
HAL Id: hal-04429961
https://hal.science/hal-04429961

Submitted on 31 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Brief Announcement: Efficient Collaborative Tree
Exploration with Breadth-First Depth-Next

Romain Cosson, Laurent Massoulie, Laurent Viennot

To cite this version:
Romain Cosson, Laurent Massoulie, Laurent Viennot. Brief Announcement: Efficient Collaborative
Tree Exploration with Breadth-First Depth-Next. PODC ’23: 2023 ACM Symposium on Principles of
Distributed Computing, Jun 2023, Orlando FL, United States. pp.24-27, �10.1145/3583668.3594568�.
�hal-04429961�

https://hal.science/hal-04429961
https://hal.archives-ouvertes.fr

Brief Announcement: Efficient Collaborative Tree Exploration
with Breadth-First Depth-Next

Romain Cosson

Inria

Paris, France

romain.cosson@inria.fr

Laurent Massoulié

Inria

Paris, France

laurent.massoulie@inria.fr

Laurent Viennot

Inria

Paris, France

laurent.viennot@inria.fr

ABSTRACT
We consider the problem of collaborative tree exploration posed

by Fraigniaud, Gasieniec, Kowalski, and Pelc [8] where a team of

𝑘 agents is tasked to collectively go through all the edges of an

unknown tree as fast as possible and return to the root. Denot-

ing by 𝑛 the total number of nodes and by 𝐷 the tree depth, the

O(𝑛/log(𝑘) + 𝐷) algorithm of [8] achieves the best competitive

ratio known with respect to the optimal exploration algorithm

that knows the tree in advance, which takes order max {2𝑛/𝑘, 2𝐷}
rounds. Brass, Cabrera-Mora, Gasparri, and Xiao [1] consider an al-

ternative performance criterion, the additive overhead with respect

to 2𝑛/𝑘 , and obtain a 2𝑛/𝑘 + O((𝐷 + 𝑘)𝑘) runtime guarantee. In

this announcement, we present ‘Breadth-First Depth-Next’ (BFDN),

a novel and simple algorithm that performs collaborative tree ex-

ploration in time 2𝑛/𝑘 + O(𝐷2
log(𝑘)), thus outperforming [1] for

all values of (𝑛, 𝐷) and being order-optimal for fixed 𝑘 and trees

with depth 𝐷 = 𝑜 (
√
𝑛). The proof of our result crucially relies

on the analysis of a simple two-player game with balls in urns

that could be of independent interest. We extend the guarantees

of BFDN to: scenarios with limited memory and communication,

adversarial setups where robots can be blocked, and exploration of

classes of non-tree graphs. Finally, we provide a recursive version of

BFDN with a runtime of Oℓ (𝑛/𝑘1/ℓ + log(𝑘)𝐷1+1/ℓ) for parameter

ℓ ≥ 1, thereby improving performance for trees with large depth.

A complete version of the paper is available online [2].

CCS CONCEPTS
•Theory of computation→Online algorithms;Distributed al-
gorithms; • Mathematics of computing→ Graph algorithms.

KEYWORDS
collaborative exploration, graphs, trees, depth, adversarial game

ACM Reference Format:
Romain Cosson, Laurent Massoulié, and Laurent Viennot. 2023. Brief An-

nouncement: Efficient Collaborative Tree Exploration with Breadth-First

Depth-Next. In ACM Symposium on Principles of Distributed Computing
(PODC ’23), June 19–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3583668.3594568

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

PODC ’23, June 19–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0121-4/23/06. . . $15.00

https://doi.org/10.1145/3583668.3594568

1 INTRODUCTION
Problem Setting. A team of 𝑘 agents, or robots, is tasked to col-

lectively traverse all the edges of a tree as fast as possible and then

return to the root. At initialization, all robots are located at the root.

At each round, the robots move synchronously along one incident

edge to reach a neighbour. Edges are revealed along with their

unique identifier when a robot reaches one of their endpoints. Fol-

lowing [8], we consider two communication models. The complete
communicationmodel, in which communication is unrestricted, and

consequently the robots share a map of the explored sub-tree. The

write-read communication model, in which robots communicate

through whiteboards that are located at all nodes.

