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Abstract 
JAK inhibitors have been developed following the discovery of the JAK2
V617F in 2005 as the driver mutation of the majority of non-BCR-ABL1 
myeloproliferative neoplasms (MPNs). Subsequently, the search for 
JAK2 inhibitors continued with the discovery that the other driver 
mutations (CALR and MPL) also exhibited persistent JAK2 activation. 
Several type I ATP-competitive JAK inhibitors with different specificities 
were assessed in clinical trials and exhibited minimal hematologic 
toxicity. Interestingly, these JAK inhibitors display potent anti-
inflammatory activity. Thus, JAK inhibitors targeting preferentially JAK1 
and JAK3 have been developed to treat inflammation, autoimmune 
diseases, and graft-versus-host disease. Ten years after the beginning 
of clinical trials, only two drugs have been approved by the US Food 
and Drug Administration: one JAK2/JAK1 inhibitor (ruxolitinib) in 
intermediate-2 and high-risk myelofibrosis and hydroxyurea-resistant 
or -intolerant polycythemia vera and one JAK1/JAK3 inhibitor 
(tofacitinib) in methotrexate-resistant rheumatoid arthritis. The non-
approved compounds exhibited many off-target effects leading to 
neurological and gastrointestinal toxicities, as seen in clinical trials for 
MPNs. Ruxolitinib is a well-tolerated drug with mostly anti-
inflammatory properties. Despite a weak effect on the cause of the 
disease itself in MPNs, it improves the clinical state of patients and 
increases survival in myelofibrosis. This limited effect is related to the 
fact that ruxolitinib, like the other type I JAK2 inhibitors, inhibits 
equally mutated and wild-type JAK2 (JAK2WT) and also the JAK2 
oncogenic activation. Thus, other approaches need to be developed 
and could be based on either (1) the development of new inhibitors 
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specifically targeting JAK2V617F or (2) the combination of the actual 
JAK2 inhibitors with other therapies, in particular with molecules 
targeting pathways downstream of JAK2 activation or the stability of 
JAK2 molecule. In contrast, the strong anti-inflammatory effects of the 
JAK inhibitors appear as a very promising therapeutic approach for 
many inflammatory and auto-immune diseases.

Keywords 
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Introduction
Janus kinases (JAKs) play a central role in the regulation of  
hematopoiesis as being mandatory for signaling by receptors for 
hematopoietic/immunological cytokines1. They control survival, 
proliferation, and differentiation of hematopoietic cells as well as 
the function of mature cells by binding to hematopoietic type I  
and type II cytokine receptors, which are devoid of catalytic  
activity (Figure 1). JAKs pre-associated to these receptors to form 
a functional signaling complex1. Cytokine binding induces or  
re-orients receptor dimerization, such that JAK kinase domains 
face each other in a productive conformation for transactivation 
and phosphorylation of the cytokine receptor cytoplasmic tails1.  
The latter and JAKs themselves become scaffolds for signaling 
molecules, particularly for the members of the signal transducer 
and activator of transcription (STAT) family, which in turn are 
phosphorylated and homo/hetero-dimerize before translocating  
to the nucleus. JAK activation also initiates activation of  
mitogen-activated protein kinase (MAPK), phosphatidylinositol- 
3′-kinase (PI3K), and AKT/mammalian target of rapamycin 
(mTOR) (Figure 2)2.

The JAK/STAT pathway is frequently dysregulated in malig-
nant diseases and in disorders with an abnormal immunological  
response3.

The discovery that classic BCR-ABL1–negative myeloprolifera-
tive neoplasms (MPNs) are constantly associated with abnormal 
JAK2 activation due to different mutations, has paved the way 
for the development of JAK inhibitors in the therapy of these  
disorders as well as of other diseases with either genetic altera-
tions in the JAK pathway or JAK-induced activation by autocrine 
and paracrine cytokine loops4,5. Here, we focus on the role of  
JAKs as potential therapeutic targets, the development of JAK 
inhibitors and their limitations, and potential new strategies  
targeting the JAKs.

Janus kinases
The human genome codes for four JAKs: JAK1, JAK2, JAK3, and 
TYK21. Like the god Janus, who has two faces and opens doors, 
JAKs possess two kinase domains—one catalytically active domain 
at the C-terminus and an upstream pseudokinase domain that 
binds ATP—but does not phosphorylate substrates (except weakly 
itself). At the N-terminus, JAKs possess a FERM (band four-point-
one, ezrin, radixin, moesin)-like domain and an Src homology 2 
(SH2)-like domain (Figure 3A). The non-covalent attachment of  
JAKs to cytokine receptor tails is specific and depends on the  
FERM domain and on the juxtamembrane receptor sequence 
containing a proline-rich Box 1 and a motif denoted Box 2 with 
both hydrophobic and negatively charged residues as well as the 

Figure 1. Janus kinases (JAKs) and the cytokine receptor superfamily. Schematic representation of type I and type II cytokine receptor 
subfamilies based on the extracellular domain sequence homologies. The different JAKs (JAK1, JAK2, JAK3, and TYK2) are employed by 
each class of receptors, as indicated. Type I receptors can form homodimers (α/α), heterodimers (α/β), or oligomers (gp130/α/gp130); 
(α/β/γ), although the α chain is mainly responsible for cytokine binding. Cytokine receptor complexes composed of two or more different 
chains activate at least two different JAKs, while single-chain receptors such as homodimeric receptors activate JAK2 only (although TpoR/
MPL and G-CSFR/CSF3R can also use TYK2 and JAK1, respectively). The myelopoiesis-related cytokine receptors are denoted in red, and 
the lymphopoiesis-related cytokines receptors are denoted in green.
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Figure 2. Principal signaling pathways activated by homodimeric cytokine receptors. Cytokine binding to the extracellular domain of 
receptors induces conformation changes that enable cross-phosphorylation of the appended Janus kinases (JAKs), which then can activate 
each other. As a result, JAK molecules phosphorylate tyrosine residues on the intracellular part of the receptor, which then can serve as 
docking sites for SH2 domain containing signaling molecules such as signal transducer and activator of transcription (STAT) but also proteins 
from the phosphatidylinositol-3′-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways.

sequences stretching from Box 1 to Box 26,7. JAK2 associates 
with the three homodimeric receptors: erythropoietin receptor 
(EPOR), thrombopoietin receptor (MPL/TPOR), and the granulo-
cyte colony-stimulating factor receptor (G-CSFR/CSF3R). JAK1,  
JAK2, and TYK2 can also associate with heterodimeric or 
trimeric receptors, and JAK3 only with receptors containing the  
γ-chain with solely JAK1 as partner (Figure 1)1. The precise  
structure of receptor/JAK complexes remains unknown. Recently, 
the structures of the kinase and pseudokinase domains of JAK1, 
JAK2, and TYK2 were obtained and represent a major asset for 
the identification of novel (allosteric) inhibitors (see below)8–10.  
Interestingly, JAKs also play a role of chaperones for traffic and 
stability at the cell surface of several cytokine receptors11.

