
HAL Id: hal-04430009
https://hal.science/hal-04430009

Submitted on 31 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reproducibility of Build Environments through Space
and Time

Julien Malka, Stefano Zacchiroli, Théo Zimmermann

To cite this version:
Julien Malka, Stefano Zacchiroli, Théo Zimmermann. Reproducibility of Build Environments through
Space and Time. 46th International Conference on Software Engineering (ICSE 2024) - New Ideas
and Emerging Results (NIER) Track, Apr 2024, Lisbonne, Portugal. �hal-04430009�

https://hal.science/hal-04430009
https://hal.archives-ouvertes.fr

Reproducibility of Build Environments through Space and Time
Julien Malka

julien.malka@ens.fr
LTCI, Télécom Paris,

Institut Polytechnique de Paris
Palaiseau, France

Stefano Zacchiroli
stefano.zacchiroli@telecom-paris.fr

LTCI, Télécom Paris,
Institut Polytechnique de Paris

Palaiseau, France

Théo Zimmermann
theo.zimmermann@telecom-paris.fr

LTCI, Télécom Paris,
Institut Polytechnique de Paris

Palaiseau, France

ABSTRACT
Modern software engineering builds up on the composability of
software components, that rely on more and more direct and tran-
sitive dependencies to build their functionalities. This principle of
reusability however makes it harder to reproduce projects’ build
environments, even though reproducibility of build environments
is essential for collaboration, maintenance and component lifetime.
In this work, we argue that functional package managers provide
the tooling to make build environments reproducible in space and
time, and we produce a preliminary evaluation to justify this claim.
Using historical data, we show that we are able to reproduce build
environments of about 7 million Nix packages, and to rebuild 99.94%
of the 14 thousand packages from a 6-year-old Nixpkgs revision.

ACM Reference Format:
Julien Malka, Stefano Zacchiroli, and Théo Zimmermann. 2024. Repro-
ducibility of Build Environments through Space and Time. In New Ideas and
Emerging Results (ICSE-NIER’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3639476.3639767

1 INTRODUCTION
Modern software engineering is built on the principles of com-
posability and reusability: instead of re-implementing existing
functionalities, software typically depends on libraries providing
them. This approach increases productivity and helps build more
robust software: each component focuses on a little piece of func-
tionality, and tries to do it well. However, as a consequence, software
projects accumulate (direct and transitive) dependencies, resulting
in an increasingly complex software supply chain [15]. Build en-
vironments—that is, all the components and variables, up to their
specific versions, necessary to build the software—become more
complex and difficult to reproduce in space and time, a situation
often referred to as dependency hell [9].

We say that a build environment is reproducible in space when
it is possible to obtain an environment containing the exact same
components and variables on another machine. We say that it is
reproducible in time, when this property does not decay over time,
which means one can obtain a build environment that remains
identical to the one that was used when building a given software
version in the past. Reproducibility of the build environment is a
desirable property for a software project: in space, it allows for
smoother collaboration between developers that can then work on

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0500-7/24/04.
https://doi.org/10.1145/3639476.3639767

the project in identical conditions, thus alleviating barriers to contri-
bution. It also facilitates bug reproduction by projects maintainers.
Reproducibility of the build environment in time allows rebuilding
past software versions, which is very useful to better understand
how software used to work or to bisect bugs [4, 7]. It also helps
combat the risk of software dying because progressive independent
evolution of its dependencies makes it practically impossible to find
a combination of dependency versions that allows rebuilding it.

A number of packagemanagers have taken steps towards improv-
ing the reproducibility of their build environments by introducing
lockfiles that contain a reference to the exact versions of dependen-
cies used by the project (e.g., npm with package-lock.json [13]).
Although they do help, these methods are insufficient for projects
that have dependencies beyond a single ecosystem. Another pop-
ular approach is to provide a container image, allowing users to
reproduce the same build environment by downloading the im-
age and running the container. However, making the process of
generating these images reproducible itself requires care [25].

We believe that making build environments easily reproducible
could have decisive impact on the practice of software engineering
by facilitating collaborative development, helping maintenance and
reinforcing software composability by combatting dependency aver-
sion. We also aim to demonstrate that functional package managers,
like Nix [10] or Guix [5], are the right tools for this task. While the
Nix and Guix communities claim that they provide the necessary
tooling to achieve reproducibility of build environments [28], no
empirical evidence has been available thus far to support these
claims. In this work, we empirically evaluate whether space and
time reproducibility of build environments is achievable using the
Nix package manager (RQ1) and if that allows rebuilding past
software versions (RQ2). While making build environments repro-
ducible may help perform bit-by-bit reproducible builds [16], the
study of Nix abilities for that purpose is left for future work.

