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INTRODUCTION

Problem Setting. A team of 𝑘 agents, or robots, is tasked to collectively traverse all the edges of a tree as fast as possible and then return to the root. At initialization, all robots are located at the root. At each round, the robots move synchronously along one incident edge to reach a neighbour. Edges are revealed along with their unique identifier when a robot reaches one of their endpoints. Following [START_REF] Fraigniaud | Collective tree exploration[END_REF], we consider two communication models. The complete communication model, in which communication is unrestricted, and consequently the robots share a map of the explored sub-tree. The write-read communication model, in which robots communicate through whiteboards that are located at all nodes.

Related Works. In the case of a single robot, the "Depth First Search" (DFS) algorithm is optimal for traversing the edges of a tree. It can be implemented both offline (the tree is known in advance) and online (edges are revealed when reached). One way to describe DFS in an online fashion is to have the robot go through an adjacent unexplored edge if possible and go up towards the root otherwise. After 2(𝑛 -1) rounds, where 𝑛 is the number of nodes, all edges have been traversed twice and the robot is at the root.

In the multi-robot setting, with 𝑘 ≥ 2, traversing all the edges of a tree in an offline manner requires order max{2𝑛/𝑘, 2𝐷 } ∼ 𝑛/𝑘 + 𝐷 synchronous rounds [START_REF] Dynia | Power-Aware Collective Tree Exploration[END_REF][START_REF] Ortolf | A Recursive Approach to Multi-robot Exploration of Trees[END_REF]. Unfortunately, no online exploration algorithm can attain this performance [START_REF] Dynia | Why Robots Need Maps[END_REF]. The cost of an online exploration algorithm is usually quantified through its competitive ratio. An algorithm A 𝑘 using 𝑘 ≥ 2 robots, has competitive ratio 𝑐 (𝑘) if it can explore any tree with 𝑛 nodes and depth 𝐷 in 𝑐 (𝑘) (𝑛/𝑘 + 𝐷) rounds. The algorithm CTE [START_REF] Fraigniaud | Collective tree exploration[END_REF] has a runtime of 𝑂 (𝑛/log(𝑘) + 𝐷) and the best known competitive ratio of 𝑂 (𝑘/log(𝑘)).

The limited progress of competitive analysis for collaborative tree exploration led most subsequent works to study algorithms with super-linear runtime in 𝑛 or 𝐷 [START_REF] Brass | Multirobot Tree and Graph Exploration[END_REF][START_REF] Dereniowski | Fast Collaborative Graph Exploration[END_REF][START_REF] Disser | A General Lower Bound for Collaborative Tree Exploration[END_REF][START_REF] Dynia | Smart Robot Teams Exploring Sparse Trees[END_REF][START_REF] Higashikawa | Online graph exploration algorithms for cycles and trees by multiple searchers[END_REF][START_REF] Ortolf | A Recursive Approach to Multi-robot Exploration of Trees[END_REF]. In this spirit, [START_REF] Ortolf | A Recursive Approach to Multi-robot Exploration of Trees[END_REF] proposed a recursive algorithm called Yo* that runs with complete

communication in O (2 O ( √ log 𝐷 log log 𝑘 ) log(𝑘)(log(𝑘)+log(𝑛)) (𝑛/𝑘+ 𝐷)) rounds.
On the other hand, [START_REF] Brass | Multirobot Tree and Graph Exploration[END_REF] proposed a novel analysis of CTE yielding a guarantee of 2𝑛 𝑘 + O ((𝑘 + 𝐷) 𝑘 ), thus with optimal dependence in 𝑛 and a large additive cost which does not depend on 𝑛. The algorithm we propose with its guarantee of 2𝑛 𝑘 + O (𝐷 2 log(𝑘)) falls in this line of work. Our guarantee improves over [START_REF] Brass | Multirobot Tree and Graph Exploration[END_REF] for all values of (𝑛, 𝐷, 𝑘), and improves upon CTE and Yo * in specific ranges of parameters as depicted in Figure 1.

Main Results. In this paper, we present a simple and novel algorithm that achieves collaborative tree exploration with 𝑘 agents in 2𝑛 𝑘 + 𝐷 2 (min{log(𝑘), log(Δ)} + 2) rounds for any tree with 𝑛 nodes, depth 𝐷 and maximum degree Δ. Our algorithm can be implemented in the write-read communication model. The algorithm is called "Breadth-First Depth-Next" (BFDN). It is first presented in the complete communication setting in Section 2. The behaviour of the robots can be summarized as follows: when located at the root, robots are sent to a node which is adjacent to the highest unexplored edge (as in a breadth-first search). Upon arrival, robots change behaviour until they reach the root again: they will go through an unexplored edge if some is adjacent and will go up towards the root otherwise (as in a depth-first search).