Disease associated with abnormal JAK activation
Autonomous activation of the JAK/STAT pathway is central in  
several pathologies. Genetic alterations targeting this signaling 
pathway are associated mainly with hematologic malignancies. 
Pathological JAK activation also occurs in diseases linked to  
abnormal cytokine stimulation.

Hematologic malignancies
In many myeloid and lymphoid malignancies, driver mutations 
leading to constitutive JAK activation can be found. The paradigm 
is represented by BCR-ABL1–negative MPNs as they are all 
related to mutations activating JAK2, which in more than 50% of 
the cases both initiate and drive the disease phenotype. Thus, the  
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Figure 3. The kinase domain of Janus kinase 2 (JAK2) has been commonly targeted by the current inhibitors. (A) Secondary structure 
of JAK molecules. They are composed (from the N- to C-terminal end) of a FERM domain (band 4.1, erzin, radixin, moeisin domain), a 
pseudo-SH2 domain (ψ-SH2), a pseudokinase domain (JH2), and a kinase domain (JH1). While the major function of the N-terminus region 
is to specifically bind to cytokine receptor intracellular tail, the carboxyl-terminal region contains the catalytically active kinase domain, JH1, 
and the regulatory domain, JH2, of which the exact function is still matter of debate. (B) Three-dimensional representation of JAK2 kinase 
domain in its active conformation (PDB: 3KRR12) bound to type 1 inhibitor, ruxolitinib (show in yellow spheres). The binding of ruxolitinib has 
been modelled on the basis of the co-crystal of ruxolitinib-bound Scr (PDB: 4U5J13). The activation loop, colored in pink, adopts an ‘open’ 
(active) conformation stabilized by phosphorylation of tyrosine residues 1007 and 1008. The αC is colored in orange. (C) Three-dimensional 
representation of JAK2 kinase domain in its inactive conformation bound to a type 2 inhibitor, NVP-BTT594 (PDB: 3UGC14). The activation 
loop, colored in pink, adopts a ‘closed’ (inactive) conformation. The compound is shown in cyan spheres, and the αC in orange. (D) Illustration 
of the structures of the main compounds discussed in this review.

development of JAK2 inhibitors is particularly critical for  
MPNs.

Classic BCR-ABL1–negative MPNs. The classic BCR-ABL1–
negative MPNs (hereafter, MPNs) include three different  

disorders—essential thrombocythemia (ET), polycythemia vera 
(PV), and primary myelofibrosis (PMF)—and are caused by 
constitutive activation of the cytokine receptor/JAK2 pathway  
due to acquired somatic mutations in three major genes15. 
JAK2V617F is the most prevalent mutation in MPNs associated  
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with the three disorders (65–70%) and is present in 95% of PVs. 
Mutations in the exon 12 of JAK2 are found in around 2% of 
PV, which are negative for the JAK2V617F mutation (reviewed  
in 15). Interestingly, these two JAK2-activating mutations are not 
located in the kinase domain of the protein but involve amino acid 
changes in the pseudokinase (JH2) domain (JAK2V617F) and 
the SH2-JH2 linker domain (JAK2 exon 12) (Figure 3A and see 
below). Mutations in the thrombopoietin receptor (MPL) gene are 
much rarer than JAK2 mutations and are present in 3% of MPNs 
(4–5% of ET and myelofibrosis [MF]). The recurrent mutations 
are located in the exon 10. The most frequent are substitutions of 
the W515 residue to many other amino acids, mostly L or K but 
also R or A (reviewed in 15). In MPNs, the MPLS505N mutation 
is also found but less frequently than in hereditary thrombocytosis.  
Rarer mutations of MPL have been described in both the  
extracellular and intracellular domains. The third gene found  
frequently mutated in MPNs is calreticulin (CALR), which 
is affected by mutations leading to a +1 frameshift in the  
exon 916,17. As for MPL, CALR mutations are associated with 
ET and MF but with a higher frequency (25%). CALR is not a 
molecule directly involved in activation of JAK2, but the new  
C-terminus common to all mutants allows the CALR mutants to 
tightly bind and activate MPL and JAK218–21.

All of these activating mutations mimic the effects of hematopoi-
etic cytokines by inducing constitutive signaling via the STAT,  
PI3K, and ERK/MAPK pathways. To achieve this, JAK2V617F 
must be bound to cytokine receptors, more particularly 
homodimeric receptors (EPOR, CSF3R/G-CSFR, and MPL/TPOR),  
which allow its dimerization and activation22. CALR mutants  
specifically activate MPL and (to a lesser extent) G-CSFR, 
and MPL mutations result in an active conformation of the  
receptor18. Loss-of-function mutations in SH2B3, a negative  
regulator of JAK2, have been described as drivers in MPNs and 
idiopathic erythrocytosis23,24, but there is evidence that in the  
majority of the cases it is either a secondary mutation or a germ- 
line mutation predisposing to MPNs25.

In 20–30% of patients with MPNs, mutations besides driver  
JAK2-activating mutations have been identified in genes involved 
in splicing (SRSF2 and U2AF1) and epigenetic regulation  
(TET2, DNMT3A, ASXL1, EZH2, and IDH1/IDH2) and in tumor 
suppressor genes (TP53)15,26,27. They could predate or follow 
the driver mutations28–30. Mutations, such as in TET2, DNMT3A, 
or EZH2, favor clonal dominance and disease initiation28,31. Of 
note, these associated mutations promote progression to MF or  
leukemic transformation (ASXL1, IDH1/2, EZH2, and TP53)32,33. 
Almost always, one such mutation is present in PMF, and the 
number of such mutations correlates with the severity of the  
disease32,33 and might modulate the response to JAK2 inhibition.

