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Abstract: Along with worldwide urbanization, upheavals in habitat and temperature are major
threats for biodiversity. However, due to their interdependence, their relative roles as drivers of
animal community composition remain entangled. Here, we investigated how taxonomic and func-
tional compositions of arthropod communities were related to uncorrelated habitat and temperature
gradients, and compared landscape (i.e., urbanization, Urban Heat Island (UHI)) to local variables
(i.e., vegetation height and cover, near-ground temperature). We sampled 20,499 spiders (137 species)
on 36 grasslands in Rennes (northwestern France). Unlike rural areas, urban sites were characterized
by short vegetation and intense UHI, hosted species-poor communities, and were composed of small
thermophilic species. UHI intensification and local loss of habitat complexity (short and dense vege-
tation) were associated with declining large and heat-sensitive species. These results highlight the
prevalent role of urban warming, rather than land cover change, as an urban filter. Further, we show
that landscape-scale UHI, not local temperature, filters species according to their functional attributes.
UHI can therefore be considered as a thermal barrier, filtering species according to their physiological
capacity to cope with urban thermal conditions. Finally, to counterbalance biotic homogenization, we
argue for the importance of implementing complex habitat structures at the local scale within urban
green infrastructure.

Keywords: Araneae; arthropod; climate warming; community composition; environmental filter;
functional composition; functional traits; urbanization

1. Introduction

The rapid expansion of cities is widely considered to be a major contributor to global
biodiversity loss [1]. However, despite an acknowledged global negative impact, the
potential of urban areas to conserve biodiversity is often highlighted [2,3]. For instance,
urban ecosystems have been shown to support different animal taxa [4], including ground-
dwelling arthropods such as carabid beetles and spiders [5]. Whether urbanization supports
or disadvantages communities depends on intraspecific and interspecific responses to the
new conditions induced by the urban environment [6]. Indeed, urban environments can
affect functional trait frequencies and composition, and therefore act as an environmental
filter shaping urban community composition according to the ability of species to overcome
urban conditions and establish themselves [7,8]. Distinct variables of the urban environment
filter have been identified as important drivers of arthropod community composition at
local and landscape scales [3,9,10]. These local and landscape variables described in
the literature can be grouped in two main categories, habitat and temperature-related
variables [11].
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With respect to habitat, changes in land cover at the landscape scale were repeatedly
identified as important drivers of the loss of arthropod diversity along urbanization gra-
dients [12,13]. For example, parasitoid diversity was significantly negatively affected by
the replacement of vegetated areas with impervious surface [14], ground-dwelling beetles
with building coverage [15], while ants, beetles, and spiders were related to landscape
connectivity variables [16]. In addition to landscape-specific effects, studies also provide
evidence of the common role of habitat variables measured at landscape and local scales in
explaining the structure of arthropod communities [10,17]. Variables such as the mowing
regime or the habitat structural complexity were found to influence arthropod species
composition at local scale [5,9].

In addition to habitat conditions, temperature is another widely studied variable.
Urban warming has been identified as an important driver of arthropod community
composition [18] because arthropods are ectotherms and their metabolism is directly
dependent on external temperature [19,20]. At landscape scale, temperatures are strongly
influenced by the urban heat island (UHI) phenomenon. The term UHI refers to an
increase in the average atmospheric temperature within a city, compared to adjacent
rural areas [21]. This phenomenon mainly leads to an increase in night temperatures
within urbanized areas [21–23]. At local scale, near-ground temperatures also influence
arthropod communities [11,24]. However, near-ground temperatures, as experienced by
arthropods, can be very different from atmospheric temperatures [25–27]. In fact, near-
ground temperatures show greater spatial variation than atmospheric UHI and are therefore
often referred to as thermal mosaics [24,28]. In urban areas, this is due to the complex
interweaving of vegetated and built surfaces [29–31]. Considering the temperature recorded
at near-ground scale in addition to the UHI in studies of arthropod communities is necessary,
as this corresponds to the scale at which arthropods perceive their environment [32].
Consequently, the presence of near-ground thermal variations provides an opportunity to
mitigate unfavorable thermal conditions for ground-dwelling arthropods (i.e., behavioral
thermoregulation) [33].

