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Generic ontology and framework for critical
scenario description and generation. Applied to
evaluation and validation of Automated Vehicle

Maria Ruchiga 1,2, Rémi Sainct 2, Guillaume Saint Pierre 1,Dominique Gruyer 2

Abstract—The safety of new autonomous vehicles must be
evaluated before introducing them into mixed traffic. But before
this can be done, safety-critical scenarios must be identified
and tested. Using expert knowledge and field data we identify
ten safety critical scenarios to simulate and therefore evaluate
the autonomous vehicle performance compared to conventional,
human-driven vehicles performance. This selection was made
balancing the criticality and frequency of a given situation. To
describe these scenarios, we create an ontology that considers
the difference between autonomous vehicles and human drivers
and provides an exhaustive description of the vehicle surround-
ing. In this paper, we propose a generic framework and ontology
usable for safety-critical scenarios description and generation.

I. INTRODUCTION

Assessing the safety impact of autonomous vehicles (AVs)
is a challenge, and many efforts have been made to de-
velop and improve functionalities of autonomous driving in
conventional driving situations. Large-scale tests around the
world have proved the technology is efficient and ready,
but still there is little knowledge about the potential impact
on road safety of full autonomous driving deployment. A
way to assess the safety is by scenario-based testing. There
are two approaches for selecting scenarios: knowledge-based
or data-based. Using both approaches, the selection can be
made, and the impact of AV deployment can be evaluated
through simulation. To do so the scenarios must be previously
described, which can be done using ontologies. These are
comprehensive description tools encompassing the elements
of the scenario and their relationship. Ontologies have indeed
been used to describe driving scenarios [1]–[10]. There is
now a growing need for an ontology that describes all
elements for safety-critical scenarios in mixed traffic i.e.
when human-driven and autonomous vehicles drive together.
This work proposes a selection of ten safety-critical scenarios
for the AV in mixed traffic and an ontology adapted for their
description and generation.

This paper is organized into tow parts. In the first part,
expert knowledge and real data analyses are used to select
safety-critical scenarios in mixed traffic. In the second part,
we propose an ontology used to describe them.
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II. SCENARIO

A scenario can be described as a succession of several
scenes, a time frame in which all actors have a constant state
and movement. Every action or event that causes a change
marks the transition from one scene to the next. An initial
scene can generate several scenarios depending on the events
and actions that occur. The beginning and the end can be
chosen according to the objective.

A. Relevant scenarios for AV’s

Selecting relevant scenarios is challenging for car makers,
especially when dealing with AVs. Two approaches are
commonly used, the knowledge-based approach and the data-
based approach. As AVs behavior in emergency conditions
is unpredictable, expert knowledge is mobilized to infer the
critical scenarios depending on the chosen point of view. As
an example, in the SURCA project(Safety of Road Users and
Automated Driving), critical interaction scenarios between
a future AV and a conventional vehicle (CV) have been
identified by ITS experts according to the following criteria:

1) Is the scenario challenging for the AV, i.e., will, a priori,
the situation be complex for the AV to manage?

2) Is this scenario frequently encountered during ”normal”
driving?

3) Does this scenario often generate an incident situation
i. e. situation in which there is a near or real collision?

4) Does this scenario require decisive human intervention
to avoid the accident?

This process led to selecting the subsequent interactions
families: Intersections, cut-ins, roundabouts, insertions, and
lane changes. This process involved real French accident
statistics to evaluate frequency of situations for humans, and
used the expert knowledge to take into account the technical
difficulty from the AV point of view. Another way to due
the selection is to examine the actual accidents that occurred
with an AV. This will allow to refine the previous families of
interaction situations.