Other myeloid malignancies
MPN associated with JAK2 fusion proteins
Four fusion proteins—ETV6 (TEL)-JAK2 (t(9;12) (p24;p13), 
PCM1-JAK2 (t(8;9) (p22;p24), BCR-JAK2 (t(9;22) (p24;q11.2), 
and RPN1-JAK2 (t(3;9) (q21;p24)—have been described in some 
MPNs—PMF, chronic eosinophilic leukemia (CEL), atypical 
chronic myeloid leukemia (aCML), and unclassified MPNs—or 

in mixed MPN/myelodysplastic syndrome (MPN/MDS)34–37. 
The translocation partner of JAK2 sets the expression level and  
induces dimerization of JAK2 kinase domains.

Chronic neutrophilic leukemia, an MPN associated with G-
CSFR (CSFR3) mutations
Acquired activating CSF3R mutations have been found in the  
great majority of chronic neutrophilic leukemias (CNLs). 
Most CNLs carry a T618I mutation (T595I if the first counted  
residue is after the peptide signal sequence)38. The T615N (T592N)  
mutation has also been described but more rarely. CSF3R  
mutations have also initially been described in aCML but are much 
less frequent than in CNL.

JAK2V617F and (to a lower extent) MPL and CALR mutations  
are extremely prevalent in refractory anemia with ring sideroblasts 
and thrombocytosis and are associated with SF3B1 mutations39.

Mutations in JAK2 or cytokine receptors are rare in the other  
myeloid malignancies. They can be found in chronic myelo-
monocytic leukemia (CMML) but always associated with other  
mutations.

In acute myeloid leukemia (AML), mutations in JAKs are rare 
and, when present, mostly involve JAK1. CSF3R mutations have 
also been described but as late events. The only AML associated  
frequently with JAK mutations is Down syndrome acute meg-
akaryoblastic leukemia (AMKL), where JAK1, JAK2, and also  
JAK3 mutations are found in around 20% of cases40,41.

Lymphoid malignancies. JAK2 activation may play a more  
significant role in the pathogenesis of B and T neoplasms than  
previously thought, although they might be only secondary events. 
JAK/STAT activation occurs via either mutations/translocations  
or cytokine paracrine/autocrine loops.

Acute lymphoblastic leukemia
In B-cell acute lymphoblastic leukemia (B-ALL), a new subtype 
has emerged called BCR-ABL1-like subtype (15% of pediatric  
ALL and 50% of ALL with Down syndrome), as it exhibits a  
transcriptional profile similar to that of BCR-ABL1–positive 
ALL with poor prognosis42. Half of them have JAK1 and JAK2  
mutations and rearrangement of CRLF2, a gene encoding a 
cytokine receptor43,44. The most frequent JAK2 mutations tar-
get the R683 (R683G/S), a residue present in the DIREED motif  
located in the hinge between the N- and C-lobes of the pseu-
dokinase domain of JAK244,45. Fusion with partners ETV6, BCR,  
PAX, and SSBP2 results in the activation of JAK2 kinase  
domain. Mutations in JAK1 are relatively rare in B-ALL in com-
parison with T-cell ALL (T-ALL)46 and are located in the FERM 
domain and the pseudokinase domain. For instance, JAK1V658F 
is the equivalent of JAK2V617F47. In most cases, JAK2 mutations 
are associated with an aberrant expression of CRLF2, a cytokine 
receptor chain which associates with IL-7RA to bind the thymic 
stromal lymphopoietin (TSLP)48. The F232C-activating mutation 
in CRLF2 induces homodimerization of CRLF2 and is detected 
in 10% of cases overexpressing CRLF249. Activating muta-
tions in the IL-7RA have been described either as point mutation  
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(S185C) or as an insertion-deletion in the transmembrane  
domain inducing homodimerization of the IL-7RA50. Truncating 
rearrangements of the EPOR have also been identified51.

In T-ALL, mutations in JAK1, JAK2, JAK3, and the IL-7R are  
found in around 15% of cases, more particularly in early T-cell  
progenitor (ETP)-ALL52. Targeting JAKs in these two types of  
ALL appears to be a valuable approach.

Hodgkin lymphoma and primary mediastinal B-cell  
lymphoma
Hodgkin lymphoma and primary mediastinal B-cell lymphoma 
(PMBL) have some common mechanisms of lymphomagen-
esis, being driven by alterations in the nuclear factor-kappa B  
(NFκB) and JAK/STAT pathways53,54. In rare cases (3%), a JAK2 
fusion protein (SEC31A-JAK2) is present55.

Other lymphoma
In T-cell pro-lymphocytic leukemia, mutations in JAK1 (8%) and 
JAK3 (30%) (more particularly M511I) have been described56. 
JAK3 mutations (particularly A572V and A573V) are frequent 
(35%) in natural killer/T-cell lymphomas57. Mutations or silencing 
of negative regulators of JAKs (PTPN2 and SOCS1) is also frequent 
in diffuse large B-cell lymphoma, follicular lymphoma, and periph-
eral T-cell lymphoma.

An autocrine/paracrine cytokine loop induced by IL-6, IL-10, and 
IL-13 activates JAKs. This occurs in several types of lymphoma 
as well as in chronic lymphocytic leukemia and Waldenström  
macroglobulinemia58.

Disorders other than hematologic malignancies
Inherited disorders of the hematopoietic system. The majority 
of inherited thrombocytosis are related to spontaneous activation 
of the MPL/JAK2 pathways due to MPL or JAK2 mutations59,60.  
The other mechanism is related to an excess of plasma throm-
bopoietin (TPO) due either to an excessive synthesis or to a 
defect in its clearance as a consequence of MPL mutations 
affecting receptor trafficking. This excess of TPO induces JAK2  
activation59,60.

Inherited erythrocytosis are related to excess erythropoietin  
(EPO) synthesis or to gain-of-function mutations in EPOR that  
activate JAK260. Hereditary neutrophilia carry activating mutations 
of CSF3R that activate JAK261.