Although a few studies have shown direct relationships between atmospheric UHI
and arthropod community composition [18,24,34], to our knowledge no study has aimed to
link functional trait composition (i.e., the distribution of individual functional traits within
a community [35]) to thermal metrics (at both landscape and local scales). Characterizing
the links between species’ functional traits and environmental variables would enable us
to better understand how species maintain themselves in cities [8], identify species from
regional pools that are able to cope with urban environmental conditions, and identify
the relevant environmental variables that shape species composition [36]. For example, a
landscape habitat variable (i.e., urbanization) was found to shift the functional composition
of communities towards more dispersive and thermophilic carabid species [7]. If this
study provides fundamental insights into the temperature-induced functional response
of arthropods to urban conditions, the actual temperature measurements were not related
to functional shifts. Ideally, both near-ground (local) and atmospheric UHI (landscape)
temperatures should be recorded. However, this may rarely be possible due to the tech-
nical difficulties of implementing comprehensive sensor networks capable of monitoring
temperature at different spatial scales.

In ground-dwelling arthropods, several functional traits have been associated with
local and landscape environmental conditions. Among them, body size is a key functional
trait related to many physiological traits [37] and constrained by environmental conditions.
For example, leaf litter depth is positively associated with carabid body size [38–41].
Reduced grassland management favors the occurrence of both large-bodied carabids and
spiders [5,42]. At the landscape scale, urbanization increases the dispersal capacity of
spiders [43], while patch isolation favors small, highly mobile carabids [5] and spiders [43].
Finally, body size changes in several arthropods are related to urbanization rate and are
thought to be due to temperature increases caused by UHI [44,45]. Hence, UHI-induced
warming is generally predicted to drive shifts in ectotherm communities toward smaller
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species, according to the Atkinson temperature-size rule [46]. The thermal affinity of
species is also expected to be an important functional trait driving species community
composition at local and landscape scales [7]. If many studies have examined intraspecific
changes in critical thermal limits [47–51] and thermal preferences [52] along UHI gradients,
almost no studies have considered interspecific thermal traits to test whether changes also
occur at the community level. Although a few studies have reported changes in thermal
affinities of urban versus rural communities in ants and carabids [7,53], the identification
of explanatory variables remains to be investigated. Indeed, our knowledge of functional
trait–environment relationships remains scarce with respect to the respective roles of
habitat and temperature in explaining arthropod communities. To date, no studies have
gone beyond a rural–urban comparison with the aim of disentangling the role of different
urbanization-related variables and testing temperature metrics as predictors.

In this study, we used ground-dwelling spiders as a model to assess functional trait–
environment relationships along an urbanization gradient. Spiders are ideal biological
models because they are abundant, highly diverse, and respond to urban environmen-
tal stressors, including landscape and local predictors [5,43,54,55]. Moreover, spiders
effectively maintain many ecosystem services by playing important regulatory roles as
abundant prey and predators in the food chain [56], notably because of their diversity
in terms of functional characteristics, their behavioral or physiological adaptations, but
also their evolutionary strategies [57]. Finally, spiders are ectotherms, which makes them
particularly sensitive to temperature changes [18]. For example, individuals from warmer
locations exhibit higher thermal tolerance [58]. Firstly, we analyzed spider community
composition along an urbanization gradient, identified indicator species, and determined
which predictor variables drive the abundance of the mainly represented species. Secondly,
we characterized the functional traits of spider communities and their relationships with
the environment. More precisely, we quantified changes in community-averaged body size,
community dispersal capacity, and community thermal affinity in response to urbanization
gradient and thermal conditions. Thirdly, we tested whether the observed changes in
community functional composition were the result of a functional replacement (i.e., species
with particular functional trait scores are discarded while others are favored) or a filtering
process (i.e., species with particular trait scores are discarded with little or no replacement).

