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Abstract

Isolation forest is a popular method for anomaly detection introduced in Liu et al. (2008,
2012). Nonetheless, its statistical properties are little understood. We study the scoring
function that is induced by the isolation forest over a finite sample at the limit when the
number of trees tends to infinity, based on an analytical expression that we derive. The
isolation forest method is proved to be effective at detecting geometrically isolated points
within a finite sample. We then study the large sample limit of the scoring function in
random designs as well as in sequences of regular designs and we find that the isolation
forest method performs as a detector of the support of the underlying distribution. We also
find that dense clustered anomalies are not detected asymptotically by the isolation forest
method, a phenomenon known as the masking effect, but that isolation forest anomaly detec-
tion is robust to training with normal data sparsely contaminated by anomalies. Numerical
examples are provided that confirm the theoretical results.

Keywords—Anomaly detection, Isolation forest, Binary tree, Scoring, Recursive partition.

1 Introduction
Anomaly detection can be defined as the task of identifying those observations that stand out
in some way or another. Precise definition of an anomaly may vary, and multiple proposals
have been formulated in the literature, some quoted in Samariya and Thakkar (2023), but they
all share a concept of deviation from a reference situation. See also Foorthuis (2021), who
assembled a comprehensive typology of data anomalies. The subject of anomaly detection has
a long history and is an important line of research in statistics and machine learning. Many
methods and algorithms have been introduced so far and applied succesfully in a wide range
of domains, such as intrusion detection in network systems, fraud detection in credit card,
insurance and finance, fault detection in complex systems, and medical monitoring, to name a
few; see for instance the reviews given in Chandola et al. (2009) and more recently in Samariya
and Thakkar (2023). Anomaly detection is also closely related to outlier detection (Aggarwal,
2017; Barnett & Lewis, 1994) and novelty detection (Markou & Singh, 2003a, 2003b). In fact,
albeit referring to somewhat distinct purposes, these terms are often used exchangeably and
the detection methods typically apply to either context (Chandola et al., 2009).

Liu et al. (2008, 2012) introduced the isolation forest method for anomaly dectection. The
underlying idea is that anomalies, and even small clusters of anomalies, are somehow more
susceptible of being isolated than non-abnormal data, so that it might be easier to isolate them
from the rest of the data than it is for non-abnormal data (Liu et al., 2010). In essence, the
isolation forest method consists in building an ensemble of random binary space partitioning
trees, called isolation trees. Each isolation tree, when fully grown, isolate the data points one
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from the other at its leaves (external nodes), meaning that each element of the partition induced
by the tree contains exactly one data point. The path length from the root of an isolation tree
to one of its external node gives the number of recursive partitioning steps that are needed to
isolate the data point located at that node. Then under the premise that anomalies are easier
to isolate than the other data, anomalies are expected to correspond to shorter path lengths in
the isolation trees than for non-abnormal data. An anomaly score is then produced for each
data point by aggregating the respective path lengths over the ensemble of isolation trees.

In the algorithm and in practice, the isolation trees are constructed on subsamples and are
subjected to a maximum height limit. The subsample size and the maximum height count
among the tuning parameters of the algorithm, together with the number of trees. Based on
the anomaly scores returned by the isolation forest algorithm, observations can then be labeled
as being abnormal or not by simple thresholding. The scoring strategy proposed in Liu et al.
(2008) produces anomaly scores normalized between 0 and 1, with a score close to 1 indicating
evidence of an anomaly and a score close to 0 indicating confidence in a non-abnormal data. It
is worth noticing that, by the very nature of an isolation tree of being a partitioning tree, the
anomaly scores that are produced by the forest at the data points readily extend to a scoring
function defined on the whole sample space. This offers the possibity of scoring new, unseen
data, based on the forest built on the training data. An exmaple use case of this mode of
operation is in the design of an anomaly-based intrusion detection system in which the training
data is known to represent the normal state of the system and, as such, does not contain any
anomaly (see for instance Khraisat et al., 2019).

Since its introduction, the isolation forest procedure has gained strong popularity and several
variants and extensions have then been proposed. In the original algorithm of Liu et al. (2008),
the isolation trees are grown recursively by operating random binary splits along the coordinate
axes. The axis at which the split occurs is selected uniformly at random, and next the value of
the split is selected uniformly at random over the range of the projected data onto that axis.
Partitioning along the axes may induce artifacts in the shape of the scoring function, as reported
in Hariri et al. (2021), who then proposed a variant called the extended isolation forest, which
uses random hyperplanes not necessarily orthogonal to the coordinate axes to partition the data
while growing the isolation trees. Considering random hyperplanes has been mentioned before
in Liu et al. (2010) but not furthered, while these authors focused on optimizing the splitting
value so as to improve the dectection of clustered anomalies. But contrary to the original
isolation forest algorithm, the random hyperplanes generated by the method in Hariri et al.
(2021) are not guaranteed to actually produce a partition of the data, thus leading to empty
branches in the isolation trees. This is observed and remedied in Lesouple et al. (2021) who
propose a modification of the random hyperplane generation algorithm to ensure that data are
present on both sides of the hyperplane. Among the other variants of the isolation forest method
that have been introduced, Karczmarek et al. (2020) propose to use the 𝑘-means algorithm to
build 𝑘-ary trees instead of binary trees. While most extensions have focused on modifying the
splitting mechanism, Mensi and Bicego (2021) propose to weight the edges of the isolation trees,
by accounting for the number of data points at each node, and they also introduce heuristics
for aggregating the isolation trees in a forest, leading to a modified scoring function using those
weights. Another scoring strategy which relies on a majority vote instead of on an average is
proposed in Chabchoub et al. (2022). These works apply to Euclidean data. Mensi et al. (2023)
introduce an adaptation of the isolation forest method to the case of pairwise data, and an
extension to functional data is proposed in Staerman et al. (2019).

Despite its wide use and various extensions, the statistical properties of the isolation forest
method remain little understood. We are only aware of the recent work of Morales et al. (2022).
Recall that the isolation forest anomaly detection method is a two-stage procedure, comprising
a training stage, where a forest of isolation trees is constructed from a training sample, followed
by a scoring stage, where the induced scoring function is evaluated on the test data that may,
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or may not, differ from the training data. The regions of abnormality produced by an isolation
forest then coincide with the upper level sets of the scoring function. One first question of
interest is to determine, and analyze, the scoring function that is induced by the isolation forest
method over a given finite sample at the population level, meaning at the limit when the number
of trees tends to infinity. Another central problem is to determine the behaviour of this limit
scoring function in the large sample regime, that is to say when the number of data points tends
to infinity. It is worth noticing that the large sample regime is not of mere theoretical interest
but corresponds to the practical situation where the anomaly detector is trained with a large
number of data that are known to be non-abnormal before being applied next to new, unseen
data.

In the present paper, we address these questions in non asymptotic and asymptotic settings.
We focus first on the isolation forest methodology in dimension one. Building upon work
of Seidel and Aragon (1996) on randomized search trees and treaps (see also Aragon & Seidel,
1989), we start by introducing a sequential procedure of construction of random trees which have
the structure of a treap and that we relate to the isolation trees (Proposition 1). This connection
between isolation trees and the treaps that we introduce facilitates the analysis and using this,
we derive an analytical expression, as a function of the sample points, for the limit of the scoring
function over a finite sample when the number of trees tends to infinity (Theorem 4). Based
on the limit expression obtained in Theorem 4, we deduce that the isolation forest algorithm
is effective at detecting geometrically isolated points, although the efficiency of the dectection
may be affected by an effect of scale that we reveal. Next, we study the large sample limit of
the scoring function, as the number of data points tends to infinity. In this asymptotic regime,
we consider a random design where points are drawn from an underlying distribution, as well
as sequences of fixed designs. The results that we obtain (Theorem 6, Theorem 7, Corollary 8,
Theorem 9 and Theorem 10) imply that asymptotically the isolation forest method operates as
a detector of the support of the underlying distribution in the same way the method of one-
class support vector machines does, although the design principles differ since one-class support
vector machine are introduced for the specific goal of support recovery (Schölkopf et al., 1999,
2001). In fact, our initial intuition was that the scoring function would converge, after proper
scaling, towards some kind of data depth function (see for instance Mosler, 2013) or at least
to a function depending on the underlying density. Our results reveal that this is not the case
since the only dependence on the distribution that remains at the limit is through its support,
and this holds whether the support is simply connected or multiply connected. This set of
results also allows us to derive robustness properties of the isolation forest methodology when
the training set is contaminated by anomalous data. We take an asymptotic stance and we
consider dense and sparse regimes. In the dense regime, anomalies are clustered and dense at
the limit, meaning that they aggregate in a cluster of positive density. In this case, anomalies
are not detected as such by an isolation forest, a phenomenon known as the masking effect. On
the other hand, in a sparse regime where the proportion of anomalies tend to zero sufficiently
fast, the isolation forest method is found to be robust to contamination during training in the
sense that the support of the normal data is correctly recovered at the limit.

The rest of the paper is organized as follows. In Section 2, we describe the isolation forest
method and we introduce some notation. The sequential procedure of construction of random
trees is introduced in Section 3. The analytical expression for the limit of the scoring function
over a finite sample is exposed in Section 4 and is studied in Section 5 in a non asymptotic
setting. In Section 6, we present the asymptotic results in the large sample regime, under
random designs and fixed designs. We end with Section 7 where we give some concluding
remarks and we make a link with the Hilbert kernel density estimate introduced in Devroye and
Krzyżak (1999). Section 8 is devoted to the proofs and several technical results are gathered in
an Appendix, at the end of the paper.
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2 Isolation forest
In this section, we describe the isolation forest algorithm and we introduce some notation and
vocabulary. Following Liu et al. (2008), an isolation tree over ℝ𝑑 is a binary tree that is grown
using a given data set and that represents a binary recursive partition of ℝ𝑑. We start with
the definition of a binary tree, which we take as a rooted, ordered and labelled tree in which
each node has at most two children. Next we define a binary recursive partitition of a given
set. Then we formalize the notion of an isolation tree.

Let 𝒰 = ⋃𝑛≥0{0, 1}𝑛 be the set of labels with the convention that {0, 1}0 = ∅. An element
of 𝒰 is a tuple of the form 𝑢 = (𝑢1, … , 𝑢𝑛) and its length is denoted by |𝑢| = 𝑛 with the
convention |∅| = 0. Given 𝑢 = (𝑢1, … , 𝑢𝑚) ∈ 𝒰 and 𝑣 = (𝑣1, … , 𝑣𝑛) ∈ 𝒰, we write 𝑢𝑣 =
(𝑢1, … , 𝑢𝑚, 𝑣1, … , 𝑣𝑛) for the concatenation of 𝑢 and 𝑣, with the convention that ∅𝑢 = 𝑢∅ = 𝑢.
The element ∅ is called the root and the elements of the form 𝑢0 and 𝑢1 are called the left and
right children of 𝑢, respectively. A binary tree 𝒯 is a finite subset of 𝒰 such that:

(i) ∅ ∈ 𝒯,

(ii) 𝑢𝑣 ∈ 𝒯 ⟹ 𝑢 ∈ 𝒯.

A binary tree 𝒯 is called proper, or full, if it satisfies the property 𝑢0 ∈ 𝒯 ⟺ 𝑢1 ∈ 𝒯. Thus
each node of a binary tree has at most two children while each node of a proper binary tree
has either 0 or 2 children. A node without children is called a leaf, and the other nodes are
called internal nodes. The set of leaves of a tree 𝒯 is denoted by 𝜕𝒯. Given a tree 𝒯 ≠ {∅}, we
denote by 𝒯∘ = 𝒯∖𝜕𝒯 the tree composed of the internal nodes of 𝒯. For each 𝑛 ≥ 1, we denote
by ℬ𝑛 the set of proper binary trees of size 𝑛, where the size of a tree is defined as its total
number nodes, including the root. Given a tree 𝒯, the height of a node 𝑢 ∈ 𝒯 is defined by its
length, meaning that it is equal to |𝑢|. From the perspective of graph theory (see for instance
Diestel, 2017), a binary tree, as defined here, is a connected acyclic graph (𝑉 (𝒯), 𝐸(𝒯)) with a
special vertex (the root), where any vertex has at most two children, and that is ordered and
labelled (left and right children are distinguished even when a node has only one child). Due
to this distinction, the definition of a binary tree that we use here is more convenient for our
purposes, but we retain some concepts from graph theory. In particular, the height of a node
𝑢 ∈ 𝒯 corresponds to the length of the (unique) shortest path from the root of the tree to 𝑢,
where the path length is defined as the number of edges in the path.

Given a set 𝒮, we define a binary recursive partition of 𝒮 as a pair (𝒯, 𝜋𝒯), where 𝒯 is a
proper binary tree, and where 𝜋𝒯 ∶ 𝒯 → 𝒫(𝒮) is a function such that 𝜋𝒯(∅) = 𝒮, and such
that {𝜋𝒯(𝑣0), 𝜋𝒯(𝑣1)} is a partition of 𝜋𝒯(𝑣) for any internal node 𝑣 ∈ 𝒯∘, where 𝒫(𝒮) denotes
the power set of 𝒮. The elements 𝜋𝒯(𝑣), for 𝑣 ∈ 𝒯, will be called cells and we note that the
collection {𝜋𝒯(𝑣) ∶ 𝑣 ∈ 𝜕𝒯} of cells associated with the leaves of 𝒯 forms a partition of 𝒮. We
denote by 𝔓(𝒮) the set of all binary recursive partitions of 𝒮. It will be convenient to restrict
a partition to some subset. Given a subset 𝒮′ ⊂ 𝒮 and a binary recursive partition (𝒯, 𝜋𝒯) on
𝒮, we define the restriction of (𝒯, 𝜋𝒯) to 𝒮′, as the recursive partition (𝒯′, 𝜋𝒯′) where 𝒯′ is the
subtree of 𝒯 defined by

𝒯′ = {𝑣 ∈ 𝒯 ∶ 𝜋𝒯(𝑣) ∩ 𝒮′ ≠ ∅} , (1)

and where 𝜋𝒯′ ∶ 𝒯′ → 𝒫(𝒮) is defined by

𝜋𝒯′(𝑣) = 𝜋𝒯(𝑣) ∩ 𝒮′, for 𝑣 ∈ 𝒯′. (2)

By an isolation tree over ℝ𝑑 we mean a binary recursive partition (𝒯, 𝜋𝒯) of ℝ𝑑 that is
designed to isolate each data point at its leaves. Liu et al. (2008) define isolation trees with
cells obtained by partitioning along the coordinate axis. Then it holds 𝜋(∅) = ℝ𝑑, and for any
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internal node 𝑣 ∈ 𝒯∘, the cells associated with the left and right children of 𝑣 may be expressed
as

𝜋𝒯(𝑣0) = 𝜋𝒯(𝑣) ∩ {𝑥 ∈ ℝ𝑑 ∶ 𝑥(𝑗) ≤ 𝜏} and 𝜋𝒯(𝑣1) = 𝜋𝒯(𝑣) ∩ {𝑥 ∈ ℝ𝑑 ∶ 𝑥(𝑗) > 𝜏} , (3)

for some pair (𝑗, 𝜏) composed of a component number 𝑗 ∈ {1, … , 𝑑} and of a split value 𝜏 ∈ ℝ,
and where 𝑥(𝑗) denotes the 𝑗th component of 𝑥 ∈ ℝ𝑑. When no risk of confusion may arise, we
may simply denote an isolation tree (𝒯, 𝜋𝒯) as 𝒯 for ease of notation.

Let 𝒟𝑛 = {𝑥1, … , 𝑥𝑛} be a data set composed of 𝑛 points in ℝ𝑑. The isolation trees
introduced in Liu et al. (2008) are grown recursively according to the following procedure. The
structure is initialized with 𝒯 composed only of the root and with associated cell ℝ𝑑. Next, a
pair (𝑗, 𝜏) is first generated from 𝒟𝑛 by a random draw of a component number 𝑗 uniformly
among {1, … , 𝑑}, followed by a random draw of a split value 𝜏 uniformly over the interval
[min{𝑥(𝑗)

𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}, max{𝑥(𝑗)
𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}]. The two children ∅0 and ∅1 of the root are

then inserted in 𝒯 and 𝜋𝒯(∅0) and 𝜋𝒯(∅1) are defined according to (3). Next, 𝒟𝑛 is partitioned
into 𝒟(0)

𝑛 = 𝒟𝑛 ∩ 𝜋𝒯(∅0) and 𝒟(1)
𝑛 = 𝒟𝑛 ∩ 𝜋𝒯(∅1) and the left and right subtrees of the root

node are grown recursively in a similar manner using 𝒟(0)
𝑛 and 𝒟(1)

𝑛 respectively. The recursion
on a subtree ends either when the data set resulting from the sequence of splits contains only
one data point, or when a height limit is reached. When an isolation tree is fully grown, each
cell associated with the leaves of the tree contains exactly one data point; thus, in this case,
the data points are isolated by the tree, which then has 𝑛 leaves, 𝑛 − 1 internal nodes, and
so a size of 2𝑛 − 1. The procedure is summarized in Algorithm 1. We also note that, if the
projections of the data points along the coordinate axes are all distinct, then there are as many
different isolation tree structures as there are (proper) binary trees in ℬ2𝑛−1, meaning that the
application (𝒯, 𝜋𝒯) ↦ 𝒯 from 𝕋 to ℬ2𝑛−1 is surjective, and the cardinality of ℬ2𝑛−1 is known
to be 1

𝑛(2(𝑛−1)
𝑛−1 ), as shown for instance in Drmota (2009, Theorem 2.1).

Given an isolation tree 𝒯 over ℝ𝑑, let ℎ𝒯 be the piecewise-constant function defined for any
𝑥 ∈ ℝ𝑑 by

ℎ𝒯(𝑥) = ∑
𝑣∈𝜕𝒯

|𝑣|1𝜋𝒯(𝑣)(𝑥). (4)

Let 𝒯1, … , 𝒯𝑁 be an ensemble of 𝑁 isolation trees constructed independently from the data set
𝒟𝑛 according to algorithm 1. Liu et al. (2008) define an anomaly score 𝑠𝑁(𝑥) at 𝑥 by

𝑠𝑁(𝑥) = 2− 1
𝑐(𝑛)𝑁 ∑𝑁

ℓ=1 ℎ𝒯ℓ
(𝑥), (5)

where 𝑐(𝑛) is the average path length of unsuccessfull searches in a binary search tree and is
taken as 𝑐(𝑛) = 2ℋ𝑛−1 − 2(𝑛 − 1)/𝑛, where ℋℓ = ∑ℓ

𝑘=1
1
𝑘 denotes the ℓth harmonic number,

for ℓ ≥ 1. Liu et al. (2008) also propose growing the isolation trees from random subsamples
of 𝒟𝑛 of size 𝑚 ≤ 𝑛, in which case 𝑐(𝑛) is replaced by 𝑐(𝑚) in (5). The rationale behind the
isolation forest algorithm is that anomalies are more suceptible of being isolated earlier in the
recursive partitioning procedure than non abnormal data points. Thus anomalies are expected
to be isolated at shorter heights on average, thereby receiving a score close to 1, while non
abnormal data points are expected to receive lower score values.

Let the data set 𝒟𝑛 be fixed. We denote by 𝕋 ⊂ 𝔓(ℝ𝑑) the set of all possible isolation trees
that may be grown from 𝒟𝑛 using Algorithm 1 (the dependence on 𝒟𝑛 is understood) and by
𝜇 be the probability measure that is induced by Algorithm 1 over 𝕋. When the objective is to
detect anomalies within 𝒟𝑛, the scoring function needs to be evaluated at the data points only.
It will be convenient to introduce isolation trees restricted to 𝒟𝑛 for this purpose, as well as
for the analysis of the distributional properties of the isolation forest methodology in general,
where the restriction to a subset is defined in (1) and (2). Indeed, we note that each isolation
tree yields a binary recursive partition of 𝒟𝑛 which is obtained by filtering down 𝒟𝑛 through
the tree, as illustrated in Figure 1-(a).
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Algorithm 1 Recursive definition of an isolation tree 𝒯 on a finite sample of size 𝑛. Nodes of
𝒯 are denoted by 𝑣 and their associated cell by 𝜋𝒯(𝑣). The tree is grown until all 𝑛 points are
isolated.

Input: Point set 𝒟𝑛 = {𝑥1, … , 𝑥𝑛} in ℝ𝑑.
Output: An isolation tree (𝒯, 𝜋𝒯).

Initialization: Set 𝒯 = {∅} and 𝜋𝒯(∅) = ℝ𝑑.

Recursion on a leaf node 𝑣 of 𝒯:
1: Let 𝑆 = 𝜋𝒯(𝑣) ∩ 𝒟𝑛.
if 𝒮 contains more than one point then

2: Draw a component 𝑗 ∈ {1, … , 𝑑} uniformly.
3: Draw a split point 𝜏 uniformly in the interval [min{𝑥(𝑗)

𝑖 ∶ 𝑥𝑖 ∈ 𝒮}, max{𝑥(𝑗)
𝑖 ∶ 𝑥𝑖 ∈ 𝒮}].

4: Insert nodes 𝑣0 and 𝑣1 in 𝒯 as left and right children of 𝑣 respectively.
5: Set 𝜋𝒯(𝑣0) = 𝜋𝒯(𝑣) ∩ {𝑥 ∈ ℝ𝑑 ∶ 𝑥(𝑗) ≤ 𝜏} and 𝜋𝒯(𝑣1) = 𝜋𝒯(𝑣) ∩ {𝑥 ∈ ℝ𝑑 ∶ 𝑥(𝑗) > 𝜏}.
6: Apply this recursion to 𝑣0.
7: Apply this recursion to 𝑣1.

end if

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}

{𝑥1, 𝑥2, 𝑥3, 𝑥4}

{𝑥1, 𝑥2}

{𝑥1} {𝑥2}

{𝑥3, 𝑥4}

{𝑥3} {𝑥4}

{𝑥5, 𝑥6}

{𝑥5} {𝑥6}

𝐼4

𝐼2

𝐼1

� �

𝐼3

� �

𝐼5

� �

(a) Isolation tree 𝒯 (b) Binary search tree 𝒯′

Figure 1: An isolation tree 𝒯 is represented in (a) and its associated binary search tree 𝒯′ =
( ̃𝜄−1 ∘ 𝜄) (𝒯) is represented in (b). Edges to the leaves are represented with dashed lines and the
leaves of the binary search tree 𝒯′ are represented with empty boxes.

Let Π𝑛 ∶ 𝕋 → 𝔓(𝒟𝑛) be the application mapping each isolation tree (𝒯, 𝜋𝒯) ∈ 𝕋 to its
restriction to 𝒟𝑛, and let 𝕋𝑛 = {Π𝑛 ((𝒯, 𝜋𝒯)) ∶ (𝒯, 𝜋𝒯) ∈ 𝕋} be the set of all such restricted
isolation trees. Notice that (𝒯, 𝜋𝒯) and Π𝑛((𝒯, 𝜋𝒯)) carry the same tree structure, so that
Π𝑛((𝒯, 𝜋𝒯)) = (𝒯, 𝜋𝒯,𝑛), and where 𝜋𝒯,𝑛 ∶ 𝒯 → 𝒫(𝒟𝑛) is defined according to (2). Indeed,
this is due to the fact that 𝜋𝒯(𝑣) ∩ 𝒟𝑛 ≠ ∅ for all 𝑣 ∈ 𝒯 since the recursive growth of 𝒯 by
Algorithm 1 is stopped before the cells associated with the leaves are empty of data points.
Given (𝒯, 𝜋𝒯,𝑛) ∈ 𝕋𝑛, we denote by ℎ𝒯,𝑛 ∶ 𝒟𝑛 → ℕ the height function defined as in (4),
meaning that

ℎ𝒯,𝑛(𝑥) = ∑
𝑣∈𝜕𝒯

|𝑣|1𝜋𝒯,𝑛
(𝑥), for 𝑥 ∈ 𝒟𝑛, (6)

and we note that (ℎ𝒯(𝑥1), … , ℎ𝒯(𝑥𝑛)) = (ℎ𝒯,𝑛(𝑥1), … , ℎ𝒯,𝑛(𝑥𝑛)) for any (𝒯, 𝜋𝒯) ∈ 𝕋 such that
(𝒯, 𝜋𝒯,𝑛) = Π𝑛 ((𝒯, 𝜋𝒯)). We denote by 𝜇𝑛 = 𝜇 ∘ Π−1

𝑛 the image measure of 𝜇 by Π𝑛 on 𝕋𝑛.
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3 Isolation tree: from recursive to sequential construction
In this section, we focus on isolation trees in dimension 1. The setting is that of a data set
𝒟𝑛 = {𝑥1, … , 𝑥𝑛} composed of 𝑛 distinct points in ℝ indexed in increasing order 𝑥1 < 𝑥2 <
⋯ < 𝑥𝑛. For 𝑖 = 1, … , 𝑛 − 1, we let 𝐼𝑖 = [𝑥𝑖, 𝑥𝑖+1) save for 𝐼𝑛−1 = [𝑥𝑛−1, 𝑥𝑛], and we denote by
𝑤𝑖 = 𝑥𝑖+1 − 𝑥𝑖 its length. We consider isolation trees grown using Algorithm 1 and that isolate
each data point of 𝒟𝑛 at their leaves.

In dimension 1, any isolation tree restricted to 𝒟𝑛 satisfies the property that its partition
map is completely determined by its tree. Indeed, consider the generation of an isolation tree
according to Algorithm 1 and suppose that the first split point (used to partition 𝒟𝑛) falls in
the interval 𝐼𝑘, for some 𝑘 ∈ {1, … , 𝑛 − 1}. Then the cell of the left child of the root contains
the first 𝑘 points of 𝒟𝑛 and the cell of the right child of the root contains the remaining 𝑛 − 𝑘
points. Conversely, for any 𝒟𝑛-restricted isolation tree (𝒯, 𝜋𝒯,𝑛) ∈ 𝕋𝑛, if the left subtree of the
root of 𝒯 contains 𝑘 leaves, for some 𝑘 ∈ {1, … , 𝑛 − 1}, then necessarily 𝜋𝒯,𝑛(∅0) = {𝑥1, … , 𝑥𝑘}
and 𝜋𝒯,𝑛(∅1) = {𝑥𝑘+1, … , 𝑥𝑛}. By recursion on the left and right subtrees, this shows that
𝜋𝒯,𝑛 is completely determined by 𝒯. Consequently, in dimension 1, 𝕋𝑛 can be identified with
ℬ2𝑛−1 through the application 𝜄 ∶ 𝕋𝑛 → ℬ2𝑛−1 defined by 𝜄 ((𝒯, 𝜋𝒯,𝑛)) = 𝒯 which is bijective
in dimension 1 (but 𝜄 fails to be injective in dimension larger than 1 due to the fact that 𝒯 does
not carry information about the coordinate axis along which the cells are partitioned). Using
this observation together with ideas introduced in Seidel and Aragon (1996) for the study of
randomized search trees, we define a sequential procedure that generates randomized binary
search trees with set of keys {1, … , 𝑛 − 1} and we prove that the two procedures (recursive and
sequential) generate the same distribution of trees in a sense made precise in Proposition 1.