Related Works. In the case of a single robot, the “Depth First

Search” (DFS) algorithm is optimal for traversing the edges of a tree.

It can be implemented both offline (the tree is known in advance)

and online (edges are revealed when reached). One way to describe

DFS in an online fashion is to have the robot go through an adjacent

unexplored edge if possible and go up towards the root otherwise.

After 2(𝑛 − 1) rounds, where 𝑛 is the number of nodes, all edges

have been traversed twice and the robot is at the root.

In the multi-robot setting, with 𝑘 ≥ 2, traversing all the edges of

a tree in an offline manner requires ordermax{2𝑛/𝑘, 2𝐷} ∼ 𝑛/𝑘 +𝐷
synchronous rounds [5, 11]. Unfortunately, no online exploration
algorithm can attain this performance [7]. The cost of an online ex-

ploration algorithm is usually quantified through its competitive ra-
tio. An algorithmA𝑘 using 𝑘 ≥ 2 robots, has competitive ratio 𝑐 (𝑘)
if it can explore any tree with 𝑛 nodes and depth𝐷 in 𝑐 (𝑘) (𝑛/𝑘 +𝐷)
rounds. The algorithm CTE [8] has a runtime of 𝑂 (𝑛/log(𝑘) + 𝐷)
and the best known competitive ratio of 𝑂 (𝑘/log(𝑘)).

The limited progress of competitive analysis for collaborative

tree exploration led most subsequent works to study algorithms

with super-linear runtime in𝑛 or𝐷 [1, 3, 4, 6, 9, 11]. In this spirit, [11]

proposed a recursive algorithm called Yo* that runs with complete

communication inO(2O(
√
log𝐷 log log𝑘)

log(𝑘) (log(𝑘)+log(𝑛)) (𝑛/𝑘+
𝐷)) rounds. On the other hand, [1] proposed a novel analysis of

CTE yielding a guarantee of 2𝑛
𝑘
+O((𝑘 +𝐷)𝑘), thus with optimal de-

pendence in 𝑛 and a large additive cost which does not depend on 𝑛.

The algorithm we propose with its guarantee of
2𝑛
𝑘
+ O(𝐷2

log(𝑘))
falls in this line of work. Our guarantee improves over [1] for all val-

ues of (𝑛, 𝐷, 𝑘), and improves upon CTE and Yo∗ in specific ranges

of parameters as depicted in Figure 1.

Main Results. In this paper, we present a simple and novel algo-

rithm that achieves collaborative tree exploration with 𝑘 agents

in
2𝑛
𝑘
+ 𝐷2 (min{log(𝑘), log(Δ)} + 2) rounds for any tree with 𝑛

nodes, depth 𝐷 and maximum degree Δ. Our algorithm can be

implemented in the write-read communication model.

https://orcid.org/0009-0004-8784-7112
https://orcid.org/0000-0001-7263-0069
https://orcid.org/0000-0003-3657-6979
https://doi.org/10.1145/3583668.3594568
https://doi.org/10.1145/3583668.3594568

PODC ’23, June 19–23, 2023, Orlando, FL, USA Romain Cosson, Laurent Massoulié, and Laurent Viennot

𝐷

𝑛

𝑒log 𝑘 2

BFDN

BFDN

CTE

YO*CTE

BFDNℓ

𝑒𝑘

Figure 1: Regions of parameters 𝑛 ≤ 𝐷 where either of CTE,
Yo∗, BFDN and BFDNℓ has the best runtime guarantee.

The algorithm is called “Breadth-First Depth-Next” (BFDN). It is
first presented in the complete communication setting in Section 2.

The behaviour of the robots can be summarized as follows: when

located at the root, robots are sent to a node which is adjacent to

the highest unexplored edge (as in a breadth-first search). Upon

arrival, robots change behaviour until they reach the root again:

they will go through an unexplored edge if some is adjacent and

will go up towards the root otherwise (as in a depth-first search).