In order to disentangle the relative effects of habitat and temperature at landscape
scale on the functional composition of communities, we selected study sites using a specific
procedure that minimizes the covariation between both habitat and temperature variables
(see Appendix A for details). To our knowledge, our study is the first to analyze functional
trait–environment relationships by simultaneously comparing (1) uncorrelated habitat and
temperature variables at landscape scale, (2) local habitat and temperature variables, and
(3) temperature variables at landscape and local scales. In line with previous findings
on ground-dwelling spiders [45], we expect Atkinson’s rule to prevail [46]. As a result,
the size of spiders should decrease in urbanized areas, while dispersal capacity should
increase in relation to the rate of urbanization, as densely urbanized landscapes are also
more fragmented [59,60]. We can assume that urban communities will be composed of
more thermophilic species than rural ones in response to the warmer conditions generated
by increased UHI intensity [7,53].

2. Materials and Methods
2.1. Study Area and Sampling Sites

This study was conducted in and around Rennes city in the north-west of France
(48◦06′ N–1◦40′ W). Rennes is a city of 227,000 inhabitants. The proximity of the sea
(70 km) maintains a temperate oceanic climate. Despite its mild climate, Rennes city
faces regular and strong UHI events [23]. We chose grasslands as a model ecosystem
because they represent 445 ha (i.e., 56%) of urban green spaces in Rennes [61]. They
provide good experimental conditions, as they can support a wide range of vegetation
structures, from short and densely seeded lawns in highly managed parks or courtyards to



Land 2024, 13, 83 4 of 23

higher and heterogenous vegetation where management is less frequent. Finally, urban
grasslands support abundant ground-dwelling arthropod communities [62], ensuring
suitable sampling size.

To conduct our experiment, 36 sampling sites were selected on grasslands that had
been previously identified as suitable (Figure 1). To select suitable grasslands, we de-
termined areas where urbanization rate and UHI intensity were not highly correlated
by performing a spatial correlation analysis based on land cover and UHI maps (see
Appendix A for details). The output map allowed us to identify the main decorrelated ar-
eas and then select the 36 study sites. The sites were located in public green spaces (N = 10),
roadside green spaces (N = 6), communal gardens (N = 12), educational institutions (N = 5),
and private gardens (N = 3). Grassland structures ranged from poorly managed meadows
to manicured lawns.
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Built surfaces are in grey, grasslands in green, and waterbodies in blue. The red dot on the map at top
right indicates the location of the study area.

2.2. Spider Sampling

Spiders were sampled each month from March to September 2022 using three pitfall
traps per sampling site. The three pitfall traps were placed 5 m apart, forming a triangle to
ensure capture efficiency [63]. The traps were oriented north, southeast, and southwest.
The traps were made of plastic cups (85 mm in diameter and 115 mm in height). We filled
them with 150 mL of saline solution at a concentration of 100 g·L−1 to improve spider
preservation and a drop of neutral soap to prevent floating. The traps were opened for two
weeks each month. After each sampling session, spider individuals were sorted and stored
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in separate vials containing 70% ethanol. All mature spiders were identified to species
level using identification keys [64,65]. Nomenclature followed the World Spider Catalogue
version 22 (https://wsc.nmbe.ch/, accessed on 1 December 2022). The dataset used for
analysis was obtained by pooling all three traps per sampling site and all seven sampling
sessions together.

2.3. Functional Trait Selection

To investigate the functional response of spider communities to their environment, we
retrieved information related to body size [64–67] and dispersal capacity (i.e., ballooning [68,69])
for each species from literature data (Supplementary Materials, Table S1). These traits are
known to respond to environmental change along urbanization gradients [5]. Body size
influences species physiology, ecological niches, and species’ spatial distribution [45,70].
While sexual dimorphism is common in spiders, we retrieved only the body size of fe-
males [45]. Dispersal capacity informs on species ability to escape their home range to
avoid competition or adverse environmental conditions [71].

