of operations? How to reduce inventory in the supply
chain by optimizing inventory policy control in an integrated manner
instead of the local optimization used by the company? Indeed, each
filling plant optimized its inventory control policy locally based on
local demand and returned cylinders. They do not consider the multi-
echelon distribution structure of the overall supply chain.

In this paper, we focus on the supply chain for the delivery of gas
cylinders. Figure 1 shows the supply chain components: gas cylin-
der filling plants, distributors, hubs, and the testing center. The filling
plants are factories where empty cylinders are returned to be sorted,
refilled, and customers’ orders are picked. The distributors are shops
selling gas cylinders. Hubs are logistics platforms for storing and
managing gas cylinder supplies. The testing center is a critical compo-
nent necessary for repairing gas cylinders. Filling plants, Hubs, and
distributors are directly in contact with customers and receive their
daily orders. Therefore, they need an inventory of full gas cylinders
to ensure the target service level. The specificity of this supply chain
is that the filling plants must take back empty gas cylinders from cus-
tomers to refill and meet future demand. It is therefore a closed-loop
supply chain.

This supply chain consists of an upstream part, in which the test-
ing center is the essential component, where faulty cylinders detected
after sorting in the filling plants are repaired. In the downstream part,
cylinders are sorted and filled; orders are prepared and delivered to
customers by returning the empty cylinders needed for future fills. In
this downstream part, distributors and hubs need inventory to meet
customers’ demands and not fill gas cylinders. The company controls
the inventory of cylinders in the upstream and downstream parts of
the supply chain separately. The inventory control of cylinders in the
downstream part of the supply chain consists of setting replenishment
policies to ensure customer service levels. In contrast, inventory con-
trol in the upstream part focuses on replacing defective cylinders in the
downstream part without necessarily optimizing the level of service to
customers. By doing so, the company optimizes its inventory control
policy locally and in a decentralized way. We aim to integrate these
two parts of the supply chain to jointly determine the best inventory
control policy in a multi-echelon approach with cylinder returns.

At the customer ship out, we take back the empty cylinders and
give full gas cylinders. If this exchange of cylinders with the customer
is not guaranteed, we want to measure the impact on inventory needed
to ensure service levels. Additionally, the unsatisfied demand of a
given period is not back-ordered and is considered a lost sale.

The first contribution of this paper is the study of the performance
of inventory control policies in a complex closed-loop supply chain.
After building a discrete event simulation model of the supply chain,
we study the impact of the relation between satisfied customer de-

mands and returns on optimal inventory control policy.
The second contribution of the work is the optimization of the in-

ventory control policy of multi-echelon distribution systems with re-
turns and lost sales. We couple our closed-loop supply chain sim-
ulation model with an optimization module. Then, we optimize in
an integrated manner the inventory control policies in the closed-loop
supply chain. We compare our results against the results of the local
and decentralised optimization method used by the company.

The remainder of this paper is organized as follows: Section 2
deals with a brief analysis of the relevant literature on multi-echelon
inventory control with returns. Section 3 addresses demand modeling,
describes our problem, and recalls some underlying assumptions. Sec-
tion 4 focuses on modeling the problem and analyzing its dimension.
We build a discrete event simulation model of the closed-loop sup-
ply chain. Section 5 presents a simulation-optimization-based method
to find the optimal parameters for the echelon base stock policy. In
Section 6, we apply the simulation-optimization approach to demand
scenarios deduce from a real nominal product and compare the re-
sults with the company’s actual solutions. We analyze the impact of
the variability of the unequal exchange between the full cylinders de-
livered to the customer and the empty cylinders returned. In the last
section, we conclude and give some perspectives on future works.

2 RELATED WORKS IN THE LITERATURE

The literature on closed-loop supply chains divides products into three
categories (Gallego, 2010). Items for the Reusable Transport Items
class are not in direct contact with the final product, Reusable Product
Material class are in direct contact with the final product, and reusable
products. Gas cylinders considered in this work are reusable transport
materials.

The work of (DeCroix et al., 2005) addresses the problem of op-
timizing inventory control strategies in a multi-echelon serial system
with returns. In this work, considering returns leads to a possible neg-
ative net demand. This work is an extension of the work of (Clark
and Scarf, 1960), who pioneered the analysis of serial systems with
non-negative demand. (DeCroix et al., 2005) state that the base-stock
policy for a stationary problem with an infinite horizon is optimal un-
der the assumption of approximating the relationship between the in-
ventory position of a given level and the net inventory of the previous
level. (DeCroix, 2006) is also interested in serial systems with re-
manufacturing. They show that in such a system when dumps excess
inventory coming from customers at the most upstream level of the
serial system, the optimal policy is one with three parameters. The
first parameter is an order up-to-level inventory; the second is an or-
der less-to-level inventory triggering the disposed of excess inventory,
and the thirst parameter trigger recovery. When surplus cylinders are
dumped at an intermediate level, determining the optimal inventory
policy is more complex since it violates the most crucial property of
serial systems. Namely, in a multi-echelon serial system, the only link
between a level and its predecessor is the limitation of the inventory
position by the net inventory of the predecessor level. The decision
to dump a part of the inventory at an intermediate level of a multi-
echelon serial system becomes a second link between the levels.