The analysis of this algorithm involves a simple zero-sum two-

player game where a player and an adversary move 𝑘 balls in 𝑘

urns. We describe in Section 3 a strategy that induces a cost of at

most 𝑘 min{log(𝑘), log(Δ)} + 𝑘 to the player.

Our algorithm can benefit from several extensions briefly de-

scribed in Section 4, i) exploration of specific classes of non-tree

graphs, ii) scenarios with constrained communications and mem-

ory, iii) setups where an adversary chooses at each time step which

robots are allowed to move iv) improved dependence in𝐷 , with a re-

cursive version of BFDN in Oℓ
(

𝑛

𝑘1/ℓ +min{log(𝑘), log(Δ)}𝐷1+1/ℓ
)

where ℓ ≥ 1 is some constant provided as input.

Notations. The notation log(·) refers to the natural logarithm. For

some integer 𝑘 ∈ N we will use the abbreviation [𝑘] = {1, . . . , 𝑘}.
A tree𝑇 = (𝑉 , 𝐸) is rooted at some specific node denoted root ∈

𝑉 from which all robots start the exploration. For a node 𝑣 ∈ 𝑉 ,
𝛿 (𝑣) is the distance of 𝑣 to the root and 𝑇 (𝑣) denotes the sub-tree
of 𝑇 rooted at 𝑣 containing all the descendants of 𝑣 . The depth of 𝑇

is 𝐷 = max𝑣∈𝑉 𝛿 (𝑣). We will also use a notion of partially explored
tree (defined in Section 2) that enjoys the same definitions.

2 BREADTH-FIRST DEPTH-NEXT
Our main result on BFDN, described below, is the following.

Theorem 2.1. BFDN achieves online exploration of any tree with
𝑘 robots in at most

2𝑛

𝑘
+ 𝐷2 (min{log(Δ), log(𝑘)} + 2)

rounds, where Δ is the maximum degree of the tree, 𝑛 is the number
of nodes, and 𝐷 is the depth.

Following [8], we first consider a synchronous model with all-

to-all communications. The team of 𝑘 robots operates in rounds,

and the runtime of an exploration algorithm is measured by the

number of rounds before termination.

Partially Explored Tree. At a given round of exploration, 𝑉 de-

notes the set of explored nodes, i.e. nodes that have been occupied

by at least one robot in the past, and 𝐸 denotes the set of discov-
ered edges, i.e. edges that have at least one explored endpoint. The

discovered edges which have exactly one explored endpoint are

called dangling edges. Such edges can be viewed as a pair (𝑢, ?),
with𝑢 ∈ 𝑉 . The partially explored tree𝑇

online
= (𝑉 , 𝐸) thus encodes

all the information gathered by the robots at some points of the

exploration. If there are no dangling edges in 𝑇
online

, it means that

exploration is complete and that the partially explored tree equals

the underlying tree 𝑇
offline

∈ T (𝑛, 𝐷).

Collaborative Exploration Algorithm. A collaborative exploration

algorithm under the complete communication model is formally

defined as a function that maps a partially explored tree𝑇 = (𝑉 , 𝐸),
the current positions of the agents 𝑝1, . . . , 𝑝𝑘 ∈ 𝑉𝑘

and all past

movements of the agents to a list of selected edges 𝑒1, . . . , 𝑒𝑘 ∈
(𝐸 ∪ {⊥})𝑘 that will be traversed in the current round. The selected

edges 𝑒𝑖 ∈ 𝐸 must be adjacent to the positions 𝑝𝑖 . By convention,

⊥ indicates that the corresponding agent will not move at the next

round. In pseudo-code, the routine SELECT(Robot𝑖 , 𝑒) performs the

assignment 𝑒𝑖 ← 𝑒 . When all agents have selected a next move, the

routine MOVE is applied and all agentsmove along their selected edge

synchronously. The partially explored tree (𝑉 , 𝐸) is updated with

the new information provided by the agents that have traversed

a dangling edge. For any rooted tree, exploration starts with 𝑉 =

{root} and 𝐸 the set of edges dangling at the root. The collaborative

exploration algorithm is iterated until (𝑉 , 𝐸) contains no dangling

edges and the position of all agents is back at the root.