We also estimated the thermal niche of species to test whether urban environmental
conditions filter species according to their thermal affinities. We followed a method de-
scribed in the literature [7,72] to assign temperature attributes to species according to their
spatial distribution in Europe and North Africa. Accordingly, we extracted species distribu-
tion information for all recorded species from the online database Spiders of Europe [67]
and we retrieved gridded European mean, maximum, and minimum daily temperatures
between 2011 and 2022 [73]. From the temperature data, we extracted the averaged mean,
maximum, and minimum temperature per country. The average temperatures of countries
where a species is present were then used to calculate the thermal niches of the species,
resulting in three thermal affinity values per species: mean, maximum, and minimum
thermal affinity.

2.4. Environmental Variables

To characterize habitat and temperature variables, we collected two and three envi-
ronmental variables at landscape and local scales, respectively (see Table 1 for details).
Variables measured at landscape scale were the proportion of impervious surface (a com-
monly used proxy for urbanization) [74] and the mean UHI intensity calculated over the
entire study period as a proxy for urban atmospheric warming [23,52]. To calculate these
two landscape variables, we chose 100 m as the radius size of the circular buffers around
the sampling sites. This buffer size has been found to cover an adequate area to provide
landscape-scale information related to the urban matrix that drives arthropod communi-
ties [17,75]. Furthermore, it corresponds to the finest spatial resolution of atmospheric UHI
data available in our study area and it matches the scale at which the correlation between
urban land cover (i.e., built-up area) and atmospheric UHI remains lowest in Rennes [22].
We did not include any additional landscape variables related to vegetation cover, since
urbanization and vegetation (including wooded areas) were strongly negatively correlated
(r = −0.8).

At the local (i.e., site) scale, we characterized vegetation structure by measuring
the percentage of vegetation cover and the height of the vegetation. These predictors
are regularly used to characterize the habitat of arthropod species [15]. In addition, we
monitored the air temperature just above the surface (i.e., 5 cm) during the study period
to obtain a record of the near-ground temperature experienced by the spiders (see Table 1
for details).

https://wsc.nmbe.ch/


Land 2024, 13, 83 6 of 23

Table 1. Environmental variables used to characterize sampling sites.

Variable Mean + SD Unit Details

Landscape scale

Urbanization 36.80 ± 21.94 %

Percentage of impervious surface within a 100 m radius buffer around sampling
sites. Land cover data were obtained at a resolution of 5 m from the French portal
for geographical data (dataset OCSGE 2017; https://geo.data.gouv.fr, accessed on
1 December 2021).

Urban heat island 1.71 ± 0.56 ◦C

Average difference between the minimum daily temperature at a reference cold
station located outside the urban area and the minimum daily temperature at each
other sensor, over the sampling period. Atmospheric temperature data used to
calculate the UHI were retrieved from the long-term Rennes Climate Urban
Network (see https://run.letg.cnrs.fr for details). Based on 30 DAVIS
Vantage-Pro-2 automated weather stations (Davis Instruments Corporation,
Hayward, CA 94545, USA) and 93 RisingHF RHF1SOO1 connected temperature
sensors (LoRaWAN Solutions RisingHF, Shenzhen 518057, China), UHI was
interpolated by inverse distance weighting to spatialize the estimated UHI values
over the city extent at a resolution of 100 m [22]. From this map, we finally
extracted the mean pixel values within circular buffers of 100 m around the
sampling sites.

Local scale

Vegetation height 19.73 ± 11.54 cm
Mean vegetation height measured within the triangle materialized by the three
pitfall traps during each of the seven sampling sessions. All seven measurements
were averaged to obtain one final value per site.

Vegetation cover 90.50 ± 9.38 %

Percentage of herbaceous vegetation cover estimated in 10% increments within the
triangle materialized by the three pitfall traps during each of the seven sampling
sessions. All seven measurements were averaged to obtain one final value per site.
A low vegetation cover indicates the presence of litter or bare soil.

Near-ground
temperature 2.58 ± 1.39 ◦C

Average difference between the minimum daily temperature at a reference cold
station and the minimum daily temperature at each other sensor, over the
sampling period. Temperatures were recorded every 15 min during each trapping
session using a dedicated network of temperature loggers composed of 21 Lascar
EL-USB-2+ (Lascar Electronics Ltd., Whiteparish, Wiltshire SP5 2SJ, UK) and 15
Tinytag Talk 2 TK-4023 (Gemini Data Loggers Ltd., Chichester, West Sussex PO19
8UJ, UK). The sensors were placed 5 cm above the ground surface at each
sampling site, in close proximity to the north trap.