Several literature reviews address the optimization of inventory
control policies in multi-echelon systems. One of the most recent is
(Kok et al., 2018), which proposes a typology for classifying stochas-
tic multi-echelon systems. The literature extensively studies multi-
echelon serial systems, and several robust results allow us to deter-
mine the optimal inventory control policy in different cases. Multi-
echelon assembly systems assimilate with serial multi-echelon sys-
tems and adopt his known results. For distribution systems, no results
allow assimilation with the serial system, which remains a challenge.

Works on the distribution system proposed by (Zipkin., 2000)



without returns and (Rong et al., 2017) focus on the case of demand
following Poisson distribution. (Rong et al., 2017) studies two fami-
lies of heuristics to find the optimal echelon base stock policy. The re-
cursive scheme optimal for serial stationary multi-echelon serial sys-
tems (DeCroix et al., 2005) is adapted in a heuristic that provides good
results.

Discrete event simulation widely models complex systems with
stochastic parameters. It allows efficient evaluation of system perfor-
mance against a set of pre-specified parameters. It is often coupled
with a method that generates relevant scenarios based on the stud-
ied critical parameters. Several works in the literature on inventory
control in the reverse supply chain use a discrete event simulation ap-
proach. It is notably the case with (Teunter et al., 2000), which uses
simulations to evaluate inventory control policies based on inventory
costs and product return rates. (Teunter and Vlachos, 2002) focuses on
the case where returned products are remanufactured before they are
used and evaluates the system’s performance as a function of demand
and return rate.

More advanced methods allow the generation of scenarios by in-
telligently exploring the space of experimental designs defined by the
critical parameters to optimize specific system performance criteria.
Meta-heuristic methods such as genetic algorithms often inspire opti-
mization methods. (Li et al., 2009) use such an approach to optimize
scheduling and inventory control policies in a system with remanufac-
turing. (Aras et al., 2006) coupled OpQuest with an arena-based sim-
ulation to determine the best parameters for inventory control in a sys-
tem with remanufacturing. (Zolfagharinia et al., 2014) used a method
that combines simulation and optimization to evaluate the target in-
ventory levels of a periodic review policy in a supply chain where
demand and returns vary over time and are modeled as a function of
product lifetime. They developed a metaheuristic based on the genetic
algorithm and compared it to OpQuest results.

Reviews of (Swisher et al., 2004) and (Fu et al., 2005) propose a
classification and analysis of papers that use an approach that com-
bines simulation and optimization.

In this work, we develop a discrete event simulation model built
on Simul8 coupled with OpQuest to determine the best order up-to-
level echelon inventories of the considered system. We study the case
of a cylinder’s gas supply chain of one testing center with two filling
plants. This system is modeled as a multi-echelon distribution system
with returns. Our problem integrates the complexity of a muti-echelon
distribution system without the assumption of Poisson distribution of
demand as in the works of (Rong et al., 2017) and (Zipkin., 2000). We
consider returns in such a multi-echelon distribution system contrary
to the work of (DeCroix et al., 2005) restricted to the serial multi-
echelon system with returns. Contrary to the works of (DeCroix et al.,
2005), which consider back-ordering of unsatisfied demand, all de-
mand not fulfilled in his period is lost. Moreover, returns are corre-
lated to the satisfied demand contrary to the independent assumptions
between demand and returns made in the work of (DeCroix et al.,
2005). With those features of our problem, it becomes tricky to use a
stochastic programming approach as in the work of (DeCroix, 2006)
because we cannot restrict the dimension of the state variables. Then,
the stochastic programming approach will conduct to the curse of di-
mensionality.