Breadth-First Depth-Next Algorithm. We provide a brief descrip-

tion of BFDN, Algorithm 1. When located at the root, Robot𝑖 with
𝑖 ∈ [𝑘] is assigned an anchor 𝑣𝑖 ∈ 𝑉 which is an explored node that

is adjacent to at least one dangling edge. If no such node exists, the

anchor is the root itself. The exact anchor assignment is specified

by procedure Reanchor which gives the priority to nodes that are

the closest to the root and that have the least number of anchored

robots. Robot𝑖 then attains this anchor in a series of breadth-first

moves performed with procedure BF. When the anchor is reached,

the robot only makes depth-next moves until it returns to the root

with procedure DN. In a sequence of depth-next moves, the robot

always goes through a dangling edge if one is available (i.e. adja-

cent and not already selected as next move by another robot), and

goes one step up towards the root otherwise. This will result in a

depth-first-like exploration inside 𝑇 (𝑣𝑖) followed by a direct travel

back from 𝑣𝑖 to the root. The algorithm stops when all robots are

at the root and cannot be reassigned a new anchor because there

are no more dangling edges. We conclude this paragraph by stating

the following claim that provides intuition on the algorithm.

Claim 1. At all rounds, all dangling edges, are in ∪𝑖∈[𝑘]𝑇 (𝑣𝑖).

Proof of Claim 1. Consider some dangling edge 𝑒 and its ex-

plored endpoint 𝑣 ∈ 𝑉 . At the round when 𝑣 was explored by a

robot, that robot must have been performing a depth-next move be-

cause the depth of its anchor was less than or equal to the depth of 𝑣

which was adjacent to a dangling edge. Thus, the robot cannot have

left 𝑇 (𝑣) before the edge 𝑒 was visited. Consequently, that robot is
still rooted at some ancestor 𝑣𝑖 of 𝑣 , thus 𝑒 ∈ ∪𝑖∈[𝑘]𝑇 (𝑣𝑖). □

Collaborative Tree Exploration with Breadth-First Depth-Next PODC ’23, June 19–23, 2023, Orlando, FL, USA

Algorithm 1 BFDN “Breadth-First Depth-Next”

Ensure: The robots visit all nodes and return to the root.

1: 𝑉 = list of explored nodes ; 𝐸 = list of discovered edges

2: 𝑣𝑖 ← root ∀𝑖 ∈ {1, . . . , 𝑘} ⊲ Initialize anchors.

3: 𝑆𝑖 ← [] ∀𝑖 ∈ {1, . . . , 𝑘} ⊲ Initialize empty stacks.

4: do ⊲ Round 𝑡 .

5: for 𝑖 = 1 to 𝑘 do ⊲ Sequential decisions.

6: if Robot𝑖 is at root then
7: 𝑣𝑖 ← Reanchor(𝑖)
8: Stack in 𝑆𝑖 the list of edges that lead to 𝑣𝑖

9: if 𝑆𝑖 is not empty then
10: BF(𝑖)
11: else
12: DN(𝑖)
13: MOVE robots on their selected edge ⊲ Synchronous moves.

14: while not all robots are at the root
15:

16: procedure BF(𝑖)
17: Unstack 𝑒 ∈ 𝐸 from 𝑆𝑖 and SELECT(Robot𝑖 , 𝑒)
18:

19: procedure DN(𝑖)
20: if Robot𝑖 adjacent to dangling unselected edge 𝑒 ∈ 𝐸 then
21: SELECT(Robot𝑖 , 𝑒)
22: else
23: SELECT(Robot𝑖 , up) ⊲ If at the root, up is ⊥.
24:

25: procedure Reanchor(𝑖)
26: 𝐴 = {𝑣 ∈ 𝑉 adjacent to dangling edge with 𝛿 (𝑣) minimal}
27: if 𝐴 ≠ ∅ then ⊲ Choose anchor of minimum load.