Our results show that we can achieve 99.99% reproducibility
of build environments over 7 010 516 packages coming from 200
historical revisions of Nixpkgs, the Nix package set. Additionally,
we were able to rebuild 99.94% of the packages from a 6-year-
old Nixpkgs revision, demonstrating that reproducibility of build
environments is actually useful for software rebuildability.

2 CONTEXT & DEFINITIONS
Functional Package Manager (FPM). Nix and Guix are implemen-

tations of a package deployment model, first introduced by Dol-
stra [10], that is conceptually very different from most other pack-
age managers. In FPMs, packages are distributed as pure functions
of their build- and run-time dependencies. In Nix, for example, pack-
ages are specified as expressions in the Nix language. Figure 1 shows

https://orcid.org/0009-0008-9845-6300
https://orcid.org/0000-0002-4576-136X
https://orcid.org/0000-0002-3580-8806
https://doi.org/10.1145/3639476.3639767
https://doi.org/10.1145/3639476.3639767

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Julien Malka, Stefano Zacchiroli, and Théo Zimmermann

{ stdenv , fetchurl , ncurses }: 1
stdenv.mkDerivation rec { 2

pname = "nano";

version = "7.2";

src = fetchurl { 3
url = "mirror://gnu/nano/${pname}-${version}.tar.xz";

sha256 = "hvNEJ2i9KHPOxpP4PN+AtLRErTzBR2C3Q2FHT8h6RSY=";

};

buildInputs = [ncurses]; 4
configureFlags = [" --sysconfdir=/etc"]; 5

}

Figure 1: Nix expression of nano, modified for readability.

{

"args": ["-e", "/nix/store/6 xg25947 ...-default -builder.sh"], 6
"builder": "/nix/store/rhvbjmcf ...-bash -5.2-p15/bin/bash",

"env": {

"buildInputs": "/nix/store/9 jmgsy8b ...-ncurses -6.4-dev",

"cmakeFlags": "",

"configureFlags": "--sysconfdir =/etc",

"name": "nano -7.2"

},

"inputDrvs": { 7
"/nix/store/3 qsdhv4v ...-stdenv -linux.drv": ["out"],

"/nix/store/asq3sjwr ...-nano -7.2. tar.xz.drv": ["out"],

"/nix/store/had1mg70 ...-bash -5.2-p15.drv": ["out"],

"/nix/store/q56mxpcf ...-ncurses -6.4. drv": ["dev"]

},

"inputSrcs": ["/nix/store/6 xg25947 ...-default -builder.sh"],

"outputs": {

"out": { "path": "/nix/store /385 vk5j4...-nano -7.2" } 8
},

}

Figure 2: Derivation of nano, modified for readability.

a Nix expression for the nano text editor. This is a function whose in-
puts 1 are: stdenv (minimal build environment), fetchurl (func-
tion to download the program sources), and curses (a build-time de-
pendency). The output of the stdenv.mkDerivation function 2
is a derivation, the intermediate representation Nix will use to
build the package. The derivation is constructed by passing several
arguments to the mkDerivation function: the src parameter 3
contains the source of the software up to its specific version (Nix
checks that the correct version has been downloaded by comparing
the hash of the content with the specified hash). The build-time de-
pendencies are specified in the buildInputs list 4 . The ncurses
object is also a Nix derivation, that Nix will build before nano. A
Nix derivation is simply a build recipe, that Nix will use to create a
build environment with the source and buildInputs available in
it. It will then run a bash script called the builder to produce the
final artifact. It is possible to provide a custom builder, but here the
default autoconf builder is used, and some flags are passed in 5 .

The process by which Nix creates a derivation from a Nix expres-
sion is called evaluation. The resulting derivation can then be used
to build a program. The outputs of both the evaluation phase and
the build phase are stored in the special /nix/store directory of
the build host. The name of derivation files contain a cryptographic
hash that is computed based on its contents (including the precise
version of the program sources, but also of all its dependencies).

This use of cryptographic hashes for paths in the Nix store allows
it to contain many versions of the same package.

Figure 2 shows an extract of the content of the derivation ob-
tained by evaluating the previous Nix expression. It contains all the
information derived from the Nix file. We can find the path to the
builder 6 , the list of the derivations on which nano depends 7 ,
including one for the program sources, and the /nix/store path
where the build process will create its outputs 8 , which also con-
tains a cryptographic hash that depends on the exact dependency
versions and build parameters. For details about how the outputs
hashes are computed see Dolstra [10].