A binary search tree with set of keys {1, … , 𝑛 − 1} is a binary tree 𝒯 ∈ ℬ2𝑛−1 together with
a bijective application 𝐿𝒯 ∶ 𝒯∘ → {1, … , 𝑛 − 1} that gives the keys stored at the internal nodes
of 𝒯, and that satisfies the binary search tree property that, for any 𝑢 ∈ 𝒯, 𝐿𝒯(𝑣) < 𝐿𝒯(𝑢)
for any 𝑣 ∈ 𝒯∘ that belongs to the left subtree of 𝑢, and 𝐿𝒯(𝑣) > 𝐿𝒯(𝑢) for any 𝑣 ∈ 𝒯∘

that belongs to the right subtree of 𝑢. We denote by ℬ𝑆
𝑛−1 the set of all binary search trees

with set of keys {1, … , 𝑛 − 1}. In fact, when the set of keys is {1, … , 𝑛 − 1}, as we consider
here, 𝐿𝒯 is completely determined by 𝒯, so that each binary search tree (𝒯, 𝐿𝒯) is canonically
identified with the element 𝒯 of ℬ2𝑛−1, as we argue below. Binary search trees (𝒯(𝛼), 𝐿𝒯(𝛼))
are generated by a permutation 𝛼 of {1, … , 𝑛 − 1}. We use the recursive description given in
Drmota (2009, chapter 1). Let 𝒦 = {1, … , 𝑛 − 1} and let 𝑘0 = min 𝒦 (so that 𝑘0 = 1). The
construction of 𝒯(𝛼) starts with the root ∅ and the assignment 𝐿𝒯(𝛼)(∅) = 𝛼(𝑘0). Next, 𝛼(𝑘0)
is taken as a pivot to partition {2, … , 𝑛 − 1} into 𝒦0 = {2 ≤ 𝑘 ≤ 𝑛 − 1 ∶ 𝛼(𝑘) < 𝛼(𝑘0)} and
𝒦1 = {2 ≤ 𝑘 ≤ 𝑛 − 1 ∶ 𝛼(𝑘) > 𝛼(𝑘0)}. This procedure is applied recursively to build the left
and right subtrees based on 𝒦0 and on 𝒦1 respectively. Once the recursion completes, the tree
reaches the size of 𝑛 − 1 and finally, 𝑛 leaves are added wherever possible to 𝒯(𝛼) so as to make
𝒯(𝛼) a proper binary tree of size 2𝑛−1. Hence the procedure generates 𝒯(𝛼) ∈ ℬ2𝑛−1 together
with the bijective application 𝐿𝒯(𝛼) ∶ 𝒯(𝛼)∘ → {1, … , 𝑛 − 1}. Notice that the generation by
permutation produces as many binary search trees as there are elements in ℬ𝑆

𝑛−1, meaning that
the application 𝛼 ↦ 𝒯𝛼 from the set of permutations of {1, … , 𝑛 − 1} to ℬ𝑆

𝑛−1 is surjective.
It is also worth noticing that the application ̃𝜄 ∶ ℬ𝑆

𝑛−1 → ℬ2𝑛−1 defined by ̃𝜄 ((𝒯, 𝐿𝒯)) = 𝒯 is
bijective. To be sure, for each 𝒯 ∈ ℬ2𝑛−1, denote by 𝑘0(𝑣) and 𝑘1(𝑣) the number of internal
nodes (including 𝑣) in the left and right subtrees at 𝑣 ∈ 𝒯∘ respectively, and let 𝐿ℬ

𝒯 ∶ 𝒯∘ →
{1, … , 𝑛 − 1} be the labelling function defined recursively by

{
𝐿ℬ

𝒯(𝑣0) = 𝐿ℬ
𝒯(𝑣) − 𝑘0(𝑣) + 𝑘0(𝑣0), for 𝑣0 ∈ 𝒯∘,

𝐿ℬ
𝒯(𝑣1) = 𝐿ℬ

𝒯(𝑣) + 𝑘1(𝑣) − 𝑘1(𝑣1), for 𝑣1 ∈ 𝒯∘,
(7)

with the initial condition that ℒℬ
𝒯(∅) = 𝑘0(∅). Then we see that 𝐿ℬ

𝒯 is bijective and satisfies
the binary search tree property, implying that (𝒯, 𝐿ℬ

𝒯) ∈ ℬ𝑆
𝑛−1 and so that ̃𝜄 is surjective.
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Next, for any (𝒯, 𝐿𝒯) and (𝒯′, 𝐿𝒯′) in ℬ𝑆
𝑛−1 such that ̃𝜄 ((𝒯, 𝐿𝒯)) = ̃𝜄 ((𝒯′, 𝐿𝒯′)), we then have

𝒯 = 𝒯′ and since 𝐿𝒯 and 𝐿𝒯′ both satisfy the binary search tree property, we necessarily have
𝐿𝒯(∅𝜂) = 𝐿ℬ

𝒯(∅𝜂) = 𝐿𝒯′(∅𝜂), for any 𝜂 ∈ {0, 1}, implying by recursion on the left and right
subtrees that 𝐿𝒯 = 𝐿𝒯′ , and so that ̃𝜄 is injective.

Algorithm 2 Sequential generation of the random binary search trees with set of keys {1, … , 𝑛−
1}.

Input: Random variables 𝑍1, … , 𝑍𝑛−1.
Output: Randomized binary search tree (𝒯, 𝐿𝒯) with set of keys {1, … , 𝑛 − 1}.

1: Sort the 𝑍𝑖’s by decreasing order 𝑍𝛼(1) > 𝑍𝛼(2) > ⋯ > 𝑍𝛼(𝑛−1).
2: Set 𝒯′ = {∅} and 𝐿𝒯′(∅) = 𝛼(1).
3: Sequential insertion of the internal nodes:
for 𝑗 = 2, … , 𝑛 − 1 do

Set the current node 𝑣 to the root ∅.
while [(𝑣0 ∈ 𝒯 and 𝛼(𝑗) < 𝐿𝒯(𝑣)) or (𝑣1 ∈ 𝒯 and 𝛼(𝑗) > 𝐿𝒯(𝑣))] do

if 𝛼(𝑗) < 𝐿𝒯(𝑣) then
𝑣 ← 𝑣0

else
𝑣 ← 𝑣1

end if
end while
if 𝛼(𝑗) < 𝐿𝒯(𝑣) then

𝒯 ← 𝒯 ∪ {𝑣0} and set 𝐿𝒯(𝑣0) = 𝛼(𝑗).
else

𝒯 ← 𝒯 ∪ {𝑣1} and set 𝐿𝒯(𝑣1) = 𝛼(𝑗)
end if

end for
4: Add 𝑛 leaves to complete the tree: 𝒯 ← 𝒯 ∪ ⋃𝑣∈𝒯 ({𝑣0} ∪ {𝑣1}).

We now introduce the following randomization of binary search trees with keys {1, … , 𝑛 −
1}. Let 𝐹0 be the cumulative distribution function of the uniform distribution over [0, 1] (the
particular choice of distribution does not really matter as long as it is absolutely continuous).
Let 𝑍1, … , 𝑍𝑛−1 be independent random variables where 𝑍𝑖 is distributed according to 𝐹 𝑤𝑖

0 , for
𝑖 = 1, … , 𝑛 − 1. Assuming no ties among the 𝑍𝑖’s (since this occurs with probability one), let
𝛼 be the permutation of {1, … , 𝑛 − 1} such that 𝑍𝛼(1) ≥ 𝑍𝛼(2) ≥ … 𝑍𝛼(𝑛−1). Then we consider
the randomized binary search tree (𝒯, 𝐿𝒯) (𝑍1, … , 𝑍𝑛−1) ∶= (𝒯(𝛼), 𝐿𝒯(𝛼)) generated from the
random permutation 𝛼 of {1, … , 𝑛 − 1}. The procedure is summarized in Algorithm 2, where
we use the equivalent formulation of generation of a binary search tree by sequential insertion
of the nodes (see Drmota, 2009, chapter 1). This procedure defines a probability measure on
ℬ𝑆

𝑛−1 that we denote by ̃𝜇𝑛. Notice that when the interval lengths {𝑤ℓ ∶ 1 ≤ ℓ ≤ 𝑛 − 1} are all
equal, then all permutations are equally likely so that ̃𝜇𝑛 corresponds to the distribution of the
standard probabilistic model of binary search trees that are generated by uniform permutations
of the keys.

We may now formalize the connection between the two probability measures induced by the
recursive and sequential random generation procedures.
Proposition 1. The image measure of 𝜇𝑛 by ̃𝜄−1 ∘ 𝜄 is equal to ̃𝜇𝑛, that is to say, it holds

̃𝜇𝑛 = 𝜇𝑛 ∘ (𝜄−1 ∘ ̃𝜄).
Hence since ̃𝜄−1 ∘ 𝜄 ∶ 𝕋𝑛 → ℬ𝑆

𝑛−1 is bijective, the properties of the distibution of the isolation
trees restricted to 𝒟𝑛 may be deduced from those of the binary search trees. Given a 𝒟𝑛-
restricted isolation tree (𝒯, 𝜋𝒯,𝑛) ∈ 𝕋𝑛, ( ̃𝜄−1 ∘𝜄)(𝒯, 𝜋𝒯,𝑛) is the binary search tree in ℬ𝑆

𝑛−1 which
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stores in its nodes the indices of the intervals that contain the split points that generate the
recursive partition, as illustrated in Figure 1.

4 The isolation forest average heights
Equipped with Proposition 1, we study the properties of the height function of isolation trees
by first relating it with the height function of the nodes of the binary search trees. Next in
Theorem 4, we establish the analytical expressions for the expectation of the heights of the
leaves of a random 𝒟𝑛-restricted isolation tree (𝒯, 𝜋𝒯,𝑛) distributed as 𝜇𝑛. The setting is the
one of the previous section, meaning that we consider a finite sample 𝑥1 < ⋯ < 𝑥𝑛. Let
us emphasize that the data points are ordered and fixed (deterministic). In the case of a
random sample, the expressions in Theorem 4 remain valid when expectations are replaced by
conditional expectations on the sample. This is used in the asymptotic analysis that we develop
in Section 6.

For any 𝒯𝐼𝑇 ∶= (𝒯, 𝜋𝒯,𝑛) ∈ 𝕋𝑛, denote by 𝐻(𝒯𝐼𝑇) = (ℎ𝒯,𝑛(𝑥1), … , ℎ𝒯,𝑛(𝑥𝑛)) the vec-
tor the components of which are the heights of the 𝑛 leaves of 𝒯, where the height function
ℎ𝒯,𝑛 is defined in (6). Given a binary search tree 𝒯𝑆 ∶= (𝒯, 𝐿𝒯) ∈ ℬ𝑆

𝑛−1, let 𝐷(𝒯𝑆) =
(𝐷1(𝒯𝑆), … , 𝐷𝑛−1(𝒯𝑆)), where 𝐷𝑖(𝒯𝑆) is the height of the internal node of 𝒯 where the key 𝑖
is stored, meaning that 𝐷𝑖(𝒯𝑆) = ∑𝑣∈𝒯∘ |𝑣|1{𝐿𝒯(𝑣) = 𝑖}. From the definitions of the bijections
𝜄 ∶ 𝕋𝑛 → ℬ2𝑛−1 and ̃𝜄 ∶ ℬ𝑆

𝑛−1 → ℬ2𝑛−1, it follows that whenever 𝒯𝑆 = ( ̃𝜄−1 ∘ 𝜄)(𝒯𝐼𝑇), the two
height functions are related by

ℎ𝒯,𝑛(𝑥𝑖) =
⎧{
⎨{⎩

1 + 𝐷1(𝒯𝑆) if 𝑖 = 1,
1 + max {𝐷𝑖−1(𝒯𝑆), 𝐷𝑖(𝒯𝑆)} if 2 ≤ 𝑖 ≤ 𝑛 − 1,
1 + 𝐷𝑛−1(𝒯𝑆) if 𝑖 = 𝑛,

(8)

which we write in condensed form as

𝐻(𝒯𝐼𝑇) = Ψ (𝐷 (( ̃𝜄−1 ∘ 𝜄)(𝒯𝐼𝑇))) , (9)

for some adequate function Ψ ∶ ℝ𝑛−1 → ℝ𝑛, and this holds for any 𝒯𝐼𝑇 in 𝕋𝑛. Indeed, that (8)
holds for boundary points (when 𝑖 = 1 or 𝑖 = 𝑛) is clear, and when 2 ≤ 𝑖 ≤ 𝑛 − 1, the point
𝑥𝑖 becomes isolated only once split points have been drawn in both 𝐼𝑖−1 and 𝐼𝑖. Implicitely,
it is assumed here that no split point coincides exactly with one of the data points, which is
not restrictive since this holds with probability one. Given a random 𝒟𝑛-restricted isolation
tree 𝒯𝐼𝑇 distributed as 𝜇𝑛 and a random binary search tree 𝒯 distributed as ̃𝜇𝑛, using (9) and
applying Proposition 1 implies that 𝐻(𝒯𝐼𝑇) has the same distribution as Ψ(𝐷(𝒯𝑆)), thereby
providing the link between the two random generation procedures.

Now we focus on the height function of the internal nodes of a binary search tree 𝒯𝑆 ∶=
(𝒯, 𝐿𝒯) ∈ ℬ𝑆

𝑛−1. We refer to each internal node 𝑣 ∈ 𝒯∘ by the interval 𝐼𝑖 for which 𝑖 =
𝐿𝒯(𝑣). Following Seidel and Aragon (1996), the study of the heights 𝐷𝑖’s is facilitated by the
introduction of the binary ancestor variables 𝐴𝑗𝑖 ∶= 𝐴𝑗𝑖(𝒯𝑆) defined by 𝐴𝑗𝑖 = 1 if node 𝐼𝑗 is an
ancestor of node 𝐼𝑖 in 𝒯 and 𝐴𝑗𝑖 = 0 otherwise (the dependence of 𝐷𝑖 and 𝐴𝑗𝑖 on 𝒯 is dropped
from the notation for clarity). We recall that a node 𝐼𝑗 is said to be an ancestor of node 𝐼𝑖 in 𝒯
if 𝐼𝑗 belongs to the unique path from the root of 𝒯 to 𝐼𝑖 and has a lower height than that of 𝐼𝑖.
At this point, it is worth noting that for any 2 ≤ 𝑖 ≤ 𝑛 − 1, we always have 𝐴𝑖−1,𝑖 + 𝐴𝑖,𝑖−1 = 1,
meaning that either node 𝐼𝑖 is an ancestor of node 𝐼𝑖−1 or node 𝐼𝑖−1 is an ancestor of node 𝐼𝑖
in 𝒯. Obviously they cannot be ancestors one of each other simultaneously, but that none of
the two is an ancestor of the other cannot occur too. Indeed, if 𝐴𝑖−1,𝑖 = 𝐴𝑖,𝑖−1 = 0, then 𝐼𝑖−1
and 𝐼𝑖 belong to different subtrees. Denote by 𝐼𝑘 their closest common ancestor, meaning the
node with the largest height belonging to the intersection of the two unique paths from the
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root to 𝐼𝑖−1 and 𝐼𝑖. Then 𝑖 − 1 < 𝑘 < 𝑖 necessarily, hence a contradiction and so the relation
𝐴𝑖−1,𝑖 + 𝐴𝑖,𝑖−1 = 1 is true for any 2 ≤ 𝑖 ≤ 𝑛 − 1. From this, it follows that the maximum term
in (8) may be expressed as max{𝐷𝑖−1, 𝐷𝑖} = 𝐷𝑖−1𝐴𝑖,𝑖−1 + 𝐷𝑖𝐴𝑖−1,𝑖.

Recall that the height 𝐷𝑖 of 𝐼𝑖 in 𝒯 is equal to the length of the (unique) path from the
root of 𝒯 to 𝐼𝑖, and where the length is defined as the number of edges in this path. Hence 𝐷𝑖
may be expressed in terms of the ancestor variables as 𝐷𝑖 = ∑𝑛

𝑗=1 𝐴𝑗𝑖.
Given a random binary search tree 𝒯𝑆 ∶= 𝒯𝑆(𝑍1, … , 𝑍𝑛−1) as defined in Algorithm 2, the fol-

lowing Lemma charaterizes the ancestor variables in terms of the random variables 𝑍1, … , 𝑍𝑛−1.
It is proved in Seidel and Aragon (1996, Lemma 4.3) in the context of randomized search trees
where it is called the ancestor lemma. The setting considered in Seidel and Aragon (1996)
corresponds to ours when the interval lengths {𝑤ℓ ∶ 1 ≤ ℓ ≤ 𝑛 − 1}, are integers. Here, we
provide a statement tailored to our context and a proof in section 8 for completeness.

Lemma 2. In any randomized binary search tree 𝒯𝑆 ∶= 𝒯𝑆(𝑍1, … , 𝑍𝑛−1) generated according
to Algorithm 2, node 𝐼𝑖 is an ancestor of node 𝐼𝑗 if and only if 𝑍𝑖 is the largest among all the
𝑍𝑘’s for 𝑘 comprised between 𝑖 and 𝑗, included. Thus

𝐴𝑖𝑗 = 1 {𝑍𝑖 ≥ max{𝑍𝑘 𝑖 ∧ 𝑗 ≤ 𝑘 ≤ 𝑖 ∨ 𝑗}} =
𝑖∨𝑗

∏
𝑘=𝑖∧𝑗

1{𝑍𝑖 ≥ 𝑍𝑘}.

Using Lemma 2, we deduce the expectations of the ancestor variables as well as the expec-
tations of some of their products.

Proposition 3. Let 𝒯𝑆 be a random binary search tree distributed according to ̃𝜇𝑛 and let
𝐴𝑖𝑗 ∶= 𝐴𝑖𝑗(𝒯𝑆). Then

𝔼[𝐴𝑖𝑗] =
⎧{
⎨{⎩

𝑤𝑖

∑𝑖∨𝑗
ℓ=𝑖∧𝑗 𝑤ℓ

if 𝑖 ≠ 𝑗

0 if 𝑖 = 𝑗,
(10)

and

𝔼[𝐴𝑗𝑖𝐴𝑘𝑖] = {
𝔼 [𝐴𝑗𝑖] 𝔼 [𝐴𝑘𝑖] if 𝑗 ∨ 𝑘 ≤ 𝑖 or 𝑗 ∧ 𝑘 ≥ 𝑖,
𝔼 [𝐴𝑗𝑖] 𝔼 [𝐴𝑘𝑗] + 𝔼 [𝐴𝑘𝑖] 𝔼 [𝐴𝑗𝑘] if 𝑗 ∧ 𝑘 < 𝑖 < 𝑗 ∨ 𝑘.

(11)

Using the results above, we deduce the analytical expressions for the expectation of the
heights of a random isolation tree.

Theorem 4. Let 𝒯𝐼𝑇 ∶= (𝒯, 𝜋𝒯) be a random isolation tree distributed according to 𝜇. Then

𝔼[ℎ𝒯(𝑥𝑖)] =

⎧{{{{
⎨{{{{⎩

𝑛
∑
𝑗=2

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥1
if 𝑖 = 1,

𝑖−1
∑
𝑗=1

𝑥𝑗+1 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
+

𝑛
∑

𝑗=𝑖+1

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑖
if 2 ≤ 𝑖 ≤ 𝑛 − 1,

𝑛−1
∑
𝑗=1

𝑥𝑗+1 − 𝑥𝑗

𝑥𝑛 − 𝑥𝑗
if 𝑖 = 𝑛.

(12)

By the law of the large numbers, the expectations of the height function at the data points
obtained in Theorem 4 correspond to the limit of the average of the heights over a forest of
isolation trees, as produced by the isolation forest algorithm. With a bit more work, expressions
for higher order moments as well as for the variance of the heights might be obtained. Here
we content ourselves with the expressions for the expectations with a focus in mind on the
scoring function that is induced by the isolation forest methodolgy. The expressions obtained
in Theorem 4 serve as a basis for the non asymptotic analysis that we develop in Section 5 and
for the study of the isolation tree heights in the large sample regime, whereby the number of
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samples tends to infinity, that we expose in Section 6 in the cases of a random design and of a
sequence of fixed designs.

Building upon Theorem 4, the following Proposition gives the value of the average height
𝔼[ℎ𝒯(𝑥)] at any point 𝑥. We state the result in a more general setting than that of Theorem 4,
where the data points of 𝒟𝑛 are arranged as a 𝑑-dimensional grid. When 𝑑 ≥ 2, we apply
Algorithm 1 to 𝒟𝑛 with the modification that in step 2 the component 𝑗 along which the cell
is partitioned is drawn uniformly among the components of the affine span of the set of points
within that cell. This is necessary in this case due to the arrangement of the points as a grid
parallel to the coordinate axes. We note that when a cell is partitioned along some component
𝑗, the set of distinct values of the 𝑗′-th coordinate of the points within that cell changes only
for 𝑗′ = 𝑗. This implies that when 𝑑 ≥ 2, the isolation factorizes into several independent
univariate isolations. Using this together with Theorem 4, we deduce the analytical expressions
of the average heights at each point in 𝒟𝑛. The convex hull of 𝒟𝑛 is denoted by Conv(𝒟𝑛).

Proposition 5. Let 𝑥ℓ,1 < 𝑥ℓ,2 < ⋯ < 𝑥ℓ,𝑛, for ℓ ∈ {1, … , 𝑑} be 𝑑 collections of points arranged
in strictly increasing order. Let 𝑥i = (𝑥1,𝑖1

, 𝑥2,𝑖2
, … , 𝑥𝑑,𝑖𝑑

) for i = (𝑖1, … , 𝑖𝑑) ∈ {1, … , 𝑛}𝑑, and
let 𝒟𝑛 = {𝑥i ∶ i ∈ {1, … , 𝑛}𝑑}. Let (𝒯, 𝜋𝒯) denote a random isolation tree grown from 𝒟𝑛.

1. Let 𝑥 ∈ Conv(𝒟𝑛) be a point that belongs to the convex hull of 𝒟𝑛. Let i(𝑥) =
(𝑖1(𝑥), … , 𝑖𝑑(𝑥)) where 𝑖𝑗(𝑥) = 1 + ⌊(𝑛 − 1)(𝑥(𝑗) − 𝑥𝑗,1)/(𝑥𝑗,𝑛 − 𝑥𝑗,1)⌋. Then 𝔼[ℎ𝒯(𝑥)]
is a convex combination of {𝔼[ℎ𝒯(𝑥i) ∶ i ∈ I(𝑥)} where I(𝑥) = {i(𝑥) + 𝛿 ∶ 𝛿 ∈ {0, 1}𝑑}
and we have

𝔼[ℎ𝒯(𝑥)] = ∑
i∈I(𝑥)

𝛼i𝔼[ℎ𝒯(𝑥i)], (13)

with

𝛼i =
𝑑

∏
𝑗=1

(
𝑥(𝑗) − 𝑥𝑗,𝑖𝑗(𝑥)

𝑤𝑗 𝛿𝑗(i) + (1 −
𝑥(𝑗) − 𝑥𝑗,𝑖𝑗(𝑥)

𝑤𝑗 ) (1 − 𝛿𝑗(i))) , (14)

and with 𝛿𝑗(i) = 𝑖𝑗 − 𝑖𝑗(𝑥), for i ∈ I(𝑥).

2. Let 𝑥 ∈ ℝ𝑑. Then 𝔼[ℎ𝒯(𝑥)] = 𝔼[ℎ𝒯(𝑥†)], where 𝑥† is the projection of 𝑥 onto Conv(𝒟𝑛).

By Proposition 5, we see that the average of the height function is continuous over ℝ𝑑,
although for each isolation tree (𝒯, 𝜋𝒯) ∈ 𝕋, the height function 𝑥 ↦ ℎ𝒯(𝑥) is not since it is
piecewise constant. That said, continuity of the average height function is not preserved at the
limit where the number of samples tends to infinity, as we prove in Section 6.

5 Anomaly detection over a finite sample
In this section we analyze the performance of the isolation forest method as an outlier detector
within a finite sample using the expressions of the average heights obtained in Theorem 4. The
setting is that of 𝑛 ordered distinct and fixed (deterministic) points 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 and we
assume, without loss of generality, that 𝑥1 = 0 and 𝑥𝑛 = 1. We consider several configurations
of points over [0, 1] starting with configurations composed of one outlier and a dense cluster,
and next with a configuration composed of one outlier located between two dense clusters. The
proofs for the bounds stated in equations (15)—(18) are given in Section A.3.

5.1 One outlier and a dense cluster

General configuration Fix 𝜖 ∈ (0, 1) and set 𝑥2 = 1 − 𝜖. Thus the data is composed of one
isolated point 𝑥1 = 0, which is considered as an anomaly, and of a dense cluster of 𝑛 − 1 points
{𝑥2, … , 𝑥𝑛} which extends over the interval [1 − 𝜖, 1]. By applying Theorem 4, we obtain that

𝔼[ℎ𝒯(𝑥1)] ≤ 1 + 𝜖
1 − 𝜖

and 𝔼[ℎ𝒯(𝑥𝑖)] ≥ 2 − 𝜖, for 𝑖 ≥ 2. (15)
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Therefore, whenever 𝜖 is small enough (in detail, whenever 𝜖 < 𝑐 ∶= (3 −
√

5)/2), we have
𝔼[ℎ𝒯(𝑥1)] < 𝔼[ℎ𝒯(𝑥𝑖)] for all 𝑖 ≥ 2. Consequently, when the configuration is such that 𝜖 < 𝑐,
there exists a threshold 𝜏 > 0 such that 𝔼[ℎ𝒯(𝑥1)] < 𝜏 and 𝔼[ℎ𝒯(𝑥𝑖)] > 𝜏 for all 𝑖 ≥ 2, which
implies that 𝑥1 is correctly detected as the only anomaly among the 𝑛 points by thresholding
the average heights at 𝜏. That being said, the range of threshold values that yield perfect
anomaly detection, in the sense that 𝑥1 is detected as the only anomaly among {𝑥1, … , 𝑥𝑛},
vary significantly according to the distribution of {𝑥2, … , 𝑥𝑛} in [1 − 𝜖, 1]. To illustrate this
point, we define two configurations of points with 𝑥1 = 0 and a dense cluster of 𝑛 − 1 points
in [1 − 𝜖, 1] as before. In the first configuration, the points forming the dense cluster are evenly
spaced in [1−𝜖, 1], while in the second configuration the points follow a geometric pattern (while
still remaining in [1 − 𝜖, 1]).

Configuration 1: uniform dense cluster. Let 𝜖 ∈ (0, 1). We set 𝑥1 = 0 and 𝑥𝑖 = 1 − 𝜖 +
(𝑖 − 2) 𝜖

𝑛−2 , for 𝑖 = 2, … , 𝑛. Using Theorem 4, we deduce that

𝔼[ℎ𝒯(𝑥1)] ≤ 1 + 𝜖
1 − 𝜖

and 𝔼[ℎ𝒯(𝑥𝑖)] ≥ log(𝑛 − 1), for 𝑖 ≥ 2. (16)

Consequently, 𝑥1 is correctly detected as the only anomaly for any choice of threshold within
an interval of length at least log(𝑛 − 1) − 2 when 𝜖 < 𝑐, using the facts that 𝑐 < 1/2 and that
𝜖/(1 − 𝜖) < 1 when 𝜖 < 1/2.