In California, every AV accident must be informed to the
DMV(department of motor vehicles). Thus there is a public
database [16] containing every AV accident in California,
which is widely used by researchers working on AV acci-
dents. This section presents a review of five articles that did
statistical analysis and investigations on AV accidents. Five
use the DMV database: Favarò et al. [11], Liu et al. [17], Xu
et al. [12], Sinha et al. [13], Song et al. [14]. Though those
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TABLE I: Comparing road types for accidents involving an AV studied in the analyzed papers

Road Type Intersection Cross-shaped X-shaped T- shaped Multiple
Branches Y-shaped Other Non

Intersection Urban Expressway Parking lot Highway Total

Favarò et al. [11] 100% 56% - 12% - - 31% 0% - - - - 16
Xu et al.[12] 71% 41% 12% 11% 7% - - 29% 21% 4% 3% 1% 76

Sinha et al.[13] 63% 37% - 10% 3% 7% 6% 37% - - - - 259
Song et al.[14] 73% - - - - - - 26% - - 2% - 168

Schwall et al.[15] 68% - - - - - - 32% - - - - 42

Chosen Scenarios
A, B, C,
D, E, F,

G, and H

A, B, C,
F, and G H E I and J

TABLE II: Comparing signalization in reported AV accidents

Traffic Sign Other
Signalized
Percentage

Total

Not Signalized or
Not Informed

Favarò et al. [11] 31% 25% 6% 6% 6% 6% - 50% 50%
Sinha et al. [13] - - - - - - 49% 49% 51%
Song et al. [14] 51% - - 4% 13% 1% - 69% 31%

Schwall et al. [15] - - - - - - - 40% 60%

Chosen Scenario A, F, and G F G and F B H A, D, E, and F A, B, D, E,
F, G, and H C, I and J

TABLE III: Comparing vehicle movements in reported AV accidents

Vehicle type Vehicle Movement Straight Turn
Left

Turn
Right Stopped Stopping Changing

Lanes
Passing
Vehicle Parking Merging Other

AV

Favarò et al.[11] 19% 0% 6% 69% 0% 0% 6% 0% 0% 0%
Xu et al. [12] 25% 7% 7% 40% 11% 8% - 1% 1% -

Song et al. [14] 31% 7% 5% 41% 10% 5% 1% - 1% -
Schwall et al. [15] 61% 9% - 18% 7% 5% - - - -

CV

Favarò et al.[11] 88% 0% 12% 0% 0% 0% 0% 0% 0% 0%
Xu et al. [12] 46% 7% 7% 1% 1% 6% 14% - - 18%

Song et al. [14] 55% 6% 9% 4% 10% 5% - 3% 8%
Schwall et al. [15] 55% 20% - 0% 2% 18% - - - 5%

TABLE IV: Comparing types of reported AV accidents

Collision type
Rear-end

Sideswipe Broad Side
Hit Object In Front Pedestrian

Other Total

Favarò et al. [11] 81% 19% - - - - - 16
Xu et al. [12] 56% 29% 3% 6% 0% 6% - 76

Sinha et al. [13] 74% 18% 5% 0% 0% 1% 0% 141
Song et al. [14] 67% 22% 7% 2% - 1% 2% 168

Schwall et al. [15] 34% 21% 32% 0% 2% 6% 4% 47

Scenario A, B, C, D,
E, and F E, I, and J E, G, and H D F

articles explore different time slots in the database, some
accidents overlap between articles. The sixth, Schwall et al.
[15], analyzed two types of data: real accidents involving
Waymo taxis in the Phoenix area and simulated accidents.
The simulation used situations where the Waymo driver
manually disengaged the autonomous system and analyzed
what would have happened if the driver had not.

In order to select the most interesting scenarios from the
point of view of road safety, We created four tables to classify
all the accidents studied in these five articles, using four
criteria: road type (table I), signalization (table II), vehicle
movement (for both AV and CV, table III), and collision type
(table IV).

As shown in table I, most accidents occurs in intersections.
Table II shows there are approximately the same amount
of accidents in signalized intersections as in non-signalized

ones. As shown in table III, the most usual movement at the
time of the collision for both CV and AV is the straight one.
AVs are much more likely to experience a collision while
stopped or stopping than CVs.