Derivations can be used in two ways: they can be instantiated,
which means running the builder in the specified (hermetic and
sandboxed) build environment to produce a build output in the Nix
store, or they can be used to spawn a build environment where
developers can then manually run their builds. One of the main
claims associated with FPMs is that this build environment will be
highly reproducible and that it will therefore allow performing the
same build reliably (from one machine to another, and over time).

Nixpkgs, the Nix package collection. The users of Nix have col-
laboratively created a collection of Nix expressions to build various
pieces of software. This collection forms the basis of the NixOS
Linux distribution [11], but it is available beyond NixOS, to any
Nix user. With over 80 000 packages, Nixpkgs is, at the time of
writing, the largest Linux distribution in number of packages [21],
as it repackages many pieces of software coming from application-
specific (e.g., Emacs, VS Code) and programming-language specific
(e.g., Haskell, Python) ecosystems. Nixpkgs provides several “chan-
nels”, including a rolling-release called nixpkgs-unstable.

Store substitution mechanism. While Nixpkgs is a source-based
software distribution, Nix allows to substitute build outputs result-
ing from the build process specified in derivations with pre-built
outputs provided by a binary cache. A binary cache is a large dic-
tionary linking output paths to compressed build outputs. When
Nix is configured to use a binary cache (a.k.a., a substituter), Nix
will pause at the end of the evaluation phase and query the bi-
nary cache for the output paths of the obtained derivations. When
such output paths are available in the binary cache, Nix will then
download and unpack them in the Nix store, instead of running the
derivation build process. It will then proceed to build the remaining
derivations, for which no cached artifact was available.

Hydra, the Nix continuous integration platform. The Nixpkgs
distribution comes with an official binary cache, cache.nixos.org,
which is populated by Hydra, a continuous integration platform.
At regular intervals of time, Hydra evaluates the current revision
of the Nixpkgs git repository. This evaluation results in a list of
derivations (otherwise called jobs) to build. Hydra then builds all
of these jobs, unless they produce an output path already in cache.
If the build is successful for a pre-defined list of important jobs,
Hydra then pushes the build outputs to the official binary cache
and updates the nixpkgs-unstable channel.

3 METHODOLOGY
In this section we describe the methodology followed to answer
the stated research questions.

Reproducibility of Build Environments through Space and Time ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal

3.1 RQ1: Reproducibility of build environments
To evaluate whether Nix build environments are reproducible in
space and time, we focus on the Nix evaluation step. As explained
before, evaluation is the process by which Nix transforms an expres-
sion written by humans into a machine-readable derivation, that
defines exactly how to create a build environment, the versions of
dependencies to put in scope, and how to set environment variables.
Nix users can then use the derivation to spawn a build environment,
or let Nix perform the build of a known software version.

Using historical data coming from Hydra, we are interested in
assessing whether we can reproduce: the exact same list of jobs
resulting from the evaluation of a given Nixpkgs revision (RQ1.1);
and identical derivations for each of these jobs (RQ1.2).

Comparing derivations that we obtain locally with the historical
ones from Hydra is actually difficult, because Hydra does not make
available the derivations it built (it only pushes build outputs to the
binary cache). Sometimes, we can get the path of the derivation,
and that would be sufficient to check if the locally built and Hydra
derivations are identical or differ, since the path contains a cryp-
tographic hash computed from the content of the derivation. But
even this path is not always available, because Hydra does not keep
its trace when it did not rebuild a job (whose output was already
in cache). Besides, it can happen that two derivations with a dif-
ferent hash share the same output path. Indeed, derivation hashes
incorporate more information on the build process than output
paths (including, e.g., what curl version to use to download the
program sources). This is because the computation of output paths
is designed to create identical paths when differing derivations are
guaranteed to produce the same result. Given the way output paths
are computed, identical output paths should still ensure identical
build environments. Therefore, we adjust RQ1.2 slightly into: as-
sessing whether we can reproduce identical output paths for all the
jobs (as we can always retrieve historical Hydra output paths).

We perform our experiment on a sample of the Nixpkgs revisions.
We start from a dataset (available at channels.nix.gsc.io), which con-
tains more than 2200 revisions belonging to the nixpkgs-unstable
channel spanning from 2017 to 2023, with in average 23 hours of
separation between each of them. To keep our study computation-
ally reasonable, we extract 200 revisions from this dataset, keeping
at the same time the maximum time spread possible and a regular
spacing between the selected revisions. The result of the sampling
operation is a set of 200 Nixpkgs revisions that:

• have been promoted to the nixpkgs-unstable channel;
• span from 2017 to 2023;
• have a regular spacing of 10 days and 20 hours on average.