Configuration 2: geometric dense cluster. Given 𝜖 ∈ (0, 1), the configuration of points
{𝑥1, … , 𝑥𝑛} is defined by the recursion 𝑥1 = 0 and 𝑥𝑗+1 = 1 − 𝜖(1 − 𝑥𝑗). The interval lengths
satisfy the geometric recursion 𝑤𝑗+1 = 𝜖𝑤𝑗 with 𝑤1 = 1 − 𝜖, so that 𝑤𝑗 = (1 − 𝜖)𝜖𝑗−1, for
𝑗 = 1, … , 𝑛 − 1. Let Δ𝑖 = 𝔼[ℎ𝒯(𝑥𝑖+1)] − 𝔼[ℎ𝒯(𝑥𝑖)], for 𝑖 = 1, … , 𝑛 − 1. Using Theorem 4, we
obtain that

sup
1≤𝑖≤𝑛−1

|Δ𝑖 − 1| ≤ 2𝜖 and − 𝜖 ≤ Δ𝑛 ≤ 0. (17)

When 𝜖 is small enough, all the gaps Δ𝑖’s are positive and approximately equal with Δ𝑖 ≈ 1,
but Δ𝑛 which is negative with Δ𝑛 ≈ −𝜖. Therefore, the average heights increase with 𝑥𝑖 but
for the last hop from 𝑥𝑛−1 to 𝑥𝑛. In particular, 𝑥1 has the smallest average height but correctly
detecting 𝑥1 as the only anomaly within {𝑥1, … , 𝑥𝑛} requires a threshold that belongs to an
interval of length Δ1, which is approximately equal to 1, and this holds for any sample size 𝑛.
Thus, when comparing the average heights values, 𝔼[ℎ𝒯(𝑥1)] is not significantly separated from
{𝔼[ℎ𝒯(𝑥𝑖)] ∶ 2 ≤ 𝑖 ≤ 𝑛}, while geometrically, 𝑥1 is isolated from the cluster points {𝑥2, … , 𝑥𝑛}
which are all packed in the interval [1 − 𝜖, 1]. This stands in sharp contrast with the setting
of Configuration 1 and reveals an effect of scale in the isolation forest methodology. Indeed, if
𝑥1 is removed from the data set, then 𝑥2 becomes geometrically isolated from {𝑥3, … , 𝑥𝑛} in
the same way 𝑥1 is isolated from {𝑥2, … , 𝑥𝑛}. Therefore, that a data point may be efficiently
isolated and diagnosed as an outlier by the isolation forest method depends not only on such
a point being geometrically isolated, but also on the distribution of the remaining points when
looked at comparable scales.

The average heights for the two configurations are represented in Figure 2. The sample size
is taken as 𝑛 = 20. The values obtained for the average heights at the data points are comprised
between 1.22 and 6.55 for configuration 1 and between 1.21 and 15.44 for configuration 2. In
both cases, the smallest average height corresponds to 𝑥1, illustrating the fact that 𝑥1 can be
detected as the only anomaly in both configurations by using a suitable thresholding of the
average heights. We also note that the difference inf2≤𝑖≤𝑛 𝔼[ℎ𝒯(𝑥𝑖)] − 𝔼[ℎ𝒯(𝑥1)] is significantly
larger in configuration 1 than in configuration 2, as well as the (almost) constant difference in
average height between two consecutive points in configuration 2.

To interpret the average heights as an anomaly score comprised between 0 and 1, Liu et al.
(2008) introduce the scoring function 𝑥 ↦ 𝑠(𝑥) as defined in (4) and propose to operate the
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Figure 2: Average heigths for 𝑛 = 20 points with one anomaly at 0 and a dense cluster of points
in [0.8, 1] arranged in uniform configuration (Configuration 1) and in geometric configuration
(Configuration 2).

detection by thresholding the scoring function at a fixed threshold 𝑡, taken as either 𝑡 = 0.5
or 𝑡 = 0.6. In fact, the average heights obtained for these two configurations suggest that a
data dependent choice of threshold may be required for the perfect detection of 𝑥1 as the only
anomaly, or at least that the threshold depends on the sample size. Indeed, at the population
level (with respect to the forest), we have 𝑠(𝑥) = exp (− log(2)

𝑐(𝑛) 𝔼[ℎ𝒯(𝑥)]) and so for any 𝑡 ∈ (0, 1),
the inequality 𝑠(𝑥) > 𝑡 is equivalent to the inequality 𝔼[ℎ𝒯] < 𝜏𝑡 with 𝜏𝑡 = log(1/𝑡)

log(2) 𝑐(𝑛). For
instance with 𝑛 = 20, which corresponds to the setting of Figure 2, we have 𝑐(𝑛) ≈ 5.20 which
gives 𝜏0.5 ≈ 5.20 and 𝜏0.6 ≈ 3.83. Comparing the heights represented in Figure 2 with these
thresholds, we obtain that with 𝑡 = 0.5, the detected anomalies are {𝑥1, 𝑥2, 𝑥𝑛} for configuration
1 and {𝑥1, … , 𝑥5} for configuration 2, while with 𝑡 = 0.6, only 𝑥1 is detected as an anomaly in
configuration 1 and {𝑥1, 𝑥2, 𝑥3} are detected as anomalies in configuration 2. More generally,
using the fact that 𝑐(𝑛) ∼ 2 log(𝑛) as 𝑛 → ∞ together with (16) (for configuration 1) and (15)
and (17) combined (for configuration 2), we see that the property that there exists some integer
𝑛0 and some fixed 𝑡 ∈ (0, 1) such that 𝑠(𝑥1) > 𝑡 and inf𝑖≥2 𝑠(𝑥𝑖) < 𝑡 holds for all 𝑛 ≥ 𝑛0 is valid
for configuration 1 but not for configuration 2. For this property to be valid when the points
are arranged in configuration 2, the thresholding of the scoring function must actually depend
on 𝑛.

5.2 One outlier between two dense clusters

Here we consider a configuration of 𝑛 distinct points 𝑥1 < ⋯ < 𝑥𝑛 where, for some integer
3 < 𝑘 < 𝑛 − 2, 𝑥𝑘 = 1

2 , and where {𝑥1, … , 𝑥𝑘−1} and {𝑥𝑘+1, … , 𝑥𝑛} extend over the intervals
[0, 𝜖] and [1 − 𝜖, 1], respectively, where 𝜖 ∈ (0, 1/4) is fixed. Thus geometrically, 𝑥𝑘 is considered
as an anomaly located between two dense clusters. Using Theorem 4, we obtain that

𝔼[ℎ𝒯(𝑥𝑘)] ≤ 2 + 8𝜖 and 𝔼[ℎ𝒯(𝑥𝑖)] ≥ 5
2

− 3𝜖, for any 𝑖 ≠ 𝑘. (18)

Therefore, when 𝜖 is taken small enough, we have 𝔼[ℎ𝒯(𝑥𝑘)] < 𝔼[ℎ𝒯(𝑥𝑖)] for all 𝑖 ≠ 𝑘 and so
𝑥𝑘 can be correctly detected as the only anomaly among {𝑥1, … , 𝑥𝑛}. As for the two config-
urations considered in the previous section, the difference inf2≤𝑖≤𝑛 𝔼[ℎ𝒯(𝑥𝑖)] − 𝔼[ℎ𝒯(𝑥1)] may
vary significantly (from being constant with 𝑛 to being on the order of log(𝑛)) depending on
the distribution of the points in the two clusters.
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6 Asymptotic analysis
In this section we study the average height function as the sample size tends to infinity, first in
a random design (Section 6.1) and next in a sequence of fixed designs (Section 6.2)

6.1 Random design

We consider an IID random sample 𝑋1, … , 𝑋𝑛 drawn from a distribution 𝐹 with probability
density function 𝑓 on ℝ. The isolation forest method is applied to the sample, and we focus
on the average height function of the forest trees as the number of samples tends to infinity.
Let us point out that we do not consider a combined asymptotic regime with a finite number
of trees tending to infinity at the same time as the number of samples. Instead, we build upon
Theorem 4 and let 𝑛 → ∞. This amounts at considering the asymptotic of the scoring of an
infinite forest of trees as 𝑛 goes to inifinity. Arguably this is justified since in practice the
number of trees in an isolation forest can be chosen as large as desired and is only limited by a
time or a computational budget.

Let (𝒯, 𝜋𝒯) be a random isolation tree grown from the random sample {𝑋1, … , 𝑋𝑛}, where
the draws of the split points, as described in Algorithm 1, are independent from the sample.
Denote by 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛) the ordered sample. Let 𝐻̄𝑖 = 𝔼 [ℎ𝒯(𝑋(𝑖)) | 𝑋1, … , 𝑋𝑛]
be the conditional expectation of the height of the leaf of 𝒯 whose cell contains 𝑋(𝑖) given the
sample.

Then, by Theorem 4 we have, almost surely,

𝐻̄𝑖 =

⎧{{{{
⎨{{{{⎩

𝑛
∑
𝑗=2

𝑋(𝑗) − 𝑋(𝑗−1)

𝑋(𝑗) − 𝑋(1)
if 𝑖 = 1,

𝑖−1
∑
𝑗=1

𝑋(𝑗+1) − 𝑋(𝑗)

𝑋(𝑖) − 𝑋(𝑗)
+

𝑛
∑

𝑗=𝑖+1

𝑋(𝑗) − 𝑋(𝑗−1)

𝑋(𝑗) − 𝑋(𝑖)
if 2 ≤ 𝑖 ≤ 𝑛 − 1,

𝑛−1
∑
𝑗=1

𝑋(𝑗+1) − 𝑋(𝑗)

𝑋(𝑛) − 𝑋(𝑗)
if 𝑖 = 𝑛.

(19)

Among the possible ways of formulating the convergence of the heights, we find it convenient
in dimension one to make use of the quantile function 𝐺 = 𝐹 −1, defined by 𝐺(𝑝) = inf{𝑥 ∶
𝐹(𝑥) ≥ 𝑝} for 0 ≤ 𝑝 ≤ 1. In the proofs of our results, a control on the tail probabilities of
𝑋 ∼ 𝐹 is needed when the support of 𝐹 is unbounded, and so we make the assumption that 𝑋
is sub-exponential, meaning that 𝑋 is integrable and that there exists non-negative parameters
(𝜎, 𝑏) such that 𝔼 [exp (𝜆(𝑋 − 𝔼[𝑋]))] ≤ 𝑒 𝜆2𝜎2

2 for all |𝜆| < 1
𝑏 , in which case 𝑋 satisfies the

following tail bound:

ℙ (𝑋 ≥ 𝔼[𝑋] + 𝑢) ≤ {
exp (− 𝑢2

2𝜎2 ) if 0 ≤ 𝑢 ≤ 𝜎2

𝑏
exp (− 𝑢

2𝑏) if 𝑢 > 𝜎2

𝑏 ;
(20)

see for instance Wainwright (2019, Definition 2.7 & Proposition 2.9).
We start with a pointwise convergence result using mild local regularity assumptions on the

underlying density 𝑓. We cover the cases of a fixed quantile of order 𝑝 ∈ (0, 1), and those cases
where the support of the density is bounded from below or from above.

Theorem 6. Assume that the distribution 𝐹 is sub-exponential.

(i) Let 𝑝 ∈ (0, 1) and let 𝑥𝑝 = 𝐹 −1(𝑝). Assume that 𝑓 is continuously differentiable in an
open neighborhood of 𝑥𝑝 and that 𝑓(𝑥𝑝) > 0. Let (𝑖𝑛(𝑝))(𝑛≥1) be a sequence of integers
such that 1 ≤ 𝑖𝑛(𝑝) ≤ 𝑛 for all 𝑛 ≥ 1 and such that 𝑖𝑛(𝑝)

𝑛 → 𝑝 as 𝑛 → ∞. Then

1
log 𝑛

𝐻̄𝑖𝑛(𝑝) → 2, almost surely as 𝑛 → ∞.
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(ii) Let 𝑎 = inf{𝑥 ∶ 𝐹(𝑥) > 0}. Assume that 𝑎 > −∞, that 𝑓 is continuously differentiable
over (𝑎, 𝑎 + 𝜖) for some 𝜖 > 0 and with a right-continuous right-derivative at 𝑎, and that
𝑓(𝑎) > 0. Then

1
log 𝑛

𝐻̄1 → 1, almost surely as 𝑛 → ∞.

(iii) Let 𝑏 = sup{𝑥 ∶ 𝐹(𝑥) < 1}. Assume that 𝑏 < ∞, that 𝑓 is continuously differentiable over
(𝑏 − 𝜖, 𝑏) for some 𝜖 > 0 and with a left-continuous left-derivative at 𝑏, and that 𝑓(𝑏) > 0.
Then

1
log 𝑛

𝐻̄𝑛 → 1, almost surely as 𝑛 → ∞.

With a uniform version of the regularity assumption made on 𝑓, we establish a uniform
convergence result of the tree heights over a closed interval of quantiles.

Theorem 7. Assume that the distribution 𝐹 is sub-exponential. Let 0 < 𝑝1 < 𝑝2 < 1, and let
𝑥𝑝1

= 𝐹 −1(𝑝1) and 𝑥𝑝2
= 𝐹 −1(𝑝2). Assume that 𝑓 is continuously differentiable on an open

neighborhood of [𝑥𝑝1
, 𝑥𝑝2

] and bounded away from 0 on [𝑥𝑝1
, 𝑥𝑝2

]. Then

sup
𝑝1≤𝑝≤𝑝2

∣ 1
log 𝑛

𝐻̄⌊𝑝𝑛⌋ − 2∣ → 0, alsmost surely as 𝑛 → ∞.

By Proposition 5, the value of 𝔼[ℎ𝒯(𝑥)|𝑋1, … , 𝑋𝑛] at any 𝑥 is obtained by linear interpolation
of {(𝑋(𝑖), 𝐻̄𝑖) ∶ 𝑖 = 1, … , 𝑛} when 𝑥 is in the range of the data, and to either 𝐻̄1 or 𝐻̄𝑛 when
𝑥 < 𝑋(1) or 𝑥 > 𝑋(𝑛) respectively. Thus, for any 𝑥 ∈ ℝ, we have

𝔼 [ℎ𝒯(𝑥)|𝑋1, … , 𝑋𝑛]
= 𝐻̄11{𝑥 < 𝑋(1)} + 𝐻̄𝑛1{𝑥 ≥ 𝑋(𝑛)}

+
𝑛−1
∑
𝑖=1

[(1 −
𝑥 − 𝑋(𝑖)

𝑋(𝑖+1) − 𝑋(𝑖)
) 𝐻̄𝑖 +

𝑥 − 𝑋(𝑖)

𝑋(𝑖+1) − 𝑋(𝑖)
𝐻̄𝑖+1] 1{𝑋(𝑖) ≤ 𝑥 < 𝑋(𝑖+1)}.

Combining this with Theorem 6 and Theorem 7 immediately leads to the following Corollary.
We denote by 𝒮 = {𝑥 ∈ ℝ ∶ 𝑓(𝑥) > 0} the support of the density 𝑓. For simplicity, we assume
that 𝜕𝒮 contains at most two points. With a bit of extra work, the conclusions of Corollary 8
remain valid if 𝒮 is a disjoint union of intervals. In essence, the limit value of 𝔼[ℎ𝒯(𝑥)|𝑋1, … , 𝑋𝑛]
at any 𝑥 is obtained by reproducing the steps in the proofs of Theorem 6 and Theorem 7 using
the observations that belong to the same interval as 𝑥, and those latter can be identified with
high enough confidence by means of statistics of the form 𝑋(𝑖+1) −𝑋(𝑖) ≥ 𝜖𝑛 given a conveniently
chosen sequence (𝜖𝑛) that tends to 0 as 𝑛 → ∞. We elaborate on this setting in Theorem 10
in the context of a sequence of fixed designs. The setting and assumptions of Corollary 8 are
those of Theorem 6 and Theorem 7 combined, which means that we assume that 𝐹 is sub-
exponential, and that 𝑓 is continuously differentiable over 𝒮∘, and if 𝜕𝒮 ≠ ∅, we assume that, at
any 𝑥 ∈ 𝜕𝑆, 𝑓(𝑥) > 0 and that 𝑓 admits a right-continuous right-derivative (resp. left-continuous
left derivative) if 𝑥 is a left (resp. right) limit point of 𝒮.

Corollary 8. Let (𝑋𝑖)𝑖≥1 be a sequence of independent random variables each with distribution
𝐹 satisfying the assumptions above. Then

1
log(𝑛)

𝔼[ℎ𝒯(𝑥) | 𝑋1, … , 𝑋𝑛] → {
1 for any 𝑥 ∈ 𝜕𝒮 when 𝜕𝒮 ≠ ∅,
2 for any 𝑥 ∈ 𝒮∘ with 𝑓(𝑥) > 0,

almost surely as 𝑛 → ∞. Moreover, almost surely, the convergence is uniform over any closed
subset 𝒦 of ℝ included in 𝒮∘ such that inf{𝑓(𝑥) ∶ 𝑥 ∈ 𝒦} > 0, meaning that

sup
𝑥∈𝒦

∣ 1
log(𝑛)

𝔼 [ℎ𝒯(𝑥)|𝑋1, … , 𝑋𝑛] − 2∣ → 0 almost surely as 𝑛 → ∞.
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(c) Normal mixture 1

A
ve

ra
ge

S
ta

nd
ar

d 
D

ev
ia

tio
n

−2.5 0.0 2.5

1.0

1.5

2.0

0.05

0.10

0.15

x

n
100
1000
10000
1e+05

(d) Normal mixture 2

Figure 3: Numerical examples illustrating the setting of Corollary 8. Here 𝑁 = 200 samples of
sizes 𝑛𝑘, with 𝑘 ∈ {2, 3, 4, 5}, were simulated according to a uniform distribution, a standard
normal distribution, and mixtures of normal distributions with variances equal to 1, means
equal to −1.5 and 1.5, and mixture coefficients equal to 0.5 and 0.5 (mixture 1) and 0.9 and
0.1 (mixture 2). The pointwise average and standard deviation of 𝔼[ℎ𝒯(𝑥) | 𝑋1, … , 𝑋𝑛] were
evaluated on the 𝑁 samples at 200 equally spaced points 𝑥 that extend over [0, 1] (uniform
case), over [−3, 3] (standard normal case) and over [−4.5, 4.5] (mixture cases).

Thus in the large sample regime the isolation forest methodology operates as a detector of
the support of the underlying distribution. For instance, consider an isolation forest anomaly
detector trained on a number 𝑛 of data 𝑥(1) < ⋯ < 𝑥(𝑛) drawn from a density 𝑓 of class 𝐶1,
supported on a closed interval [𝑎, 𝑏] and bounded away from 0 over [𝑎, 𝑏]. Then when 𝑛 is large
enough, 𝔼[ℎ𝒯(𝑥) | 𝑋1, … , 𝑋𝑛]/ log(𝑛) is uniformly close to 2 over any closed interval included in
(𝑎, 𝑏), while 𝔼[ℎ𝒯(𝑥) | 𝑋1, … , 𝑋𝑛]/ log(𝑛) is close to 1 for any 𝑥 ≤ 𝑎 and any 𝑥 ≥ 𝑏. In other
words, any upper level set of 𝔼[ℎ𝒯(𝑥) | 𝑋1, … , 𝑋𝑛] of the form {𝑥 ∈ ℝ ∶ 𝔼[ℎ𝒯(𝑥) | 𝑋1, … , 𝑋𝑛] ≥
𝜏 log(𝑛)} with 1 < 𝜏 < 2 is a consistent estimator of [𝑎, 𝑏].

Numerical examples are given in Figure 3. We consider the cases of a uniform distribution
over [0, 1], of a standard normal distribution, and of two mixtures of two normal distributions
with variances equal to 1 and means equal to −1.5 and 1.5 respectively. The mixture coefficients
are taken as 0.5 and 0.5 in the first mixture, and as 0.9 and 0.1 in the second mixture. For each
sample size 𝑛 of the form 𝑛 = 10𝑘, with 𝑘 ∈ {2, 3, 4, 5}, we run Monte Carlo simulations based
on 𝑁 = 200 samples 𝒟𝑛 and we estimate the pointwise average and standard deviation of the
scaled average height function 𝑥 ↦ 𝔼[ℎ𝒯(𝑥) | 𝒟𝑛]/ log(𝑛) at 200 equally spaced points 𝑥. The
evaluation points extend over [0, 1] in the case of the uniform distribution, over [−3, 3] in the
case of the standard normal distribution, and over [−4.5, 4.5] in the cases of the mixtures.
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These simulations numerically confirm the uniform convergence of the height function (scaled
by a log(𝑛) factor). In these simulations, that the limit function is equal to 𝑥 ↦ 1 + 1{𝑥 ∈ 𝒮}
for a distribution with support 𝒮 is apparent in the case of the uniform distribution, which
illustrates the fact that in the large sample regime, scoring with an isolation forest essentially
amounts at estimating 𝒮. The convergence towards a limit value of 2 is less visible in the cases
of the standard normal and of the normal mixtures, especially in the areas of low density. In
fact, as we argue in the next section, the convergence occurs at a logarithm rate in the sample
size, so that large sample sizes may be necessary for the convergence to be evidenced within a
prescribed accuracy through simulations. We anticipate that for any 𝑥 ∈ 𝒮∘, 𝔼[ℎ𝒯(𝑥)]−2 log(𝑛)
converges towards a constant 𝑐(𝑥) such that |𝑐(𝑥)| is all the more large as 𝑥 is close to 𝜕𝒮 (when
the boundary is non empty) or as 𝑓(𝑥) is close to 0, as the simulations suggest.

6.2 Fixed design

In this section we consider a configuration of 𝑛𝑑 points arranged in a full regular grid over the
unit cube of ℝ𝑑, and we study the asymptotic behavior of the average height function as the
number of samples tends to infinity. This scenario is prototypical of the case of a random sample
that would be drawn from a distribution that resembles the uniform distribution over the unit
cube of ℝ𝑑, in the sense that the distribution admits a density that is bounded from below and
from above by strictly positive numbers. The convergence result that we obtain (Theorem 9)
also holds in the slightly more general setting of points arranged in a full irregular grid of a
hyperrectangle of ℝ𝑑, as considered in Proposition 5. In fact, the main technical requirement is
to be able to apply Theorem 4 by tensorization, so we only consider a regular design over the
unit cube without loss of generality.

Let 𝒟𝑛 be the set of 𝑛𝑑 points defined by

𝒟𝑛 = {𝑥i = (𝑖1 − 1
𝑛 − 1

, … , 𝑖𝑑 − 1
𝑛 − 1

) ∈ ℝ𝑑 ∶ i = (𝑖1, … , 𝑖𝑑) ∈ {1, … , 𝑛}𝑑} . (21)

As in the setting of Proposition 5, for each sample size 𝑛, Algorithm 1 is applied to 𝒟𝑛 with
the modification that in step 2 the component 𝑗 along wich the cell is partitioned is drawn
uniformly among the components of the affine span of the set of points within that cell, and
trees are grown until each point is isolated. Using Theorem 4 together with Proposition 5, we
deduce the analytical expressions of the average heights at each point in 𝒟𝑛 and we derive their
(scaled) limit as 𝑛 goes to infinity in Theorem 9.

For points belonging to the boundary of the cube, the scaled heights are found to converge
to values that depend on the locations of the points on the boundary. For any 𝑘 ∈ {0, … , 𝑑},
let ℱ𝑘 be the set of 𝑘-dimensional faces of [0, 1]𝑑, where a face of the cube is defined as any set
of the form [0, 1]𝑑 ∩ {𝑥 ∈ ℝ𝑑 ∶ ⟨𝑥, 𝑎⟩ = 𝑎0} for some 𝑥 ∈ ℝ𝑑 and 𝑎0 ∈ ℝ such that ⟨𝑥, 𝑎⟩ ≤ 𝑎0
is a valid inequality for [0, 1]𝑑, meaning that it is satisfied for all points in [0, 1]𝑑 (see Ziegler,
1995, Definition 2.1). The elements of ℱ0 are the vertices of the cube and ℱ𝑑 is the cube itself
(note that, for any 𝑘 ∈ {1, … , 𝑑}, the boundary of any face in ℱ𝑘 is an element of ℱ𝑘−1).

Theorem 9. Let (𝒯, 𝜋𝒯) be a random isolation tree defined using Algorithm 1 with 𝒟𝑛 as
defined in (21). Then for any 𝑘 ∈ {0, 1, … , 𝑑}, any face 𝐹𝑘 ∈ ℱ𝑘, and any 𝑥 ∈

∘
𝐹𝑘, we have

1
𝑑 log(𝑛)

𝔼[ℎ𝒯(𝑥)] → 1 + 𝑘
𝑑

.

Moreover, the convergence is uniform over any closed subset contained in the interior of [0, 1]𝑑.

Thus, in this fixed design scenario, the limit of the scoring function admits axis-aligned
discontinuities outside the support of the data (here, the unit cube). This result explains the
artifacts that are observed in practice on the scoring function that is produced by the isolation
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Figure 4: Numerical example illustrating the setting of Theorem 9 showing that the scoring
function admits axis-aligned discontinuities in regions outside the support of the distribution.
Here are represented in subfigure (a) the limit function of Theorem 9 for the regular design (21)
over [0, 1]2, and in subfigure (b) the scoring function (normalized between 0 and 1) that results
from applying the isolation forest algorithm to a sample of size 𝑛 = 120 drawn from a standard
multivariate normal distribution over ℝ2.

forest method and that motivated the introduction of the extended isolation forest variant by
Hariri et al. (2021). A numerical example is provided in Figure 4, where we used the scikit-learn
toolkit (Pedregosa et al., 2011) for the isolation forest simulation on normal data.

We also note that the values of the scaled average heights at the limit are equal to 2 at points
belonging to the interior of the cube, and that they extend over [1, 1+(𝑑−1)/𝑑] at points exterior
to the cube. So recovering the support at the limit requires a threshold 𝜏 comprised between
1 + (𝑑 − 1)/𝑑 and 2, thus within a range of length 1/𝑑 which goes to 0 as 𝑑 → ∞. This suggests
a decrease in performance in high dimension of anomaly detection by an isolation forest in a
large sample regime where performance is conceived as support recovery.

In the case of the regular design of (21), the expressions of the average heights obtained in
Theorem 4 and that we use to prove Theorem 9 simplify to sums of several harmonic numbers
ℋℓ, where ℋℓ = ∑ℓ

𝑘=1
1
𝑘 , for any integer ℓ ≥ 1. Using the asymptotic expansion ℋℓ = log(ℓ)+

𝛾+𝑜(1), where 𝛾 ≈ 0.5772... denotes the Euler-Mascheroni constant, it follows directly from (86)
in the proof of Theorem 9, that 𝔼[ℎ𝒯(𝑥)] − 2𝑑 log(𝑛) converges to 2𝑑𝛾 + ∑𝑑

𝑖=1 log (𝑥𝑖(1 − 𝑥𝑖))
at any 𝑥 = (𝑥1, … , 𝑥𝑑) belonging to the interior of the unit cube of ℝ𝑑. Thus, the convergence
rate is logarithmic in the sample size and the limit value depends on 𝑥. In particular when
𝑑 = 1, 𝔼[ℎ𝒯(𝑥)] − 2 log(𝑛) converges to 𝛾 + log (𝑥(1 − 𝑥)) at any 𝑥 ∈ (0, 1), and | log (𝑥(1 − 𝑥)) |
increases with the distance from 𝑥 to 1/2; compare with the plots given in Figure 3a for the
case of a uniform random design where the estimated value of |𝔼[ℎ𝒯(𝑥)]/ log(𝑛) − 2| shows a
pattern increasing with |𝑥 − 1/2|.

6.3 Multiply connected support, the masking effect, and robustness

In this section, we consider the case of 𝑛 points spreaded over 𝐾 disjoint intervals of the real line.
We consider regular designs where within each interval the points are equally spaced, arguing
as in the previous section that this setting is representative of the case of a random sample
that would be drawn from a mixture distribution with components resembling the uniform
distribution.