When looking at the collision types, table IV indicates
that rear-end collisions are the most frequent ones for AVs,
which is consistent with the predominance of the stopping
maneuver and the intersections among the characteristics
of the observed accidents. Sideswipes are the second most
significant type of collision. They could happen due to a
car changing lanes too soon or too late. According to [12]
the movements of turning and overtaking from the CV in
respect to the AV are more likely to cause side swipes than
rear-end collisions. In [17] lane changes count for 19% of
accidents. We can estimate that lane changes and overtakes
made by AVs and CVs in non-intersection-related areas can



cause accidents.
Rear-end collisions represent roughly 60% of AV accidents

(minimum 34% [15], maximum 81% [11]). They are, on
average, three times more frequent than sideswipes and over
ten times more than any other accident type. In [12], after
a bootstrap regression, the correlation coefficient between
the AV turning and having a rear-end type of accident is
significantly positive. As turning is a maneuver done in
intersections, we can presume that those accidents largely
transpire in intersection-related areas, which are the most
common road type for accidents involving AVs. [17] cites
as a typical scenario, the AV stopping for a traffic signal or
before making a right turn representing 37% of accidents.
[13] indicate that 55% of accidents were rear-ending at
intersections, and more than half of those accidents were at
signalized ones. Another possible cause for rear-end accidents
in intersections is another vehicle or pedestrian encroaching
into the front vehicle lane. In [17], this account for at least
10% of the accidents. Four accidents at intersections analyzed
in [15] happened while the AV was waiting for crossing
traffic to clear. We can estimate that accidents occurring
in intersection areas are likely rear-ends in which the front
vehicle brakes due to either signalization, stopping for tuning,
or another vehicle encroaching into the lane.

Broadside is the third most common type of accident.
Those accidents most likely occur in intersections as the ve-
hicles need to be in a relative angular position. Both vehicles
are probably proceeding straight in different directions, as
those are the most common motions in table III. However,
it may also happen that one of the vehicles is turning and
gets hit. The cause of a broadside can be the non respect of
traffic rules.

B. Scenario choice
Choosing scenarios suitable to assess the safety impact

of autonomous vehicles is a challenge. They should be
representative of safety critical situations encountered for
AVs involved in mixed traffic (i.e. including CVs) taking into
account both frequency and severity. In the previous section,
the global picture of accidents involving AVs has been
described to complete the more common knowledge based
approach as in the SURCA project. This section describes
the set of scenarios we propose to use as a basis for safety
impact assessment evaluation of AVs using simulations.

Let us note first that, contrary to the SURCA project se-
lected scenarios, we did not include the roundabout situation
as the real challenging situation for the AV occurs before
entering the roundabout itself. Therefore this configuration
can be considered similar to intersections. Furthermore, as
roundabouts are rare in the USA there is no accident data
involving AVs in roundabouts.

Interaction between vehicles, pedestrians and cyclists were
included as they have a higher fatality rate. A diverse
representation of traffic signs and intersection shapes was
included to cover most situations represented in tables II and
I. According to [18], in conventional traffic, road departs, and
loss control are the most frequent fatal accidents. They will

(a) Scenario A (b) Scenario B

(c) Scenario C
(d) Scenario D

Fig. 1: Following Scenarios

not be considered as it is estimated that the AV will do better
than CVs in this type of situation.

The selected scenarios were classified into three categories:
Following, Cross Paths, and Lane change (cf. Figures 1, 2
and 3).

a) Following: This category involves an AV stopping
whilst being followed by a CV near an intersection. This
situation is the most frequent in the DMV database. However,
it is not usually dangerous for the people involved. Three
reasons for the deceleration were identified: the presence of
a signalization (scenarios A and B), before making a turn
(scenario C) and another vehicle or pedestrian potentially
encroaching into the lane (scenario D). For the last one, the
lead vehicle/Av stops due to a pedestrian on the sidewalk
intending to cross the road on a crosswalk. Traffic signs in
scenario A (traffic light) and B (yield sign) were chosen
according to their frequency on II. All the scenarios have
the same possible accident outcome: the rear end. Scenario
D has a second one; the lead vehicle hitting the pedestrian.
Those scenarios are illustrated in Fig 1.