We evaluate the selected revisions using a variant of the Nix
evaluator called nix-eval-jobs [14], a piece of software derived
fromHydra’s component in charge of the evaluation phase. It allows
for faster evaluation of complete Nixpkgs revisions than the built-in
Nix evaluator as it can evaluate several Nix derivations in parallel,
and, contrary to the built-in Nix evaluator, it will not fail because
some jobs fail to evaluate. This is important when building entire
Nixpkgs revisions as there are always a few jobs that fail to evaluate,
sometimes on purpose (e.g., because they have security issues).

We scrape Hydra’s website to obtain historical results to compare
to. For each sampled revision, we scrape from the associated Hydra

webpage the list of jobs that succeeded to evaluate, and for each of
them, we scrape the job webpage to retrieve its output path(s).

3.2 RQ2: Rebuilding past software versions
We are interested in understanding if achieving build environment
reproducibility is sufficient to confidently rebuild past software
versions. To answer this, we build all the jobs from our most an-
cient Nixpkgs revision (from 2017, which is the oldest nixpkgs-
unstable revision available in our dataset). It contains 14 753 jobs
for the x86_64-linux architecture, out of them 14 461 built success-
fully at the time. We compare the build status stored in Hydra to our
local build success or failure. In case a build fails in our experiment
while it had succeeded on Hydra in 2017, we look at the build log
to try to understand the cause of the failure.

Note that, as this step is much more computationally intensive
than the previous one (we are actually building an entire distri-
bution of open source software), our sample size is much smaller.
Instead of evaluating the reproducibility over time on a large sample
of Nixpkgs revision, we focus on the oldest revision as we expect
that, in principle, the farther away we go in the past, the more
difficult it becomes to rebuild software. Therefore, we expect that if
we obtain good results on this old revision, they should reasonably
extend to more recent revisions. We recognize that there are threats
to this claim of external validity, e.g., if changes in software practice
or in the scope of Nixpkgs trigger an increase in flaky builds.

Besides, for now, we do not check for bit-by-bit reproducible
builds [16]. Extending our evaluation to build more revisions and
checking for reproducible builds are both part of our future plans.

We use the Nix cache extensively in this step. This allows build-
ing many jobs in parallel, by focusing on rebuilding the selected
job and not its dependencies. While this helps answer the question
“Is build environment reproducibility sufficient for rebuilding past
software versions?”, it does not answer the question “Can we re-
build an entire past revision of Nixpkgs without relying on cache?”.
The latter would be a much more difficult achievement because
failures would induce cascade effects on all their dependents, but
also because of the risk of program sources becoming unavailable.
Currently, these sources are still provided through the Nix cache.

4 RESULTS
In this section, we describe the results obtained by performing our
experiments.

4.1 RQ1: Reproducibility of build environments
During the first phase of our experiments to assess the reproducibil-
ity of the evaluation of Nixpkgs revisions, we discovered two bugs
that resulted in obtaining different lists of jobs. One was a bug of
nix-eval-jobs, which did not follow the current convention in
Nixpkgs and Hydra to determine when to include a job or not in the
result of the evaluation. We fixed this bug (see [18]) and we used the
updated version to perform our experiments. The other was a bug
of Hydra, which skipped jobs which contained a dot in their name
(which is quite rare in Nixpkgs). We also fixed this bug (see [19]),
but we had to take this bug into account when performing our
comparisons with historical Hydra data.

https://channels.nix.gsc.io

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Julien Malka, Stefano Zacchiroli, and Théo Zimmermann

Up to the discrepancy coming from this second bug, our results
show that we can obtain 100% identical lists of jobs from our sam-
ple of historic Nixpkgs revisions. When comparing jobs’ output
paths, we obtain 99.99% identical output paths. For each revision,
there were at most 4 expressions causing jobs with differing output
paths and they all used Nix features that cause impure evaluation
(builtins.nixVersion or lib.inNixShell for example). These
results show that Nix is able to achieve perfect build environment
reproducibility, given an unchanged Nix expression (avoiding im-
pure features), and despite several differences in the conditions of
the evaluation: different hardware, Linux distribution (NixOS for
the Hydra infrastructure, Ubuntu for our experiments), different
Nix versions (we used Nix version 2.6 in our experiments, while the
Nix version used in Hydra has evolved over the years), and points
in time (between 0- and 6-year differences).