Given 𝐾 ≥ 2 an integer, we consider 𝐾 disjoint intervals ℐ1 ≤ ⋯ ≤ ℐ𝐾 of the real line.
For each 𝑘 ∈ {1, … , 𝐾}, we denote by 𝐿𝑘 ∈ ℝ the length of ℐ𝑘, and we let 𝛿𝑘 > 0 be the gap
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between ℐ𝑘 and ℐ𝑘+1, for 𝑘 ∈ {1, … , 𝐾 − 1}. We design a configuration 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 of
𝑛 = 𝑛1 + ⋯ + 𝑛𝐾 points, where 𝑛𝑘 denotes the number of points that belong to ℐ𝑘, for each
𝑘 ∈ {1, … , 𝐾}, that we scale over the unit interval by requiring that ∑𝐾

𝑘=1 𝐿𝑘 + ∑𝐾−1
𝑘=1 𝛿𝑘 = 1.

Thus the points are defined in each interval ℐ𝑘, for 𝑘 ∈ {1, … , 𝐾}, by

𝑥𝑖 =
𝑘−1
∑
ℓ=1

(𝐿ℓ + 𝛿ℓ) +
𝑖 − 1 − ∑𝑘−1

ℓ=1 𝑛ℓ

𝑛𝑘 − 1
, for 𝑖 =

𝑘−1
∑
ℓ=1

𝑛ℓ + 1, … ,
𝑘

∑
ℓ=1

𝑛ℓ, (22)

where we use the convention that a sum over an empty range of integers is equal to 0. Then we
have ℐ1 = [𝑥1, 𝑥𝑛1

] and ℐ𝑘 = [𝑥𝑛1+⋯+𝑛𝑘−1+1, 𝑥𝑛1+⋯+𝑛𝑘
] for 𝑘 ∈ {2, … , 𝐾}, and 𝛿𝑘 = 𝑥𝑘′+1 − 𝑥𝑘′

with 𝑘′ = ∑𝑘
ℓ=1 𝑛ℓ, for 𝑘 ∈ {1, … , 𝐾 − 1}. We consider first a dense asymptotic regime whereby

𝑛𝑘
𝑛

→ 𝛼𝑘 > 0 as 𝑛 → ∞ for each 𝑘 ∈ {1, … , 𝐾}. (23)

Theorem 10. Let 𝒟𝑛 = {𝑥1 < ⋯ < 𝑥𝑛} be a configuration of 𝑛 points as defined in (22). Let
(𝒯, 𝜋𝒯) be a random isolation tree defined using Algorithm 1 with 𝒟𝑛. Then for any 𝑥 ∈ ℝ, in
the dense asymptotic regime (23), we have

1
log(𝑛)

𝔼[ℎ𝒯(𝑥)] → {
2 if 𝑥 ∈ ∪𝐾

𝑘=1ℐ∘
𝑘,

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Moreover, the convergence is uniform over any closed subset of ℝ included in ∪𝐾
𝑘=1ℐ∘

𝑘.

From Theorem 10, it follows that in the dense regime the isolation forest method also detects
the support of the underlying distribution in the case where the support is composed of multiple
connected components. Interestingly, the function obtained at the limit does not depend on
the geometry of the support, in the sense that it admits only two distinct values (either 1 or
2) and that this holds for any choice of interval lengths and gaps. Therefore in the context of
anomaly detection, Theorem 10 implies that if one of these components should be considered
as anomalous, then points originating from this component will not be detected as anomalies,
a phenomenom known as the masking effect. A numerical example is provided in Figure 5a.

We also note that the convergence stated in Theorem 10 does not depend on the asymptotic
proportions of the components as defined in (23). In fact, as may be seen from the proof, any
component with a number of points 𝑛𝑘 satisfying log(𝑛𝑘)/ log(𝑛) → 1 will be detected as being
non abnormal asymptotically. Elaborating a bit on the topic, if we consider a regime in which a
component, say the 𝑘th on the interval ℐ𝑘, is such that 𝑛𝑘 → ∞ and that log(𝑛𝑘)/ log(𝑛) → 𝜅, for
some 𝜅 ∈ [0, 1], then we obtain that 𝔼[ℎ𝒯(𝑥)]/ log(𝑛) → 2𝜅 for any 𝑥 ∈ ℐ∘

𝑘 and 𝔼[ℎ𝒯(𝑥)] log(𝑛) →
𝜅 for any 𝑥 ∈ 𝜕ℐ𝑘. In particular, if 𝜅 ≤ 1/2, then the scaled average height at any 𝑥 ∈ ℐ𝑘
is smaller than 1 at the limit, which is the limit value of the scaled average height for points
not belonging to the support in the dense regime. More generally, if a dectector is conceived
by thresholding 𝔼[ℎ𝒯(𝑥)]/ log(𝑛) at some threshold 𝜏 ∈ (1, 2), then points belonging to ℐ𝑘 will
be detected as anomalies whenever 𝑛𝑘 satisfies lim sup log(𝑛𝑘)/ log(𝑛) ≤ 𝜏/2. From this, we
conclude that the training of an isolation forest is robust to the presence of anomalies in the
training set provided anomalies aggregate in sparse clusters, in the sense that the proportion
of abnormal data decays at least at the rate of 𝑛−(1−𝜏/2) for 𝜏 ∈ (1, 2). A numerical example is
given in Figure 5b.

The training of an isolation forest is also robust to contamination by sparse anomalies
even if abnormal data do not aggregate in sparse clusters, as we illustrate by the following
example over the unit interval. Fix 𝑎 ∈ (1/2, 1) and 𝜈 ∈ (0, 1), and let 𝛼 = (1/𝑎)/𝑛1−𝜈.
Consider a configuration of 𝑛 points where 𝑛1 ∶= ⌊𝑛𝛼𝑎⌋ points extend evenly over [0, 𝑎], 𝑛1
points extend evenly over [1 − 𝑎, 1], and the remaining points are positioned evenly in (𝑎, 1 − 𝑎),
which is representative of a mixture distribution of the form (1 − 𝛼)𝒰([𝑎, 1 − 𝑎]) + 𝛼𝒰([0, 1]),
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Figure 5: Numerical examples illustrating the masking effect (a) and the robustness to training
under the presence of anomalies (b). Here, samples of sizes 𝑛𝑘, with 𝑘 ∈ {1, … , 𝑘}, are generated
according to (22) with 𝐾 = 3 intervals set as ℐ1 = [0, 0.25], ℐ2 = [0.4, 0.5] and ℐ3 = [0.7, 1]. In
the dense regime, the asymptotic proportions are taken as 𝛼1 = 0.5, 𝛼2 = 0.1 and 𝛼3 = 0.4. In
the sparse regime, we set 𝛼1 = 𝛼3 = 0.5 and log(𝑛2)/ log(𝑛) → 0.35. The values of the scaled
average heights for points in the second interval converge to 2 in the dense regime, illustrating
the masking effect, should the second component be considered as anomalous, while they reach
a value smaller than 1 (which is the minimal asymptotic threshold for support recovery) in the
sparse regime, illustrating the robustness to contamination during training.

composed of a main component generating the normal data over [𝑎, 1 − 𝑎] contaminated by
anomalies that extend over [0, 1]. Under the asymptotic regime considered here, we have 𝛼 → 0
and log(𝑛1)/ log(𝑛) → 𝜈 as 𝑛 → ∞. By using Theorem 4 and arguing as in the proof of
Theorem 10, we find that lim sup𝑛→∞ 𝔼[ℎ𝒯(𝑥)]/ log(𝑛) ≤ 3𝜈 for any 𝑥 ∈ [0, 𝑎) ∪ (1 − 𝑎, 1], that
𝔼[ℎ𝒯(𝑥)]/ log(𝑛) → 1 + 𝜈 if 𝑥 = 𝑎 or 𝑥 = 1 − 𝑎, and 𝔼[ℎ𝒯(𝑥)]/ log(𝑛) → 2 for any 𝑥 ∈ (𝑎, 1 − 𝑎),
with convergence being uniform over any closed subset of [0, 1] included in either (0, 𝑎), or
(𝑎, 1 − 𝑎) or (1 − 𝑎, 1). Since 3𝜈 ∨ (1 + 𝜈) < 2 when 𝜈 < 2/3, with a choice of threshold 𝜏
satisfying 3𝜈 ∨ (1 + 𝜈) < 𝜏 < 2, the thresholding map 𝑥 ↦ 1{𝑥 ∈ [0, 1] ∶ 𝔼[ℎ𝒯(𝑥) ≤ 𝜏 log(𝑛)]}
correctly recovers asymptotically the support [𝑎, 1−𝑎] of the normal data. Therefore the training
of an isolation forest is robust to sparse contamination by anomalies (where performance in an
asymptotic setting is apprehended as support recovery, as in the previous section).

7 Discussion
We discuss first a simple variant to the original isolation forest algorithm of Liu et al. (2008,
2012) in dimension 1 that leads to a connection with the Hilbert density estimate introduced
in Devroye and Krzyżak (1999). Next we comment on subsampling and on the normalization
factor used in the definition of the scoring function of an isolation forest. Then we conclude
with multi-dimensional considerations.

Weighted path lengths We consider the setting of Theorem 4 where we are given 𝑛 ordered
points 𝑥1 < ⋯ < 𝑥𝑛 of ℝ. Given an isolation tree (𝒯, 𝜋𝒯), the path length 𝔼[ℎ𝒯(𝑥𝑖)] at each
data point 𝑥𝑖 gives the number of recursive partitioning operations that are needed to isolate
𝑥𝑖 from the remaining points using (𝒯, 𝜋𝒯). A simple variant consists in weighting the edges of
𝒯 to produce weighted path lengths as basis elements to the definition of the scoring function.
Among the variety of weighting mechanisms that may be envisioned, we consider the following
one where the weights are in one-to-one correspondance with the intervals 𝐼1, … , 𝐼𝑛−1. Given
a set of positive weights {𝛼𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 − 1}, each edge connecting an internal node 𝑣 ∈ 𝒯∘
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to one of its children 𝑣𝜂, 𝜂 ∈ {0, 1} is weighted by 𝛼𝑖(𝑣), where 𝑖(𝑣) is such that the value at
which 𝜋𝒯(𝑣) is partitioned belongs to 𝐼𝑖(𝑣). We denote by (𝒯̄, 𝜋𝒯̄) an isolation tree weighted
using this assignment. This changes the depth 𝐷𝑖 = ∑𝑛

𝑗=1 𝐴𝑗𝑖 of 𝐼𝑖 on the binary search tree
into 𝐷̄𝑖 = ∑𝑛

𝑗=1 𝛼𝑗𝐴𝑗𝑖, and proceeding as in the proof of Theorem 4, this leads to

𝔼[ℎ𝒯̄(𝑥𝑖)] =

⎧{{{{
⎨{{{{⎩

𝑛
∑
𝑗=2

𝛼𝑗(𝑥𝑗 − 𝑥𝑗−1)
𝑥𝑗 − 𝑥1

if 𝑖 = 1,
𝑖−1
∑
𝑗=1

𝛼𝑗(𝑥𝑗+1 − 𝑥𝑗)
𝑥𝑖 − 𝑥𝑗

+
𝑛

∑
𝑗=𝑖+1

𝛼𝑗(𝑥𝑗 − 𝑥𝑗−1)
𝑥𝑗 − 𝑥𝑖

if 2 ≤ 𝑖 ≤ 𝑛 − 1,
𝑛−1
∑
𝑗=1

𝛼𝑗(𝑥𝑗+1 − 𝑥𝑗)
𝑥𝑛 − 𝑥𝑗

if 𝑖 = 𝑛.

(24)

When 𝛼𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑛 − 1, we recover the unweighted case and (24) reduces to
(12). Interestingly, when the weights are taken as the reciprocals of the interval lengths, so that
𝛼𝑖 = 𝑤−1

𝑖 for any 1 ≤ 𝑖 ≤ 𝑛 − 1, the numerators in the sums in (24) are all equal to one and
this yields

𝔼[ℎ𝒯̄(𝑥𝑖)] =
𝑛

∑
𝑗=1
𝑗≠𝑖

1
|𝑥𝑗 − 𝑥𝑖|

, for all 1 ≤ 𝑖 ≤ 𝑛. (25)

As it turns out, when the 𝑥𝑖’s are random variables, expression (25) for 𝔼[ℎ𝒯̄(𝑥𝑖)] is that of the
value at 𝑥𝑖 of the Hilbert kernel density estimate introduced in Devroye and Krzyżak (1999),
and where the estimate is defined on all the data but 𝑥𝑖. This is a one-of-a-kind kernel density
estimate since it does not have a bandwidth parameter, so it automatically scales with the
sample size. The Hilbert name was coined after the Hilbert transform and it is shown to be
weakly consistent in Devroye and Krzyżak (1999), following previous work in the regression
setting (Devroye et al., 1998). On the other hand, the Hilbert density estimate is not strongly
consistent, has poor rate of convergence as well as infinite peaks at the data points, though this
last issue is mitigated through a modified version of the estimate (Devroye & Krzyżak, 1999).
Still, we find it interesting in the context of anomaly detection that weighting the edges may
lead to introducing some dependence on the underlying density in the resulting scoring function.
This contrasts with the unweigthed case since at the limit the scoring function is agnostic to
the density inside the support (the only remaining dependence is through the support).

Subsampling and scoring normalization Subsampling is a central component of the iso-
lation forest method for anomaly detection. It is proposed in Liu et al. (2008) as a means
of reducing the computational complexity of the mehtod without drastically affecting the de-
tection performance, and Liu et al. (2012) further advocate for using subsampling to mitigate
the swamping and masking effects. In practice, a forest of isolation trees may be grown from
subsamples of different sizes and the definition of normalized and interpretable anomaly scores
requires proper scaling of the tree heights. This is the purpose of the normalization term 𝑐(𝑛)
in the definition of the scoring function given in (5) that Liu et al. (2008), using an analogy
between the structure of isolation trees and that of binary search trees, propose to take as
𝑐(𝑛) = 2ℋ𝑛−1 − 2(𝑛 − 1)/𝑛 = 2ℋ𝑛 − 2 as given in Preiss (1999) as the value of the average
path length of unsuccesful searches in a binary search tree with 𝑛 terminal nodes and which is
understood as an estimation of the average heights in isolation trees. It is to be noted that,
as such, 𝑐(𝑛) is actually defined as the average of the terminal nodes’ heights further averaged
according to the distribution of a binary search tree generated under the uniform random per-
mutation model, where the binary search trees are grown by sequential insertion of a uniform
random permutation of {1, … , 𝑛}, and the value of 𝑐(𝑛) is derived in Hibbard (1962). Although
isolation trees and binary search trees share a binary recursive structure, their distribution
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differ in general. However, under a regular design in dimension 1, by Theorem 4 we have
𝔼[ℎ𝒯(𝑥1)] = 𝔼[ℎ𝒯(𝑥𝑛)] = ℋ𝑛−1 and 𝔼[ℎ𝒯(𝑥𝑖)] = ℋ𝑖−1 + ℋ𝑛−𝑖 for 2 ≤ 𝑖 ≤ 𝑛 − 1, and this
leads to 1

𝑛 ∑𝑛
𝑖=1 𝔼[ℎ𝒯(𝑥𝑖)] = 2

𝑛 ∑𝑛−1
𝑖=1 ℋ𝑖 = 2ℋ𝑛−1 − 2(𝑛 − 1)/𝑛, where we used the relation

∑ℓ
𝑖=1 ℋ𝑖 = (ℓ + 1)ℋℓ − ℓ. Therefore, the values of 𝑐(𝑛) and 1

𝑛 ∑𝑛
𝑖=1 𝔼[ℎ𝒯(𝑥𝑖)] do agree in a

one-dimensional regular design but this is not the case in an irregular design. That being said,
𝑐(𝑛) is equivalent to 2 log(𝑛) as 𝑛 → ∞ and the same equivalence holds for 1

𝑛 ∑𝑛
𝑖=1 𝔼[ℎ𝒯(𝑥𝑖)]

in either a random or fixed design by Corollary 8 and Theorem 9. Therefore 2 log(𝑛) is the
correct asymptotic scaling and Theorem 9 suggests an extra 𝑑 factor in dimension 𝑑 leading
to a normalization by 2𝑑 log(𝑛) and to a range of asymptotic scoring values equal to [0, 1/2]
instead of [0, 1].

Multi-dimensional considerations Our proof techniques are tied with the dimension being
equal to one, as this induces a monotony property on the recursive partitioning that does not
export well in dimension larger than one. Indeed, in proving Theorem 4 we make use of the
fact that given 𝑛 ordered points 𝑥1 < ⋯ < 𝑥𝑛, the isolation of an interior point 𝑥𝑖 (with
2 ≤ 𝑖 ≤ 𝑛−1) is effective if and only if the recursive partition sequence contains a split between
𝑥𝑖−1 and 𝑥𝑖 and a split between 𝑥𝑖 and 𝑥𝑖+1. This is also apparent in the bijection that we
introduced between isolation tree restricted to the data and binary search trees used to store
the indices of the intervals that contain the split points. But in dimension larger than one,
even in a design with 𝑛 points that project on each axis to 𝑛 distinct values, the isolation of
an interior point 𝑥 does not necessarily require the occurence of a split between 𝑥 and all its
immediate neighbours. In fact, the isolation of a data point may become effective in a number
of ways and so a multivariate analogue to Theorem 4 giving explicit expressions for the average
heights in the case of a generic configuration of points seems difficult to obtain due to the
combinatorial nature of the problem. However we conjecture that a convergence result along
the line of Theorem 9 would hold in arbitrary dimension. For instance in the case of a random
sample drawn from a distribution with a regular density 𝑓 over ℝ𝑑 with compact support 𝒮
and satisfying inf{𝑓(𝑥) ∶ 𝑥 ∈ 𝒮} > 0, we conjecture that 𝔼[ℎ𝒯(𝑥)]/(𝑑 log(𝑛)) would converge
almost surely to 2 when 𝑥 ∈ 𝒮∘ and to a value strictly smaller than 2 when 𝑥 ∉ 𝒮∘, although
we anticipate that the function 𝑥 ↦ 𝔼[ℎ𝒯(𝑥)]/(𝑑 log(𝑛)) would exhibit a complex pattern, with
potential discontinuities, even in the case of a smooth enough boundary 𝜕𝒮. One possible route
may lie in considering a regular design in 𝒮 that would serve as quantization points for the
random sample and to derive perturbation bounds. We leave this interesting question as a
perspective for future work.

8 Proofs
This section is organized as follows. Section 8.1 is devoted to the proofs of the non asymptotic
results. This includes Proposition 1, Lemma 2, Proposition 3, Theorem 4 and Proposition 5.
The proofs for the asymptotic results in a random design (Theorem 6 and Theorem 7) are
exposed in section 8.2, and those of the asymptotic results in a fixed design (Theorem 9 and
Theorem 10) are presented in section 8.3.

8.1 Non asymptotic setting

8.1.1 Proof of Proposition 1

We recall first the bijections 𝜄 ∶ 𝕋𝑛 → ℬ2𝑛−1 and ̃𝜄 ∶ ℬ𝑆
𝑛−1 → ℬ2𝑛−1. We also recall the labelling

𝐿ℬ
𝒯 ∶ 𝒯∘ → {1, … , 𝑛−1} defined for each 𝒯 ∈ ℬ2𝑛−1 by (7), and we point out that it is consistent

both with the 𝒟𝑛-restricted isolation trees in 𝕋𝑛 and with the binary search trees in ℬ𝑆
𝑛−1 in

the following sense. For any (𝒯, 𝜋𝒯,𝑛) in 𝕋𝑛, at any internal node 𝑣 ∈ 𝒯∘ we have 𝐿ℬ
𝒯(𝑣) = 𝑘 if
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and only if there exists 𝜏 ∈ 𝐼𝑘 that partitions the cell at 𝑣 into the cells associated with its two
children, meaning that 𝜋𝒯,𝑛(𝑣0) = 𝜋𝒯,𝑛(𝑣) ∩ (−∞, 𝜏) and 𝜋𝒯,𝑛(𝑣1) = 𝜋𝒯,𝑛(𝑣) ∩ (𝜏, ∞). And
for a binary search tree (𝒯, 𝐿𝒯) ∈ ℬ𝑆

𝑛−1, we have 𝐿ℬ
𝒯 = 𝐿𝒯, so that 𝐿ℬ

𝒯 recovers the keys that
are stored in the internal nodes of 𝒯. We also note that during the generation of an isolation
tree according to Algorithm 1 or a randomized binary search tree according to Algorithm 2, the
construction of the left and right subtrees of a node 𝑣 are conditionally independent given the
path from the root to 𝑣.

For any integer 𝑘, we define the intervals 𝒥0(𝑘) = (−∞, 𝑘] and 𝒥1(𝑘) = (𝑘, +∞). Given a
subset 𝐴 ⊂ ℝ and 𝜂 ∈ {0, 1}, we denote by 𝐴𝜂 the set defined by 𝐴𝜂 = 𝐴 if 𝜂 = 1 and 𝐴𝜂 = ∅
if 𝜂 = 0.

Let (𝒯⋆, 𝜋𝒯⋆,𝑛) ∈ 𝕋𝑛 be a 𝒟𝑛-restricted isolation tree and let (𝒯⋆, 𝐿𝒯⋆) = ( ̃𝜄−1∘𝜄) ((𝒯⋆, 𝜋𝒯⋆,𝑛))
be its image by ̃𝜄−1 ∘ 𝜄. Note that 𝒯⋆ = 𝒯⋆ and that 𝐿𝒯⋆ = 𝐿ℬ

𝒯⋆ . We shall prove by recursion on
the internal nodes that

𝜇𝑛 ([(𝒯⋆, 𝜋𝒯⋆,𝑛)]) = ̃𝜇𝑛 ([(𝒯⋆, 𝐿𝒯⋆)]) . (26)

Let (𝒯, 𝜋𝒯,𝑛) ∼ 𝜇𝑛 be a generic random 𝒟𝑛-restricted isolation tree taking values in 𝕋𝑛

and let (𝒯, 𝐿𝒯) ∶= (𝒯, 𝐿𝒯)(𝑍1, … , 𝑍𝑛−1) ∼ ̃𝜇𝑛 be a random binary search tree taking values
in ℬ𝑆

𝑛−1 and generated from independent random variables 𝑍1, … , 𝑍𝑛−1 where 𝑍𝑖 is distributed
according to 𝐹 𝑤𝑖

0 , for 1 ≤ 𝑖 ≤ 𝑛 − 1.
Let 𝑖⋆

0 = 𝐿ℬ
𝒯⋆(∅). To initate the recursion, we need to prove that the event that the cell of

the root node of 𝒯 is partitioned at some point that belongs to 𝐼𝑖⋆
0

and the event that the key
stored at the root of 𝒯 is 𝑖⋆

0 occur with the same probability, meaning that

ℙ (𝐿ℬ
𝒯(∅) = 𝑖⋆

0) = ℙ (𝐿𝒯(∅) = 𝑖⋆
0) . (27)

On the one hand, the event that the first split point belongs to 𝐼𝑖⋆
0

occurs with probability
𝑤𝑖⋆

0
∑𝑛−1

ℓ=1 𝑤ℓ
. On the other hand, by Lemma 2, the first key stored in 𝒯 is 𝑖⋆

0 if and only if 𝑍𝑖⋆
0

is

the largest among 𝑍1, … , 𝑍𝑛−1, and this occurs with probability
𝑤𝑖⋆

0
∑𝑛−1

ℓ=1 𝑤ℓ
by Lemma 11. This

proves (27).
Next, given 𝑘 ≥ 1, let 𝑣⋆

𝑘 ∈ 𝒯⋆,∘ be an internal node of 𝒯⋆ and with height equal to 𝑘, so that
|𝑣𝑘| = 𝑘. Denote by ∅ = 𝑣⋆

0, 𝑣⋆
1, … , 𝑣⋆

𝑘 the (unique) shortest path from the root to 𝑣⋆
𝑘 (notice that

each 𝑣⋆
ℓ, for each 0 ≤ ℓ ≤ 𝑘 is the ℓ-tuple composed of the first ℓ components of 𝑣⋆

𝑘 since 𝑣⋆
𝑘 is a

𝑘-tuple in the set of labels 𝒰). Along this path in (𝒯⋆, 𝜋𝒯∗,𝑛), each cell 𝜋𝒯⋆,𝑛(𝑣⋆
ℓ) is partitioned

by a point that belongs to the interval at index 𝐿ℬ
𝒯(𝑣⋆

ℓ), for 0 ≤ ℓ ≤ 𝑘, and along this same path
in (𝒯⋆, 𝐿𝒯⋆), the key that is stored at 𝑣⋆

ℓ is 𝐿ℬ
𝒯(𝑣⋆

ℓ), for 0 ≤ ℓ ≤ 𝑘. Let Ω𝑘 = [𝑣⋆
𝑘 ∈ 𝒯] be the

event that 𝒯 contains 𝑣⋆
𝑘 and likewise, let Ω̃𝑘 = [𝑣⋆

𝑘 ∈ 𝒯] be the event that 𝒯 contains 𝑣⋆
𝑘.

On the event Ω𝑘, we have 𝐿ℬ
𝒯(𝑣⋆

ℓ) = 𝐿𝒯⋆(𝑣⋆
ℓ) for all 0 ≤ ℓ ≤ 𝑘 and similarly on the event

Ω̃𝑘, we have 𝐿𝑇(𝑣⋆
ℓ) = 𝐿𝒯⋆(𝑣⋆

ℓ) for all 0 ≤ ℓ ≤ 𝑘. Moreover, on the event Ω𝑘, for any 𝜂 ∈ {0, 1},
if 𝑣⋆

𝑘𝜂 ∈ 𝒯⋆,∘ then 𝑣⋆
𝑘𝜂 ∈ 𝒯∘. Likewise, on the event Ω̃𝑘, for any 𝜂 ∈ {0, 1}, if 𝑣⋆

𝑘𝜂 ∈ 𝒯⋆,∘

then 𝑣⋆
𝑘𝜂 ∈ 𝒯∘. Therefore, the recursion will be established if we show that for any 𝜂 ∈ {0, 1},

whenever 𝑣⋆
𝑘𝜂 ∈ 𝒯⋆,∘, we have

ℙ (𝐿ℬ
𝒯(𝑣⋆

𝑘𝜂) = 𝐿ℬ
𝒯⋆(𝑣⋆

𝑘𝜂) | Ω𝑘) = ℙ (𝐿𝒯(𝑣⋆
𝑘𝜂) = 𝐿ℬ

𝒯⋆(𝑣⋆
𝑘𝜂) | Ω̃𝑘) , (28)

meaning that the conditional probability that the cell 𝜋𝒯,𝑛(𝑣⋆
𝑘𝜂) is partitioned by some point

falling in the interval with index 𝐿ℬ
𝒯⋆(𝑣⋆

𝑘𝜂) given Ω𝑘 is equal to the conditional probability that
the key 𝐿ℬ

𝒯⋆(𝑣⋆
𝑘𝜂) is stored in the node 𝑣⋆

𝑘𝜂 of 𝒯 given Ω̃𝑘.
Now letting 𝑖⋆

ℓ = 𝐿𝒯⋆(𝑣⋆
ℓ), for 0 ≤ ℓ ≤ 𝑘, on the event Ω𝑘, for any 𝜂 ∈ {0, 1} such that
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𝑣⋆
𝑘𝜂 ∈ 𝒯⋆,∘, the cell 𝜋𝒯,𝑛(𝑣⋆

𝑘𝜂) may be expressed explicitely in terms of the data points as

𝜋𝒯,𝑛(𝑣⋆
𝑘𝜂) = {𝑥ℓ ∶ ℓ ∈ 𝒦𝜂}, where

𝒦𝜂 = {1, … , 𝑛} ∩ (
𝑘−1
⋂
𝑗=1

(𝒥0(𝑖⋆
𝑗)1{𝑖⋆

𝑗+1<𝑖⋆
𝑗} ∪ 𝒥1(𝑖⋆

𝑗)1{𝑖⋆
𝑗+1>𝑖⋆

𝑗})) ∩ (𝒥0(𝑖⋆
𝑘)1−𝜂 ∪ 𝒥1(𝑖⋆

𝑘)𝜂).