The analysis of this algorithm involves a simple zero-sum twoplayer game where a player and an adversary move 𝑘 balls in 𝑘 urns. We describe in Section 3 a strategy that induces a cost of at most 𝑘 min{log(𝑘), log(Δ)} + 𝑘 to the player.

Our algorithm can benefit from several extensions briefly described in Section 4, i) exploration of specific classes of non-tree graphs, ii) scenarios with constrained communications and memory, iii) setups where an adversary chooses at each time step which robots are allowed to move iv) improved dependence in 𝐷, with a recursive version of BFDN in O ℓ 𝑛 𝑘 1/ℓ + min{log(𝑘), log(Δ)}𝐷 1+1/ℓ where ℓ ≥ 1 is some constant provided as input.

Notations. The notation log(•) refers to the natural logarithm. For some integer 𝑘 ∈ N we will use the abbreviation [𝑘] = {1, . . . , 𝑘 }.

A tree 𝑇 = (𝑉 , 𝐸) is rooted at some specific node denoted root ∈ 𝑉 from which all robots start the exploration. For a node 𝑣 ∈ 𝑉 , 𝛿 (𝑣) is the distance of 𝑣 to the root and 𝑇 (𝑣) denotes the sub-tree of 𝑇 rooted at 𝑣 containing all the descendants of 𝑣. The depth of 𝑇 is 𝐷 = max 𝑣 ∈𝑉 𝛿 (𝑣). We will also use a notion of partially explored tree (defined in Section 2) that enjoys the same definitions.

BREADTH-FIRST DEPTH-NEXT

Our main result on BFDN, described below, is the following. Theorem 2.1. BFDN achieves online exploration of any tree with 𝑘 robots in at most 2𝑛 𝑘

+ 𝐷 2 (min{log(Δ), log(𝑘)} + 2)
rounds, where Δ is the maximum degree of the tree, 𝑛 is the number of nodes, and 𝐷 is the depth.

Following [START_REF] Fraigniaud | Collective tree exploration[END_REF], we first consider a synchronous model with allto-all communications. The team of 𝑘 robots operates in rounds, and the runtime of an exploration algorithm is measured by the number of rounds before termination.

Partially Explored Tree. At a given round of exploration, 𝑉 denotes the set of explored nodes, i.e. nodes that have been occupied by at least one robot in the past, and 𝐸 denotes the set of discovered edges, i.e. edges that have at least one explored endpoint. The discovered edges which have exactly one explored endpoint are called dangling edges. Such edges can be viewed as a pair (𝑢, ?), with 𝑢 ∈ 𝑉 . The partially explored tree 𝑇 online = (𝑉 , 𝐸) thus encodes all the information gathered by the robots at some points of the exploration. If there are no dangling edges in 𝑇 online , it means that exploration is complete and that the partially explored tree equals the underlying tree 𝑇 offline ∈ T (𝑛, 𝐷).

Collaborative Exploration Algorithm. A collaborative exploration algorithm under the complete communication model is formally defined as a function that maps a partially explored tree 𝑇 = (𝑉 , 𝐸), the current positions of the agents 𝑝 1 , . . . , 𝑝 𝑘 ∈ 𝑉 𝑘 and all past movements of the agents to a list of selected edges 𝑒 1 , . . . , 𝑒 𝑘 ∈ (𝐸 ∪ {⊥}) 𝑘 that will be traversed in the current round. The selected edges 𝑒 𝑖 ∈ 𝐸 must be adjacent to the positions 𝑝 𝑖 . By convention, ⊥ indicates that the corresponding agent will not move at the next round. In pseudo-code, the routine SELECT(Robot 𝑖 , 𝑒) performs the assignment 𝑒 𝑖 ← 𝑒. When all agents have selected a next move, the routine MOVE is applied and all agents move along their selected edge synchronously. The partially explored tree (𝑉 , 𝐸) is updated with the new information provided by the agents that have traversed a dangling edge. For any rooted tree, exploration starts with 𝑉 = {root} and 𝐸 the set of edges dangling at the root. The collaborative exploration algorithm is iterated until (𝑉 , 𝐸) contains no dangling edges and the position of all agents is back at the root.

Breadth-First Depth-Next Algorithm. We provide a brief description of BFDN, Algorithm 1. When located at the root, Robot 𝑖 with 𝑖 ∈ [𝑘] is assigned an anchor 𝑣 𝑖 ∈ 𝑉 which is an explored node that is adjacent to at least one dangling edge. If no such node exists, the anchor is the root itself. The exact anchor assignment is specified by procedure Reanchor which gives the priority to nodes that are the closest to the root and that have the least number of anchored robots. Robot 𝑖 then attains this anchor in a series of breadth-first moves performed with procedure BF. When the anchor is reached, the robot only makes depth-next moves until it returns to the root with procedure DN. In a sequence of depth-next moves, the robot always goes through a dangling edge if one is available (i.e. adjacent and not already selected as next move by another robot), and goes one step up towards the root otherwise. This will result in a depth-first-like exploration inside 𝑇 (𝑣 𝑖 ) followed by a direct travel back from 𝑣 𝑖 to the root. The algorithm stops when all robots are at the root and cannot be reassigned a new anchor because there are no more dangling edges. We conclude this paragraph by stating the following claim that provides intuition on the algorithm. Claim 1. At all rounds, all dangling edges, are in ∪ 𝑖 ∈ [𝑘 ] 𝑇 (𝑣 𝑖 ).