4.2 RQ2: Rebuilding past software versions
Wewere able to successfully rebuild 14 452 out of the 14 461 jobs that
Hydra had successfully built from our selected revision (5328102),
giving us a success rate of 99.94%. We performed a preliminary
assessment of the reasons for the failures of the 9 remaining jobs,
and confirming or adjusting this assessment is part of our future
plans. At this point, we have classified the jobs into 3 classes of
reasons that might cause the failure.

Current build sandbox leakage. 3 jobs failed because the build
script rejected the kernel version or the OS used, pieces of informa-
tion that should not be available inside the sandbox.

Flaky tests. 1 job failed because of a single failed test, which
makes us suspect a flaky test (a test that fails inconsistently) [17, 26].

Past build sandbox leakage. For several other jobs, including 1
whose tests fail because of an expired certificate, and 2 whose fail-
ures look related to the shell, we suspect that the failure could come
from a stricter build sandbox in newer Nix versions, preventing the
build to have access to unspecified dependency or data that would
have previously been available from the environment.

5 RELATEDWORK
“Moving parts” in build environments have been recognized as prob-
lematic for a long time, because they lead to non-reproducibility
issues. Continuous Integration (CI) [12, 23], a key DevOps practice,
expects build environment stability. CI build failures have been stud-
ied empirically and at a large scale [29, 32, 37]. It is well-established
that, independently of the programming language, the most com-
mon cause of CI build failures are (bloated) dependency issues [34].
More generally, the so-called “dependency hell” [9] is a major fac-
tor in the non-reproducibility of development environments. For
example, Mukherjee et al. [24] investigated how this is the case in
the Python ecosystem; Zampetti et al. [36] confirm this in a broader
study of “CI smells”. Abate et al. [1, 13] show how failed depen-
dency resolution is a recurrent cause of package non-installability
across different package ecosystems. Flaky tests [17, 26] are equally
annoying for developers and can also be caused by the unexpected
displacements of build environment parts, including dependencies.
Dependency pinning, as supported by package manager “lockfiles”,

is a partial solution to the problem [13], which does not address
reproducibility causes other than moving dependencies.

In 2020, the ReScienceC journal ran the Ten Years Reproducibil-
ity Challenge [27, 30], defying scientists into rerunning software
associated to their own papers published at least 10 years prior.
Participants generally succeeded, but reported about significant
difficulties in doing so. Supporting reproducible science via soft-
ware tooling is currently a hot topic, with researchers looking into
how to leverage Docker for that [2, 3], but also functional pack-
age managers [6, 35]. One of the promises of functional package
management [5, 10] is indeed to fully describe build environments,
removing dependency issues from the equation of build and test
failures. This is the theory, at least, but one that to the best of our
knowledge had never been empirically validated before.

Build environment reproducibility is also important for software
preservation [33]. Previous works have observed [22, 31] that build
systems, recipes, and tools, need to be preserved as much as source
code [8] and binary executables. But preservation is less useful
if, after having captured all of that, the build process cannot be
replicated to obtain the intended result.

6 FUTURE PLANS
This study brings preliminary evidence that Nix allows specifying
build environments that are reproducible both in space and time,
and that most often, this enables rebuilding past software versions.
We intend to complete this initial work by exploring more largely
our dataset in order to understand the limits of this property: by
rebuilding more Nixpkgs revisions, we will observe the evolution
over time of package rebuildability.We have used Nix 2.6 to perform
our experiments and relied on the fact that Hydra used diverse Nix
versions over time to claim that Nix achieves build environment
reproducibility with different Nix versions, but it would strengthen
our results to make the local version of Nix vary as well. Since
we collected logs of our local rebuilds and that Hydra’s build logs
are also available, we can analyze them to understand why some
packages fail to rebuild, but also to measure how often the build
logs are fully identical. We have argued that Nix reproducible envi-
ronments enable rebuilding a component long after it was defined,
but we have only tested running the build step, with all depen-
dencies pulled from the Nix binary-cache. More failures are to be
expected if we do not rely on a binary-cache, in particular when the
program sources become unavailable. Because we are interested
in the question of software preservation, we plan to evaluate the
amount of packages that we are not able to build because of sources
unavailability and the proportion we can salvage using sources
archives like Software Heritage [8]. Finally, we are interested in the
abilities of functional package managers for reproducible builds,
for the impacts it can have on the security of the software supply
chain [16]. We anticipate that the reproducibility of build environ-
ments enabled by Nix can help achieve reproducible builds, but
the effect of other factors like compiler behaviors and quality of
packaging are also to be considered.