Notice that 𝑗⋆ ∶= 𝐿ℬ
𝒯⋆(𝑣⋆

𝑘𝜂) belongs to 𝒦𝜂 ∖(max 𝒦𝜂). Consequently, the conditional probability
that 𝜋𝒯,𝑛(𝑣⋆

𝑘𝜂) is partitioned by some point that belongs to the interval 𝐼𝑗⋆ given Ω𝑘 is equal to
𝑤𝑗⋆

∑ℓ∈𝒦𝜂∖(max 𝒦𝜂) 𝑤ℓ
. Next, given Ω̃𝑘, the key stored at node 𝑣⋆

𝑘 happens to be 𝑗⋆ if and only if 𝑍𝑗⋆ is

the largest among {𝑍ℓ ∶ ℓ ∈ 𝒦𝜂} by Lemma 2, and by Lemma 11, the conditional probability
that this occurs given Ω̃𝑘 is equal to 𝑤𝑗⋆

∑ℓ∈𝒦𝜂∖(max 𝒦𝜂) 𝑤ℓ
. This proves (28) and the recursion is

established. Then (27) and (28) yields (26) and the proof is complete.

8.1.2 Proof of Lemma 2

We consider that the 𝑍𝑘’s are all distinct since this holds with probability one. We expand the
notation 𝒯𝑆(𝑍1, … , 𝑍𝑛−1) into 𝒯𝑆(𝑍1, … , 𝑍𝑛−1) = (𝒯, 𝐿𝒯)(𝑍1, … , 𝑍𝑛−1) and we refer to the
internal nodes of 𝒯 by the intervals 𝐼1, … , 𝐼𝑛−1, meaning that node 𝑣 ∈ 𝒯∘ is referred to as 𝐼𝑖
with 𝑖 = 𝐿𝒯(𝑣). Let ℐ = {ℓ ∶ 𝑖 ∧ 𝑗 ≤ ℓ ≤ 𝑖 ∨ 𝑗}.

Suppose that 𝑍𝑖 is the largest among {𝑍ℓ ∶ ℓ ∈ ℐ}. If 𝐼𝑖 is the root of 𝒯, then obviously 𝐼𝑖
is an ancestor of 𝐼𝑗. Else, denote by 𝐼𝑚 the root of 𝒯, and by 𝒯0 and 𝒯1 the (possibly empty)
left and right subtrees of 𝐼𝑚 in 𝒯, respectively. By construction of 𝒯, the internal nodes of 𝒯0
(respectively 𝒯1) are those intervals 𝐼ℓ with ℓ < 𝑚 (respectively ℓ > 𝑚). Therefore necessarily
either 𝑚 < 𝑖 ∧ 𝑗 or 𝑚 > 𝑖 ∨ 𝑗, implying that the set of nodes {𝐼ℓ ∶ ℓ ∈ ℐ} lies entirely in 𝒯0 or
in 𝒯1. We then proceed recursively on either 𝒯0 or 𝒯1 accordingly until 𝐼𝑖 is found to be the
root of the considered subtree, to conlude that 𝐼𝑖 is an ancestor of 𝐼𝑗.

Conversely, suppose that 𝐼𝑖 is an ancestor of 𝐼𝑗. If 𝐼𝑖 is the root of 𝒯, then 𝑍𝑖 is the largest
of all the 𝑍ℓ’s, and in particular among {𝑍ℓ ∶ ℓ ∈ ℐ}. Else, denote by 𝐼𝑚 the root of 𝒯, and
by 𝒯0 and 𝒯1 the (possibly empty) left and right subtrees of 𝐼𝑚 in 𝒯, respectively, as above.
Then necessarily either 𝑚 < 𝑖 ∧ 𝑗 or 𝑚 > 𝑖 ∨ 𝑗, for otherwise 𝐼𝑖∧𝑗 lies in 𝒯0 while 𝐼𝑖∨𝑗 lies in
𝒯1, implying that 𝐼𝑖 is not an ancestor of 𝐼𝑗, hence a contradiction. Thus the set of nodes
{𝐼ℓ ∶ ℓ ∈ ℐ} lies entirely in 𝒯0 or in 𝒯1, and by proceeding recursively on either 𝒯0 or 𝒯1 until
𝐼𝑖 is found to be the root, we conlude that 𝑍𝑖 is the largest among {𝑍ℓ ∶ ℓ ∈ ℐ}.

8.1.3 Proof of Proposition 3

We prove the statements using a generic random binary search tree 𝒯𝑆 ∶= 𝒯𝑆(𝑍1, … , 𝑍𝑛−1)
where 𝑍1, … , 𝑍𝑛−1 are independent random variables with 𝑍𝑖 ∼ 𝐹 𝑤𝑖

0 , for 1 ≤ 𝑖 ≤ 𝑛 − 1, so that
𝒯𝑆 is distributed according to ̃𝜇𝑛.

We start by proving (10). When 𝑖 = 𝑗, 𝐴𝑖𝑗 = 0 by convention. For 𝑖 ≠ 𝑗, by Lemma 2,
𝐴𝑖𝑗 equals 1 if and only if 𝑍𝑖 is the largest among 𝑍𝑖∧𝑗, … , 𝑍𝑖∨𝑗 and 0 otherwise. Denote by
𝒦 = {𝑘 ∶ 𝑖 ∧ 𝑗 ≤ 𝑘 ≤ 𝑖 ∨ 𝑗}. Applying Lemma 11, we directly obtain that

𝔼[𝐴𝑖𝑗] = ℙ (𝑍𝑖 ≥ max
𝑘∈𝒦

𝑍𝑘) = 𝑤𝑖
∑𝑘∈𝒦 𝑤𝑘

.

To prove (11), we only need to consider those cases for which 𝑗 ≠ 𝑘, which we assume from
now on, since the 𝐴𝑖𝑗’s are {0, 1}-valued. Let 𝒥 = {ℓ ∶ 𝑖 ∧ 𝑗 ≤ ℓ ≤ 𝑖 ∨ 𝑗} and 𝒦 = {ℓ ∶ 𝑖 ∧ 𝑘 ≤
𝑙 ≤ 𝑖 ∨ 𝑘}. Denote by ℐ = 𝒥 ∩ 𝒦 their intersection. Note that both 𝒥 and 𝒦 contain {𝑖} so ℐ
is nonempty. We shall use the conventions that, for any set ℒ of indices, maxℓ∈ℒ 𝑍ℓ = −∞ and

24



∑ℓ∈ℒ 𝑤ℓ = 0 whenvever ℒ = ∅. We have

𝔼 [𝐴𝑗𝑖𝐴𝑘𝑖] = ℙ (𝑍𝑗 ≥ max
ℓ∈𝒥

𝑍ℓ , 𝑍𝑘 ≥ max
ℓ∈𝒦

𝑍ℓ)

= 𝔼 [ℙ (𝑍𝑗 ≥ max
ℓ∈𝒥

𝑍ℓ , 𝑍𝑘 ≥ max
ℓ∈𝒦

𝑍ℓ|𝑍𝑗, 𝑍𝑘)] . (29)

Collecting variables appearing in the two maxima using the set ℐ, we have

ℙ (𝑍𝑗 ≥ max
ℓ∈𝒥

𝑍ℓ , 𝑍𝑘 ≥ max
ℓ∈𝒦

𝑍ℓ|𝑍𝑗, 𝑍𝑘)

= ℙ (𝑍𝑗 ∧ 𝑍𝑘 ≥ max
ℓ∈ℐ

𝑍𝑙, 𝑍𝑗 ≥ max
ℓ∈𝒥∩𝒦𝑐

𝑍ℓ, 𝑍𝑘 ≥ max
ℓ∈𝒦∩𝒥𝑐

𝑍ℓ|𝑍𝑗, 𝑍𝑘) . (30)

At this point, we specialize to three cases according to whether 𝑗 and 𝑘 are both larger than 𝑖,
or both smaller than 𝑖, or one of the two is larger than 𝑖 while the other is smaller than 𝑖.

For the first case where both 𝑗 and 𝑘 are larger than 𝑖, suppose, without loss of generality,
that 𝑗 < 𝑘. Then 𝒥 ⊂ 𝒦, ℐ = 𝒥, 𝒥 ∩ 𝒦𝑐 = ∅ and

[𝑍𝑗 ∧ 𝑍𝑘 ≥ max
ℓ∈ℐ

𝑍ℓ] = [𝑍𝑗 ≥ max
ℓ∈𝒥∖{𝑗}

𝑍ℓ] ∩ [𝑍𝑘 ≥ 𝑍𝑗] . (31)

Therefore,

ℙ (𝑍𝑗 ≥ max
ℓ∈𝒥

𝑍ℓ , 𝑍𝑘 ≥ max
ℓ∈𝒦

𝑍ℓ|𝑍𝑗, 𝑍𝑘)

= 𝐹0(𝑍𝑗)
∑ℓ∈𝒥∖{𝑗} 𝑤ℓ𝐹0(𝑍𝑘)∑ℓ∈𝒦∩𝒥𝑐∖{𝑘} 𝑤ℓ1{𝑍𝑘 ≥ 𝑍𝑗}. (32)

Note that when 𝑘 = 𝑗 + 1, the exponent over 𝐹0(𝑍𝑘) in (32) is equal to 0 (by convention).
Taking the expectation in (32), first by conditioning on 𝑍𝑘, and using (29), it follows that

𝔼 [𝐴𝑗𝑖𝐴𝑘𝑖] = 𝔼 [
𝑤𝑗

∑ℓ∈𝒥 𝑤ℓ
𝐹0(𝑍𝑘)∑ℓ∈𝒥 𝑤ℓ𝐹0(𝑍𝑘)∑ℓ∈𝒦∩𝒥𝑐∖{𝑘} 𝑤ℓ] =

𝑤𝑗

∑ℓ∈𝒥 𝑤ℓ

𝑤𝑘
∑ℓ∈𝒦 𝑤ℓ

.

Therefore
𝔼 [𝐴𝑗𝑖𝐴𝑘𝑖] = 𝔼[𝐴𝑗𝑖]𝔼[𝐴𝑘𝑖]. (33)

The second case where both 𝑗 and 𝑘 are smaller than 𝑖 is similar to the first case. Assuming,
without loss of generality, that 𝑘 < 𝑗 < 𝑖, then we have 𝒥 ⊂ 𝒦, ℐ = 𝒥, 𝒥 ∩ 𝒦𝑐 = ∅ and (31)
also holds. Therefore (33) is valid in this case as well.

For the third case, assume, without loss of generality, that 𝑗 < 𝑖 < 𝑘. Then ℐ = {𝑖},
𝒥 ∩ 𝒦𝑐 = 𝒥 ∖ {𝑖} and 𝒦 ∩ 𝒥𝑐 = 𝒦 ∖ {𝑖}. Reporting these in (30) yields

ℙ (𝑍𝑗 ≥ max
ℓ∈𝒥

𝑍ℓ , 𝑍𝑘 ≥ max
ℓ∈𝒦

𝑍ℓ|𝑍𝑗, 𝑍𝑘)

= 𝐹0(𝑍𝑗 ∧ 𝑍𝑘)𝑤𝑖𝐹0(𝑍𝑗)
∑ℓ∈𝒥∖{𝑖,𝑗} 𝑤ℓ𝐹0(𝑍𝑘)∑ℓ∈𝒦∖{𝑖,𝑘} 𝑤ℓ

= 𝐹0(𝑍𝑗)𝑤𝑖1{𝑍𝑗 ≤ 𝑍𝑘}𝐹0(𝑍𝑗)
∑ℓ∈𝒥∖{𝑖,𝑗} 𝑤ℓ𝐹0(𝑍𝑘)∑ℓ∈𝒦∖{𝑖,𝑘} 𝑤ℓ

+ 𝐹0(𝑍𝑘)𝑤𝑖1{𝑍𝑘 ≤ 𝑍𝑗}𝐹0(𝑍𝑗)
∑ℓ∈𝒥∖{𝑖,𝑗} 𝑤ℓ𝐹0(𝑍𝑘)∑ℓ∈𝒦∖{𝑖,𝑘} 𝑤ℓ

= 𝐹0(𝑍𝑗)
∑ℓ∈𝒥∖{𝑗} 𝑤ℓ𝐹0(𝑍𝑘)∑ℓ∈𝒦∖{𝑖,𝑘} 𝑤ℓ1{𝑍𝑗 ≤ 𝑍𝑘}

+ 𝐹0(𝑍𝑗)
∑ℓ∈𝒥∖{𝑖,𝑗} 𝑤ℓ𝐹0(𝑍𝑘)∑ℓ∈𝒦∖{𝑘} 𝑤ℓ1{𝑍𝑘 ≤ 𝑍𝑗}

=∶ 𝑀1 + 𝑀2. (34)
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For the first term in the right hand side of (34), we have

𝔼[𝑀1] = 𝔼 [𝔼[𝑀1|𝑍𝑘]]

= 𝔼 [
𝑤𝑗

∑ℓ∈𝒥 𝑤ℓ
𝐹0(𝑍𝑘)∑ℓ∈𝒥 𝑤ℓ𝐹0(𝑍𝑘)∑ℓ∈𝒦∖{𝑖,𝑘} 𝑤ℓ]

=
𝑤𝑗

∑ℓ∈𝒥 𝑤ℓ

𝑤𝑘
∑ℓ∈𝒥∪𝒦 𝑤ℓ

= 𝔼[𝐴𝑗𝑖]𝔼[𝐴𝑘𝑗], (35)

and for the second term in (34), we have

𝔼[𝑀2] = 𝔼 [𝔼[𝑀2|𝑍𝑗]]

= 𝔼 [ 𝑤𝑘
∑ℓ∈𝒦 𝑤ℓ

𝐹0(𝑍𝑗)
∑ℓ∈𝒦 𝑤ℓ𝐹0(𝑍𝑗)

∑ℓ∈𝒥∖{𝑖,𝑗} 𝑤ℓ]

= 𝑤𝑘
∑ℓ∈𝒦 𝑤ℓ

𝑤𝑗

∑ℓ∈𝒥∪𝒦 𝑤ℓ

= 𝔼[𝐴𝑘𝑖]𝔼[𝐴𝑗𝑘]. (36)

Reporting (35) and (36) in (34), and then combining with (30), we deduce that

𝔼 [𝐴𝑗𝑖𝐴𝑘𝑖] = 𝔼 [𝐴𝑗𝑖] 𝔼 [𝐴𝑘𝑗] + 𝔼 [𝐴𝑘𝑖] 𝔼 [𝐴𝑗𝑘] . (37)

Equation (37) has been established when 𝑗 < 𝑖 < 𝑘, and by symetry it also holds when 𝑘 < 𝑖 < 𝑗.
All cases having been covered, the proof of (11) is complete.

8.1.4 Proof of Theorem 4

Recall first the operator Π𝑛 ∶ (𝒯, 𝜋𝒯) ↦ (𝒯, 𝜋𝒯,𝑛) mapping an isolation tree (𝒯, 𝜋𝒯) in 𝕋
to its restriction (𝒯, 𝜋𝒯,𝑛) to 𝒟𝑛, and that (ℎ𝒯(𝑥1), … , ℎ𝒯(𝑥𝑛)) = (ℎ𝒯,𝑛(𝑥1), … , ℎ𝒯,𝑛(𝑥𝑛))
for any (𝒯, 𝜋𝒯) ∈ 𝕋 such that (𝒯, 𝜋𝒯,𝑛) = Π𝑛 ((𝒯, 𝜋𝒯)). We use this in conjunction with
Proposition 1 and (8) and (9) to relate the expectations of ℎ𝒯,𝑛(𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑛, with the
expectations of the ancestor variables and some of their products, and we use their expressions
given in Proposition 3. The notations 𝐷𝑖, for 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝐴𝑖𝑗, for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1
relate to the random binary search tree 𝒯𝑆 that corresponds to 𝒯𝐼𝑇, thus formally defined by
𝒯𝑆 = ( ̃𝜄−1 ∘ 𝜄 ∘ Π𝑛) (𝒯𝐼𝑇).

For 𝑖 = 1,

𝔼[ℎ𝒯(𝑥1)] = 1 + 𝔼[𝐷1] = 1 +
𝑛−1
∑
𝑗=2

𝔼[𝐴𝑗1] = 1 +
𝑛−1
∑
𝑗=2

𝑤𝑗

∑𝑗
ℓ=1 𝑤ℓ

.

For 𝑖 = 𝑛,

𝔼[ℎ𝒯(𝑥𝑛)] = 1 + 𝔼[𝐷𝑛−1] = 1 +
𝑛−2
∑
𝑗=1

𝔼[𝐴𝑗,𝑛−1] = 1 +
𝑛−2
∑
𝑗=1

𝑤𝑗

∑𝑛−1
ℓ=𝑗 𝑤ℓ

.

For 2 ≤ 𝑖 ≤ 𝑛 − 1, we have

ℎ𝒯(𝑥𝑖) = 1 + max{𝐷𝑖−1, 𝐷𝑖} = 1 + 𝐷𝑖−1𝐴𝑖,𝑖−1 + 𝐷𝑖𝐴𝑖−1,𝑖,

where we used the fact that, regarding 𝐼𝑖−1 and 𝐼𝑖, one is always an ancestor of the other. Thus

𝔼[ℎ𝒯(𝑥𝑖)] = 1 + 𝔼[𝐷𝑖−1𝐴𝑖,𝑖−1] + 𝔼[𝐷𝑖𝐴𝑖−1,𝑖] = 1 +
𝑛−1
∑
𝑗=1

𝔼[𝐴𝑗,𝑖−1𝐴𝑖,𝑖−1] +
𝑛−1
∑
𝑗=1

𝔼[𝐴𝑗𝑖𝐴𝑖−1,𝑖]. (38)
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We split the two sums in (38) so as to apply Proposition 3. Define the following (possibly
empty) sets of integers:

𝒥1 = {𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑖 − 2} , 𝒥2 = {𝑗 ∶ 𝑖 + 1 ≤ 𝑗 ≤ 𝑛 − 1} , (39)

and we note that 𝒥1 is empty if 𝑖 = 2 and 𝒥2 is empty if 𝑖 = 𝑛 − 1. We use the convention that
a sum over an empty set of indices is equal to 0. Then

𝔼[ℎ𝒯(𝑥𝑖)] = 1 + ∑
𝑗∈𝒥1

𝔼[𝐴𝑗,𝑖−1𝐴𝑖,𝑖−1] + 𝔼[𝐴𝑖,𝑖−1] + ∑
𝑗∈𝒥2

𝔼[𝐴𝑗,𝑖−1𝐴𝑖,𝑖−1]

+ ∑
𝑗∈𝒥1

𝔼[𝐴𝑗𝑖𝐴𝑖−1,𝑖] + 𝔼[𝐴𝑖−1,𝑖] + ∑
𝑗∈𝒥2

𝔼[𝐴𝑗𝑖𝐴𝑖−1,𝑖]. (40)

Using the relation 𝐴𝑖,𝑖−1 + 𝐴𝑖−1,𝑖 = 1 for all 𝑖 twice and Proposition 3, we deduce from (40)
that

𝔼[ℎ𝒯(𝑥𝑖)] = 2 + ∑
𝑗∈𝒥1

(𝔼[𝐴𝑗,𝑖−1]𝔼[𝐴𝑖𝑗] + 𝔼[𝐴𝑖,𝑖−1]𝔼[𝐴𝑗𝑖]) + ∑
𝑗∈𝒥2

𝔼[𝐴𝑗,𝑖−1]𝔼[𝐴𝑖,𝑖−1]

+ ∑
𝑗∈𝒥1

𝔼[𝐴𝑗𝑖]𝔼[𝐴𝑖−1,𝑖] + ∑
𝑗∈𝒥2

(𝔼[𝐴𝑗𝑖]𝔼[𝐴𝑖−1,𝑗] + 𝔼[𝐴𝑖−1,𝑖]𝔼[𝐴𝑗,𝑖−1])

= 2 + ∑
𝑗∈𝒥1

𝔼[𝐴𝑗𝑖] + ∑
𝑗∈𝒥2

𝔼[𝐴𝑗,𝑖−1] + ∑
𝑗∈𝒥1

𝔼[𝐴𝑗,𝑖−1]𝔼[𝐴𝑖𝑗] + ∑
𝑗∈𝒥2

𝔼[𝐴𝑗𝑖]𝔼[𝐴𝑖−1,𝑗]. (41)

If 𝒥1 ≠ ∅, for any 𝑗 ∈ 𝒥1, we have

𝔼[𝐴𝑗𝑖] + 𝔼[𝐴𝑗,𝑖−1]𝔼[𝐴𝑖𝑗] =
𝑤𝑗

∑𝑖
ℓ=𝑗 𝑤ℓ

+
𝑤𝑖𝑤𝑗

∑𝑖−1
ℓ=𝑗 𝑤ℓ ∑𝑖

ℓ=𝑗 𝑤ℓ
=

𝑤𝑗

∑𝑖−1
ℓ=𝑗 𝑤ℓ

= 𝔼[𝐴𝑗,𝑖−1],

and if 𝒥2 ≠ ∅, for any 𝑗 ∈ 𝒥2, we have

𝔼[𝐴𝑗,𝑖−1] + 𝔼[𝐴𝑗𝑖]𝔼[𝐴𝑖−1,𝑗] =
𝑤𝑗

∑𝑗
ℓ=𝑖−1 𝑤ℓ

+
𝑤𝑗𝑤𝑖−1

∑𝑗
ℓ=𝑖 𝑤ℓ ∑𝑗

ℓ=𝑖−1 𝑤ℓ
=

𝑤𝑗

∑𝑗
ℓ=𝑖 𝑤ℓ

= 𝔼[𝐴𝑗𝑖].

Reporting the two relations above in (41) yields

𝔼[ℎ𝒯(𝑥𝑖)] = 2 + ∑
𝑗∈𝒥1

𝔼[𝐴𝑗,𝑖−1] + ∑
𝑗∈𝒥2

𝔼[𝐴𝑗𝑖]. (42)

Now we develop the terms in (42). First, if 𝑖 = 2, then 𝒥1 = ∅ and 𝒥2 ≠ ∅, so that

𝔼[ℎ𝒯(𝑥2)] = 2 +
𝑛−1
∑
𝑗=3

𝑤𝑗

∑𝑗
ℓ=2 𝑤ℓ

= 1 +
𝑛−1
∑
𝑗=2

𝑤𝑗

∑𝑗
ℓ=2 𝑤ℓ

. (43)

Second, if 3 ≤ 𝑖 ≤ 𝑛 − 2, then both 𝒥1 and 𝒥2 are nonempty, and we have

𝔼[ℎ𝒯(𝑥𝑖)] = 2 +
𝑖−2
∑
𝑗=1

𝑤𝑗

∑𝑖−1
ℓ=𝑗 𝑤ℓ

+
𝑛−1
∑

𝑗=𝑖+1

𝑤𝑗

∑𝑗
ℓ=𝑖 𝑤ℓ

=
𝑖−1
∑
𝑗=1

𝑤𝑗

∑𝑖−1
ℓ=𝑗 𝑤ℓ

+
𝑛−1
∑
𝑗=𝑖

𝑤𝑗

∑𝑗
ℓ=𝑖 𝑤ℓ

. (44)

Third, if 𝑖 = 𝑛 − 1, then 𝒥1 ≠ ∅ and 𝒥2 = ∅, and so

𝔼[ℎ𝒯(𝑥𝑛−1)] = 2 +
𝑛−3
∑
𝑗=1

𝑤𝑗

∑𝑛−2
ℓ=𝑗 𝑤ℓ

= 1 +
𝑛−2
∑
𝑗=1

𝑤𝑗

∑𝑛−2
ℓ=𝑗 𝑤ℓ

. (45)

Next, we note that the expression after the last equal sign in (44) is valid as well whenever
𝑖 = 2 or 𝑖 = 𝑛−1 and that it coincides with the expressions given respectively by (43) and (45).
Finally, replacing each interval length 𝑤𝑗 with the difference 𝑥𝑗+1 − 𝑥𝑗 yields (12).
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8.1.5 Proof of Proposition 5

Let 𝑥 = (𝑥(1), … , 𝑥(𝑑)) ∈ Conv(𝒟𝑛) be a point in the convex hull of 𝒟𝑛. Note first that
Conv(𝒟𝑛) is an orthotope (meaning a hyperrectangle) of dimension 𝑑, and that 𝑥 is included
in the orthotope with vertices {𝑥i ∶ i ∈ I(𝑥)}. We denote by 𝑤𝑗 = 𝑥𝑗,𝑖𝑗(𝑥)+1 − 𝑥𝑗,𝑖𝑗(𝑥), for
𝑗 ∈ {1, … , 𝑑} the side lengths of this orthotope, where we recall that 𝑖𝑗(𝑥) = 1 + ⌊(𝑛 − 1)(𝑥(𝑗) −
𝑥𝑗,1)/(𝑥𝑗,𝑛 − 𝑥𝑗,1)⌋, for 𝑗 ∈ {1, … , 𝑑}. For i ∈ I(𝑥), we let 𝛿𝑗(i) = 𝑖𝑗 − 𝑖𝑗(𝑥) and we note that
𝛿𝑗(i) ∈ {0, 1}.

Let 𝑉I(𝑥)(𝒯) = {𝑣 ∈ 𝜕𝒯 ∶ 𝜋𝒯(𝑣)∩{𝑥i ∶ i ∈ I(𝑥)} ≠ ∅} be the set of leaves in 𝒯 the attached
cells of whose contain the points 𝑥i, for i ∈ I(𝑥) (each of those cells contain exactly one point).
Notice that 𝑥 necessarily belongs to one of the cells 𝜋𝒯(𝑣) for 𝑣 ∈ 𝑉I(𝑥), so that ℎ𝒯(𝑥) is equal
to ℎ𝒯(𝑥i) for some i ∈ I(𝑥), which depends on 𝒯. To compute the expectation of ℎ𝒯(𝑥), we first
condition on isolation trees restricted to 𝒟𝑛, which prescribes the tree structure leaving free
only the random draws of the split values. Indeed, recall that an isolation tree and its restriction
to 𝒟𝑛 carry the same tree structure, meaning that for any (𝒯0, 𝜋𝒯0

) ∈ 𝕋 and (𝒯′
0, 𝜋𝒯′

0,𝑛) ∈ 𝕋𝑛

such that (𝒯′
0, 𝜋𝒯′

0,𝑛) = Π𝑛 ((𝒯0, 𝜋𝒯0
)), we have 𝒯′

0 = 𝒯0.
We have

𝔼[ℎ𝒯(𝑥)]
= ∑

(𝒯′,𝜋𝒯′,𝑛)∈𝕋𝑛

𝔼 [ℎ𝒯(𝑥)| [Π𝑛 ((𝒯, 𝜋𝒯)) = (𝒯′, 𝜋𝒯′,𝑛)]] ℙ (Π𝑛 ((𝒯, 𝜋𝒯)) = (𝒯′, 𝜋𝒯′,𝑛)) .