Proof of Claim 1. Consider some dangling edge 𝑒 and its explored endpoint 𝑣 ∈ 𝑉 . At the round when 𝑣 was explored by a robot, that robot must have been performing a depth-next move because the depth of its anchor was less than or equal to the depth of 𝑣 which was adjacent to a dangling edge. Thus, the robot cannot have left 𝑇 (𝑣) before the edge 𝑒 was visited. Consequently, that robot is still rooted at some ancestor 𝑣 𝑖 of 𝑣, thus 𝑒 ∈ ∪ 𝑖 ∈ [𝑘 ] 𝑇 (𝑣 𝑖 ). □ Algorithm 1 BFDN "Breadth-First Depth-Next"

Ensure: The robots visit all nodes and return to the root. for 𝑖 = 1 to 𝑘 do ⊲ Sequential decisions.

6:

if Robot 𝑖 is at root then 7:

𝑣 𝑖 ← Reanchor(𝑖)

8:
Stack in 𝑆 𝑖 the list of edges that lead to 𝑣 𝑖 9:

if 𝑆 𝑖 is not empty then 10:

BF(𝑖)

11:

else 12:

DN(𝑖)

13:

MOVE robots on their selected edge ⊲ Synchronous moves. 14: while not all robots are at the root if 𝐴 ≠ ∅ then ⊲ Choose anchor of minimum load.

28:

𝑣 𝑖 ← arg min 𝑣 ∈𝐴 #{ 𝑗 𝑠.𝑡 . 𝑣 𝑗 = 𝑣 } 29:
else ⊲ The tree is explored.

30:

𝑣 𝑖 ← root

BALLS IN URNS GAME

In this section we describe a two-player zero-sum board game that is crucial to the analysis of BFDN. An optimal strategy of the game is in Theorem 3.1 and its implication is stated in Corollary 3.2.

Game Description. At time 𝑡 ∈ N, the board of the game is a list of 𝑘 integers (𝑛 𝑡 1 , . . . , 𝑛 𝑡 𝑘 ) that represent the load of 𝑘 urns with a total of 𝑘 balls. When the game starts at 𝑡 = 0, we have 𝑛 0 𝑖 = 1 and at every instant 𝑡 we have 𝑖 ∈ [𝑘 ] 𝑛 𝑡 𝑖 = 𝑘 and 𝑛 𝑡 𝑖 ≥ 0. At time 𝑡, player A (the adversary) chooses an urn 𝑎 𝑡 ∈ [𝑘] that is not empty, i.e. such that 𝑛 𝑡 𝑎 𝑡 ≥ 1, and then player B (the player) chooses an urn 𝑏 𝑡 ∈ [𝑘] and moves a ball from urn 𝑎 𝑡 to urn 𝑏 𝑡 . At the beginning of time 𝑡 + 1, the board thus satisfies 𝑛 𝑡 +1 𝑎 𝑡 = 𝑛 𝑡 𝑎 𝑡 -1 and 𝑛 𝑡 +1

𝑏 𝑡 = 𝑛 𝑡 𝑏 𝑡 + 1.
Goal of the Game. At a given time 𝑡, we denote by 𝑈 𝑡 the set of urns that have never been selected by the adversary, 𝑈 𝑡 = {1, . . . , 𝑘 } \ {𝑎 0 , . . . , 𝑎 𝑡 -1 }. The game stops when all urns in 𝑈 𝑡 contain at least Δ balls, i.e. 𝑛 𝑡 𝑖 ≥ Δ, ∀𝑖 ∈ 𝑈 𝑡 . If Δ ≥ 𝑘, the game stops when all urns have been chosen, i.e. 𝑈 𝑡 = ∅. The goal of player B is to end the game as soon as possible, while the goal of the adversary is to play for as long as it can.

Strategy of the Player. At time 𝑡, the player picks the urn 𝑏 𝑡 that contains the least number of balls among the urns that were never chosen by the adversary, i.e. 𝑏 𝑡 ∈ arg min 𝑖 ∈ [𝑘 ]\{𝑎 0 ,...,𝑎 𝑡 } 𝑛 𝑡 𝑖 . Theorem 3.1. If the player uses the strategy above, the game ends in at most 𝑘 min{log(Δ), log(𝑘)} + 𝑘 steps. Corollary 3.2. In an execution of BFDN, then number of calls to procedure Reanchor is at most 𝐷 (𝑘 min{log(𝑘), log(Δ)} + 𝑘).