2.5. Data Analyses
2.5.1. Characterization of the Urbanization Gradient

To establish a typology of sites according to their contrasts in environmental char-
acteristics, we performed a hierarchical clustering analysis (HCA) based on all scaled
environmental variables. We used the ‘HCPC’ function and the ‘Ward’ method to construct
the tree in the ‘FactoMineR’ package (version 2.7) [76]. The optimal number of clusters was
determined according to the partition with the higher relative loss of inertia [76]. Once the
sites were grouped into clusters, we performed a silhouette analysis to check the agreement
of individual sites with their own cluster, using the ‘silhouette’ function from the ‘cluster’
package (version 2.1.4) [77].

2.5.2. Spider Community Composition along an Urbanization Gradient

The composition of spider communities across environmental clusters obtained by
HCA was analyzed using non-metric multidimensional scaling (NMDS, Bray–Curtis dis-
similarity) with the ‘vegan’ package (version 2.6-4) [78]. For ordination, species abundances
were square root transformed. We then tested whether communities differed significantly
between clusters by performing a pairwise permutational multivariate analysis of variance
(9999 permutations) using the ‘pairwise.perm.manova’ function from the ‘RVAideMemoire’
package (version 0.9-83-3) [79]. Finally, all environmental variables were fitted in ordination

https://geo.data.gouv.fr
https://run.letg.cnrs.fr
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space and their significance was tested using a Monte Carlo randomization procedure
(9999 permutations).

Indicator species were assessed using the fidelity and exclusivity of species to the
resulting clusters of sites using the IndVal (indicator value) procedure in the ‘labdsv’
package (version 2.0-1) [80]. Indicator values were calculated from the species abundance
matrix, taking into account both relative abundances and frequencies of occurrence within
each individual cluster. Significance of indicator values was tested at a p-value < 0.05
using a Monte Carlo randomization procedure (9999 permutations). Species with both an
indicator value > 0.5 and a significant p-value were considered to be accurate indicators.

To test the response of the 29 most represented species (including indicator species) to
environmental variables, we fitted Poisson generalized linear models (GLMs). Since overdis-
persion was detected, we corrected standard errors by using a quasi-Poisson GLM [81]. We
assessed the goodness of fit by calculating the adjusted R2, with the ‘rsq’ function from the
‘rsq’ package (version 2.5) [82]. To reduce statistical noise, all observations comprising fewer
than three individuals per site and per sampling period were removed from the dataset
used to perform statistical analysis on community composition and indicator species.

2.5.3. Relationships between Functional Traits and Environmental Conditions

For each trait (i.e., body size, ballooning, and thermal affinity), we obtained a trait
community index by calculating community-averaged trait scores. As a binary trait, bal-
looning was considered as numerical, and a community-averaged value between 0 and
1 was calculated. In order to account for the functional attributes of rare species in the
calculation of community-averaged indexes, we considered all species and did not weight
the community-averaged traits by species abundance. To test whether significant dif-
ferences in trait community indices existed between clusters, we performed a one-way
ANOVA using the ‘aov’ function, followed by a post-hoc Tukey test using the ‘Tukey-
HSD’ function. To identify the direction of variations of each trait, we built a GLM with
each community-averaged trait score as the response variable and all five environmental
variables as predictors. For all models, we assumed a normal distribution and assessed
goodness of fit by the adjusted R2 calculated using the ‘rsq’ package (version 2.5) [82].