(46)

Let (𝒯′, 𝜋𝒯′,𝑛) be a 𝒟𝑛-restricted isolation tree in 𝕋𝑛 and let 𝑉I(𝑥),𝑛(𝒯′) = {𝑣 ∈ 𝜕𝒯′ ∶
𝜋𝒯′,𝑛(𝑣) ∩ {𝑥i ∶ i ∈ I(𝑥)} ≠ ∅}. For any interior node 𝑣 ∈ 𝒯∘ of 𝒯, denote by 𝑗(𝑣) ∈ {1, … , 𝑑}
and 𝜏(𝑣) ∈ ℝ respectively the split component and split value associated with 𝑣. Likewise, for
any interior node 𝑣 ∈ 𝒯′∘, let 𝑗′(𝑣) ∈ {1, … , 𝑑} and 𝑖′(𝑣) ∈ {1, … , 𝑛 − 1} be such that 𝜋𝒯′,𝑛(𝑣)
is split between 𝑥𝑗′(𝑣),𝑖′(𝑣) and 𝑥𝑗′(𝑣),𝑖′(𝑣)+1.

Consider the event Ω′ = [Π𝑛 ((𝒯, 𝜋𝒯)) = (𝒯′, 𝜋𝒯′,𝑛)]. On Ω′, we have 𝒯 = 𝒯′, as well as
ℎ𝒯(𝑥i) = ℎ𝒯′,𝑛(𝑥i) for any i ∈ {1, … , 𝑛}𝑑, and so in particular for any i ∈ I(𝑥). On Ω′ it also
holds that 𝑉I(𝑥)(𝒯) = 𝑉I(𝑥),𝑛(𝒯′), that 𝑗(𝑣) = 𝑗′(𝑣) and that 𝑥𝑗′(𝑣),𝑖′(𝑣) ≤ 𝜏(𝑣) ≤ 𝑥𝑗′(𝑣),𝑖′(𝑣)+1, for
any 𝑣 ∈ 𝒯∘ = 𝒯′∘.

Let 𝑣⋆ be the least common ancestor to all the nodes in 𝑉I(𝑥),𝑛(𝒯′), meaning the node with
largest height which is an ancestor in 𝒯′ of every node in 𝑉I(𝑥),𝑛(𝒯′). Notice that 𝑣⋆ is the node
at which the points {𝑥i ∶ i ∈ I(𝑥)} part ways, so to speak, meaning some of these points belong
to 𝜋𝒯′,𝑛(𝑣⋆0) while the remaining points belong to 𝜋𝒯′,𝑛(𝑣⋆1), where we recall that 𝑣⋆0 and 𝑣⋆1
denote the left and right children of 𝑣⋆. Therefore we have 𝑖′(𝑣⋆) = 𝑖𝑗′(𝑣⋆)(𝑥).

Then, letting 𝑗⋆ = 𝑗′(𝑣⋆) and 𝑖⋆ = 𝑖𝑗′(𝑣⋆)(𝑥) to ease notation, we obtain that the conditional
probability that 𝜋𝒯(𝑣⋆0) contains 𝑥 given Ω′ is equal to 1 − (𝑥(𝑗⋆) − 𝑥𝑗⋆,𝑖𝑣⋆)/𝑤𝑗⋆) and similarly,
that the conditional probability that 𝜋𝒯(𝑣⋆1) contains 𝑥 is equal to (𝑥(𝑗⋆) − 𝑥𝑗⋆,𝑖⋆)/𝑤𝑗⋆ , due
to the fact that the conditional distribution of 𝜏(𝑣⋆) given Ω′ is a uniform distribution over
[𝑥𝑗⋆,𝑖⋆ , 𝑥𝑗⋆,𝑖⋆+1]. By proceeding recursively on each subtree of 𝑣⋆ as we just did, we deduce that

𝔼[ℎ𝒯(𝑥)|Ω′] = ∑
i∈I(𝑥)

𝛼iℎ𝒯′,𝑛(𝑥i), (47)

where 𝛼i is given by (14) and where we used the fact that the split values 𝜏(𝑣) for all 𝑣 ∈ 𝒯∘

are conditionally independent given Ω′. Importantly, the expression of 𝛼i in (14) does not
depend on (𝒯′, 𝜋𝒯′,𝑛) but only on 𝑥. By reporting (47) in (46), we obtain that 𝔼[ℎ𝒯(𝑥)] =
∑i∈I(x) 𝛼i ∑(𝒯′,𝜋𝒯′,𝑛)∈𝕋𝑛

ℎ𝒯′,𝑛(𝑥i)ℙ (Π𝑛 ((𝒯, 𝜋𝒯)) = (𝒯′, 𝜋𝒯′,𝑛)) = ∑i∈I(x) 𝛼i𝔼[ℎ𝒯(𝑥i)] and this
proves (13).
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We now prove the second statement. Denote by Ψ ∶ ℝ𝑑 → Conv(𝒟𝑛) the projection operator
onto the convex hull of 𝒟𝑛. During the construction of any isolation tree (𝒯, 𝜋𝒯) according to
Algorithm 1, the cells are partitioned based on a hyperplane orthogonal to one of the coordinate
axis. This implies that for any leaf 𝑣 ∈ 𝜕𝒯, the cell 𝜋𝒯(𝑣) extends outside Conv(𝒟𝑛) in such
a way that 𝜋𝒯(𝑣) ⊃ {𝑥 ∈ ℝ𝑑 ∶ Ψ(𝑥) ∈ 𝜋𝒯(𝑣) ∩ 𝒟𝑛}. Consequently, since the points in 𝒟𝑛 are
arranged as a grid parallel to the coordinate axes, we have 𝔼[ℎ𝒯(𝑥)] = 𝔼 [ℎ𝒯 (Ψ(𝑥))] for any
𝑥 ∈ ℝ𝑑.

8.2 Asymptotics in a random design

In this section we prove Theorem 6 and Theorem 7. First of all, we recall that 𝐺 = 𝐹 −1 denotes
the quantile function defined by 𝐺(𝑝) = inf{𝑥 ∶ 𝐹(𝑥) ≥ 𝑝}, for 0 ≤ 𝑝 ≤ 1. Also, for any
𝑝 ∈ (0, 1) at which 𝐺′ and 𝐺″ exist, their expressions are given by 𝐺′(𝑝) = 𝑓(𝐺(𝑝))−1 and
𝐺″(𝑝) = −𝑓 ′(𝐺(𝑝))/𝑓(𝐺(𝑝))3 respectively.

8.2.1 Proof of Theorem 6, statement (𝑖)

For ease of notation, we denote 𝑖𝑛(𝑝) by 𝑖, the dependence on 𝑛 and on 𝑝 being understood.
Suppose that 𝑛 is large enough that 2 ≤ 𝑖 ≤ 𝑛 − 1. Then from (19), we have

𝐻̄𝑖 =
𝑖−1
∑
𝑗=1

𝑋(𝑗+1) − 𝑋(𝑗)

𝑋(𝑖) − 𝑋(𝑗)
+

𝑛
∑

𝑗=𝑖+1

𝑋(𝑗) − 𝑋(𝑗−1)

𝑋(𝑗) − 𝑋(𝑖)
=∶ 𝐴𝑖 + 𝐵𝑖. (48)

We prove that both 1
log(𝑛)𝐴𝑖 and 1

log(𝑛)𝐵𝑖 converge to 1 almost surely as 𝑛 → ∞. Since the two
series 𝐴𝑖 and 𝐵𝑖 have analogous expressions, we only prove the convergence for the right series
𝐵𝑖.

Let 𝑟 ∶= 𝑟𝑛 = ⌊𝑛/ log(𝑛)⌋ and suppose that 𝑛 is large enough that 3 ≤ 𝑟 ≤ 𝑛 − 𝑖. Then we
decompose 𝐵𝑖 into

𝐵𝑖 =
𝑖+𝑟

∑
𝑗=𝑖+1

𝑋(𝑗) − 𝑋(𝑗−1)

𝑋(𝑗) − 𝑋(𝑖)
+

𝑛
∑

𝑗=𝑖+𝑟+1

𝑋(𝑗) − 𝑋(𝑗−1)

𝑋(𝑗) − 𝑋(𝑖)
=∶ 𝐵𝑖,1 + 𝐵𝑖,2, (49)

and we prove that
1

log(𝑛)
𝐵𝑖,1 → 1 almost surely as 𝑛 → ∞, (50)

and that
1

log(𝑛)
𝐵𝑖,2 → 0 almost surely as 𝑛 → ∞. (51)

To this aim, we use the connection between the order statistics of {𝑋1, … , 𝑋𝑛} and that of a
uniform sample. Let 𝑈𝑗 = 𝐹(𝑋𝑗), for 𝑗 = 1, … , 𝑛. Then the random variables 𝑈1, … , 𝑈𝑛 are
independent and identically distributed according to a uniform distribution over [0, 1], and for
any 1 ≤ 𝑗 ≤ 𝑛, we have 𝑈(𝑗) = 𝐹(𝑋(𝑗)), where 𝑈(1) ≤ 𝑈(2) ≤ ⋯ ≤ 𝑈(𝑛) denote the order statistics
of the sample 𝑈1, … , 𝑈𝑛.

Proof of (50): convergence of 1
log(𝑛)𝐵𝑖,1. We have

𝐵𝑖,1 =
𝑖+𝑟

∑
𝑗=𝑖+1

𝐺(𝑈(𝑗)) − 𝐺(𝑈(𝑗−1))
𝐺(𝑈(𝑗)) − 𝐺(𝑈(𝑖))

= 1 +
𝑖+𝑟

∑
𝑗=𝑖+2

𝐺(𝑈(𝑗)) − 𝐺(𝑈(𝑗−1))
𝐺(𝑈(𝑗)) − 𝐺(𝑈(𝑖))

.

By continuity of 𝑓 in a neighborhood of 𝑥𝑝, there exists 𝛿 > 0 such that the application
𝑦 ↦ 𝑓(𝐺(𝑦)) is continuous and bounded away from 0 over the closed interval [𝑝 − 𝛿, 𝑝 + 𝛿].
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Hence 𝐺′ and 𝐺″ are well defined over [𝑝 − 𝛿, 𝑝 + 𝛿]. We define the following constants:

𝜅1 = inf{𝑓(𝐺(𝑦)) ∶ 𝑝 − 𝛿 ≤ 𝑦 ≤ 𝑝 + 𝛿},
𝜅2 = sup{𝑓(𝐺(𝑦)) ∶ 𝑝 − 𝛿 ≤ 𝑦 ≤ 𝑝 + 𝛿},
𝜅3 = sup{|𝑓 ′(𝐺(𝑦))| ∶ 𝑝 − 𝛿 ≤ 𝑦 ≤ 𝑝 + 𝛿},

(52)

and we note that 𝜅1 > 0 and 𝜅2 < ∞. Then, for any 𝑝 − 𝛿 ≤ 𝑦 ≤ 𝑝 + 𝛿, we have

|𝐺′(𝑦)| ≥ 1/𝜅2 and |𝐺″(𝑦)| ≤ 𝜅3/𝜅3
1.

Let ℰ𝑛,1 be the event defined by

ℰ𝑛,1 = [𝑈(𝑖) ≥ 𝑝 − 𝛿] ∩ [𝑈(𝑖+𝑟) ≤ 𝑝 + 𝛿] .

On the event ℰ𝑛,1, we have 𝑝−𝛿 ≤ 𝑈(𝑗) ≤ 𝑝+𝛿 for any 𝑖 ≤ 𝑗 ≤ 𝑖+𝑟, and using Taylor expansions
at 𝑈(𝑗−1) and 𝑈(𝑖) for each 𝑖 + 2 ≤ 𝑗 ≤ 𝑖 + 𝑟, we obtain that

𝐺(𝑈(𝑗)) = 𝐺(𝑈(𝑗−1)) + 𝐺′(𝑈(𝑗−1))(𝑈(𝑗) − 𝑈(𝑗−1)) + 𝑅𝑗,

𝐺(𝑈(𝑗)) = 𝐺(𝑈(𝑖)) + 𝐺′(𝑈(𝑖))(𝑈(𝑗) − 𝑈(𝑖)) + 𝑅̃𝑗,

where the remainder terms 𝑅𝑗 and 𝑅̃𝑗 are expressed respectively as

𝑅𝑗 = 1
2

𝐺″(𝜉𝑗)(𝑈(𝑗) − 𝑈(𝑗−1))2 and 𝑅̃𝑗 = 1
2

𝐺″( ̃𝜉𝑗)(𝑈(𝑗) − 𝑈(𝑖))2,

for some random variables 𝜉𝑗 and ̃𝜉𝑗 taking values in [𝑝 − 𝛿, 𝑝 + 𝛿]. Therefore, on the event ℰ𝑛,1,
we have

𝐵𝑖,1 = 1 +
𝑖+𝑟

∑
𝑗=𝑖+2

𝐺′(𝑈(𝑗−1))(𝑈(𝑗) − 𝑈(𝑗−1))
𝐺′(𝑈(𝑖))(𝑈(𝑗) − 𝑈(𝑖)) + 𝑅̃𝑗

+
𝑖+𝑟

∑
𝑗=𝑖+2

𝑅𝑗

𝐺(𝑈(𝑗)) − 𝐺(𝑈(𝑖))
. (53)

For each integer 𝑗 with 𝑖 + 2 ≤ 𝑗 ≤ 𝑖 + 𝑟, we have

𝐺′(𝑈(𝑗−1))(𝑈(𝑗) − 𝑈(𝑗−1))
𝐺′(𝑈(𝑖))(𝑈(𝑗) − 𝑈(𝑖)) + 𝑅̃𝑗

=
𝐺′(𝑈(𝑗−1))
𝐺′(𝑈(𝑖))

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)

1

1 + 𝑅̃𝑗
𝐺′(𝑈(𝑖))(𝑈(𝑗)−𝑈(𝑖))

, (54)

and

∣
𝑅̃𝑗

𝐺′(𝑈(𝑖))(𝑈(𝑗) − 𝑈(𝑖))
∣ ≤ 1

2
∣𝐺″( ̃𝜉𝑗)∣ (𝑈(𝑗) − 𝑈(𝑖))2

𝐺′(𝑈(𝑖))(𝑈(𝑗) − 𝑈(𝑖))
≤ 𝜅2𝜅3

2𝜅3
1

(𝑈(𝑗) − 𝑈(𝑖)),

where we used the bounds in (52). Let ℰ𝑛,2 be the event defined by

ℰ𝑛,2 = [𝑈(𝑖+𝑟) − 𝑈(𝑖) ≤ 𝜅3
1

𝜅2(𝜅3 ∨ 1)
] . (55)

(We use the maximum 𝜅3 ∨1 in (55) since 𝜅3 may be equal to 0 if 𝑓 ′ vanishes in a neighborhood
of 𝑥𝑝). Then, on the event ℰ𝑛,2, we have 𝜅2𝜅3

2𝜅3
1

(𝑈(𝑗) − 𝑈(𝑖)) ≤ 1
2 , and using the inequality

|1/(1 + 𝑥) − 1| ≤ 2|𝑥| over [−1/2, 1/2], this yields

∣
∣∣
∣

1

1 + 𝑅̃𝑗
𝐺′(𝑈(𝑖))(𝑈(𝑗)−𝑈(𝑖))

− 1
∣
∣∣
∣
≤ 𝜅2𝜅3

𝜅3
1

(𝑈(𝑗) − 𝑈(𝑖)). (56)
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By combining (56) and (54), and by summing over 𝑗, we obtain that on the event ℰ𝑛,1 ∩ ℰ𝑛,2,

∣
𝑖+𝑟

∑
𝑗=𝑖+2

𝐺′(𝑈(𝑗−1))(𝑈(𝑗) − 𝑈(𝑗−1))
𝐺′(𝑈(𝑖))(𝑈(𝑗) − 𝑈(𝑖)) + 𝑅̃𝑗

−
𝑖+𝑟

∑
𝑗=𝑖+1

𝐺′(𝑈(𝑗−1))
𝐺′(𝑈(𝑖))

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
∣

≤
𝑖+𝑟

∑
𝑗=𝑖+2

𝐺′(𝑈(𝑗−1))
𝐺′(𝑈(𝑖))

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)

∣
∣∣
∣

1

1 + 𝑅̃𝑗
𝐺′(𝑈(𝑖))(𝑈(𝑗)−𝑈(𝑖))

− 1
∣
∣∣
∣

≤ 𝜅2
𝜅1

𝑖+𝑟

∑
𝑗=𝑖+2

𝜅2𝜅3
𝜅3

1
(𝑈(𝑗) − 𝑈(𝑗−1))

≤ 𝜅2
2𝜅3
𝜅4

1
(𝑈(𝑖+𝑟) − 𝑈(𝑖)). (57)

For each 𝑖 + 2 ≤ 𝑗 ≤ 𝑖 + 𝑟, on the event ℰ𝑛,1, a Taylor expansion of 𝐺′ at 𝑈(𝑖) yields

𝐺′(𝑈(𝑗−1)) − 𝐺′(𝑈(𝑖)) = 𝐺″(𝜂𝑗−1)(𝑈(𝑗−1) − 𝑈(𝑖)),

for some random variables 𝜂𝑗−1 taking values in [𝑝 − 𝛿, 𝑝 + 𝛿], so that on the event ℰ𝑛,1, we have

∣
𝑖+𝑟

∑
𝑗=𝑖+2

𝐺′(𝑈(𝑗−1))
𝐺′(𝑈(𝑖))

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
−

𝑖+𝑟

∑
𝑗=𝑖+2

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
∣

≤
𝑖+𝑟

∑
𝑗=𝑖+2

∣
𝐺′(𝑈(𝑗−1)) − 𝐺′(𝑈(𝑖))

𝐺′(𝑈(𝑖))
∣
𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)

≤ 𝜅2𝜅3
𝜅3

1

𝑖+𝑟

∑
𝑗=𝑖+2

(𝑈(𝑗−1) − 𝑈(𝑖))
𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)

≤ 𝜅2𝜅3
𝜅3

1

𝑖+𝑟

∑
𝑗=𝑖+2

(𝑈(𝑗) − 𝑈(𝑗−1))

≤ 𝜅2𝜅3
𝜅3

1
(𝑈(𝑖+𝑟) − 𝑈(𝑖)), (58)

where we used the facts that 𝑈(𝑗) − 𝑈(𝑖) ≥ 0 and that 𝑈(𝑗−1)−𝑈(𝑖)
𝑈(𝑗)−𝑈(𝑖)

≤ 1. By combining (57) and
(58), it follows that on ℰ𝑛,1 ∩ ℰ𝑛,2,

∣
𝑖+𝑟

∑
𝑗=𝑖+2

𝐺′(𝑈(𝑗−1))(𝑈(𝑗) − 𝑈(𝑗−1))
𝐺′(𝑈(𝑖))(𝑈(𝑗) − 𝑈(𝑖)) + 𝑅̃𝑗

−
𝑖+𝑟

∑
𝑗=𝑖+2

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
∣ ≤ 𝑐1 (𝑈(𝑖+𝑟) − 𝑈(𝑖)) , (59)

for some constant 𝑐1 > 0 depending only on 𝑓 and which can be taken as 𝑐1 = 𝜅2𝜅3
𝜅3

1
(1 + 𝜅2

𝜅1
).

Now we bound the second sum in the expression of 𝐵𝑖,1 given in (53). On the event ℰ𝑛,1,
we have

𝑖+𝑟

∑
𝑗=𝑖+2

|𝑅𝑗|
𝐺(𝑈(𝑗)) − 𝐺(𝑈(𝑖))

= 1
2

𝑖+𝑟

∑
𝑗=𝑖+2

|𝐺″(𝜉𝑗)|(𝑈(𝑗) − 𝑈(𝑗−1))2

𝐺(𝑈(𝑗)) − 𝐺(𝑈(𝑖))
≤ 𝜅3

2𝜅3
1

𝑖+𝑟

∑
𝑗=𝑖+2

(𝑈(𝑗) − 𝑈(𝑗−1))2

𝐺(𝑈(𝑗)) − 𝐺(𝑈(𝑗−1))
,

where we used the bounds (52) together with the fact that 𝐺(𝑈(𝑗)) − 𝐺(𝑈(𝑖)) ≥ 𝐺(𝑈(𝑗)) −
𝐺(𝑈(𝑗−1)). On the event ℰ𝑛,1, for each 𝑖 + 2 ≤ 𝑗 ≤ 𝑖 + 𝑟, the ratio 𝑈(𝑗)−𝑈(𝑗−1)

𝐺(𝑈(𝑗))−𝐺(𝑈(𝑗−1))
, which is

positive, is bounded from above by 𝜅2 by the mean value theorem. Therefore, on ℰ𝑛,1 ∩ ℰ𝑛,2,
we have

𝑖+𝑟

∑
𝑗=𝑖+2

|𝑅𝑗|
𝐺(𝑈(𝑗)) − 𝐺(𝑈(𝑖))

≤ 𝜅2𝜅3
2𝜅3

1

𝑖+𝑟

∑
𝑗=𝑖+2

(𝑈(𝑗) − 𝑈(𝑗−1)) ≤ 𝜅2𝜅3
2𝜅3

1
(𝑈(𝑖+𝑟) − 𝑈(𝑖)). (60)
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Thus, by combining (59) and (60), we have shown that there exists constants 𝑐2 > 0 and 𝑐3 > 0
depending only on 𝑓 such that, on ℰ𝑛,1 ∩ ℰ𝑛,2,

∣𝐵𝑖,1 −
𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
∣ ≤ 𝑐2 (𝑈(𝑖+𝑟) − 𝑈(𝑖)) ≤ 𝑐3, (61)

where we used the fact that 𝑈(𝑖+𝑟) − 𝑈(𝑖) ≤ 2 𝜅3
1

𝜅2(𝜅3∨1) ∧ 2𝛿 on ℰ𝑛,1 ∩ ℰ𝑛,2, and where 𝑐2 and 𝑐3
can be taken respectively as 𝑐2 = 𝑐1 + 𝜅2𝜅3

2𝜅3
1

and as 𝑐3 = 2𝛿𝑐2.
For any real number 𝑡 > 0, and for all 𝑛 large enough that 3 ≤ 𝑟 ≤ 𝑛 − 𝑖 (which we assumed

in (49)), we have

ℙ (∣
𝐵𝑖,1

log(𝑛)
− 1∣ > 𝑡) ≤ ℙ ([∣

𝐵𝑖,1

log(𝑛)
− 1∣ > 𝑡] ∩ ℰ𝑛,1 ∩ ℰ𝑛,2) + ℙ (ℰ𝑐

𝑛,1) + ℙ (ℰ𝑐
𝑛,2) . (62)

Using (61), we bound the first term in (62) as

ℙ ([∣
𝐵𝑖,1

log(𝑛)
− 1∣ > 𝑡] ∩ ℰ𝑛,1 ∩ ℰ𝑛,2) ≤ ℙ (∣ 1

log(𝑛)

𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
− 1∣ > 𝑡

2
) , (63)

for all 𝑛 large enough that 𝑐3/ log(𝑛) < 𝑡/2. With our choice of 𝑟 = ⌊𝑛/ log(𝑛)⌋, we have
log(𝑟) < log(𝑛), so that

∣ 1
log(𝑛)

𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
− 1∣ ≤ ∣ 1

log(𝑟)

𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
− 1∣ + ∣1 − log(𝑛)

log(𝑟)
∣ .

Hence, since log(𝑟)/ log(𝑛) → 1 as 𝑛 → ∞, we obtain that for any 𝑡 > 0 and for all 𝑛 large
enough that |1 − log(𝑛)

log(𝑟) | < 𝑡/4,

ℙ (∣ 1
log(𝑛)

𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
− 1∣ > 𝑡

2
) ≤ ℙ (∣ 1

log(𝑟)

𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
− 1∣ > 𝑡

4
) . (64)

To bound the probability above, we use the representation of uniform order statistics with
exponential random variables (see for instance Ahsanullah et al., 2013, Chapter 4). Let (𝜈𝑗)(𝑗≥1)
be an IID sequence of standard exponential random variables. Then

(𝑈(1), … , 𝑈(𝑛))
ℒ= ( 𝜈1

𝜈1 + ⋯ + 𝜈𝑛+1
, … , 𝜈1 + ⋯ + 𝜈𝑛

𝜈1 + ⋯ + 𝜈𝑛+1
) , (65)

so that
𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)

ℒ=
𝑖+𝑟

∑
𝑗=𝑖+1

𝜈𝑗

𝜈𝑖+1 + ⋯ + 𝜈𝑗

ℒ=
𝑟

∑
𝑗=1

𝜈𝑗

𝜈1 + ⋯ + 𝜈𝑗
, (66)

where ℒ= means that the terms on each side of the equal sign have the same distribution. Using
this, together with Lemma 12, we obtain that, for any 𝑡 > 0 and for all 𝑛 large enough,

ℙ (∣ 1
log(𝑟)

𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
− 1∣ > 𝑡

4
) ≤ 2 exp (− 𝑡

16
log(𝑟) log (1 + 3𝑡 log(𝑟)

4𝜋2 )) . (67)

When 𝑛 is large enough that log(𝑟) > log(𝑛)/2, the right-hand side in (67) is bounded by
2 exp (− 𝑡

32 log(𝑛) log (1 + 3𝑡 log(𝑛)
8𝜋2 )), which in turn is bounded by 2

𝑛2 when 𝑛 is large enough
that 𝑡

32 log (1 + 3𝑡 log(𝑛)
8𝜋2 ) > 2. Using this bound together with (64) and (67), we deduce that for

any 𝑡 > 0,

∑
𝑛≥1

ℙ ([∣
𝐵𝑖,1

log(𝑛)
− 1∣ > 𝑡] ∩ ℰ𝑛,1 ∩ ℰ𝑛,2) < ∞. (68)
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Now we prove that both series ∑𝑛≥1 ℙ(ℰ𝑐
𝑛,1) and ∑𝑛≥1 ℙ(ℰ𝑐

𝑛,2) are convergent. To this
aim, we introduce the uniform empirical quantile process 𝔽−1

𝑛 (𝑝) = inf{𝑦 ∶ 𝔽𝑛(𝑦) ≥ 𝑝}, for
0 ≤ 𝑝 ≤ 1, where 𝔽𝑛(𝑡) = 1

𝑛 ∑𝑛
𝑗=1 1{𝑈𝑗 ≤ 𝑡} for 0 ≤ 𝑡 ≤ 1. We start with the event ℰ𝑛,1. We

have 𝑈(𝑖) = 𝔽−1
𝑛 ( 𝑖

𝑛) = 𝔽−1
𝑛 ( 𝑖

𝑛) − 𝑖
𝑛 + 𝑖

𝑛 − 𝑝 + 𝑝 ≥ −‖𝔽−1
𝑛 − 𝐼‖∞ − 𝛿

2 + 𝑝, where the inequality
holds for all 𝑛 large enough that | 𝑖

𝑛 − 𝑝| ≤ 𝛿
2 . Hence, for all 𝑛 large enough

ℙ (𝑈(𝑖) ≥ 𝑝 − 𝛿) ≥ ℙ (‖𝔽−1
𝑛 − 1‖∞ ≤ 𝛿

2
) .