Inflammatory and autoimmune diseases. A large spectrum of  
diseases of the immune system involves an activation of JAKs 
through autocrine or paracrine cytokine loops62. In inflammatory 
pathologies, such as rheumatoid arthritis (RA), psoriasis, inflam-
matory bowel disease, and alopecia areata, the most important 
JAK to be targeted is JAK162. In autoimmune disease, JAK1 is  
also the main JAK to be targeted as both the IL-6 and the type 1 
interferon (IFN) pathways are involved. Blocking JAK1/2 in  
graft-versus-host disease (GVHD) is useful as type II IFN and  
IL-6 are pathogenic63. Lastly, JAK inhibition can be useful to 
curb oncogenic inflammatory responses in a wide range of solid 
tumors.

JAK inhibitors
Several types of inhibitors exist according to their mechanism/
region targeted in JAKs64.

Type I inhibitors
Type I inhibitors target the ATP-binding site of the JAKs under 
the active conformation of the kinase domain (Figure 3B)64. All  
clinically tested inhibitors are type I. They differ in their spe-
cificity for each JAK. Many inhibitors target JAK2, JAK1, and  
eventually TYK2 (ruxolitinib, momelotinib, AZD1480, and 
baricitinib) or JAK3 and JAK1 (tofacitinib). Some are pan-JAK  
inhibitors (gandotinib, XL019, NVP-BSK805, peficitinib, and  
pyridone 6). Less frequently, they target only JAK2 (NS-018, 
pacritinib, CEP-33779, NVP-BVB808, TG101209, fedratinib, and 
AZD960), JAK1 (filgotinib and itacitinib), or JAK3 (decernotinib, 
janex1, and JAK3-IN-1). However, they also target other kinases, 
in particular FLT3 (pacritinib, NVP-BVB808, TG101209, and  
fedratinib), Src (NS018), or Aurora A (AZD1480) (Table 1 and  
Figure 3B).

The differences in specificities for JAK are the basis for the dif-
ferent trials: JAK2 specificity for MPNs and certain malignant  
disorders65,66 and JAK1 and JAK3 for inflammation and  
auto-immune diseases67. The clinical toxicity can be related to 
the precise JAK protein that is inhibited—hematological toxicity,  
eventually immune suppression for JAK266,—immune suppres-
sion and long-term effects on hematopoietic stem cells (HSCs) for  
JAK1 and JAK368. It can be also due to an off-target inhibition. 
It has been suggested that the gastrointestinal toxicity was related 
to FLT3 inhibition69 and the Wernicke encephalitis observed in  
rare patients treated with fedratinib to inhibition of thiamine 
uptake70.

Currently, only three JAK inhibitors are US Food and Drug  
Administration (FDA) or European Medicines Agency (EMA)-
approved for treatment: ruxolitinib for the treatment of MF and 
hydroxyurea (HU)-resistant or -intolerant PVs65, tofacitinib and 
Baricitinib for the treatment of methotrexate-resistant RA71.

The major limitation of type I inhibitors that bind to active state 
kinases is that while they block catalysis they allow increased  
phosphorylation of the activation loop on Y1007, which upon  
overexpression of JAK2 or other JAKs can create heteromeric 
JAK complexes that re-set signaling72. This might explain why  
resistance to JAK2 inhibition is not related to mutations but to  
functional inhibition73.

Type II inhibitors
The type II inhibitors bind to the ATP-binding pocket of kinase 
domains in inactive conformation, and the F of the DFG pocket 
is in an out conformation (Figure 3C)64,74. Inhibition is more  
efficient and is not reversed by drug detachment14. The best 
example is imatinib and the second generation of BCR-ABL  
inhibitors74. Two type II JAK2 inhibitors (NVP-BBT594 and  
NVP-CHZ868) have been developed. NVP-CHZ868 has been  
used in preclinical models and was very effective75,76. Both  
inhibitors were not amenable for drug development. Owing to  
their powerful activity, the type II JAK2 inhibitors present the  
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Table 1. JAK inhibitors, their targets, and their applications to pathologies.

Inhibitors Selectivity Off-
target Diseases Clinical phases

Type I 

Ruxolitinib JAK2>JAK1>JAK3 MF and hydroxyurea resistant or intolerant PV 
 
Refractory leukemia (post-MPN leukemia) 
 
Pancreatic cancers 
 
 
 
Corticosteroid refractory-GVHD 
 
Psoriasis 
 
Alopecia 
 
 
Vitiligo

FDA-approved77–79 
 
Phase 280 
 
Phase 2 in combination 
with capecitabine (after 
gemcitabine failure)81 

 
In evaluation82 

 
Phase 283 

 
Open-label clinical trial84 

 
 
Case report85

Momelotinib 
(CYT-387)

JAK2>JAK1>JAK3 ALK-2 
TBK1 
IKKε

PMF 
Post PV/ET MF 
 
PV/ET

Phase 3 - SIMPLIFY-1/2 
(Stopped)86 
 
Phase 2 (terminated)87

AZD1480 JAK2>JAK1 Aurora A 
FGFR1 
FLT4

PMF 
Post PV/ET MF 
 
B-ALL 
 
 
Solid tumors

Phase 1 
(completed)88 
 
In evaluation 
(preclinic)89 
 
Phase 1 
(terminated)90

Baricitinib 
(INCB-028050)

JAK2>JAK1 Rheumatoid arthritis 
 
 
 
Psoriasis

Phase 3 (FDA approval in 
process, EMA-approved)91 
 
 
Phase 292

Tofacitinib JAK1>JAK3 Methothrexate-resistant rheumatoid arthritis 
 
Crohn’s 
 
Psoriasis 
 
Alopecia areata 
 
Dermatomyositis, vitiligo

FDA-approved93 
 
Phase 294 

 
Phase 395 

 
Phase 296 

 
Case report96

Gandotinib 
(LY2784544)

Pan-JAK 
JAK2V617F>JAK2 

JAK2V617F-positive MF, ET and PV patients Phase 197 
Phase 2 (in progress)

XL019 Pan-JAK PV, MF Phase 1 
(terminated)98

NVP-BSK805 JAK2 JAK2V617F Cellular models99

NS-018 JAK2V617F>JAK2 Src PMF, post PV/ET MF patients 
 
JAK2V617F selective

Phase 212 
 
In vitro100

Pacritinib 
(SB11518)