2.5.4. Characterization of Changes in Functional Trait Community Indices

Finally, we analyzed whether changes in functional trait community indices were the
result of replacement by species with particular trait scores within communities, or whether
they were due to a decline in certain species (i.e., species filtering). To achieve this, we
categorized species according to their continuous functional trait scores [7] (i.e., body size
and thermal affinity). To define species categories, cutoff functional trait scores were chosen
to yield three groups with balanced numbers. Species are thus divided into small, medium,
and large species with respect to body size, or into low, medium, or high according to their
affinity to temperature with respect to thermal niche. We used one-way ANOVA followed
by a post-hoc Tukey test to determine whether species with particular functional trait
categories were over- or under-represented in the cluster communities in terms of absolute
and relative species richness. We also tested whether specific environmental variables were
associated with increases or decreases in the richness of species with specific functional
trait using the same GLM as described above, but with absolute species richness as the
response variable.

All statistical analyses were performed in R version 4.2.2.

3. Results
3.1. Sampling Results and Urbanization Gradient

A total of 20,499 adult spiders were captured, belonging to 21 families and 137 species.
The most represented families were Linyphiidae (N = 8807; 43%), Lycosidae (N = 4951;
24.2%), and Tetragnathidae (N = 5023; 24.5%). The most abundant species were Pachygnatha
degeeri (N = 4913; 24%) and Pardosa cf. tenuipes (N = 2490; 12%).
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The hierarchical classification of sampling sites led to the identification of three distinct
clusters characterized by contrasted environmental conditions (Figure 2). The first cluster
(‘high vegetated rural’) includes sites with both low UHI intensity and urbanization at the
landscape scale, while at the local scale the herbaceous vegetation was high, dense with low
near-ground temperatures. The second cluster (‘short vegetated rural’) includes sites with
both low UHI intensity and urbanization, while at the local scale, the vegetation was short,
sparse, with intermediate near-ground temperatures. The third cluster (‘short vegetated
urban’) includes sites with both high UHI intensity and urbanization, while at the local
scale, the vegetation was short, sparse, with high near-ground temperatures.
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Figure 2. Mean scaled values and standard deviations (black segments) of environmental variables
after classification of sampling sites into three clusters by hierarchical clustering. Clustering was per-
formed based on the two and three variables measured at the landscape and local scale, respectively.

3.2. Spider Community Composition and Indicator Species along an Urbanization Gradient

Excluding species with fewer than three occurrences per site and per sampling session
resulted in 20,049 adult spiders (i.e., 98% from total abundance) belonging to 85 species (62%
from total species richness) subjected to NMDS ordination (Figure 3). The final stress value
of 0.17 indicates a good representation of the community distribution by the scaling. Spider
communities from both rural clusters (i.e., ‘high vegetated rural’ and ‘short vegetated rural’)
did not significantly differ among each other (p = 0.81), but were significantly different
from communities belonging to the ‘short vegetated urban’ cluster (p = 0.002, respectively).
Examination of individual environmental variables revealed that spider communities were
significantly structured by UHI intensity (p < 0.001), urbanization (p = 0.004), near-ground
temperature (p < 0.001), and vegetation height (p = 0.002).
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Figure 3. Results of NMDS ordination based on 85 species (Bray–Curtis distance) and the four
significant environmental variables.

Although the composition of communities differed significantly between clusters,
several dominant species were shared by the three clusters. For example, P. degeeri, P. cf.
tenuipes or Tenuiphantes tenuis were abundant in the three clusters (Table 2). We identified six
indicator species in total, three for ‘high vegetated rural’ sites and three for ‘short vegetated
urban’ sites.

Table 2. List of the 19 most abundant species occurring in each cluster. Indicator species are in bold.
For each cluster, the number of individuals per species are indicated in the column ‘N’ and the related
percentage in the column ‘%’.