Likewise, 𝑈(𝑖+𝑟) = 𝔽−1
𝑛 ( 𝑖+𝑟

𝑛 ) ≤ ‖𝔽−1
𝑛 − 𝐼‖∞ + 𝛿

2 + 𝑝, where the inequality holds for all 𝑛 large
enough that | 𝑖+𝑟

𝑛 − 𝑝| ≤ 𝛿
2 , and this yields

ℙ (𝑈(𝑖+𝑟) ≤ 𝑝 + 𝛿) ≥ ℙ (‖𝔽−1
𝑛 − 1‖∞ ≤ 𝛿

2
) ,

for all 𝑛 large enough. Hence, for all 𝑛 large enough, we have

ℙ (ℰ𝑐
𝑛,1) ≤ 2ℙ (‖𝔽−1

𝑛 − 1‖∞ ≥ 𝛿
2

) ≤ 4 exp (−𝑛𝛿2

2
) ,

where we used Proposition 13 to bound the supremum of the empirical quantile process. Con-
sequently,

∑
𝑛≥1

ℙ (ℰ𝑐
𝑛,1) < ∞. (69)

Now we turn to the sequence of events ℰ𝑛,2. Set 𝑐 = 𝜅3
1

𝜅2(𝜅3∨1) , and we recall that ℰ𝑛,2 is the
event that 𝑈(𝑖+𝑟) − 𝑈(𝑖) ≤ 𝑐. We have 𝑈(𝑖+𝑟) − 𝑈(𝑖) = 𝔽−1

𝑛 ( 𝑖+𝑟
𝑛 ) − 𝔽−1

𝑛 ( 𝑖
𝑛) ≤ 2‖𝔽−1

𝑛 − 𝐼‖∞ + 𝑟
𝑛 ,

and using Proposition 13 as above, we obtain that for all 𝑛 large enough that 𝑟
𝑛 ≤ 𝑐

3 ,

ℙ (ℰ𝑐
𝑛,2) ≤ ℙ (‖𝔽−1

𝑛 − 1‖∞ ≥ 𝑐
3

) ≤ 2 exp (−2𝑛𝑐2

9
) ,

which yields that
∑
𝑛≥1

ℙ (ℰ𝑐
𝑛,2) < ∞. (70)

Combining (68), (69), and (70) with (62), we deduce that, for any 𝑡 > 0,

∑
𝑛≥1

ℙ (∣
𝐵𝑖,1

log(𝑛)
− 1∣ > 𝑡) < ∞,

and from this, we conlude with the Borel-Cantelli lemma that 1
log(𝑛)𝐵𝑖,1 → 1 almost surely as

𝑛 → ∞.

Proof of (51): convergence of 1
log(𝑛)𝐵𝑖,2. We start with an integral-series comparison with

the function 𝑥 → 1/(𝑥 − 𝑋(𝑖)) to bound 𝐵𝑖,2 as

0 ≤ 𝐵𝑖,2 ≤ log (𝑋(𝑛) − 𝑋(𝑖)) − log (𝑋(𝑖+𝑟) − 𝑋(𝑖)) . (71)

The first term in (71) is bounded as log (𝑋(𝑛) − 𝑋(𝑖)) ≤ log (𝑋(𝑛) − 𝑋(1)). Let 𝜇 = 𝔼[𝑋]. For
any 𝑡 > 0, we have

ℙ ( 1
log(𝑛)

log (𝑋(𝑛) − 𝑋(1)) > 𝑡) = ℙ (𝑋(𝑛) − 𝑋(1) > 𝑛𝑡)

≤ ℙ (|𝑋(𝑛) − 𝜇| > 𝑛𝑡

2
) + ℙ (|𝑋(1) − 𝜇| > 𝑛𝑡

2
) ,
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and
ℙ (|𝑋(𝑛) − 𝜇| > 𝑛𝑡

2
) ≤ 𝑛ℙ (𝑋 > 𝜇 + 𝑛𝑡

2
) + ℙ (𝑋 < 𝜇 − 𝑛𝑡

2
)

𝑛

,

as well as
ℙ (|𝑋(1) − 𝜇| > 𝑛𝑡

2
) ≤ 𝑛ℙ (𝑋 < 𝜇 − 𝑛𝑡

2
) + ℙ (𝑋 > 𝜇 + 𝑛𝑡

2
)

𝑛

,

where we used the union bound twice. Since 𝑋 is sub-exponential with parameters (𝜎, 𝑏) by
assumption, it satisfies the concentration bounds stated in (20) and we deduce from the above
that, for any 𝑡 > 0 and for all 𝑛 large enough,

ℙ (
log (𝑋(𝑛) − 𝑋(1))

log(𝑛)
> 𝑡) ≤ 2𝑛 exp (−𝑛𝑡

4𝑏
) + 2 exp (−𝑛1+𝑡

4𝑏
) ,

and since for any 𝑡 > 0 the sum over 𝑛 ≥ 1 of the term in the right-hand side of the equation
above is finite, we conclude by the Borel-Cantelli lemma that

lim sup
𝑛

1
log(𝑛)

log (𝑋(𝑛) − 𝑋(1)) ≤ 0 almost surely. (72)

Now we bound the second term in (71). For any 𝑡 > 0, we have

ℙ ( 1
log(𝑛)

log ( 1
𝑋(𝑖+𝑟) − 𝑋(𝑖)

) > 𝑡) = ℙ (𝑋(𝑖+𝑟) − 𝑋(𝑖) < 1
𝑛𝑡 ) . (73)

On the event ℰ𝑛,1 we may expand 𝐺 at 𝑋(𝑖), so that there exists some [𝑝 − 𝛿, 𝑝 + 𝛿]-valued
random variable 𝜉 such that, on ℰ𝑛,1, 𝑋(𝑖+𝑟) − 𝑋(𝑖) = 𝐺′(𝜉) (𝑈(𝑖+𝑟) − 𝑈(𝑖)) ≥ 1

𝜅2
(𝑈(𝑖+𝑟) − 𝑈(𝑖)).

Hence, for any 𝑡 > 0,

ℙ (𝑋(𝑖+𝑟) − 𝑋(𝑖) < 1
𝑛𝑡 ) ≤ ℙ (𝑈(𝑖+𝑟) − 𝑈(𝑖) < 𝜅2

𝑛𝑡 ) + ℙ (ℰ𝑐
𝑛,1) . (74)

We have 𝑈(𝑖+𝑟) − 𝑈(𝑖) = 𝔽−1
𝑛 ( 𝑖+𝑟

𝑛 ) − 𝔽−1
𝑛 ( 𝑖

𝑛) ≥ 𝑟
𝑛 − 2‖𝔽−1

𝑛 − 𝐼‖∞, as well as 1/𝑛𝑡

𝑟/𝑛 → 0 as 𝑛 → ∞,
which we use to bound the first term in (74) as

ℙ (𝑈(𝑖+𝑟) − 𝑈(𝑖) < 𝜅2
𝑛𝑡 ) ≤ ℙ (‖𝔽−1

𝑛 − 𝐼‖ > 𝑟
4𝑛

) ,

for all 𝑛 large enough that 𝜅2
𝑛𝑡 ≤ 𝑟

2𝑛 . By Proposition 13,

ℙ (‖𝔽−1
𝑛 − 𝐼‖ > 𝑟

4𝑛
) ≤ 2 exp (− 𝑟2

8𝑛
) ,

which implies that ∑𝑛≥1 ℙ (𝑈(𝑖+𝑟) − 𝑈(𝑖) < 𝜅2
𝑛𝑡 ) < ∞ for any 𝑡 > 0 since 𝑟2

8𝑛 > 2 log(𝑛) for all
𝑛 large enough. We have shown in (69) that ∑𝑛≥1 ℙ (ℰ𝑐

𝑛,1) < ∞. Consequently, with (74), we
obtain that for any 𝑡 > 0,

∑
𝑛≥1

ℙ (𝑋(𝑖+𝑟) − 𝑋(𝑖) < 1
𝑛𝑡 ) < ∞,

and with the Borel-Cantelli lemma, this yields

lim sup
𝑛

1
log(𝑛)

log ( 1
𝑋(𝑖+𝑟) − 𝑋(𝑖)

) ≤ 0 almost surely. (75)

Finally, combining (72) and (75) with the bound (71), we conclude that 1
log(𝑛)𝐵𝑖,2 → 0 almost

surely as 𝑛 → ∞.
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8.2.2 Proof of Theorem 6, statements (𝑖𝑖) and (𝑖𝑖𝑖)

We start by proving the convergence when the support admits a left endpoint (statement (𝑖𝑖)).
By continuity of 𝑓 over [𝑎, 𝑎 + 𝜖) and the assumption that 𝑓(𝑎) > 0, there exists a positive real
number 𝛿 > 0 such that 𝑓(𝐺(𝑦)) is bounded away from 0 over [0, 𝛿] and we let

𝜅1 = inf{𝑓(𝐺(𝑦)) ∶ 0 ≤ 𝑦 ≤ 𝛿},
𝜅2 = sup{𝑓(𝐺(𝑦)) ∶ 0 ≤ 𝑦 ≤ 𝛿},
𝜅3 = sup{|𝑓 ′(𝐺(𝑦))| ∶ 0 ≤ 𝑦 ≤ 𝛿}.

(76)

By (19), we have

𝐻̄1 =
𝑛

∑
𝑗=2

𝑋(𝑗) − 𝑋(𝑗−1)

𝑋(𝑗) − 𝑋(1)
,

so that 𝐻̄1 = 𝐵1, where 𝐵1 is the right series 𝐵𝑖 defined in (48) taken with 𝑖 = 1 (the expression
given there for 𝐵𝑖 with 2 ≤ 𝑖 ≤ 𝑛 − 1 is valid for 𝑖 = 1). The arguments used in proving the
convergence of 𝐵𝑖 apply here, with the use of the constants 𝜅1, 𝜅2 and 𝜅3 in (76) to deduce
that 1

log 𝑛𝐵1 → 1 almost surely as 𝑛 → ∞. In the same way, we may express 𝐻̄𝑛 as 𝐻̄𝑛 = 𝐴1,
where 𝐴1 is the left series defined in (48) taken with 𝑖 = 1 to conclude that 1

log 𝑛𝐻̄𝑛 → 1 almost
surely as 𝑛 → ∞, thereby proving that statement (𝑖𝑖𝑖) holds.

8.2.3 Proof of Theorem 7

We start by defining uniform versions of the constants introduced in (52). Since 𝑓 is bounded
away from 0 on [𝑥𝑝1

, 𝑥𝑝2
] and continuous on a neighborhood of this interval, there exists a

positive real number 𝛿 > 0 such that 𝑦 ↦ 𝑓(𝐺(𝑦)) is bounded away from 0 and continuous over
[𝑝1 − 𝛿, 𝑝2 + 𝛿], and we define the following constants:

𝜅1 = inf{𝑓(𝐺(𝑦)) ∶ 𝑝1 − 𝛿 ≤ 𝑦 ≤ 𝑝2 + 𝛿},
𝜅2 = sup{𝑓(𝐺(𝑦)) ∶ 𝑝1 − 𝛿 ≤ 𝑦 ≤ 𝑝2 + 𝛿},
𝜅3 = sup{|𝑓 ′(𝐺(𝑦))| ∶ 𝑝1 − 𝛿 ≤ 𝑦 ≤ 𝑝2 + 𝛿},

and we let 𝜂 = 𝛿 ∧ 𝜅3
1

2𝜅2(𝜅3∨1) . Let ℐ𝑛 = {𝑖 ∶ ⌊𝑝1𝑛⌋ ≤ 𝑖 ≤ ⌊𝑝2𝑛⌋}. As in (48), 𝐻̄𝑖 decomposes
into 𝐻̄𝑖 = 𝐴𝑖 + 𝐵𝑖 for any 𝑖 ∈ ℐ𝑛, and we only prove that

max {∣ 𝐵𝑖
log(𝑛)

− 1∣ ∶ 𝑖 ∈ ℐ𝑛} → 0 almost surely as 𝑛 → ∞, (77)

given that a similar convergence result may be established for 𝐴𝑖 by using the same arguments,
as in the proof of Theorem 6. Let 𝑟 ∶= 𝑟𝑛 = ⌊𝑛/ log(𝑛)⌋. For each 𝑖 ∈ ℐ𝑛, we decompose 𝐵𝑖
into 𝐵𝑖 = 𝐵𝑖,1 + 𝐵𝑖,2, where 𝐵𝑖,1 = ∑𝑖+𝑟

𝑗=𝑖+1
𝑋(𝑗)−𝑋(𝑗−1)
𝑋(𝑗)−𝑋(𝑖)

and where 𝐵𝑖,2 = ∑𝑛
𝑗=𝑖+𝑟+1

𝑋(𝑗)−𝑋(𝑗−1)
𝑋(𝑗)−𝑋(𝑖)

,
and we prove (77) by showing that

1
log(𝑛)

∣max
𝑖∈ℐ𝑛

𝐵𝑖,1 − 1∣ → 0 almost surely as 𝑛 → ∞, (78)

and that
1

log(𝑛)
max
𝑖∈ℐ𝑛

𝐵𝑖,2 → 0 almost surely as 𝑛 → ∞. (79)

Letting 𝑈𝑖 = 𝐹(𝑋𝑖), for 1 ≤ 𝑖 ≤ 𝑛, we define the following event:

ℰ(𝑛) = [𝑈(⌊𝑝1𝑛⌋) ≥ 𝑝1 − 𝛿] ∩ [𝑈(⌊𝑝2𝑛⌋) ≤ 𝑝2 + 𝛿] ∩ (∩𝑖∈ℐ𝑛
[𝑈(𝑖+𝑟) − 𝑈(𝑖) ≤ 𝜂]) ,
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and we prove first that
∑
𝑛≥1

ℙ (ℰ𝑐
𝑛) < ∞. (80)

The event [𝑈(⌊𝑝1𝑛⌋) ≥ 𝑝1 − 𝛿] contains the event [𝔽−1
𝑛 (𝑝1 − 1

𝑛) > 𝑝1 − 𝛿], which in turn is im-
plied by the event [‖𝔽−1

𝑛 − 𝐼‖∞ ≤ 𝛿 − 1
𝑛 ]. Likewise, the event [𝑈(⌊𝑝2𝑛⌋) ≤ 𝑝2 + 𝛿] contains the

event [𝔽−1
𝑛 (𝑝2) ≤ 𝑝2 + 𝛿], which is implied by the event [‖𝔽−1

𝑛 − 𝐼‖∞ ≤ 𝛿]. Next, for each 𝑖 ∈ ℐ𝑛,
we have [𝑈(𝑖+𝑟) − 𝑈(𝑖) ≤ 𝜂] = [𝔽−1

𝑛 ( 𝑖+𝑟
𝑛 ) − 𝔽−1

𝑛 ( 𝑖
𝑛) ≤ 𝜂] which, in its turn, contains the event

[‖𝔽−1
𝑛 − 𝐼‖∞ ≤ 𝜂−𝑟/𝑛

2 ]. Consequently, for all 𝑛 large enough that 1
𝑛 ≤ 𝛿

2 and 𝑟
𝑛 ≤ 𝜂

2 ,

ℙ (ℰ(𝑛)) ≥ ℙ (‖𝔽−1
𝑛 − 𝐼‖∞ ≤ 𝛿

2
∧ 𝜂

4
) , (81)

and using Proposition 13 this yields (80).
Reproducing the steps used in proving statement (𝑖) of Theorem 6, we obtain that (61)

holds uniformly over 𝑖 ∈ ℐ𝑛, meaning that there exists a constant ̃𝑐1 > 0 depending only on 𝑓,
on 𝛿 and on 𝜂 such that, on the event ℰ(𝑛),

max
𝑖∈ℐ𝑛

∣𝐵𝑖,1 −
𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
∣ ≤ ̃𝑐1,

which implies that

∣max
𝑖∈ℐ𝑛

𝐵𝑖,1 − max
𝑖∈ℐ𝑛

𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
∣ ≤ ̃𝑐1.

Hence for any 𝑡 > 0, and for all 𝑛 large enough that ̃𝑐1
log(𝑛) < 𝑡/2 and that ∣1 − log(𝑛)

log(𝑟) ∣ < 𝑡/4,

ℙ (max
𝑖∈ℐ𝑛

∣ 1
log(𝑛)

𝐵𝑖,1 − 1∣ > 𝑡) ≤ ℙ (max
𝑖∈ℐ𝑛

∣ 1
log(𝑟)

𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
− 1∣ > 𝑡

4
) + ℙ(ℰ𝑐

𝑛). (82)

Using the representation of the uniform order statistics in terms of exponential variables given
in (65), it follows that jointly,

{
𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
∶ 𝑖 ∈ ℐ𝑛} ℒ= {

𝑖+𝑟

∑
𝑗=𝑖+1

𝜈𝑗

𝜈𝑖+1 + ⋯ + 𝜈𝑗
∶ 𝑖 ∈ ℐ𝑛}

ℒ= {
𝑖+𝑟

∑
𝑗=𝑖+1

𝜈𝑗

𝜈𝑖+1 + ⋯ + 𝜈𝑗
∶ 0 ≤ 𝑖 ≤ ⌊(𝑝2 − 𝑝1)𝑛⌋} .

Applying Lemma 12 together with the union bound, we obtain the bound

ℙ (max
𝑖∈ℐ𝑛

∣ 1
log(𝑟)

𝑖+𝑟

∑
𝑗=𝑖+1

𝑈(𝑗) − 𝑈(𝑗−1)

𝑈(𝑗) − 𝑈(𝑖)
− 1∣ > 𝑡

4
) ≤ 2𝑛 exp (−𝑡 log(𝑟)

16
log (1 + 3𝑡 log(𝑟)

4𝜋2 )) ,

which holds for any 𝑡 > 0 and for all 𝑛 large enough, and for any 𝑡 > 0, this bound is in turn
bounded by 2

𝑛2 for all 𝑛 large enough that log(𝑟) > log(𝑛)/2 and that 𝑡
32 log (1 + 3𝑡 log(𝑛)

8𝜋2 )−1 > 2.
Using this in (82) together with (80), and applying the Borel-Cantelli lemma, we deduce that
max𝑖∈ℐ𝑛

∣ 1
log(𝑛)𝐵𝑖,1 − 1∣ → 0 almost surely as 𝑛 → ∞ which proves (78).

To prove (79), we start with the bound

0 ≤ max
𝑖∈ℐ𝑛

𝐵𝑖,2 ≤ log (𝑋(𝑛) − 𝑋(1)) + log (max
𝑖∈ℐ𝑛

1
𝑋(𝑖+𝑟) − 𝑋(𝑖)

) , (83)
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which is a uniform version of (71) over ℐ𝑛, and where we used the monotony of the logarithm
function. We have proved in (72) that 1

log(𝑛) log (𝑋(𝑛) − 𝑋(1)) → 0 almost surely as 𝑛 → ∞
so we only need to prove that the limit superior of the last term in (83) is bounded by 0 with
probability one. Proceeding as in the proof of Theorem 6, we obtain that, for any 𝑡 > 0 and for
all 𝑛 large enough,

ℙ ( 1
log(𝑛)

log (max
𝑖∈ℐ𝑛

1
𝑋(𝑖+𝑟) − 𝑋(𝑖)

) > 𝑡) ≤ ℙ (min
𝑖∈ℐ𝑛

(𝑈(𝑖+𝑟) − 𝑈(𝑖)) < 𝜅2
𝑛𝑡 ) + ℙ (ℰ𝑐

𝑛) . (84)

We have 𝑈(𝑖+𝑟) − 𝑈(𝑖) ≥ 𝑟
𝑛 − 2‖𝔽−1

𝑛 − 𝐼‖ for all 𝑖 ∈ ℐ𝑛, so that, for any 𝑡 > 0, and for all 𝑛 large
enough that 𝜅2

𝑛𝑡 ≤ 𝑟
2𝑛 ,

ℙ (min
𝑖∈ℐ𝑛

(𝑈(𝑖+𝑟) − 𝑈(𝑖)) < 𝜅2
𝑛𝑡 ) ≤ 𝑛ℙ (‖𝔽−1

𝑛 − 𝐼‖ > 𝑟
8𝑛

) ≤ 2𝑛 exp (− 𝑟2

4𝑛
) ,

where we used the union bound and then Proposition 13 in the last inequality. Therefore,
∑𝑛≥1 ℙ (min𝑖∈ℐ𝑛

(𝑈(𝑖+𝑟) − 𝑈(𝑖)) < 𝜅2
𝑛𝑡 ) < ∞ for any 𝑡 > 0 and with (80), (84) and the Borel-

Cantelli lemma, we obtain that

lim sup
𝑛

1
log(𝑛)

log (max
𝑖∈ℐ𝑛

1
𝑋(𝑖+𝑟) − 𝑋(𝑖)

) ≤ 0 almost surely.

Then using the bounds in (83), we conlude that 1
log(𝑛) max𝑖∈ℐ𝑛

𝐵𝑖,2 → 0 almost surely as 𝑛 → ∞,
which proves (79).

8.3 Asymptotics in a fixed design

In this section we prove Theorem 9 and Theorem 10. We recall that ℋℓ denotes the ℓth harmonic
number defined by ℋℓ = ∑ℓ

𝑘=1
1
𝑘 .

8.3.1 Proof of Theorem 9

We first prove the pointwise statement. When 𝑑 = 1, applying Theorem 4 leads to

𝔼[ℎ𝒯(𝑥1)] = 𝔼[ℎ𝒯(𝑥𝑛)] = ℋ𝑛−1 and 𝔼[ℎ𝒯(𝑥𝑖)] = ℋ𝑖−1 + ℋ𝑛−𝑖, for 2 ≤ 𝑖 ≤ 𝑛 − 1, (85)

where 𝑥𝑖 = (𝑖 − 1)/(𝑛 − 1) for 𝑖 ∈ {1, … , 𝑛}. By Proposition 5, we have 𝔼[ℎ𝒯(0)] = 𝔼[ℎ𝒯(𝑥1)],
𝔼[ℎ𝒯(1)] = 𝔼[ℎ𝒯(𝑥𝑛)], and for any 0 < 𝑥 < 1, for all 𝑛 large enough, 𝔼[ℎ𝒯(𝑥)] is a convex
combination of 𝔼[ℎ𝒯(𝑥𝑖(𝑥))] and 𝔼[ℎ𝒯(𝑥𝑖(𝑥)+1)], with 𝑖(𝑥) = 1 + ⌊(𝑛 − 1)𝑥⌋. The result then
follows using the inequalities log(ℓ + 1) ≤ ℋℓ ≤ 1 + log(ℓ), for any ℓ ≥ 1.

We now assume that 𝑑 ≥ 2. Let i = (𝑖1, … , 𝑖𝑑) ∈ {1, … , 𝑛}𝑑, and let 𝑥i = (𝑥(1)
i , … , 𝑥(𝑑)

i ),
where 𝑥(𝑗)

i = 𝑖𝑗/(𝑛 − 1), for any 𝑗 ∈ {1, … , 𝑑}. For ℓ ∈ {1, … , 𝑑}, we denote by 𝑃 (ℓ) ∶ ℝ𝑑 → ℝ
the projection operator acting as 𝑃 (ℓ)(𝑥) = 𝑥(ℓ).

We recall first that during the growth of (𝒯, 𝜋𝒯) with Algorithm 1, if 𝑗 is selected as the
split component to partition 𝜋𝒯(𝑣) at a node 𝑣, then the split value 𝜏 is drawn uniformly
between the minimal and maximal value of 𝑃 (𝑗) (𝜋𝒯(𝑣) ∩ 𝒟𝑛). In this case for each child 𝑣𝜂
of 𝑣, with 𝜂 ∈ {0, 1}, we have 𝑃 (ℓ) (𝜋𝒯(𝑣𝜂) ∩ 𝒟𝑛) = 𝑃 (ℓ) (𝜋𝒯(𝑣) ∩ 𝒟𝑛) for any ℓ ≠ 𝑗, due to
the fact that the points in 𝒟𝑛 are arranged as a regular grid, thus leaving unchanged the
support of the distribution of a subsequent split value along a component different from 𝑗,
as well as the number of distinct points in each set 𝑃 (ℓ) (𝜋𝒯(𝑣𝜂) ∩ 𝒟𝑛) for ℓ ≠ 𝑗. It follows
from this that ℎ𝒯(𝑥i) is distributed according to ℎ𝒯1

(𝑥(1)
i ) + ⋯ + ℎ𝒯𝑑

(𝑥(𝑑)
i ), where 𝒯1, … , 𝒯𝑑

denote 𝑑 independent univariate random isolation trees defined using Algorithm 1 using the set
𝒟(1)

𝑛 ∶= {(𝑖 − 1)/(𝑛 − 1) ∶ 1 ≤ 𝑖 ≤ 𝑛}.
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Let 𝒥0 = {1 ≤ 𝑗 ≤ 𝑑 ∶ 𝑖𝑗 ∈ {2, … , 𝑛 − 1}} and let 𝒥1 = {1, … , 𝑑} ∖ 𝒥0. Note that 𝑥i is an
interior point of [0, 1]𝑑 if all the components of i are in 𝒥0 and a boundary point otherwise.
Using (85), we deduce that

𝔼[ℎ𝒯(𝑥i)] = ∑
𝑗∈𝒥0

(ℋ𝑖𝑗−1 + ℋ𝑛−𝑖𝑗
) + (#𝒥1) ℋ𝑛−1, (86)

where we use the convention that a sum over an empty set is equal to 0.
Let 𝑥 be an interior point of [0, 1]𝑑. For any 𝑗 ∈ {1, … , 𝑑}, let 𝑖𝑗(𝑥) = 1 + ⌊(𝑛 − 1)𝑥(𝑗)⌋,

and let i(𝑥) = (𝑖1(𝑥), … , 𝑖𝑑(𝑥)). Then 𝑥 belongs to the cube with vertices {𝑥i ∶ i ∈ I(𝑥)} where
I(𝑥) ∶= {i(𝑥) + 𝛿 ∶ 𝛿 ∈ {0, 1}𝑑}. By Proposition 5, the value of 𝔼[ℎ𝒯(𝑥)] is a convex combination
(with coefficients depending on 𝑥) of {𝔼[ℎ𝒯(𝑥i)] ∶ i ∈ I(𝑥)}. Since 𝑥 is an interior point,
𝒥0 = {1, … , 𝑑} and 𝒥1 = ∅ for each 𝑛 so that 𝑖𝑗(𝑥)/𝑛 → 𝑥 as 𝑛 → ∞ for each 𝑗 ∈ {1, … , 𝑑}.
Using this, together with the fact that ℋℓ/ log(ℓ) → 1 as ℓ → ∞ yields 𝔼[ℎ𝒯(𝑥i)]/ log(𝑛) → 2𝑑
as 𝑛 → ∞. This proves the result when 𝑘 = 𝑑 since ℱ𝑑 contains only [0, 1]𝑑.

Suppose now that 𝑥 ∈
∘
𝐹𝑘 for some face 𝐹𝑘 ∈ ℱ, with 0 ≤ 𝑘 < 𝑑. We argue as above inside

the face 𝐹𝑘. Let i(𝑥) = (𝑖1(𝑥), … , 𝑖𝑑(𝑥)) where 𝑖𝑗(𝑥) = 1 + ⌊(𝑛 − 1)𝑥(𝑗)⌋ if 𝑗 ∈ 𝒥0 and where
𝑖𝑗(𝑥) = 𝑖𝑗 when 𝑗 ∈ 𝒥1. Then 𝑥 belongs to the 𝑘-dimensional cube with vertices {𝑥i ∶ i ∈ I(𝑥)}
where I(𝑥) = {i(𝑥)+𝛿 ∶ 𝛿 ∈ {0, 1}}. Notice that this cube is included in the interior of 𝐹𝑘, which
is also a 𝑘-dimensional cube. Since #𝒥0 = 𝑘 and #𝒥1 = 𝑑−𝑘, using Proposition 5 together with
the relation ℋℓ/ log(ℓ) → 1 as ℓ → ∞, it follows that 𝔼[ℎ𝒯(𝑥i)]/ log(𝑛) → 2𝑘 + (𝑑 − 𝑘) = 𝑑 + 𝑘
as 𝑛 → ∞, which yields the desired result.