JAK2 FLT3 MF Phase 3 
PERSIST-1101, 
PERSIST-2102 

PAC203 study evaluating  
the effect of lower doses

CEP-33779 JAK2 Rheumatoid arthritis, colorectal cancer, lupus nephritis Preclinical mouse models103

NVP-BVB808 JAK2 FLT3 MPN Cell lines104

TG101209 JAK2 FLT3 MPN, systemic sclerosis Cellular models105
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Inhibitors Selectivity Off-target Diseases Clinical phases

Fedratinib 
(TG101348)

JAK2 FLT3 
BRD4

MF Phase 3 
JAKARTA106  FDA removed 
the clinical hold in August 
2017

AZ960 JAK2 ATL, other leukemia Cell lines

Filgotinib 
(GLPG0634)

JAK1>JAK2 Rheumatoid arthritis 
Bowel and Crohn’s diseases 
Lupus and psoriasis

Phase 3107 
Phase 2108 
Phase 2109

Itacitinib 
(INCB-039110)

JAK1 MF 
 
 
 
Psoriasis 
 
Non-small cell lung cancer 
 
 
 
 
GVHD 
 
 
 
 
B-cell lymphoma 
 
 
 
 
BRAF-mutant melanoma and other solid tumors

Phase 2 
(alone or in combination with 
low-dose of ruxolitinib)110 
 
Phase 2111 

 
Phase 2 
(combination with EGFR 
inhibitor, osimertinib) 
(in progress) 
 
Phase 3 
(combination with 
corticosteroids) 
(in progress) 
 
Phase 1/2 
(combination with BTK 
inhibitor, ibrutinib) 
(in progress) 
 
Phase 1 
(in combination with MAPK 
inhibitors, dabrafenib or 
trametinib) 
(in progress)

INCB52793 JAK1 Advanced malignancies Phase 1 (in progress)

PF-04965842 JAK1 Moderate to severe psoriasis Phase 2112

Upadacitinib 
(ABT-494)

JAK1 Rheumatoid arthritis Phase 2113 
Phase 3 (in progress)

Decernotinib 
(VX-509)

JAK3 Rheumatoid arthritis Phase 2/3114

WHI-P131/
JANEX-1

JAK3 GVHD Preclinical mouse model115

JAK3-IN-1 JAK3 N/A N/A

Peficitinib 
(ASP015K)

JAK3 Psoriasis 
Rheumatoid arthritis

Phase 2116 
Phase 2117

Type II 

NVP-BBT594 JAK2 BCR-ABL 
KDR FLT3 
RET

Cellular models14

NVP-CHZ868 JAK2 KIT, 
PDGFR 
VEGFR

MPN 
B-ALL

Preclinical mouse models75

Allosteric 
inhibitors 

LS104 JAK2 BCR-ABL MPN JAK2V617F 
cell lines118

ON044580 JAK2 BCR-ABL MPN BCR-ABL 
cell lines119

ATL, adult T-cell leukemia; B-ALL, B-cell acute lymphoblastic leukemia; BTK, Bruton’s tyrosine kinase; EGFR, epidermal growth factor receptor; EMA, European 
Medicines Agency; ET, essential thrombocythemia; FDA, US Food and Drug Administration; GVHD, graft-versus-host disease; JAK, Janus kinase; MAPK, 
mitogen-activated protein kinase; MF, myelofibrosis; MPN, myeloproliferative neoplasm; N/A, not applicable; PMF, primary myelofibrosis; PV, polycythemia vera.
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risk of inducing profound cytopenia, limiting its future use in PV 
or ET.

Allosteric inhibitors
Allosteric inhibitors are molecules that do not bind to the active 
kinase site but to another site64. Theoretically, they would be more 
specific than an ATP-pocket inhibitor given the high homology 
of ATP-binding sites. Allosteric inhibition could be interesting to  
specifically target only the mutated JAKs (JAK2V617F: 60–70% 
of MPNs and JAK2 exon 12: 1%) as JAK2WT is indispensable  
for normal hematopoiesis. An efficient JAK2WT inhibition will 
always lead to a cytopenia.

Within allosteric inhibitors, type III bind to a site close to the 
ATP-binding site while type IV bind to an allosteric site distant 
from the ATP-binding site. This means that in the case of  
JAK2V617F it might be important to target the pseudokinase  
domain (type IV inhibitors, see last section). To our knowledge, 
there is currently no allosteric inhibitor of JAK2V617F in  
development.

Other types of inhibitors
For kinases other than JAKs, additional types of inhibitors have 
been developed64:

Type V. Such inhibitors reversibly bind to two sites of the kinase 
domain.

Covalent. They irreversibly bind on a nucleophilic residue (usually 
a cysteine) located in the ATP-binding site.

JAK inhibitor therapies
BCR-ABL –negative MPNs
Triggered by the discovery of JAK2V617F, JAK2 inhibitors 
have been developed, but none of them is specific to the mutant  
protein and most of them also target other kinases such as JAK1 
and FLT3. One advantage is that their use can be extended to the 
JAK2V617F-negative MPNs or other pathologies associated with 
JAK2 activation that include inflammatory diseases and certain 
other cancers. Theoretically, it is not conceivable to completely 
inhibit JAK2 in the long term, because this will lead to a profound 
cytopenia and eventually aplastic anemia. Thus, these inhibitors 
can be used because they only partially inhibit JAK2 in vivo for  
different reasons (pharmacokinetics and resistance). This explains 
why such inhibitors give similar clinical results in MF’s improv-
ing quality of life, decreasing the splenomegaly, and improv-
ing survival. The evolution of the disease is not changed, nor  
apparently is the rate of MPN transformation. The differences 
between inhibitors concern the side effects that may essentially be 
related to distinct off-targets (Table 1).