3 PROBLEM STATEMENT

3.1 Demand modeling

Demand modeling is key in considering customers’ demands and find-
ing the best inventory control policies. This modeling depends on the
consumption profile of the different products. In the literature, sev-
eral classifications deal with the different product categories accord-

ing to their demand profile. The well-known classification of (Synte-
tos et al., 2005) divides products into four categories: erratic, lumpy,
smooth, and intermittent. We consider a classification close to this
one and present products in four categories. Regular and irregular
represent categories of products with high order frequency and low
and high variability in order quantities, respectively. The sporadic and
slow-mover categories represent products with low order frequency
and more or less variability in order quantities. An extensive statisti-
cal study of the demand distribution for 481 products allows demand
modeling for the different categories. It shows that the normal dis-
tribution is suitable for regular and irregular products. At the same
time, the compound Poisson negative binomial distribution is robust
enough to capture product demand for all categories, including spo-
radic and slow-moving products. This study focuses on stationary
demand products modeled with normal distribution.

3.2 Model assumptions

This work aims to find the best inventory control policy for a distribu-
tion multi-echelon system of a single product with returns. The multi-
echelon system represents a supply chain’s gas cylinders consisting
of a testing center and two filling plants. We consider the following
assumptions:

• The planning horizon is finite,

• The demands for the different periods are independent of each
other and identically distributed. Indeed, our extensive statisti-
cal analysis of demand for 481 products allows us to confirm this
assumption.

• Unsatisfied demand at the end of the period is lost,

• We consider two inventory points in each filling plant, the in-
ventory of full cylinders (finished product) and empty cylinders
(semi-finished products). One inventory point at the testing center
represents the inventory of repaired or externally supplied empty
cylinders.

• Each inventory point has an unlimited capacity.

• Empty gas cylinders returned equal to full gas cylinders delivered
plus an uncertainty representing the difference between the num-
ber of full gas cylinders shipped to customers and the number of
gas cylinders returned. This uncertainty is a centered normal dis-
tribution.

3.3 Problem description: Closed-loop supply chain of
a filling center

Figure 2 represents a testing center and two filling plants and illus-
trates the studied system. In each filling plant, the process is identical.
The full cylinders inventory point holds the final product to meet cus-
tomer demand. Order picking and deliveries are processed to meet
customer demands. Empty cylinders collected from customer deliv-
eries return to the filling plant for sorting and refilling. Each period,
a portion of the defective or obsoleted cylinders are sorted out and
sent to the testing center. After the sorting process, the second inven-
tory point for empty cylinders receives the empty cylinders ready for
filling.

Repairing empty cylinders in the testing center goes through sev-
eral stages, mainly sorting, testing, painting, and assembly of new
components. The testing process discharges some cylinders because
they are too defective. An external supplier can also supply empty
cylinders to the testing center.

We model the considered system as a multi-echelon distribution
system with returns, as shown in figure 3.

The inventory point of full cylinders is stage 1. Stage 2 is the
empty cylinders inventory point where returns from customers occur.



Figure 2: System with a testing center and two filling plants.

Figure 3: Distribution multi-echelon system with returns: P/D/R/U/S/T =
Picking/ Delivery/ Return/ unloading /sorting/Testing and P/D/R/U/S = Pick-
ing/ Delivery/ Return/ Unloading /Sorting

Each plant has its own stage 1 and 2. Stage 3 is the inventory point
at the testing center, and it is the predecessor of stage 2 in each filling
plant. After the recovery process in the testing center, the inventory
point at the testing center receives returned cylinders. That inventory
point also receives new cylinders coming from an external supplier.

4 MODEL FORMULATION AND DIMENSIONAL
ANALYSIS

We use the following notations for the problem formulation:

• L f , Lrus and Lpd are respectively the lead time of the filling, the
lead time of the truck return, unloading and sorting of cylinders,
and the lead time of the picking and delivery.

• Lt and La are the lead time of the testing and the lead time for an
external supply of empty cylinders to the testing center.

• h f , he and ha are respectively the holding cost of full cylinders
(stage 1), the holding cost of empty cylinders (stage 2), and the
holding cost of empty cylinders in the testing center(stage 3).

• hi
j are the echelon holding costs at stage j = 1,2,3. hi

1 = h f ,
hi

2 = he −h f , h3 = ha −he

• ca is the unit cost per ordered cylinders to the testing.

• β is the targeted customer service level. We consider the fill rate
to measure the customer service level. It is the ratio between the
satisfied demand and the overall demand of customers.

• ξ: proportion of the discharged cylinders after the sorting. It is the

proportion of cylinders not compliant with the filling and sent to
the testing center after the sorting.

• Tt is the replenishment period of empty cylinders in the testing
center,

• η: uncertainty on the exchanged cylinders. It represents the daily
distribution of the gap between the delivered quantities and the
number of empty cylinders returned by customers.

• Di(t): demand of product at period t. We assume stationary de-
mand, identical and independently distributed.