b) Cross Paths: In this category, a CV, not respecting
road rules, crosses the path of an AV (Scenario E, F, G,
and H). According to [18], this is the second most frequent
accident type between CVs and, concerning fatality, the
most frequent involving at least two vehicles. Different road
configurations were selected according to table I. Scenario E
takes place in a five-branch intersection; two branches are at a
45º angle. One contains two vehicles proceeding straight, and
the other includes one third vehicle making a 135º angle turn.
Since the third vehicle is harder to spot in this configuration,
the lead vehicle’s decision can either cause a rear end with
the vehicle following it or a sideswipe/broadside with the one
turning. Scenario F and G take place in a cross-shaped inter-
section. In scenario F two vehicles are approaching a green
light while a cyclist in the neighboring branch does not stop at
the red light giving two possible accident outcomes: the lead
vehicle collides with the cyclist, or the two vehicles collide -
resulting in a rear end. In scenario G the two vehicles arrive
from opposite branches of the cross-shaped intersection. One
of the branches is signalized with a green light giving this
vehicle priority. The vehicle from this branch is proceeding
straight, and the other is making a left turn. This scenario was



(a) Scenario E
(b) Scenario F

(c) Scenario G (d) Scenario H

Fig. 2: Cross Paths Scenarios

(a) Scenario I (b) Scenario J

Fig. 3: Lane Change Scenarios

included as it was the most severe collision simulated in [15].
In scenario H, the two vehicles are approaching a T-shaped
intersection. One is proceeding straight; the other is making
a left turn, disregarding a stop sign. Those two scenarios can
end on a broad side. F, H and G represent the most common
maneuvers in which accidents between two vehicles occur at
intersections [18]. The scenarios are illustrated in Fig 2.

c) Lane Change: The last category encompasses lane
changes and passing other vehicles. This category contains
two scenarios in which two vehicles travel on an urban road
when the following vehicle changes lanes to the left in I and
to the right in J. This class was observed as an important
class in the SURCA project; the possible accident outcome
is a sideswipe, which is the second most frequent accident
type. The scenarios are illustrated in Fig 3.

The scenarios chosen are sufficient to cover all interaction
between different road users, types of maneuvers, road types
and signalization that appear in the most critical or frequent
accidents described in the literature.

III. ONTOLOGY

To simulate those scenarios, they need to be described
in detail. To do so we created an ontology, which is a
representation of the area of interest using a taxonomy
relations and rules.

Our ontology needs to have elements that describe a
human and an AV driving styles. Furthermore the presence
of obstacles on the road, its condition, weather, and lighting
conditions are all parameters that can influence the safety of
the scenario and must be fully described. With the advance
of autonomous cars, it is estimated that the problems caused

by the selected scenarios will be solved and new ones will
emerge. For our ontology to stand the test of time it needs to
take into account every possible element found in a driving
scenario.

A. Ontologies for AV’s simulation

Ontologies have been used in the field of automated
vehicles for different purposes such as: situation assessment
[1], [3], [5]–[7], [10], technologies evaluation [6], [7], and
scene creation [8]–[10].

Several different aspects must be taken into account when
modeling a safety-critical scenario. There must be a com-
plete description of the environment, the dynamic elements’
motion and state, and the road and any possible obstacle on
it.

Bagshik et al.[8], Chen and Kloul [9], and Zhao et al.[7]
have all the three elements cited above described in their
ontology. Their final product is a combination of multiple
ontologies. A five-layer process (road-level, traffic infrastruc-
ture, temporary manipulation of the first two levels, objects,
and environment) was used in [8]. In [9] and in [7] the layers
are represented by three ontologies: highway, weather, and
vehicle for former and map, control, and car for the latter.
The main purpose of [8] and [9] is scenario modeling in
highways; therefore they are not adapted to be used in urban
roads. As the larger portion of our scenarios takes place
on intersections and urban roads, those ontologies can not
describe them.

Huang et al.[10], and Xiong et al.,[6] ontologies are used
for real-time driving scenarios. They are vehicle centered.
This approach is not ideal for a safety-critical scenario
evaluation where all the vehicles involved have a priori the
same value: a vehicle-centered approach would not correctly
evaluate an accident that does not involve the AV directly,
for example if the AV’s behavior causes another vehicle to
lose control.