Data availability. A full replication package for the experiments
described in this paper is available from Zenodo [20] and archived
on Software Heritage with SWHID
swh:1:rev:f513eee162ea28ab3066eb1c0aac57b80f16cc5c.

https://archive.softwareheritage.org/browse/revision/f513eee162ea28ab3066eb1c0aac57b80f16cc5c/

Reproducibility of Build Environments through Space and Time ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] Pietro Abate, Roberto Di Cosmo, Louis Gesbert, Fabrice Le Fessant, Ralf Treinen,

and Stefano Zacchiroli. 2015. Mining Component Repositories for Installability
Issues. In 12th IEEE/ACM Working Conference on Mining Software Repositories,
MSR 2015, Florence, Italy, May 16-17, 2015, Massimiliano Di Penta, Martin Pinzger,
and Romain Robbes (Eds.). IEEE Computer Society, 24–33. https://doi.org/10.
1109/MSR.2015.10

[2] Carl Boettiger. 2015. An Introduction to Docker for Reproducible Research.
SIGOPS Oper. Syst. Rev. 49, 1 (jan 2015), 71–79. https://doi.org/10.1145/2723872.
2723882

[3] Jürgen Cito and Harald C. Gall. 2016. Using Docker Containers to Improve
Reproducibility in Software Engineering Research. In Proceedings of the 38th
International Conference on Software Engineering Companion (Austin, Texas) (ICSE
’16). Association for Computing Machinery, New York, NY, USA, 906–907. https:
//doi.org/10.1145/2889160.2891057

[4] Christian Couder. [n. d.]. Fully automated bisecting with "git bisect run"
[LWN.net]. https://lwn.net/Articles/317154/

[5] Ludovic Courtès. 2013. Functional PackageManagementwith Guix. In Proceedings
of ELS 2013 - 6th European Lisp Symposium, Madrid, Spain, June 3-4, 2013, Christian
Queinnec and Manuel Serrano (Eds.). ELSAA, 4–14. https://european-lisp-
symposium.org/static/proceedings/2013.pdf#page=10

[6] Ludovic Courtès and Ricardo Wurmus. 2015. Reproducible and User-Controlled
Software Environments in HPC with Guix. In Euro-Par 2015: Parallel Processing
Workshops - Euro-Par 2015 International Workshops, Vienna, Austria, August 24-
25, 2015, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 9523),
Sascha Hunold, Alexandru Costan, Domingo Giménez, Alexandru Iosup, Laura
Ricci, María Engracia Gómez Requena, Vittorio Scarano, Ana Lucia Varbanescu,
Stephen L. Scott, Stefan Lankes, Josef Weidendorfer, and Michael Alexander
(Eds.). Springer, 579–591. https://doi.org/10.1007/978-3-319-27308-2_47

[7] Julien Courtiel, Paul Dorbec, and Romain Lecoq. 2022. Theoretical Analysis
of git bisect. In LATIN 2022: Theoretical Informatics (Lecture Notes in Computer
Science), Armando Castañeda and Francisco Rodríguez-Henríquez (Eds.). Springer
International Publishing, Cham, 157–171. https://doi.org/10.1007/978-3-031-
20624-5_10

[8] Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software Heritage:Why andHow
to Preserve Software Source Code. In iPRES 2017 - 14th International Conference
on Digital Preservation. Kyoto, Japan, 1–10. https://hal.science/hal-01590958

[9] Stephanie Dick and Daniel Volmar. 2018. DLL Hell: Software Dependencies,
Failure, and the Maintenance of Microsoft Windows. IEEE Annals of the History of
Computing 40, 4 (Oct. 2018), 28–51. https://doi.org/10.1109/MAHC.2018.2877913
Conference Name: IEEE Annals of the History of Computing.

[10] Eelco Dolstra. 2006. The purely functional software deployment model. Ph. D.
Dissertation. s.n., S.l. OCLC: 71702886.

[11] Eelco Dolstra, Andres Löh, and Nicolas Pierron. 2010. NixOS: A purely functional
Linux distribution. J. Funct. Program. 20, 5-6 (2010), 577–615. https://doi.org/10.
1017/S0956796810000195

[12] Paul M. Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous Integration:
Improving Software Quality and Reducing Risk. Pearson Education. Google-
Books-ID: PV9qfEdv9L0C.