We consider the following sequence of events: At the beginning of
each period, each inventory point receives the quantity previously or-
dered and the returned cylinders. We observe the inventory positions
and decide to place new orders. The demand for the period occurs,
and the net inventories at the end of the period allow us to determine
the total inventory cost. In the inventory points for empty cylinders in
filling plants, we disposed of some cylinders at the end of each period
if there were too many cylinders compared to the required number.
The external supplier receives his orders from the testing center only
after each Tt period. Then, we want to find the optimal inventory con-
trol policies which allow deciding the order quantity to place in each
plant.

4.1 State variable and dimensional analysis

The variables are:
• X̂i(t) and Xi(t) are respectively the echelon net inventory at stage

1 at time t in plant i and the echelon inventory-transit position at
stage 1 at time t in plant i (full cylinders in plant i).

• Yi(t) and Yi(t) are, respectively, the echelon net inventory at stage
2 at time t in plant i and the echelon inventory-transit position at
stage 2 at time t in plant i (overall cylinders in filling plant i).

• Ẑ(t) and Z(t) are respectively the echelon net inventory at stage
3 at time t and the echelon inventory-transit position at stage 3 at
time t (overall cylinders).

• D̃i(t) is the delivered cylinders at period t to the plant i’customers.

• Qi(t) is the ordered quantity of full cylinders in plant i at the be-
ginning of the period t.

• Oi(t) is the ordered quantity of empty cylinders in plant i at the
beginning of the period t to the testing center.

• ωi(t) is the disposed quantity of empty cylinders in plant i at the
end of the period t.

• U(t) is the ordered quantity of new empty cylinders by the testing
center at the beginning of the period t to an external supplier.

An inventory control policy specifies the quantity to order at
all times. Note Πd the set periodic review policies. When
the π policy is implemented and the initial stock is (xi,yi,z),
note v(π,(xi,yi,z)) the average expected cost over the horizon
[0,H] We then have: v(π,(xi,yi,z)) = 1

H .E
[

∑
H−1
t=0 h3Ẑ(t)+ caU(t)+

∑
i

[
hi

1X̂i(t)+hi
2Ŷi(t)

]
|π,(Xi(0),Yi(0),Z(0)) = (xi,yi,z)

]

The objective is to find the optimal policy π∗ which minimizes
the average expected cost, among the set of dynamic periodic review
policies:

v∗(xi,yi,z) = min
π∈Πd

v(π,(xi,yi,z))

The considered system is also subjected to some constraints. The
lost sales assumption impacts the inventory dynamic of full cylinders
in each filling plant. The inventory position of full cylinders (echelon
1) in each filling plant is always positive. The second harder constraint
is related to the satisfaction of customer service level. The fill rate ser-
vice level equal to the satisfied demand divided by overall demand on



the horizon must be greater or equal to β. The other constraints are
the classical constraints in multi-echelon inventory systems bounding
each echelon’s inventory position by its predecessor echelon’s net in-
ventory.

The state of the system a period t is
(x̂i(t),si,1(t), ŷi(t), ẑ(t),si,2(t),s3(t), d̃i(t)) where si,1(t) =
(qi(t − τ))τ∈{1...L f −1} , si,2(t) = (oi(t − τ))τ∈{0...Lt−1}, s3(t) =

(u(t − τ))τ∈{0...La−1} and d̃i(t) = (d̃i(t − τ))τ∈{0...Lpd+Lrus+Lt−1}. The
state dimension is 2L f + 2Lt + La + 2(Lpd + Lrus + Lt)+ 3, and it is
too difficult to reduce due to the lost-sale assumption. So it becomes
complicated to solve this problem with stochastic programming
approaches. We will then use the simulation optimization technique.

4.2 Discrete event simulation model of the distribution
system

Discrete event simulation commonly allows the modeling of com-
plex systems that may contain stochastic parameters. It is suitable
for systems where a list of events that occur at specific points in time
describes the dynamics of state variables. The scheme in Figure 2
describes the flow of cylinders between filling plants and the testing
centers.

The parameters for inventory, ordering costs, and the lead times of
the different activities are deterministic input parameters of the simu-
lation model.

The leading output performance indicators of the system are the
customer service rate at each plant (IFR) and the average total inven-
tory cost. The IFR is the ratio between the quantity of demand satis-
fied over the horizon and the total quantity demanded by customers.
The simulation model aims to evaluate an inventory control policy for
the multi-echelon distribution system under consideration.