Armand et al. ([3]) create an ontology using properties to
model the interaction of road users. Although the road user
interaction is thorough, the ontology lacks a road description.
In [1] the authors propose to use an ontology to relax traffic
regulation to facilitate traffic flow, and Mohammad et al.
[5] propose an ontology for risk assessment using video.
This ontology is used to evaluate if the distance between
the automated vehicle and other road users is safe depending
on their motion. Due to their objectives, those ontologies
have a limited description of the road and dynamic elements’
motion.

None of the ontologies above have a description of the
human driver, whereas a driver’s experience, distraction level,
impairment or emotion are all known to have substantial im-
pacts on a CV’s behavior, and are often one of the accidents
causes. In [4] the driver is modeled using an ontology, but
there is no description of the road.

In this paper, we propose an ontology that combines the
description of the scenery, environment, and the dynamic
elements’ condition and behavior (for both humans and
AVs), which are needed to have a successful mixed traffic



scenario model. A comparison between the ontologies can be
found in table V. Our ontology is divided into three classes:
Scenery, Dynamic elements, and Environment. Those classes
are divided as well, as seen on Fig 4.

B. Dynamic elements

The dynamic elements class contains all mobile objects,
whether they are in motion or not. This class is divided into
five sub classes: Moving Objects, Driver, Scenario Implica-
tion, Maneuver, and Trajectory.

a) Moving Objects: This class is divided into Motorized
and Non-motorized. This division is due to Motorized objects
mainly traveling on the road, which is not necessarily valid
with non-motorized objects, which can travel on the sidewalk.

b) Driver: This class describes the drivers’ charac-
teristics, which are essential to model their environment
perception and behavior being linked to the class maneuver.
The class is divided into Autonomous and Human because
they have different means of perception, and their behavior
can differ (class characteristics for the human).

c) Scenario Implication: This class is used in the sim-
ulation process and splits all dynamics elements into two
categories, actors and extras. The actors take actions during
the scenario according to their characteristics and the en-
vironment, whereas the extras have their behavior/trajectory
predetermined.

d) Maneuver: The values of this class can differ for
every dynamic element and every scene in the scenario.
They encompass every possible action a dynamic element
can make and are divided into two subclasses : Longitudinal
Maneuver and Lateral Maneuver. These subclasses can be
combined to describe a complex maneuver, like changing
lanes while accelerating. At any point in the scenario, every
actor and every extra has a maneuver. Every maneuver change
made by an actor implies a scene change.

e) Trajectory: This class describes the position of the
dynamic elements on the road and the time that has passed
since the beginning of the scenario.

C. Scenery

The class scenery contains all stationary elements of the
scenario. This class is divided into three sub classes: Road,
Traffic Signs, and Road Objects.

a) Road: This class describes the road structure. It is di-
vided into five subclasses: Road Type, Road Part, Geometry,
Surface, and Speed Limit. The Surface subclass Condition
also is related to the Weather class (section III-D).

b) Traffic Signs: This class contains one- or two-
dimensional signs that guide the vehicle on the road.

c) Road Objects: This class describes elements that are
not a part of the road nor traffic sign. It is divided into three
subclasses: On the Road Structure, a list of structures found
on the road; On the Road Object, containing wheel tracks and
random objects possibly found on the road; and Road Side,
listing all the elements that can be found on the roadside
except traffic signs.

D. Environment

The class environment contains weather and lighting con-
ditions.

The outcome of the selected scenarios depends on their
initial parameters defined in the dynamic element part of the
ontology. Environment changes and road conditions can also
be tested, creating variants of the original scenarios. With
those elements, the boundary between a safe scenario and an
unsafe one can be determined.

E. Application Example

In this section we will use the ontology to describe a
simple scenario: two vehicles following each other approach
a traffic light turning yellow. This scenario has multiples
outcomes; thus, we will start by the fixed elements which
are described in the class scenery. The instantiation of the
ontology describing the initial state of the scenario is shown
on Fig 5

As depicted in the figure road type is set to urban. The
road consists of one lane defined in the class Road Part, its
geometry, surface and speed limit definition are set on Fig
5. There are three traffic signs: a yellow traffic light and two
continuous margin lines

In this scenario the class environment individuals are fixed
weather is set to clear and lighting to day.