To prove that the convergence is uniform over any closed subset contained in the interior
of [0, 1]𝑑, it suffices to show that this holds in dimension 𝑑 = 1 and to argue as above. Let
0 < 𝑥1 < 𝑥2 < 1 and let 𝑖1 = 1 + ⌊(𝑛 − 1)𝑥1⌋ and 𝑖2 = 2 + ⌊(𝑛 − 1)𝑥2⌋. By (86), we have
𝔼[ℎ𝒯(𝑥𝑖)] = ℋ𝑖−1 +ℋ𝑛−𝑖 for all 𝑖1 ≤ 𝑖 ≤ 𝑖2. Using the inequalities log(ℓ+1) ≤ ℋℓ ≤ 1+ log(ℓ)
for any ℓ ≥ 1 yields

sup
𝑖1≤𝑖≤𝑖2

∣ 1
log(𝑛)

(ℋ𝑖−1 + ℋ𝑛−𝑖) − 2∣ → 0, as 𝑛 → ∞. (87)

Using this together with Proposition 5 we conclude that sup𝑥1≤𝑥≤𝑥2
∣ 1
log(𝑛)𝔼[ℎ𝒯(𝑥)] − 2∣ → 0 as

𝑛 → ∞.

8.4 Proof of Theorem 10

For 𝑘 ∈ {1, … , 𝐾}, let 𝑁𝑘 = 𝑛1 + ⋯ + 𝑛𝑘 and let 𝑁0 = 0. Using Theorem 4, we first prove that
for each 𝑘 ∈ {1, … , 𝐾} we have

𝔼[ℎ𝒯(𝑥𝑖)] =
⎧{
⎨{⎩

ℋ𝑛𝑘−1 + 𝑅𝑖 if 𝑖 = 𝑁𝑘−1 + 1,
ℋ𝑖−𝑁𝑘−1−1 + ℋ𝑁𝑘−𝑖 + 𝑅𝑖 if 𝑁𝑘−1 + 2 ≤ 𝑖 ≤ 𝑁𝑘 − 1,
ℋ𝑛𝑘−1 + 𝑅𝑖 if 𝑖 = 𝑁𝑘,

(88)

where the 𝑅𝑖’s are remainder terms satisfying

sup
𝑛≥1

sup
1≤𝑖≤𝑛

|𝑅𝑖| ≤ 𝐶𝑅, (89)

for a constant 𝐶𝑅 > 0 depending only on the interval lengths 𝐿1, … , 𝐿𝐾 and the gaps 𝛿1, … , 𝛿𝐾−1.
Notice that the expressions involving harmonic numbers in (88) corresponds those obtained
in (85) for the case of 𝑛𝑘 equally spaced points. The remainder terms account for the fact
that the summation range in the series in Theorem 4 extends over all the intervals. By
Proposition 5, the value of 𝔼[ℎ𝒯(𝑥)] at any 𝑥 ∈ ℝ is obtained by linear interpolation of
{(𝑥𝑖, ℎ𝒯(𝑥𝑖)) ∶ 1 ≤ 𝑖 ≤ 𝑛}. Therefore if (88) and (89) hold, then using Proposition 5 together

38



with the fact that log(𝑛𝑘)/ log(𝑛) → 1 since 𝑛𝑘/𝑛 → 𝛼𝑘 as 𝑛 → ∞ for each 𝑘 ∈ {1, … , 𝐾} and
the fact that ℋℓ/ log(ℓ) → 1 as ℓ → ∞ leads to the desired result. The conlusion that the
convergence is uniform then follows by the same arguments as those used in proving (87).

There remains to prove (88) and (89). We do so for the first interval only, the reasoning
being identical for the other intervals. Recall that the configuration is scaled to extend over
[0, 1], so that 𝑥1 = 0 and 𝑥𝑛 = 1. For the first boundary point 𝑥1 of ℐ1, by Theorem 4, we have

𝔼[ℎ𝒯(𝑥1)] =
𝑛−1
∑
𝑗=1

𝑥𝑗+1 − 𝑥𝑗

𝑥𝑗+1 − 𝑥1
,

which decomposes into

𝔼[ℎ𝒯(𝑥1)] =
𝑛1−1

∑
𝑗=1

𝑥𝑗+1 − 𝑥𝑗

𝑥𝑗+1 − 𝑥1
+

𝑛−1
∑
𝑗=𝑛1

𝑥𝑗+1 − 𝑥𝑗

𝑥𝑗+1 − 𝑥1
. (90)

The points in ℐ1 being equally spaced, the first sum in the right hand side of (90) is equal to
∑𝑛1−1

𝑗=1
1
𝑗 = ℋ𝑛1−1, and by an integral-series comparison, the second sum in (90) is bounded

from above by log(𝑥𝑛) − log(𝑥𝑛1
) = log(1/𝐿1). Therefore 𝔼[ℎ𝒯(𝑥1)] = ℋ𝑛1−1 + 𝑅1 where 𝑅1

satisfies sup𝑛≥1 |𝑅1| ≤ log(1/𝐿1).
For 2 ≤ 𝑖 ≤ 𝑛1 − 1, by Theorem 4, we have

𝔼[ℎ𝒯(𝑥𝑖)] =
𝑖−1
∑
𝑗=1

𝑥𝑗+1 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
+

𝑛
∑

𝑗=𝑖+1

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑖
. (91)

The first sum in the right hand side of (91) is equal to ℋ𝑖−1, and the second sum decomposes
into

𝑛
∑

𝑗=𝑖+1

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑖
=

𝑛1

∑
𝑗=𝑖+1

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑖
+

𝑥𝑛1+1 − 𝑥𝑛1

𝑥𝑛1+1 − 𝑥𝑖
+

𝑛
∑

𝑗=𝑛1+2

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑖
. (92)

The first term in the right hand side of (92) is equal to ℋ𝑛1−𝑖, while the second term is
smaller than 1, and by an integral-series comparison, the last sum is bounded from above by
log(𝑥𝑛 − 𝑥𝑖) − log(𝑥𝑛1+1 − 𝑥𝑖) ≤ log(1/𝛿1). This yields 𝔼[ℎ𝒯(𝑥𝑖)] = ℋ𝑖 + ℋ𝑛1−𝑖 + 𝑅𝑖 where 𝑅𝑖
satisfies sup𝑛≥1 sup2≤𝑖≤𝑛1−1 |𝑅𝑖| ≤ 1 + log(1/𝛿1).

At last, for 𝑖 = 𝑛1, by Theorem 4, we have

𝔼[ℎ𝒯(𝑥𝑛1
)] =

𝑛1−1

∑
𝑗=1

𝑥𝑗+1 − 𝑥𝑗

𝑥𝑛1
− 𝑥𝑗

+
𝑛

∑
𝑗=𝑛1+1

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑛1

= ℋ𝑛1−1 +
𝑛

∑
𝑗=𝑛1+1

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑛1

,

and the last sum is bounded by 1 + log(𝑥𝑛 − 𝑥𝑛1+1) − log(𝑥𝑛1+1 − 𝑥𝑛1
) ≤ 1 + log(1/𝛿1), which

yields
𝔼[ℎ𝒯(𝑥𝑛1

)] = ℋ𝑛1−1 + 𝑅𝑛1
,

where sup𝑛≥1 |𝑅𝑛1
| ≤ 1+ log(1/𝛿1). Hence we have shown that 𝔼[ℎ𝒯(𝑥𝑖)] = ℋ𝑖−1 +ℋ𝑛1−1 +𝑅𝑖

for any 1 ≤ 𝑖 ≤ 𝑛1 where {𝑅𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛1} satisfy sup𝑛≥1 sup1≤𝑖≤𝑛1
|𝑅𝑖| ≤ log(1/𝐿1) ∨

(1 + log(1/𝛿1)). Reasoning along the same lines leads to similar bounds for points in the other
intervals and this proves (88) and (89).

A Auxiliary results
In this appendix we collect auxiliary results. This includes two technical Lemmas (Section A.1),
a concentration inequality that relate to the uniform empirical process (Section A.2), and proofs
for the bounds on the average heights for the configurations of points studied in Section 5
(Section A.3).
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A.1 Technical Lemmas

Lemma 11. Let 𝐹0 be an absolutely continuous cumulative distribution function over ℝ. Given
𝑛 strictly positive real numbers 𝑤1, … , 𝑤𝑛, let 𝑍1, … , 𝑍𝑛 be 𝑛 independent random variables
where 𝑍𝑖 has distribution 𝐹 𝑤𝑖

0 for any 1 ≤ 𝑖 ≤ 𝑛. Let 𝑖 ∈ {1, … , 𝑛} and let 𝒦 be a subset of
{1, … , 𝑛} containing 𝑖. Then

ℙ (𝑍𝑖 ≥ max
𝑘∈𝒦

𝑍𝑘) = 𝑤𝑖
∑𝑘∈𝒦 𝑤𝑘

.

Proof. We have

ℙ (𝑍𝑖 ≥ max
𝑘∈𝒦

𝑍𝑘) = 𝔼 [ ∏
𝑘∈𝒦∖{𝑖}

ℙ (𝑍𝑘 ≤ 𝑍𝑖|𝑍𝑖)]

= 𝔼 [𝐹0(𝑍𝑖)
∑𝑘∈𝒦∖{𝑖} 𝑤𝑘]

= ∫
ℝ

𝑤𝑖𝐹 ′
0(𝑧)𝐹0(𝑧)∑𝑘∈𝒦 𝑤𝑘−1𝑑𝑧

= 𝑤𝑖
∑𝑘∈𝒦 𝑤𝑘

The following lemma gives a concentration bound on a sum that arises in the proofs of
Theorem 6 and Theorem 7 when representing the uniform order statistics in terms of exponential
random variables. We recall that ℋ𝑛 denotes the 𝑛th harmonic number defined by ℋ𝑛 =
∑𝑛

𝑖=1
1
𝑛 and that it satisfies ℋ𝑛

log(𝑛) → 1 as 𝑛 → ∞.

Lemma 12. Let (𝜈𝑖)(𝑖≥1) be a sequence of independent random variables and identically dis-
tributed according to an exponential distribution with mean equal to 1. Let 𝑆𝑛 = 𝜈1 + ⋯ + 𝜈𝑛.
For any 𝑡 > 0, and for all 𝑛 large enough that |ℋ𝑛/ log(𝑛) − 1| ≤ 𝑡/2,

ℙ (∣ 1
log(𝑛)

𝑛
∑
𝑖=1

𝜈𝑖
𝑆𝑖

− 1∣ > 𝑡) ≤ 2 exp (−𝑡 log(𝑛)
4

log (1 + 3𝑡 log(𝑛)
𝜋2 )) .

Proof. For any 𝑖 ≥ 1, let 𝑌𝑖 = 𝜈𝑖
𝑆𝑖

, and note that 𝑌𝑖 = 1 − 𝑆𝑖−1
𝑆𝑖

for any 𝑖 ≥ 2. We first prove that
𝑌2, … , 𝑌𝑛 are independent. Since the random variables 𝜈1, … , 𝜈𝑛 are independent and identically
distributed according to an exponential distribution with mean equal to 1, the distribution of
the random vector (𝑆1, … , 𝑆𝑛) admits a probability density function 𝑓𝑆,𝑛 defined by

𝑓𝑆,𝑛(𝑠1, … , 𝑠𝑛) = 𝑒−𝑠𝑛1{(𝑠1, … , 𝑠𝑛) ∈ 𝒟𝑆,𝑛},

where 𝒟𝑆,𝑛 = {(𝑠1, … , 𝑠𝑛) ∈ ℝ𝑛 ∶ 0 ≤ 𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑠𝑛}. Consider the transformation
Φ ∶ 𝒟𝑆,𝑛 → ℝ+ × [0, 1]𝑛−1 defined by Φ(𝑠1, … , 𝑠𝑛) = (𝑠1, 1 − 𝑠1

𝑠2
, … , 1 − 𝑠𝑛−1

𝑠𝑛
). Its inverse

function is defined over ℝ+ × [0, 1]𝑛−1 by

Φ−1(𝑦1, … , 𝑦𝑛) = (𝑦1, 𝑦1
1 − 𝑦2

, 𝑦1
(1 − 𝑦2)(1 − 𝑦3)

, … , 𝑦1
(1 − 𝑦2) … (1 − 𝑦𝑛)

) ,

with Jacobian equal to 𝑦𝑛−1

∏𝑛
𝑘=2(1−𝑦𝑘)𝑛+2−𝑘 . Then we have (𝑌1, … , 𝑌𝑛) = Φ(𝑆1, … , 𝑆𝑛) so that the

random vector (𝑌1, … , 𝑌𝑛) admits a probability density function 𝑓𝑌 ,𝑛 given by

𝑓𝑌 ,𝑛(𝑦1, … , 𝑦𝑛) = 𝑦𝑛−1

∏𝑛
𝑘=2(1 − 𝑦𝑘)𝑛+2−𝑘 exp (− 𝑦1

∏𝑛
𝑘=2(1 − 𝑦𝑘)

)

× 1 {(𝑦1, … , 𝑦𝑛) ∈ ℝ+ × [0, 1]𝑛−1} ,
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from which we deduce the probability density function 𝑓𝑌 ,2,𝑛 of (𝑌2, … , 𝑌𝑛) which is expressed
as

𝑓𝑌 ,2,𝑛(𝑦2, … , 𝑦𝑛) = (𝑛 − 1)!
𝑛

∏
𝑘=2

(1 − 𝑦𝑘)𝑘−21 {(𝑦2, … , 𝑦𝑛) ∈ [0, 1]𝑛−1} .

Therefore the variables 𝑌2, … , 𝑌𝑛 are independent.
Also, for each 𝑖 ≥ 1, 𝑌𝑖 follows a Beta distribution Beta(1, 𝑖−1), since 𝑌𝑖 = 𝜈𝑖

𝑆𝑖
by definition,

and so 𝔼[𝑌𝑖] = 1
𝑖 and Var(𝑌𝑖) = 𝑖−1

𝑖2(𝑖+1) ≤ 1
𝑖2 . Hence for any 𝑛 ≥ 2, we have

𝑛
∑
𝑖=1

𝔼 [ 𝜈𝑖
𝑆𝑖

] = ℋ𝑛 and 𝜎2
𝑛 ∶=

𝑛
∑
𝑖=1

Var ( 𝜈𝑖
𝑆𝑖

) ≤
𝑛

∑
𝑖=2

1
𝑖2 ≤ 𝜋2

6
. (93)

For any 𝑡 > 0 and for all 𝑛 large enough that |ℋ𝑛/ log(𝑛) − 1| ≤ 𝑡/2, we have

ℙ (∣ 1
log(𝑛)

𝑛
∑
𝑖=1

𝜈𝑖
𝑆𝑖

− 1∣ > 𝑡) ≤ ℙ (∣
𝑛

∑
𝑖=1

𝜈𝑖
𝑆𝑖

− ℋ𝑛∣ > 𝑡 log(𝑛)
2

) . (94)

Using Bennett’s inequality, for any 𝑡 > 0, we have

ℙ (∣
𝑛

∑
𝑖=1

𝜈𝑖
𝑆𝑖

− ℋ𝑛∣ > 𝑡 log(𝑛)
2

) ≤ 2 exp (−𝜎2
𝑛ℎ (𝑡 log(𝑛)

2𝜎2
𝑛

)) ,

where ℎ is the function defined by ℎ(𝑢) = (1+𝑢) log(1+𝑢)−𝑢, and where we used the facts that
0 ≤ 𝜈𝑖

𝑆𝑖
≤ 1 almost surely for all 𝑖 ≥ 1, that 𝜈1/𝑆1 = 1, and that the variables 𝜈2/𝑆2, … , 𝜈𝑛/𝑆𝑛

are independent. Using the inequality ℎ(𝑢) ≥ 1
2𝑢 log(1 + 𝑢) for any 𝑢 ≥ 0 and the bound

𝜎2
𝑛 ≤ 𝜋2/6 in (93), this leads to

ℙ (∣
𝑛

∑
𝑖=1

𝜈𝑖
𝑆𝑖

− ℋ𝑛∣ > 𝑡 log(𝑛)
2

) ≤ 2 exp (−𝑡 log(𝑛)
4

log (1 + 3𝑡 log(𝑛)
𝜋2 )) ,

which, combined with (94), yields the desired result.

A.2 The uniform empirical quantile process

The following Proposition gives an exponential inequality for the uniform empirical process and
the uniform quantile process, using the DKW inequality (Dvoretzky et al., 1956) with the tight
constant due to Massart (1990).

Proposition 13. Let 𝑈1, … , 𝑈𝑛 be IID random variables distributed according to a uniform
distribution over [0, 1]. Let 𝔽𝑛(𝑡) = 1

𝑛 ∑𝑛
𝑖=1 1{𝑈𝑖 ≤ 𝑡} for 0 ≤ 𝑡 ≤ 1 and 𝔽−1

𝑛 (𝑝) = inf{𝑦 ∶
𝔽𝑛(𝑦) ≥ 𝑝}, for 0 ≤ 𝑝 ≤ 1. Then for any 𝜆 > 0,

ℙ ( sup
𝑝∈[0,1]

√
𝑛|𝔽−1

𝑛 (𝑝) − 𝑝| > 𝜆) = ℙ ( sup
𝑡∈[0,1]

√
𝑛|𝔽𝑛(𝑡) − 𝑡| > 𝜆) ≤ 2 exp(−2𝜆2). (95)

Equality in (95) follows from the relation sup𝑝∈[0,1] |𝔽−1
𝑛 (𝑝) − 𝑝| = sup𝑡∈[0,1] |𝔽𝑛(𝑡) − 𝑡|.

A.3 Average heights of the deterministic configurations

In this section we prove the inequalities on the average heights of each configuration of points
studied in Section 5. For clarity, we start each paragraph by recalling the definition of each
configuration of points.
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Proof of (15). The 𝑛 points are such that 𝑥1 = 0 and 1 − 𝜖 = 𝑥2 < 𝑥3 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 1.
Using Theorem 4, we have

𝔼[ℎ𝒯(𝑥1)] = 1 +
𝑛

∑
𝑗=3

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥1
≤ 1 +

𝑛
∑
𝑗=3

𝑥𝑗 − 𝑥𝑗−1

𝑥2 − 𝑥1
= 1 + 𝑥𝑛 − 𝑥2

𝑥2 − 𝑥1
= 1 + 𝜖

1 − 𝜖
.

For 2 ≤ 𝑖 ≤ 𝑛 − 1, we note that each of the two sums given in Theorem 4 for the expression of
𝔼[ℎ𝒯(𝑥𝑖)] contains one term equal to 1, implying that 𝔼[ℎ𝒯(𝑥𝑖)] ≥ 2. At last,

𝔼[ℎ𝒯(𝑥𝑛)] = 1 +
𝑛−2
∑
𝑗=1

𝑥𝑗+1 − 𝑥𝑗

𝑥𝑛 − 𝑥𝑗
≥ 1 +

𝑛−2
∑
𝑗=1

(𝑥𝑗+1 − 𝑥𝑗) ≥ 2 − 𝜖.

Therefore 𝔼[ℎ𝒯(𝑥𝑖)] ≥ 2 − 𝜖 for any 2 ≤ 𝑖 ≤ 𝑛.

Proof of (16). The point configuration is such that 𝑥1 = 0 and that 𝑥2, … , 𝑥𝑛 extend uni-
formly over [1 − 𝜖, 1], so that 𝑥𝑗+1 − 𝑥𝑗 = 𝜖/(𝑛 − 2) for any 2 ≤ 𝑗 ≤ 𝑛 − 1. Applying Theorem 4,
we obtain that

𝔼[ℎ𝒯(𝑥1)] = 1 +
𝑛

∑
𝑗=3

𝜖/(𝑛 − 2)
1 − 𝜖 + (𝑗 − 2)𝜖/(𝑛 − 2)

≤ 1 + 𝜖
1 − 𝜖

,

and that
𝔼[ℎ𝒯(𝑥2)] = 1 +

𝑛
∑
𝑗=3

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥2
= 1 +

𝑛
∑
𝑗=3

1
𝑗 − 2

= 1 + ℋ𝑛−2.

For 3 ≤ 𝑖 ≤ 𝑛 − 1, we have

𝔼[ℎ𝒯(𝑥𝑖)] ≥
𝑖−1
∑
𝑗=2

𝑥𝑗+1 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
+

𝑛
∑

𝑗=𝑖+1

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑖
= ℋ𝑖−2 + ℋ𝑛−𝑖.

At last, we have

𝔼[ℎ𝒯(𝑥𝑛)] = 1 − 𝜖 +
𝑛−1
∑
𝑗=2

𝑥𝑗+1 − 𝑥𝑗

𝑥𝑛 − 𝑥𝑗
= 1 − 𝜖 + ℋ𝑛−2.

Using the inequality ℋ𝑛 ≥ log(𝑛 + 1), simple calculations leads to ℋ𝑖−2 + ℋ𝑛−𝑖 ≥ log((𝑖 −
1)(𝑛 − 𝑖 + 1)) ≥ log(2𝑛 − 4) ≥ log(𝑛 − 1) for any 2 ≤ 𝑖 ≤ 𝑛 − 1. Therefore we conclude that
𝔼[ℎ𝒯(𝑥𝑖)] ≥ log(𝑛 − 1) for any 2 ≤ 𝑖 ≤ 𝑛.

Proof of (17). In this configuration the points are defined by the recursion 𝑥𝑗+1 = 1−𝜖(1−𝑥𝑗)
with 𝑥1 = 0, so that 𝑥𝑗 = 1 − 𝜖𝑗 for any 1 ≤ 𝑗 ≤ 𝑛, and that 𝑥𝑗+1 − 𝑥𝑗 = 𝜖𝑗−1 − 𝜖𝑗, for any
1 ≤ 𝑗 ≤ 𝑛 − 1. Applying Theorem 4, we obtain that

𝔼[ℎ𝒯(𝑥1)] = 1 + (1 − 𝜖)
𝑛

∑
𝑗=3

𝜖𝑗−2

1 − 𝜖𝑗−1 .

and that for any 2 ≤ 𝑖 ≤ 𝑛 − 1,

𝔼[ℎ𝒯(𝑥𝑖)] = (1 − 𝜖) [
𝑖−1
∑
𝑗=1

1
1 − 𝜖𝑗 +

𝑛−1−𝑖
∑
𝑗=0

𝜖𝑗

1 − 𝜖𝑗+1 ] ,

and finally that

𝔼[ℎ𝒯(𝑥𝑛)] = (1 − 𝜖)
𝑛−1
∑
𝑗=1

1
1 − 𝜖𝑗 .
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We recall that Δ𝑖 is defined as Δ𝑖 = 𝔼[ℎ𝒯(𝑥𝑖+1)] − 𝔼[ℎ𝒯(𝑥𝑖)], for 𝑖 = 1, … , 𝑛 − 1. From the
above relations we obtain that

Δ1 = (1 − 𝜖) [ 1
1 − 𝜖

− 𝜖𝑛−2

1 − 𝜖𝑛−1 ] = 1 − (1 − 𝜖) 𝜖𝑛−2

1 − 𝜖𝑛−1 ,

that for any 2 ≤ 𝑖 ≤ 𝑛 − 2,

Δ𝑖 = (1 − 𝜖) [ 1
1 − 𝜖𝑖 − 𝜖𝑛−1−𝑖

1 − 𝜖𝑛−𝑖 ] ,

and that
Δ𝑛−1 = (1 − 𝜖) [ 1

1 − 𝜖𝑛−1 − 1
1 − 𝜖

] = −𝜖1 − 𝜖𝑛−2

1 − 𝜖𝑛−1 .

Therefore |Δ1 − 1| ≤ 𝜖𝑛−2 and −𝜖 ≤ Δ𝑛−1 ≤ 0 and for any 2 ≤ 𝑖 ≤ 𝑛 − 2,

|Δ𝑖 − 1| ≤ ∣ 1 − 𝜖
1 − 𝜖𝑖 − 1∣ + 𝜖𝑛−1−𝑖 ≤ 2𝜖.

Using this, we conclude that |Δ𝑖 − 1| ≤ 2𝜖 for any 1 ≤ 𝑖 ≤ 𝑛 − 2 and that −𝜖 ≤ Δ𝑛−1 ≤ 0.

Proof of (18). Given some integer 3 < 𝑘 < 𝑛 − 2, the points in this configuration are such
that 𝑥𝑘 = 1

2 and such that {𝑥1, … , 𝑥𝑘−1} and {𝑥𝑘+1, … , 𝑥𝑛} extend over the intervals [0, 𝜖] and
[1 − 𝜖, 1] respectively. For the average height of 𝑥𝑘, using Theorem 4, we have

𝔼[ℎ𝒯(𝑥𝑘)] = 2 +
𝑘−2
∑
𝑗=1

𝑥𝑗+1 − 𝑥𝑗

𝑥𝑘 − 𝑥𝑗
+

𝑛
∑

𝑗=𝑘+2

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑘
≤ 2 + log ( 𝑥𝑘 − 𝑥1

𝑥𝑘 − 𝑥𝑘−1
) + log ( 𝑥𝑛 − 𝑥𝑘

𝑥𝑘+1 − 𝑥𝑘
) ,

where the inequality follows from integral-series comparison with the function 𝑥 ↦ 1/(𝑥 − 𝑥𝑘).
Since 𝑥𝑘 − 𝑥𝑘−1 = 𝑥𝑘+1 − 𝑥𝑘 = 1

2 − 𝜖 and 𝑥𝑛 − 𝑥𝑘+1 = 𝜖 as well as 𝑥𝑘−1 − 𝑥1 = 𝜖, we obtain that

𝔼[ℎ𝒯(𝑥𝑘)] ≤ 2 + 2 log (1 + 𝜖
1
2 − 𝜖

) ≤ 2 + 2 𝜖
1
2 − 𝜖

≤ 2 + 8𝜖,

where the last inequality holds since 𝜖 < 1/4. For 𝑖 = 1, we have

𝔼[ℎ𝒯(𝑥1)] ≥ 1 +
𝑘+1

∑
𝑗=𝑘

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥1
= 1 + 1/2 − 𝜖

1/2
+ 1/2 − 𝜖

1 − 𝜖
≥ 5

2
− 3𝜖,

and for any 2 ≤ 𝑖 < 𝑘, we have

𝔼[ℎ𝒯(𝑥𝑖)] ≥ 1 +
𝑛

∑
𝑗=𝑖+1

𝑥𝑗 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑖
≥ 2 +

𝑥𝑘+1 − 𝑥𝑘
𝑥𝑘+1 − 𝑥𝑖

≥ 5
2

− 𝜖.

Therefore 𝔼[ℎ𝒯(𝑥𝑖)] ≥ 5
2 − 3𝜖 for any 1 ≤ 𝑖 ≤ 𝑘 − 1 and by symetry this inequality holds for any

𝑘 + 1 ≤ 𝑖 ≤ 𝑛.
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