28: 𝑣𝑖 ← argmin𝑣∈𝐴 #{ 𝑗 𝑠 .𝑡 . 𝑣 𝑗 = 𝑣}
29: else ⊲ The tree is explored.

30: 𝑣𝑖 ← root

3 BALLS IN URNS GAME
In this section we describe a two-player zero-sum board game that

is crucial to the analysis of BFDN. An optimal strategy of the game

is in Theorem 3.1 and its implication is stated in Corollary 3.2.

Game Description. At time 𝑡 ∈ N, the board of the game is a list

of 𝑘 integers (𝑛𝑡
1
, . . . , 𝑛𝑡

𝑘
) that represent the load of 𝑘 urns with a

total of 𝑘 balls. When the game starts at 𝑡 = 0, we have 𝑛0
𝑖
= 1 and

at every instant 𝑡 we have
∑
𝑖∈[𝑘] 𝑛

𝑡
𝑖
= 𝑘 and 𝑛𝑡

𝑖
≥ 0. At time 𝑡 ,

player A (the adversary) chooses an urn 𝑎𝑡 ∈ [𝑘] that is not empty,

i.e. such that 𝑛𝑡𝑎𝑡 ≥ 1, and then player B (the player) chooses an urn

𝑏𝑡 ∈ [𝑘] and moves a ball from urn 𝑎𝑡 to urn 𝑏𝑡 . At the beginning of

time 𝑡 + 1, the board thus satisfies 𝑛𝑡+1𝑎𝑡
= 𝑛𝑡𝑎𝑡 − 1 and 𝑛

𝑡+1
𝑏𝑡

= 𝑛𝑡
𝑏𝑡
+ 1.

Goal of the Game. At a given time 𝑡 , we denote by 𝑈𝑡 the set

of urns that have never been selected by the adversary, 𝑈𝑡 =

{1, . . . , 𝑘} \ {𝑎0, . . . , 𝑎𝑡−1}. The game stops when all urns in 𝑈𝑡

contain at least Δ balls, i.e. 𝑛𝑡
𝑖
≥ Δ,∀𝑖 ∈ 𝑈𝑡 . If Δ ≥ 𝑘 , the game

stops when all urns have been chosen, i.e. 𝑈𝑡 = ∅. The goal of

player B is to end the game as soon as possible, while the goal of

the adversary is to play for as long as it can.

Strategy of the Player. At time 𝑡 , the player picks the urn 𝑏𝑡 that

contains the least number of balls among the urns that were never

chosen by the adversary, i.e. 𝑏𝑡 ∈ argmin𝑖∈[𝑘]\{𝑎0,...,𝑎𝑡 } 𝑛
𝑡
𝑖
.

Theorem 3.1. If the player uses the strategy above, the game ends
in at most 𝑘 min{log(Δ), log(𝑘)} + 𝑘 steps.

Corollary 3.2. In an execution of BFDN, then number of calls to
procedure Reanchor is at most 𝐷 (𝑘 min{log(𝑘), log(Δ)} + 𝑘).

4 EXTENSIONS OF BFDN

4.1 Restricted Memory and Communications
In [2], we introduce a setting with restricted memory and com-

munication where robots each have Δ + 𝐷 log(Δ) bits of internal
memory and are allowed to communicate with a central planner

only when they are located at the root. This setting encompasses

the read-write communication model.

Proposition 4.1. In this communication model, BFDN achieves
tree exploration in at most 2𝑛

𝑘
+𝐷2 (min{log(𝑘), log(Δ)} + 2) rounds.