Regarding the dynamic elements, there are two moving
objects: the lead vehicle V1 and the follower vehicle V2;
both individuals of the class car, connected to the lane by the
property isOn and connected to each other by the symmetric
properties isBehind and isInFront. In this scenario we opted
for an autonomous leader vehicle and a driven by a human
(conventinal) follower.

The autonomous vehicle is equipped with a GPS of 4m
precision and a camera located in the front center of the
vehicle (at the same level as the rear view mirror), with
resolution of one micrometer and color RGB.

The conventional vehicle is driven by a human thus their
characteristics are defined using the class Human, a middle
age female experienced driver with no distractions or impair-
ments and neutral emotion see on Fig5.

In this scenario we consider that both vehicles are actors.
The only aspects of our ontology changing over time are

the individuals of classes Maneuver, Position, and Time.
Their evolution is shown on Table VI

It describes the following scenario progression: As soon
as the leading vehicle notes the light changing to yellow,
it decelerates. The following vehicle, perceiving the color
change and the lead vehicle deceleration also decelerates.

The LateralManeuver for both vehicles is fixed and set to
straight.

IV. CONCLUSION

In this paper, we used expert knowledge and field data
to identify the most safety-critical scenarios, taking into
account their frequency and severity. We divided them into
three categories: following, cross path, and lane changes.



Fig. 4: Ontology



TABLE V: Comparison between the ontologies found in the literature’s elements and the elements presented in the ontology
we propose using the ten highest subclasses of our ontology as division

Dynamic Elements Scenery Environment
Reference Moving

Objects
Scenario

Implication Driver Maneuver Trajectory Road Traffic
Signs

Road
Objects Lighting Weather

Morignot and Nashashibi[1] yes no yes yes no yes yes no no no
Armand et al.[3] yes no no yes yes yes no no no no
Fernandez and Ito[4] yes no yes no yes no no no no no
Mohammad et al.[5] yes no no no yes yes yes no yes yes
Xiong et al.[6] yes no yes no yes yes yes yes no no
Zhao et al. [7] yes no yes yes yes yes yes yes no no
Bagshik et al[8] yes no no yes no yes yes yes yes yes
Chen and Kloul[9] no no no yes yes yes yes yes yes no
Huang et al.[10] yes no no yes yes yes yes yes no no
Urbieta et al.[2] yes no no yes yes yes yes yes yes yes
Our proposition yes yes yes yes yes yes yes yes yes yes

Fig. 5: Scenario’s description using the ontology

TABLE VI: The evolution of parameters Longitudinal Maneuver, Position and Time during the example scenario

Scene Scene 0 Scene 1 Scene 2 Scenario End
Event/Action Scenario beginning TrafficLight = yellow V1 LongitudinalManeuver = Decelerates Collision

Time 0s 1.9s 3.1s 3.9s
V1 LongitudinalManeuver Constant (13m/s) Decelerating (−2m/s2) Decelerating (−2m/s2) Constant (0m/s)

V1 Position (0, 5) (0, 30) (0, 44) (0, 52)
V2 LongitudinalManeuver Constant (13m/s) Constant (13m/s) Decelerating (−3m/s2) Constant (0m/s)

V2 Position (0, 0) (0, 25) (0, 40) (0, 50)

To describe these scenarios, we propose an ontology that
distinguishes between automated and human-driven vehicles,
an essential consideration as some accidents may happen due
to a lack of understanding of the autonomous driver. We
divided this ontology into three main classes. The first one,
Dynamic elements, represents all the road users, their state,
and their movement. The second, Scenery, describes the road
and all the real-estate elements we may encounter. The last
class, Environment, describes the weather and lighting. By
including the distinction between AV and CV, our ontology
provides a better representation of these two vehicular behav-

iors. Future works include creating a parameter generation
algorithm based on real distributions, selecting a model for
the human driver and simulating the scenarios.
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