Ruxolitinib. Ruxolitinib (Figure 3B and D) was the first JAK2 
inhibitor approved for therapy of MF (high and intermediate  
risks). It is now the only JAK inhibitor for which a long-term fol-
low-up has been reached. In intermediate-2 and high-risk MF,  
a very significant effect is found in more than 50% of the patients 
with a reduced spleen size (clinical trials COMFORT-1 and  
COMFORT-2) at any point in the trial and even a more marked 

effect on the general symptoms, in particular the pruritus77–79. 
These results have been extended to low- and intermediate-1 risk  
MF120. In HU-refractory PVs, ruxolitinib allows the control of  
hematocrit in more than 60% of patients and induces a spleen  
volume reduction in 38% of cases at 32 weeks. In addition, a 
molecular decrease of JAK2V617F allele burden reaching a mean 
of 40% at 208 weeks was observed78,121. In HU-resistant or -intol-
erant ET, there are divergent results. In one study, ruxolitinib 
offered no advantage compared with other therapies in the control 
of the thrombocytosis and disease complications but did alleviate 
general symptoms and pruritus122. In the other123, which was an  
open-label phase 2 trial, ruxolitinib induced a meaningful 
reduction in platelet levels and attenuated ET-related symp-
toms. These preliminary results seemed superior to historically  
observed results, but this study was done in the absence of a  
comparison with another treatment.

Overall, ruxolitinib is a well-tolerated oral treatment with  
approximately 25–33% of adverse effects. The main toxicities 
are hematological, moderate anemia that may correct with time, 
and thrombocytopenia, which can be very severe in high-risk 
MF. Weight gain is also observed with possible abnormalities in 
lipid metabolism. Middle-term toxicity is an immune suppres-
sion that may be responsible for reactivation of viral infections,  
particularly herpes zoster and HIV1 and bacterial infections such 
as pneumonia, tuberculosis reactivation and urinary tract infec-
tions124,125. Long-term monitoring will be important because 
ruxolitinib decreases natural killer cell functions with a poten-
tial risk of solid tumor and lymphoma development126,127. This is  
particularly important if indications are extended to low-risk MF, 
PV, and ET. Analysis of patients treated for several years with  
ruxolitinb indicates an increase in survival in MF, but progression 
to leukemia is not significantly different128. It is possible that most 
pro-survival effects derive from its palliative anti-inflammatory 
effects65.

Other JAK2 inhibitors. Momelotinib (CYT38) (Figure 3D)  
is a JAK1/JAK2 inhibitor that has shown activity resembling  
ruxolitinib with respect to spleen size reduction and constitu-
tional symptom alleviation129–131. Importantly, momelotinib was 
shown to ameliorate anemia, which is a major concern in MF. The  
mechanism appears to be the reduction of hepcidin production 
through a direct inhibition of the activin receptor-like kinase-2 
(ALK-2)132. Thus, momelotinib was thought to be an alternative 
to ruxolitinib for patients with anemia. These promising results 
led to the opening of a phase III trial for the SIMPLIFY-1 and -2  
studies in MF. However, the results of the two clinical trials did not 
show a major advantage of momelotinib on ruxolitinib, although 
momelotinib was associated with a decrease in transfusion  
requirement86. Momelotinib development has been stopped.

NS-018 (Figure 3D) is a JAK2/Src inhibitor that has been assessed 
in patients with JAK2V617F-positive MF, ET, and PV. NS-018  
shows an apparent increased potency for the JAK2V617F mutant 
in mouse models, possibly leading to less immunosuppressive 
effects100. It was tested in MF with symptom improvement but 
minor impact on the numbers of JAK2V617F cells133. Gandot-
inib (LY2784544) (Figure 3D) is a potent JAK2 inhibitor, which 
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also exhibits a certain selectivity toward JAK2V617F. It was  
evaluated for safety and tolerability in ET, PV, and MF97.

Pacritinib (SB1518) (Figure 3D) is a JAK2/FLT3 inhibitor. 
Promising results were obtained in phase 1–2 clinical trials. It 
showed good activity in patients with less immunosuppressive  
effects134. Pacritinib could be administered to patients with low 
platelet levels, as it does not induce thrombocytopenia. The  
reasons behind this feature are unclear; they could be linked to 
reduced specificity for MPL/JAK2 complexes. Subsequently, two 
phase 3 clinical trials (PERSIST 1 and 2) were started with differ-
ent doses of pacritinib. In 2016, the FDA put a complete clinical 
hold on the trials because of an excess of intracranial hemorrhage 
and cardiac failure in treated patients135. This hold was lifted in  
2017136. As a consequence, CTI BioPharma has just launched 
the PAC203 study evaluating the effect of pacritinib at different  
doses.

Fedratinib (TG101348) (Figure 3D) was assessed during the 
JAKARTA trials with interesting clinical results, including  
fibrosis reduction137–139, but rare patients developed Wernicke 
encephalopathy, which led to its stop139. It was assumed that it was 
related to an inhibition of thiamine uptake, although fedratinib does 
not lead to inhibition of thiamine uptake in rats70,140. FDA removed 
the clinical hold in august 2017 and clinical trials are being planned 
in 2018.

JAK1 inhibition has also been proposed in MPNs, as an anti- 
inflammatory strategy, and an alternative to JAK2 inhibitors to 
avoid anemia and thrombocytopenia65,66. A preliminary study has 
produced mixed results with a modest reduction in spleen size110. 
Recently, it has been demonstrated that JAK1 plays essential and 
non-redundant roles at the level of HSC and therefore long-term 
JAK1 inhibition might have negative effects on HSCs68.

Other malignant disorders
Ruxolitinib was also used in refractory leukemia, including  
post-MPN leukemia, and 3 out of 18 patients achieved complete 
remission80. Ruxolitinib was unexpectedly used in combination 
with chemotherapeutic agents in solid cancers (pancreatic and 
lung cancer) and there was some benefit141. This was based on 
JAK1 involvement in the signaling of several cytokine receptors,  
inflammation, and possibly progression of the malignant 
clone81,142.

Ruxolitinib has been used both in myeloid malignancies with  
JAK2 fusion proteins and in CNL with a very good initial response 
but was inefficient to cure the diseases143–146.

Itacitinib (INCB39110), which is also a selective JAK1 inhibi-
tor, is being tested in non-small cell lung cancer in combination  
with an epidermal growth factor receptor inhibitor. Another  
JAK1 inhibitor, INCB52793, is also in development in advanced 
malignancies.

Inflammatory and autoimmune diseases
JAK1 inhibitors have been used in inflammatory/immune  
diseases67,147. Tofacitinib was authorized by the FDA in RA148 but 
is currently being tested in Crohn’s disease, psoriasis, and other 

diseases149,150. It decreases inflammation particularly by lowering 
T-cell and macrophage infiltrates. Filgotinib is currently in 
phase 3 clinical trials in RA and Crohn’s disease and in phase 2  
clinical trials in lupus and psoriasis. Itacitinib (INCB39110)  
is being tested in phase 2 trials in psoriasis and in MF with  
meaningful improvements.