[13] Pronnoy Goswami, Saksham Gupta, Zhiyuan Li, Na Meng, and Danfeng Daphne
Yao. 2020. Investigating The Reproducibility of NPM Packages. In IEEE In-
ternational Conference on Software Maintenance and Evolution, ICSME 2020,
Adelaide, Australia, September 28 - October 2, 2020. IEEE, 677–681. https:
//doi.org/10.1109/ICSME46990.2020.00071

[14] Hydra and nix-eval-jobs contributors. 2020–2023. nix-eval-jobs. https://github.
com/nix-community/nix-eval-jobs

[15] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Struc-
ture and Evolution of Package Dependency Networks. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). 102–112. https:
//doi.org/10.1109/MSR.2017.55

[16] Chris Lamb and Stefano Zacchiroli. 2022. Reproducible Builds: Increasing the
Integrity of Software Supply Chains. IEEE Softw. 39, 2 (2022), 62–70. https:
//doi.org/10.1109/MS.2021.3073045

[17] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (FSE 2014). As-
sociation for Computing Machinery, New York, NY, USA, 643–653. https:
//doi.org/10.1145/2635868.2635920

[18] Julien Malka. 2023. fix recurseForDerivations evaluation in force-recurse mode
by JulienMalka · Pull Request #206 · nix-community/nix-eval-jobs. https:
//github.com/nix-community/nix-eval-jobs/pull/206

[19] Julien Malka. 2023. hydra-eval-jobs: fix jobs containing a dot being dropped by
JulienMalka · Pull Request #1286 · NixOS/hydra. https://github.com/NixOS/
hydra/pull/1286

[20] Julien Malka. 2024. Replication package for: Reproducibility of Build Environ-
ments through Space and Time. https://doi.org/10.5281/zenodo.10519820

[21] Dmitry Marakasov. 2016–2023. Repology, the packaging hub. https://repology.
org/

[22] Brian Matthews, Esther Conway, Jim Woodcock, Catherine Mary Jones, Juan
Bicarregui, and Arif Shaon. 2009. Towards a Methodology for Software Preser-
vation. In Proceedings of the 6th International Conference on Digital Preservation,
iPRES 2009, San Francisco, CA, USA, October 5-6, 2009. https://hdl.handle.net/
11353/10.294040

[23] Mathias Meyer. 2014. Continuous Integration and Its Tools. IEEE Software 31, 3
(May 2014), 14–16. https://doi.org/10.1109/MS.2014.58 Conference Name: IEEE
Software.

[24] Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. 2021. Fixing
dependency errors for Python build reproducibility. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2021). Association for Computing Machinery, New York, NY, USA, 439–451.
https://doi.org/10.1145/3460319.3464797

[25] Daniel Nüst, Vanessa Sochat, Ben Marwick, Stephen J. Eglen, Tim Head, Tony
Hirst, and Benjamin D. Evans. 2020. Ten simple rules for writing Dockerfiles
for reproducible data science. PLOS Computational Biology 16, 11 (Nov. 2020),
e1008316. https://doi.org/10.1371/journal.pcbi.1008316 Publisher: Public Library
of Science.

[26] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2021.
A Survey of Flaky Tests. ACM Trans. Softw. Eng. Methodol. 31, 1 (Oct. 2021),
17:1–17:74. https://doi.org/10.1145/3476105

[27] Jeffrey M. Perkel. 2020. Challenge to scientists: does your ten-year-old code still
run? Nature 584, 7822 (Aug. 2020), 656–658. https://doi.org/10.1038/d41586-
020-02462-7 Bandiera_abtest: a Cg_type: Technology Feature Number: 7822
Publisher: Nature Publishing Group Subject_term: Computational biology and
bioinformatics, Computer science, Research data, Software.

[28] Prins Pjotr, Jeeva Suresh, and Eelco Dolstra. 2008. Nix fixes dependency hell
on all Linux distributions. https://web.archive.org/web/20150708101023/http:
//archive09.linux.com/feature/155922

[29] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017.
An Empirical Analysis of Build Failures in the Continuous Integration Work-
flows of Java-Based Open-Source Software. In 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR). 345–355. https:
//doi.org/10.1109/MSR.2017.54

[30] ReScience. 2020. Ten Years Reproducibility Challenge. http://rescience.github.
io/ten-years/

[31] Mahadev Satyanarayanan. 2018. Saving software from oblivion. IEEE Spectrum 55,
10 (Oct. 2018), 36–41. https://doi.org/10.1109/MSPEC.2018.8482422 Conference
Name: IEEE Spectrum.