EXTENSIONS OF BFDN 4.1 Restricted Memory and Communications

In [START_REF] Cosson | Breadth-First Depth-Next: Optimal Collaborative Exploration of Trees with Low Diameter[END_REF], we introduce a setting with restricted memory and communication where robots each have Δ + 𝐷 log(Δ) bits of internal memory and are allowed to communicate with a central planner only when they are located at the root. This setting encompasses the read-write communication model. 

Adversarial Robot Break-Downs

In [START_REF] Cosson | Breadth-First Depth-Next: Optimal Collaborative Exploration of Trees with Low Diameter[END_REF], we introduce a setting to account for break-downs and varied speeds. At each round 𝑡 ∈ N, robot 𝑖 is allowed to move if some variable 𝑀 𝑡𝑖 = 1 and is blocked if 𝑀 𝑡𝑖 = 0. We assume M = (𝑀 𝑡𝑖 ) 𝑡 ∈N,𝑖 ∈ [𝑘 ] takes arbitrary 0/1 values and denote the average distance travelled

𝐴(M) = 1 𝑘 𝑡 ∈N 𝑖 ∈ [𝑘 ] 𝑀 𝑡𝑖 ∈ N ∪ {+∞}. Proposition 4.2.
For any sequence M ∈ {0, 1} N× [𝑘 ] satisfying 𝐴(M) ≥ 2𝑛 𝑘 + 𝐷 2 (log(𝑘) + 2) all edges will be visited by BFDN.

Exploration of non-tree Graphs

BFDN can be executed on a graph, with a minor modification: a robot rediscovering a node backtracks and "closes" the corresponding edge. In [START_REF] Cosson | Breadth-First Depth-Next: Optimal Collaborative Exploration of Trees with Low Diameter[END_REF], we assume robots always knows their edge-distance to the origin and extend our guarantees to graphs. This assumption holds for grid graphs with rectangular obstacles [START_REF] Ortolf | Online multi-robot exploration of grid graphs with rectangular obstacles[END_REF].

Proposition 4.3. Given such a graph 𝐺 = (𝑉 , 𝐸) with 𝑚 edges, diameter 𝐷 and maximum degree Δ, under the assumption above, BFDN runs in 2𝑚 𝑘 + 𝐷 2 (min{log(Δ), log(𝑘)} + 2) rounds.

Recursive Variant

In [START_REF] Cosson | Breadth-First Depth-Next: Optimal Collaborative Exploration of Trees with Low Diameter[END_REF] we present a recursive variant of BFDN, denoted BFDN ℓ achieving a better dependence in 𝐷 though worse dependence in 𝑛. The variant works by dividing the robots in teams running independent instances of BFDN. The technique is applied recursively, with ℓ ∈ N denoting the depth of the recursive stack.

Proposition 4.4. For any integer ℓ ≥ 1, BFDN ℓ explores a tree with 𝑛 nodes, depth 𝐷, maximum degree Δ with 𝑘 robots in 4𝑛 𝑘 1/ℓ + 2 ℓ+1 (ℓ + 1 + min {log(Δ), log(𝑘)/ℓ }) 𝐷 1+1/ℓ rounds.
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 1 Figure 1: Regions of parameters 𝑛 ≤ 𝐷 where either of CTE, Yo * , BFDN and BFDN ℓ has the best runtime guarantee.

  15: 16: procedure BF(𝑖) 17: Unstack 𝑒 ∈ 𝐸 from 𝑆 𝑖 and SELECT(Robot 𝑖 , 𝑒) 18: 19: procedure DN(𝑖) 20: if Robot 𝑖 adjacent to dangling unselected edge 𝑒 ∈ 𝐸 then 21: SELECT(Robot 𝑖 , 𝑒) 22:

  𝑖 , up) ⊲ If at the root, up is ⊥. 𝐴 = {𝑣 ∈ 𝑉 adjacent to dangling edge with 𝛿 (𝑣) minimal} 27:

Proposition 4 . 1 .

 41 In this communication model, BFDN achieves tree exploration in at most 2𝑛 𝑘 + 𝐷 2 (min{log(𝑘), log(Δ)} + 2) rounds.

  1: 𝑉 = list of explored nodes ; 𝐸 = list of discovered edges 2: 𝑣 𝑖 ← root ∀𝑖 ∈ {1, . . . , 𝑘 } ⊲ Initialize anchors. 3: 𝑆 𝑖 ← [ ] ∀𝑖 ∈ {1, . . . , 𝑘 } ⊲ Initialize empty stacks.

4: do ⊲ Round 𝑡.

5:
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