Ruxolitinib, also a good inhibitor of JAK1, was shown to reduce 
GVHD in mice and in patients with corticosteroid-refractory 
GVHD82,151. Indeed, in GVHD, severe complications are due to 
high levels of proinflammatory cytokines that are inhibited by  
ruxolitinib. Itacitinib will be assessed as monotherapy in GVHD.

A JAK1 inhibitor, PF-04965842, is also in clinical trials in atopic 
dermatis and severe psoriasis112. Both topical tofacitinib and  
ruxolitinib are tested for alopecia and vitiligo.

Baricitinib (Olumiant), a JAK1/2 inhibitor (half maximal inhibitory 
concentration [IC

50
] values of 5.9 and 5.7 nM, respectively), has been  

initially identified by Incyte and subsequently developed by Eli 
Lilly and Company for RA. It also inhibits TYK2 (IC

50
 of around 53 

nM). A phase 3 clinical trial was conducted, and the molecule was 
approved by the EMA but not yet by the FDA148,152. It may be of inter-
est in MPN treatment given its similarities with ruxolitinib but with 
a longer half-life (12.5 hours). Upadacitinib (ABT-494, AbbVie) is a  
highly selective JAK1 inhibitor that will enter phase 3 trials for  
RA, psoriasis, and ulcerative colitis.

Two JAK3 inhibitors were evaluated. ASP015K, also designated 
JNJ-54781532, displays a moderate selectivity on JAK3 over 
JAK1 and JAK2. It was shown to induce efficacy and safety in  
psoriasis116. It has demonstrated efficacy in preclinical models 
of RA and dermatitis. Decernolitinib is also a potent and selec-
tive inhibitor of JAK3 developed as a second-generation inhibi-
tor in autoimmune diseases, particularly in RA. However, at high  
doses, it leads to anemia, indicating that its selectivity in vivo  
could be different153. In MPNs, these types of inhibitors could  
also be useful to decrease inflammation, especially in MF.

The major drawback of these JAK1 and JAK3 inhibitors affect-
ing the inflammatory response is that they can induce autoimmune 
diseases (thyroiditis or myocarditis) or can prime the develop-
ment of many infections in patients with MPN. Furthermore, it 
appears that for the IL-2/IL-4/IL-7/IL-9/IL-15/IL-21 complexes,  
JAK1 is the initiating kinase for signaling, and a JAK3 that is  
inhibited can still fulfill its scaffolding role in the complex, its  
inhibition not giving results comparable to the absence of JAK3  
by autosomal mutation154.

Perspectives in JAK inhibition
The goal of JAK2 inhibition in MPNs has switched from a  
curative therapy to a symptomatic and anti-inflammatory therapy 
with certain clinical benefits65. However, this aim is far from what 
is expected for a targeted therapy69. Although several in vitro  
studies identified potential kinase domain mutations that would 
give resistance to JAK2 inhibitors155,156, no such mutations were 
identified in patients72, further arguing that the current inhibitors 
are weak. Thus, there is a need for new inhibitors or combination 
of therapies.
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New inhibitors
First, a new generation of JAK2-specific compounds, including 
allosteric inhibitors targeting unique sequences in JAK2, should 
come to light. Such inhibitors would provide more specificity 
toward JAK2 or JAK2V617F, thereby ameliorating normal JAK2 
inhibition-based immune suppression. Two inhibitors have been 
developed (LS104 and ON044580) that inhibit kinase activi-
ties in a non-ATP-competitive manner118,119. LS104 preferentially  
inhibits JAK2V617F kinase and can synergize with ATP- 
competitive inhibitors118, whereas ON044580 inhibits BCR-ABL 
and its T315I mutant119. The precise targeted residues remain 
unknown.

Identification of allosteric sites in enzymes has been accom-
plished for several years and is the basis for the development of 
a new class of pharmaceuticals. One example is the development 

of the BCR-ABL allosteric inhibitor GNF-2 that can overcome 
the effect of resistant mutations and also exhibits an increased 
potency when used in combination with classic ATP-competitive  
inhibitors157. Another example is the development of MEK  
allosteric inhibitors. It was shown that analogues of PD184352 
could specifically bind to a unique region adjacent to the ATP 
pocket created by the displacement of the helix αC of the kinase in 
the active conformation158.

As the main conformational difference between JAK2V617F 
and JAK2WT is around the helix αC of the pseudokinase JH2  
domain159, a rational design of similar molecules targeting 
this region could be efficient (Figure 4). Recent structural and  
mechanistic data on JH2 V617F might help in designing such 
small molecules. Moreover, targeting JH2 might become fea-
sible as shown by the recent publication of co-crystals of JH2 

Figure 4. Graphic representation of the V617F-activation mechanism in Janus kinase2 (JAK2). The V617F activation has been suggested 
to derive from a combination of several molecular events triggered from a region surrounding the JH2 αC but also involving the SH2-JH2 
linker. Phenylalanine 617 interacts with F594 and F595 from the JH2 αC and F537 from the SH2-JH2 linker, as supported by structural 
data9,159, then induces putative conformational changes that are transmitted to the adjacent catalytic kinase domain where activation is 
initiated. Targeting the ATP-binding pocket of JH2 that is spatially close the αC represents an appealing approach for specific targeting of the 
mutant JAK2V617F. Small molecules, such as BI-D1870 (as represented here160), have been co-crystallized as bound to the JH2 ATP-binding 
site. The use of amendable compounds targeting the JH2 pocket has recently become a tantalizing concept and will represent the future 
challenge for drug design.
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with several compounds. Future therapeutics should target small  
conformational changes that are specific for a particular mutant 
protein or its constitutive activity.