[32] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. 2014. Programmers’ build errors: a case study (at google). In
Proceedings of the 36th International Conference on Software Engineering (ICSE
2014). Association for Computing Machinery, New York, NY, USA, 724–734.
https://doi.org/10.1145/2568225.2568255

[33] Len Shustek. 2006. What Should We Collect to Preserve the History of Software?
IEEE Annals of the History of Computing 28, 4 (Oct. 2006), 112–111. https:
//doi.org/10.1109/MAHC.2006.78 Conference Name: IEEE Annals of the History
of Computing.

[34] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. 2021.
A comprehensive study of bloated dependencies in the Maven ecosystem. Empir
Software Eng 26, 3 (March 2021), 45. https://doi.org/10.1007/s10664-020-09914-8

[35] Francesco Strozzi, Roel Janssen, Ricardo Wurmus, Michael R. Crusoe, George
Githinji, Paolo Di Tommaso, Dominique Belhachemi, Steffen Möller, Geert Smant,
Joep de Ligt, and Pjotr Prins. 2019. Scalable Workflows and Reproducible Data
Analysis for Genomics. Springer New York, New York, NY, 723–745. https:
//doi.org/10.1007/978-1-4939-9074-0_24

[36] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora,
Harald Gall, and Massimiliano Di Penta. 2020. An empirical characterization of
bad practices in continuous integration. Empir Software Eng 25, 2 (March 2020),
1095–1135. https://doi.org/10.1007/s10664-019-09785-8

[37] Chen Zhang, Bihuan Chen, Linlin Chen, Xin Peng, and Wenyun Zhao. 2019.
A large-scale empirical study of compiler errors in continuous integration. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2019). Association for Computing Machinery, New York, NY, USA, 176–187.
https://doi.org/10.1145/3338906.3338917

https://doi.org/10.1109/MSR.2015.10
https://doi.org/10.1109/MSR.2015.10
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2889160.2891057
https://doi.org/10.1145/2889160.2891057
https://lwn.net/Articles/317154/
https://european-lisp-symposium.org/static/proceedings/2013.pdf#page=10
https://european-lisp-symposium.org/static/proceedings/2013.pdf#page=10
https://doi.org/10.1007/978-3-319-27308-2_47
https://doi.org/10.1007/978-3-031-20624-5_10
https://doi.org/10.1007/978-3-031-20624-5_10
https://hal.science/hal-01590958
https://doi.org/10.1109/MAHC.2018.2877913
https://doi.org/10.1017/S0956796810000195
https://doi.org/10.1017/S0956796810000195
https://doi.org/10.1109/ICSME46990.2020.00071
https://doi.org/10.1109/ICSME46990.2020.00071
https://github.com/nix-community/nix-eval-jobs
https://github.com/nix-community/nix-eval-jobs
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1109/MS.2021.3073045
https://doi.org/10.1109/MS.2021.3073045
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1145/2635868.2635920
https://github.com/nix-community/nix-eval-jobs/pull/206
https://github.com/nix-community/nix-eval-jobs/pull/206
https://github.com/NixOS/hydra/pull/1286
https://github.com/NixOS/hydra/pull/1286
https://doi.org/10.5281/zenodo.10519820
https://repology.org/
https://repology.org/
https://hdl.handle.net/11353/10.294040
https://hdl.handle.net/11353/10.294040
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1145/3460319.3464797
https://doi.org/10.1371/journal.pcbi.1008316
https://doi.org/10.1145/3476105
https://doi.org/10.1038/d41586-020-02462-7
https://doi.org/10.1038/d41586-020-02462-7
https://web.archive.org/web/20150708101023/http://archive09.linux.com/feature/155922
https://web.archive.org/web/20150708101023/http://archive09.linux.com/feature/155922
https://doi.org/10.1109/MSR.2017.54
https://doi.org/10.1109/MSR.2017.54
http://rescience.github.io/ten-years/
http://rescience.github.io/ten-years/
https://doi.org/10.1109/MSPEC.2018.8482422
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1109/MAHC.2006.78
https://doi.org/10.1109/MAHC.2006.78
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1007/978-1-4939-9074-0_24
https://doi.org/10.1007/978-1-4939-9074-0_24
https://doi.org/10.1007/s10664-019-09785-8
https://doi.org/10.1145/3338906.3338917

	Abstract
	1 Introduction
	2 Context & definitions
	3 Methodology
	3.1 RQ1: Reproducibility of build environments
	3.2 RQ2: Rebuilding past software versions

	4 Results
	4.1 RQ1: Reproducibility of build environments
	4.2 RQ2: Rebuilding past software versions

	5 Related work
	6 Future plans
	References