We used Simul8 software to create the model. Due to the ”stochas-
tic” inputs, collecting stable and unbiased results requires the adjust-
ment of several parameters. The warm-up period is one of those pa-
rameters. It is the period at the beginning of the simulation used to
reduce the initialization bias of the system state variables. To deter-
mine this parameter, we used the method of (White, 1997) to choose
the duration that minimizes the amplitude of the confidence interval
of a performance measurement of the system. The warm-up period is
taken as the duration at the beginning of the simulations to minimize
the standard error of indicator’s measures.

warm up = arg min
0≤d<n

n

∑
i=d+1

[Yi − Ȳn( j)
n−d

]2

where n the numbers of observations of the performance measure, Yi
is the ith observed measure and Ȳn is the mean of all the observations.

The warm-up time is zero by choosing the average total inventory
cost as the performance measure (see Figure 4). It means that our ini-
tialization assumption setting the echelon inventory with the echelon
up-to-level inventory has no impact on the system’s performance.

The second parameter to determine is the duration of results’ col-
lection necessary for stable results. Several experiments of duration
allowed us to observe that a simulation horizon from 1000 units of
time units gives stable performance measures, in particular, customer
service rate and the average inventory cost (see figure 4 and 6). The
simulation model allows us to measure several performance indica-
tors. We mainly track the Echelon inventory position (see Figure 5),
describing the system’s state and allowing us to determine the num-
ber of cylinders to order depending on the inventory control policy
used. We implemented rules to evaluate the performance of the ech-
elon base-stock policies. Thus, as input parameters, we have si,1, si,2
with i = 1,2 and s3 representing the echelon order up-to-level inven-
tory of the echelon in plant i and in the testing center. For given values
of these parameters, we can evaluate the customer service rate of each

Figure 4: Warm up period analysis: average inventory cost and standard error
regarding warm up period

Figure 5: Echelon inventory position and on hand inventory at the testing
center

filling plant, the lost sales (see Figure 6), and the average total inven-
tory cost (see Figure 4).

Figure 6: Lost sale and customer service level in the filling plants

To validate our simulation model, we performed a sensitivity anal-
ysis of the critical stochastic parameters, customer demand, and the
distribution of unequally exchanged cylinders η. We examined the
impact of varying more or less 10% of these stochastic parameters on
the performance indicators. As shown in the table 1, the sensitivity of
a slight variation in the distribution of unequally exchanged cylinders
on the customer’s service rate and average inventory cost is less than
1%. The sensitivity of demand to average inventory cost is also less
than 1%, and it is more significant at customer service levels (2.68%).
Indeed, increasing demand without changing the echelon order up-to-
level inventory leads to decreased service rates.

The following section uses the simulation model to determine the
optimal echelon base order up to level inventories to minimize the
average total inventory costs while maintaining a target service level.



Table 1: Sensitivity analysis of demand and unequal exchange’ cylinders
Demand sensitivity analysis

Base scenario scenario 1
(Base -10%)

scenario 2
(Base + 10%) Sensitivity

std exchange 2 2 2
IFR plant 1 99,76% 99,88% 97,58% 2,31%
IFR plant 2 99,74% 99,91% 97,05% 2,86%
Average inventory cost 800,63 763,61 756,27 0,96%

Exchange sensitivity analysis

Base scenario scenario 1
(Base -10%)

scenario 2
(Base + 10%) Sensitivity

std exchange 2 1,8 2,2
IFR plant 1 99,92% 99,92% 99,93% 0,01%
IFR plant 2 99,91% 99,89% 99,89% 0,00%
Average inventory cost 705,70 703,05 709,97 0,98%

5 A HYBRID SIMULATION OPTIMIZATION BASED
METHOD

The echelon base stock policy is optimal for multi-echelon serial sys-
tems, as (Clark and Scarf, 1960) shows. Furthermore, the company
uses a periodical review inventory control policy that is easy to im-
plement. The review period is given in the company, and the problem
is restricted to calculating the optimal up-to-level inventory to satisfy
service level constraints. Therefore, we will determine the optimal
up-to-level inventory of an echelon base stock policy for our multi-
echelon distribution system with returns. Let denote by s∗i,1, s∗i,2, s∗3
the optimal parameters of the echelon base stock policy of the various
filling plants and testing centers. First, we determine the up-to-level
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Figure 7: Methodology to calculate echelon base stock up-to- level parame-
ters.

inventory of the first echelon of each filling plant s∗i,1. Accordingly,
we compute the safety stock in the case of a periodic control policy
with one unit of the period’ review. We use the fill rate β = 98% as a
targeted service level. Then, we set the simulation parameters, partic-
ularly the demand and the variance of the distribution η representing
the unequally exchanged cylinders. We are coupling the simulation
model built on Simul8 with the OpQuest optimization engine to deter-
mine the best echelon base stock of stages 2 and 3. In the optimization
module, we fix that initial inventories are equal to the echelon up-to-
level inventories. Then, we add constraints ensuring that the order
up-to-level echelon inventory of a given stage is always lower than
the order up-to-level echelon inventory of its predecessor (s∗i,1 ≤ s∗i,2,
s∗i,2 ≤ s∗3). With Opquest, we found the best up-to-level inventories for
echelons 2 and 3 by coupling simulation and optimization; then, we
ended with a local descent to reduce the average total inventory cost
as much as possible.