4.2 Adversarial Robot Break-Downs
In [2], we introduce a setting to account for break-downs and var-

ied speeds. At each round 𝑡 ∈ N, robot 𝑖 is allowed to move if

some variable 𝑀𝑡𝑖 = 1 and is blocked if 𝑀𝑡𝑖 = 0. We assume

M = (𝑀𝑡𝑖)𝑡 ∈N,𝑖∈[𝑘] takes arbitrary 0/1 values and denote the aver-

age distance travelled 𝐴(M) = 1

𝑘

∑
𝑡 ∈N

∑
𝑖∈[𝑘] 𝑀𝑡𝑖 ∈ N ∪ {+∞}.

Proposition 4.2. For any sequenceM ∈ {0, 1}N×[𝑘] satisfying
𝐴(M) ≥ 2𝑛

𝑘
+ 𝐷2 (log(𝑘) + 2) all edges will be visited by BFDN.

4.3 Exploration of non-tree Graphs
BFDN can be executed on a graph, with a minor modification: a robot

rediscovering a node backtracks and “closes” the corresponding

edge. In [2], we assume robots always knows their edge-distance to

the origin and extend our guarantees to graphs. This assumption

holds for grid graphs with rectangular obstacles [10].

Proposition 4.3. Given such a graph 𝐺 = (𝑉 , 𝐸) with𝑚 edges,
diameter 𝐷 and maximum degree Δ, under the assumption above,
BFDN runs in 2𝑚

𝑘
+ 𝐷2 (min{log(Δ), log(𝑘)} + 2) rounds.

4.4 Recursive Variant
In [2] we present a recursive variant of BFDN, denoted BFDNℓ achiev-
ing a better dependence in 𝐷 though worse dependence in 𝑛. The

variant works by dividing the robots in teams running independent

instances of BFDN. The technique is applied recursively, with ℓ ∈ N
denoting the depth of the recursive stack.

Proposition 4.4. For any integer ℓ ≥ 1, BFDNℓ explores a tree
with 𝑛 nodes, depth 𝐷 , maximum degree Δ with 𝑘 robots in 4𝑛

𝑘1/ℓ +
2
ℓ+1 (ℓ + 1 +min {log(Δ), log(𝑘)/ℓ}) 𝐷1+1/ℓ rounds.

ACKNOWLEDGMENTS
The authors thank the reviewers for their careful remarks and the

entire Argo team for enlightening discussions. RC thanks Pierre

Fraigniaud for valuable feedback and Maxime Cartan for Python

demo (at https://github.com/Romcos/BFDN). Work supported by

PRAIRIE ANR-19-P3IA-0001 and Tempogral ANR-22-CE48-0001.

PODC ’23, June 19–23, 2023, Orlando, FL, USA Romain Cosson, Laurent Massoulié, and Laurent Viennot

REFERENCES
[1] Peter Brass, Flavio Cabrera-Mora, Andrea Gasparri, and Jizhong Xiao. 2011.

Multirobot Tree and Graph Exploration. IEEE Trans. Robotics 27, 4 (2011), 707–
717. https://doi.org/10.1109/TRO.2011.2121170

[2] Romain Cosson, Laurent Massoulié, and Laurent Viennot. 2023. Breadth-First

Depth-Next: Optimal Collaborative Exploration of Trees with Low Diameter.

arXiv preprint arXiv:2301.13307 (2023).

[3] Dariusz Dereniowski, Yann Disser, Adrian Kosowski, Dominik Pajak, and Prze-

myslaw Uznanski. 2013. Fast Collaborative Graph Exploration. In Automata,
Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga,
Latvia, July 8-12, 2013, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 7966), Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David

Peleg (Eds.). Springer, 520–532. https://doi.org/10.1007/978-3-642-39212-2_46

[4] Yann Disser, Frank Mousset, Andreas Noever, Nemanja Skoric, and Angelika

Steger. 2017. A General Lower Bound for Collaborative Tree Exploration. In

Structural Information and Communication Complexity - 24th International Col-
loquium, SIROCCO 2017, Porquerolles, France, June 19-22, 2017, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 10641), Shantanu Das and Sébastien
Tixeuil (Eds.). Springer, 125–139. https://doi.org/10.1007/978-3-319-72050-0_8

[5] Miroslaw Dynia, Miroslaw Korzeniowski, and Christian Schindelhauer. 2006.