The activating mutation, JAK2V617F, is located in the pseudoki-
nase domain of JAK2 and allosterically regulates the activity  
of JAK2 kinase domain. Another strategy would be to interrupt 
these specific intramolecular changes induced by V617F on the 
kinase domain of JAK2. The aromatic phenylalanine at position 
617 interacts with the αC helix phenylalanines 594 and 595161 

and with phenylalanine 537 from the SH2-JH2 linker9 to pro-
duce an autonomous activation to the adjacent catalytically active  
domain, JH1 (Figure 4). Both of these aberrant hydropho-
bic contacts induce critical conformational changes that can be 
visualized on the JH2 V617F crystal structures9,159. Any small  
molecules that would interfere with these specific atomic configu-
rations exclusively present in the conformation of JAK2V617F 
would most likely generate mutant-specific inhibitors.  
Evidence was provided that V617F activates JAK2 through a 
community of residues across JAK2 (from JH2 to JH1 through 
the SH2-JH2 linker) and that reversing the charge of the  
negative residue, E596, located on the solvent-exposed face  
of the JH2 αC helix, can efficiently uncouple JAK2V617F acti-
vation from cytokine-induced activation, thereby restoring  
auto-inhibition of JAK2.

Finally, methotrexate, a well-known drug used in autoim-
mune disease was shown to also inhibit the JAK/STAT pathway 
and in theory could be tested for selective effects on the MPN  
clones162. An advantage of this treatment is its low cost, while its 
side effects are well known.

Combination of therapies
The goal of certain combinations is to improve the anemia of MF, 
which can be worsened by ruxolitinib65. Trials have been per-
formed in combination with androgen without benefit. Trials are  
ongoing with pomalidomide or thalidomide and also with  
sotartercept, an activin receptor IIa ligand trap163. Treatment with 
erythropoiesis-stimulating agents is also conceivable, although  
they are theoretically antagonistic with JAK2 inhibitors164.

Downstream JAK2 are activations of STATs, PI3K-AKT/
mTOR, and RAS-MAPK ERK1/2 (Figure 2)165. Specific inhibi-
tors of STAT5 and STAT3 are now being tested in preclinical  
studies166. A combination of JAK2 and STAT5 inhibitors might 
be effective in MPNs. In preclinical models, JAK2 and pan type I  
PI3K and mTOR inhibitors synergize to block JAK2V617F- 
induced proliferation167,168 but less on mutant CALR-induced  
proliferation18. Other molecules involved in the inhibition of the 
PI3K, AKT, or mTOR pathway were tested in preclinical models 
or clinical trials.

The HSP90 chaperone is involved in JAK2 stability and is  
controlled via its acetylation status169. HSP90 inhibitors or his-
tone deacetylase inhibitors were tested169. Notably, panobinostat 
and pracinostat were studied in combination with ruxolitinib in 

a phase 2 trial with a better spleen response in MF170. Further-
more, a preliminary trial using an HSP90 inhibitor showed some 
clinical benefit171. Combinations of ruxolitinib with CDK4/6  
inhibitors, PIM1 kinase inhibitors, BH3 mimetics, or MDM2 
inhibitors appear logical because they target molecules, which 
are downstream of JAK2 signaling, thus curbing any residual  
activation due to incomplete JAK2 inhibition due to short half-
life of inhibitor and type I inhibition mechanism that allows rapid 
reactivation. Intriguingly, it has been reported that an association 
of ruxolitinib with pegylated interferon alpha was synergistic 
in a preliminary clinical trial, and a new larger clinical trial is  
ongoing172. Normally, a JAK1 inhibitor should decrease inter-
feron alpha signaling and should limit the effects of pegylated 
interferon; thus, the synergy might reflect how inefficiently rux-
olitinib can actually inhibit JAKs in vivo. The main risk of all  
these different associations is to induce important cytopenia.

In MF, it has also been suggested to combine ruxolitinib with  
MEK inhibitors and PRM-151, a molecule that inhibits  
differentiation of fibrocytes173, which are implicated in fibrosis  
development174. Both drugs exhibit an effect on bone marrow 
fibrosis in preclinical studies or in clinical trials175. An inhibi-
tor of hedgehog signaling pathway (LDE225) was also tested in 
phase I in ET/PV and MF with disappointing results176. However, 
recent evidence points to targeting Gli1 in association with  
ruxolitinib because Gli1+ mesenchymal cells may play a central 
role in fibrosis development177.

JAK2V617F can increase the protein methylation demon-
strated by activation of PRMT5 arginine methyltransferase178. 
It also prevents the binding of heterochromatin factor HP1 to 
chromatin179. It is possible that some key genes could be hyper-
methylated as in many cancers. Therefore, it was postulated that  
demethylating agents such azacytidine and decitabine may have 
some impact. However, administered alone, they showed minor 
responses in two clinical trials180,181. They were thus combined 
with ruxolitinib in a few patients with MF and the clinical response  
was good.

Conclusions
After the discovery of JAK2V617F and the demonstration that 
BCR-ABL–negative MPNs are driven by abnormal JAK2 acti-
vation, there were curative expectations for JAK inhibitors.  
Despite nearly 10 years of development in MPNs, only one JAK2 
inhibitor (ruxolitinib) has been clinically approved. Most other 
inhibitors had their development stopped because of neurotox-
icity or the absence of superiority compared with ruxolitinib.  
Only pacritinib (Figure 3B) is still in phase 3 clinical testing  
and fedratinib is being reevaluated. Although ruxolitinib offers 
clear benefits for patients, its effects are quite limited on the 
disease itself in MF. On one hand, this may be explained by 
the additional mutations detected by MF clones, which act 
independently from JAK2 and which place MF at the bound-
ary between MPN and MDS. On the other hand, ruxolitinib 
has a short half-life and acts as a type I inhibitor, which means 
that each time inhibitor is consumed, re-activation of JAK2 will  
occur.
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Thus, it seems important in PV and ET, which are JAK2-depend-
ent MPNs, to obtain specific inhibitors of JAK2V617F or even to 
preferentially target the constitutive active JAK2 over cytokine-
activated JAK2 in the cases of mutated MPL and CALR ET and 
MF. It is expected that such inhibitors will be less toxic and will 
really target the clonal disease. In MF, the low-hanging fruit of  
combination therapies could be a valuable approach that holds a 
risk for significant toxicities.

An important finding of the clinical trials in MPNs was the  
discovery that JAK inhibition is a valuable approach for treat-
ment of inflammatory diseases. Thus, it can be expected that one 
of the main applications of JAK inhibitors will be for inflamma-
tory diseases, autoimmune diseases, and possibly other diseases,  
which may include an inflammatory response, including neuro-
degenerative disorders or cancers where inflammation contributes  
to oncogenesis.
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