6 RESULTS AND DISCUSSION

We consider a heuristic implemented in the company calculating the
inventory target of each plant separately. Each plant is represented as a
two-echelon serial system. Each two-echelon serial system is then de-
composed into two single-echelon systems. The first one corresponds
to echelon 1 with full cylinders alone, assuming empty cylinders are
always available. The second system corresponds to echelon 2 and
is defined as a single echelon system where a distribution of unequal
exchange of cylinders with customers modifies the demand. The lead
time of this second system is the cumulated lead time of all the activ-
ities on the observable part of the closed loop of each plant.

In the company, each filling plant receives cylinders sent to the
testing center after a duration of Lt . During the reparation at the testing
center, a proportion γ (5% ) of cylinders is scrapped. Periodically,
for each Tt times unit (60 times unit), each plant places an external
order to complete the echelon 2 inventory position at the up-to-level
of echelon 2.

The testing center centralizes the order placed by all plants and
places a unique command to the external supplier. When the testing
center receives the command, he sends to each plant the quantity they
ordered. In actual practice, the testing center does not hold inventory.
He repairs cylinders, sends them back immediately after, centralizes
external orders placed by plants, and sends them directly to plants
when orders arrive.

We apply our methodology to a nominal product with demand fol-
lowing a normal distribution, and the distribution η has normal cen-
tered distribution. The lead time parameters are L f = 1 time unit,
Lrus = 1 time unit, Lpd = 1 time unit, Lt = 15 time units and La =

20 time units. The echelon holding cost are hi
1 = 3 , hi

2 = 1, h3 = 1.
The unit cost of external ordered cylinders to the testing is ca = 10.
The targeted customer service level is β = 98%. The horizon planning
is H = 2000 time units.

To determine order up to level parameters of echelon 2 and 3, we
allow 15 min of OpQuest’s running time for each demand and unequal
exchange scenario.

Table 2 presents results given by our approach coupling simulation
and optimization and compares them against solutions proposed by
actual heuristics of the company. IFR1 and IFR2 are the service rate
of each filling plant calculated by simulation. Cost heur (cost sim)
is the average total inventory cost of the policy found with com-
pany heuristic (simulation optimization approach), and gap is equal
to (cost sim – Cost heur)

Cost heur .
In the numerical comparison, we consider 6 demand scenarios de-

duced from a real nominal product with a regular demand profile fol-
lowing a normal distribution with a mean mD equal to 60.94. To define
each considered demand scenario, we vary the variance parameter σD
between 0, 4, 8, 12, 16, and 20. For each demand scenario we con-
sider different cylinder returns scenarios by varying the parameters ση

between 0, 2, 4, 6, 8, and 10. Customers returned the same amount of
cylinders they received in the scenario with ση equal to 0. Under the
assumptions of equivalent exchange (ση = 0), the average total inven-
tory cost of the centralized inventory control policy is always lower
than that of the decentralized inventory policy applied in the com-
pany. The gap between those average total inventory cost increase
when variability (σD) of the demand increase (see Figure 8). That
equals 2.12% when demand is constant and reaches 11.8% when de-
mand variance is 20. We observe the same trend when customer gas
cylinder returns are not equivalent to the quantity delivered (ση > 0).
In a centralized and decentralized inventory policy control, the aver-
age total inventory cost increase when the demand variant increase.
The gaps between those inventories’ average total inventory cost in-
crease when demand variance increases (see figure 9).

When the demand of each filling plant is constant (demand sce-
nario 1), the average total inventory cost increases when the variance



Table 2: Comparison of results of actual heuristic against solution find results founded with simulation optimization method.