Power-Aware Collective Tree Exploration. In Architecture of Computing Systems
- ARCS 2006, 19th International Conference, Frankfurt/Main, Germany, March
13-16, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 3894), Werner

Grass, Bernhard Sick, and Klaus Waldschmidt (Eds.). Springer, 341–351. https:

//doi.org/10.1007/11682127_24

[6] Miroslaw Dynia, Jaroslaw Kutylowski, Friedhelm Meyer auf der Heide, and

Christian Schindelhauer. 2006. Smart Robot Teams Exploring Sparse Trees. In

Mathematical Foundations of Computer Science 2006, 31st International Symposium,
MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings (Lecture
Notes in Computer Science, Vol. 4162), Rastislav Kralovic and Pawel Urzyczyn

(Eds.). Springer, 327–338. https://doi.org/10.1007/11821069_29

[7] Miroslaw Dynia, Jakub Lopuszanski, and Christian Schindelhauer. 2007. Why

Robots Need Maps. In Structural Information and Communication Complexity,
14th International Colloquium, SIROCCO 2007, Castiglioncello, Italy, June 5-8, 2007,
Proceedings (Lecture Notes in Computer Science, Vol. 4474), Giuseppe Prencipe and
Shmuel Zaks (Eds.). Springer, 41–50. https://doi.org/10.1007/978-3-540-72951-

8_5

[8] Pierre Fraigniaud, Leszek Gasieniec, Dariusz R. Kowalski, and Andrzej Pelc. 2006.

Collective tree exploration. Networks 48, 3 (2006), 166–177. https://doi.org/10.

1002/net.20127

[9] Yuya Higashikawa, Naoki Katoh, Stefan Langerman, and Shin-ichi Tanigawa.

2014. Online graph exploration algorithms for cycles and trees by multiple

searchers. J. Comb. Optim. 28, 2 (2014), 480–495. https://doi.org/10.1007/s10878-

012-9571-y

[10] Christian Ortolf and Christian Schindelhauer. 2012. Online multi-robot ex-

ploration of grid graphs with rectangular obstacles. In 24th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’12, Pittsburgh, PA, USA,
June 25-27, 2012, Guy E. Blelloch and Maurice Herlihy (Eds.). ACM, 27–36.

https://doi.org/10.1145/2312005.2312010

[11] Christian Ortolf and Christian Schindelhauer. 2014. A Recursive Approach to

Multi-robot Exploration of Trees. In Structural Information and Communication
Complexity - 21st International Colloquium, SIROCCO 2014, Takayama, Japan, July
23-25, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8576), Magnús M.

Halldórsson (Ed.). Springer, 343–354. https://doi.org/10.1007/978-3-319-09620-

9_26

https://doi.org/10.1109/TRO.2011.2121170
https://doi.org/10.1007/978-3-642-39212-2_46
https://doi.org/10.1007/978-3-319-72050-0_8
https://doi.org/10.1007/11682127_24
https://doi.org/10.1007/11682127_24
https://doi.org/10.1007/11821069_29
https://doi.org/10.1007/978-3-540-72951-8_5
https://doi.org/10.1007/978-3-540-72951-8_5
https://doi.org/10.1002/net.20127
https://doi.org/10.1002/net.20127
https://doi.org/10.1007/s10878-012-9571-y
https://doi.org/10.1007/s10878-012-9571-y
https://doi.org/10.1145/2312005.2312010
https://doi.org/10.1007/978-3-319-09620-9_26
https://doi.org/10.1007/978-3-319-09620-9_26

	Abstract
	1 Introduction
	2 Breadth-First Depth-Next
	3 Balls in urns game
	4 Extensions of BFDN
	4.1 Restricted Memory and Communications
	4.2 Adversarial Robot Break-Downs
	4.3 Exploration of non-tree Graphs
	4.4 Recursive Variant

	Acknowledgments
	References