Actual heuristic Simulation-optimization
Demand scenario mD σD ση S1,1, S2,1 S1,2, S2,2 new IFR1 IFR2 cost heur S1,1, S2,1 S1,2 S2,2 S3 new IFR1 IFR2 cost Sim gap(%)

0 122 274 87 0.999 0.999 1397.14 122 258 258 548 126 0.998 0.998 1367.57 -2.12
2 122 277 58 0.98 0.98 1434.73 122 258 258 548 153 0.996 0.996 1369.9 -4.52
4 122 285 32 0.998 0.997 1550.18 122 260 259 635 255 0.997 0.997 1476.73 -4.74
6 122 293 164 0.995 0.997 1561.02 122 258 261 634 302 0.995 0.997 1491.19 -4.47
8 122 302 397 0.973 0.988 1611.25 122 260 259 635 359 0.994 0.994 1522.58 -5.5

scenario 1 60.94 0

10 122 312 123 0.997 0.992 1765.09 122 272 279 579 36 0.998 0.998 1570.73 -11.01
0 125 285 93 0.997 0.997 1455.64 125 277 268 588 134 0.997 0.996 1449.54 -0.42
2 125 287 105 0.996 0.996 1483.84 125 272 285 568 166 0.995 0.996 1456.27 -1.86
4 125 291 49 0.997 0.994 1555.57 125 260 263 635 154 0.995 0.995 1496.97 -3.77
6 125 299 151 0.98 0.98 1594.43 125 293 268 605 133 0.996 0.995 1528.2 -4.15
8 125 307 90 0.989 0.995 1680.68 125 293 268 605 68 0.997 0.995 1569.56 -6.61

scenario 2 60.94 4

10 125 316 223 0.995 0.987 1793.14 125 276 274 625 116 0.996 0.995 1615.85 -9.89
0 132 302 90 0.996 0.996 1544.45 132 277 268 588 128 0.996 0.994 1453.81 -5.87
2 132 304 110 0.996 0.996 1565.85 132 276 274 625 204 0.996 0.995 1509.24 -3.62
4 132 307 25 0.991 0.996 1662.31 132 276 274 625 123 0.995 0.995 1522.53 -8.41
6 132 312 78 0.975 0.996 1757.31 132 309 295 542 28 0.995 0.995 1585.88 -9.76
8 132 319 29 0.996 0.949 1760.19 132 306 316 640 193 0.995 0.996 1662.21 -5.57

scenario 3 60.94 8

10 132 327 29 0.995 0.948 1926.63 132 306 316 640 89 0.995 0.996 1700.58 -11.73
0 141 322 94 0.996 0.996 1649.45 141 295 297 608 108 0.996 0.996 1554.86 -5.73
2 141 324 117 0.98 0.98 1672.79 141 300 287 620 159 0.996 0.994 1555.32 -7.02
4 141 326 212 0.98 0.98 1692.67 141 308 300 633 130 0.996 0.995 1617.48 -4.44
6 141 330 83 0.994 0.995 1839.11 141 310 297 640 178 0.995 0.994 1629.76 -11.38
8 141 336 198 0.994 0.989 1846.34 141 310 281 715 225 0.996 0.994 1700.96 -7.87

scenario 4 60.94 12

10 141 342 43 0.996 0.847 2056.99 141 323 281 412 0 0.996 0.994 1706.18 -17.05
0 150 344 95 0.995 0.995 1763.79 150 300 299 626 105 0.995 0.995 1590.31 -9.84
2 150 345 104 0.995 0.995 1778.68 150 301 303 626 114 0.994 0.995 1603.25 -9.86
4 150 347 148 0.995 0.994 1809.7 150 319 305 683 203 0.995 0.995 1693.11 -6.44
6 150 351 192 0.991 0.995 1864.58 150 319 305 683 190 0.995 0.995 1715.36 -8
8 150 355 363 0.989 0.994 1878.44 150 319 305 683 247 0.994 0.994 1745.31 -7.09

scenario 5 60.94 16

10 150 360 184 0.99 0.989 2135.11 150 305 302 678 176 0.994 0.995 1752.62 -17.91
0 160 367 96 0.995 0.995 1883.77 160 309 314 650 121 0.994 0.994 1660.15 -11.87
2 160 367 79 0.98 0.98 1901.69 160 320 314 642 40 0.995 0.994 1691.42 -11.06
4 160 369 105 0.995 0.995 1950.99 160 339 314 642 58 0.995 0.994 1713.36 -12.18
6 160 372 137 0.995 0.995 1963.71 160 327 333 693 143 0.995 0.995 1803.55 -8.16
8 160 376 9 0.995 0.98 2149.73 160 309 325 595 16 0.994 0.994 1825.29 -15.09

scenario 6 60.94 20

10 160 381 171 0.994 0.995 2174.38 160 293 359 670 47 0.992 0.995 1883.03 -13.4

of unequal exchange cylinder distribution (ση) increases in the decen-
tralized and centralized inventory control policy. The average total
inventory cost decreases by 11.01% when ση equals 10. We observed
the same trend for all the other demand scenarios with random demand
(σD > 0).

More generally, the inventory policy control of the distribution
systems with returns conducts less inventory hold in filling plants’
closed-loop than the decentralized inventory control policy proposed
by the heuristic company. The order-up-to inventory of echelon 2 of
each plant is always lower for inventory control policy given by simu-
lation optimization than the solution of the decentralized heuristics of
the company.

Figure 8: Comparison of the average inventory costs of the simulation opti-
mization approach against company heuristic for each demand scenario

Our numerical results confirm the well-known results on inventory
control about the inventory cost reductions when a multi-echelon in-
ventory system is managed with a local inventory control policy rather
than a globally optimized inventory policy. The fact that the inven-
tory cost increase when demand variance increase is explained by the
rise of safety stock needed to cover against that randomness demand.
Our numerical results allowed us to analyze the impacts of unequal
cylinder exchange with customers. The company commonly assumes
that customers always return the same quantity of cylinders it receives
during the delivery (ση = 0). As shown in Figure 8, this assumption
significantly impacts the total inventory cost and underestimates the
inventory needed to guarantee the target service level. The indepen-
dent assumption of demand and returns is also commonly made in the
inventory control with returns literature. In our study, returns depend
on delivered quantities rather than the demand and are added with a
random distribution of unequal exchange of cylinders with customers.

A multi-echelon distribution inventory system is known as difficult
to control in the literature. Under a Poissonian assumption of demand,
(Rong et al., 2017) proposed a recursive heuristic inspired by the opti-
mal recursive scheme proposed by (DeCroix et al., 2005) for the serial
multi-echelon system.

(Rong et al., 2017) proved that this recursive heuristic converges to
the optimal solution. The returns are not considered in their study, and
unsatisfied demand is assumed to be back-ordered. On another side,
(DeCroix et al., 2005) proposed a recursive scheme to approximate
the optimal solution of inventory control policies in a multi-echelon
serial system with returns. In future work, we will propose a recursive
heuristic inspired by the works of (Rong et al., 2017) and (DeCroix
et al., 2005) for our distribution systems with returns.

The multi-echelon distribution system, the lost sale, and the depen-



Figure 9: Comparison of the average inventory costs of the simulation opti-
mization approach against company heuristic for each unequal cylinders ex-
change scenario (return scenario)

dency between returns and satisfied demand put together complexify
our system and justify our choice of simulation optimization approach
to optimize the inventory control policy globally rather than locally.

7 CONCLUSIONS AND PERSPECTIVES

We are interested in a multi-echelon distribution system with returns
in this work. The aim is to find the optimal inventory control pol-
icy. After introducing the Air Liquide cylinder’s supply chain that in-
spired this system, dimensional analysis of the problem led us toward
methodology coupling simulation and optimization. We build a dis-
crete event simulation model of the multi-echelon distribution system
to evaluate an inventory control policy. We implement a method to
determine the optimal up-to-level inventory. We perform a computa-
tional analysis of the results, emphasizing the impact of the variability
of demand and unequal exchange of cylinders during deliveries on the
average inventory cost.

Our numerical analysis comparing average total inventory cost
found by simulation optimization approach against the local heuris-
tic applied by the company show that the gaps between the cost of
each method increase when demand variance increase (Table 3). This
gap reaches 11% when the demand variance is higher. We also show
that the average inventory costs increase when the unequal exchange
cylinder distribution’s variance increases (Table 3). It reaches 13%
when this variance is higher.

Table 3: Mean of gaps between average total inventory costs of the central-
ized (simulation-optimization) and decentralized (apply by company) inven-
tory control policies.

Mean over the 6 demand scenario (σD) Mean over the 6 return scenarios (ση)
mD ση Mean cost gap(%) Demands mD σD mean cost gap(%)
60.94 0 -5,98 scenario 1 60.94 0 -5,39
60.94 2 -6,32 scenario 2 60.94 4 -4,45
60.94 4 -6,66 scenario 3 60.94 8 -7,49
60.94 6 -7,65 scenario 4 60.94 12 -8,92
60.94 8 -7,96 scenario 5 60.94 16 -9,86
60.94 10 -13,50 scenario 6 60.94 20 -11,96

Our study assumes that the overstocks generated by cylinder re-
turns at echelon 2 of each filling plant are not disposed of. In practice,
a transshipment of this overstock between plants allows fewer cylinder
orders to the testing center or external supplier. In future work, we will
study the inventory control policy with a new parameter representing
the less-to-level inventory after what overstock will be disposed of.

Using the simulation-optimization approach to optimize the inven-
tory control policy of our distribution system with returns is timeless.
We will also investigate in the future work a tractable heuristic to find
an optimal centralized periodical inventory control policy for our dis-
tribution system with returns.
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