High Vegetated
Rural N % Short Vegetated

Rural N % Short Vegetated
Urban N %

Total 7535 100 Total 6529 100 Total 5983 100
Pachygnatha degeeri 2159 28.6 Pachygnatha degeeri 1650 25.3 Pachygnatha degeeri 1128 18.9

Pardosa cf. tenuipes 691 9.2 Pardosa cf. tenuipes 1464 22.4 Erigone
dentipalpis 1080 18.1

Oedothorax fuscus 657 8.7 Tenuiphantes tenuis 319 4.9 Tenuiphantes tenuis 522 8.7

Oedothorax retusus 551 7.3 Alopecosa
pulverulenta 227 3.5 Pardosa cf. tenuipes 442 7.4

Tenuiphantes tenuis 368 4.9 Oedothorax fuscus 195 3.0 Erigone atra 393 6.6

Pardosa pullata 357 4.7 Pardosa pullata 195 3.0 Bathyphantes
gracilis 327 5.5

Agyneta affinis 240 3.2 Diplostyla concolor 189 2.9 Oedothorax fuscus 222 3.7
Bathyphantes

gracilis 214 2.8 Hahnia nava 188 2.9 Hahnia nava 213 3.6

Aulonia albimana 207 2.7 Aulonia albimana 182 2.8 Oedothorax retusus 169 2.8

Diplostyla concolor 194 2.6 Bathyphantes
gracilis 169 2.6 Tiso vagans 161 2.7

Pardosa prativaga 177 2.3 Oedothorax retusus 153 2.3 Diplostyla concolor 115 1.9
Hahnia nava 174 2.3 Tiso vagans 121 1.9 Ozyptila simplex 115 1.9
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Table 2. Cont.

High Vegetated
Rural N % Short Vegetated

Rural N % Short Vegetated
Urban N %

Alopecosa
pulverulenta 151 2.0 Agyneta affinis 115 1.8 Agyneta mollis 104 1.7

Agyneta mollis 144 1.9 Erigone dentipalpis 107 1.6 Agyneta affinis 92 1.5
Panamomops

sulcifrons 138 1.8 Erigone atra 104 1.6 Pardosa pullata 88 1.5

Erigone dentipalpis 112 1.5 Pardosa prativaga 103 1.6 Aulonia albimana 82 1.4
Trochosa terricola 91 1.2 Trochosa terricola 101 1.5 Cryptachaea blattea 82 1.4

Tiso vagans 86 1.1 Phrurolithus
festivus 78 1.2 Panamomops

sulcifrons 80 1.3

Erigone atra 61 0.8 Agyneta mollis 76 1.2 Phrurolithus
festivus 72 1.2

The GLM analysis of the abundances of the 29 most abundant species revealed that
UHI and near-ground temperature were each associated with seven species (Table 3), repre-
senting 24.21% and 41.09% of the individual count, respectively. Near-ground temperature
was negatively related to abundance, whereas UHI was associated to contrasted responses.
For instance, Erigone dentipalpis indicated ‘short vegetated urban’ sites and was positively
related to UHI. In contrast, Pardosa pullata indicated ‘high vegetated rural’ sites (Table 2) and
was less abundant when UHI and near-ground temperature increased (Table 3). Similarly,
indicators of ‘short vegetated urban’ sites became rarer with increasing vegetation height
(Table 3), whereas P. pullata was supported.

Table 3. Responses of the 29 most abundant species to environmental variables, tested by GLM.
Positive and negative relationships are indicated by ↑ and ↓, respectively. p-values are indicated
between brackets. Indicator species are in bold. ‘N’ is the number of individuals per species and ‘%’
is the percentage of individual count per species related to the total number of individuals. Adjusted
R2 is given in the ‘Adj-R2′ column.

Species N %

Environmental Variables

Adj-R2
Urbanization UHI Near-Ground

Temperature
Vegetation

Height
Vegetation

Cover

Pachygnatha degeeri 4937 24.62 ↓ (0.020) 0.27
Pardosa cf. tenuipes 2597 12.95 0.00
Erigone dentipalpis 1299 6.48 ↑ (0.002) ↓ (0.023) ↓ (0.033) 0.51
Tenuiphantes tenuis 1209 6.03 0.02
Oedothorax fuscus 1074 5.36 ↑ (<0.001) ↓ (0.002) 0.47
Oedothorax retusus 873 4.35 ↑ (0.003) ↓ (0.020) 0.33

Bathyphantes gracilis 710 3.54 0.02
Pardosa pullata 640 3.19 ↑ (0.010) ↓ (0.020) ↓ (<0.001) ↑ (0.010) 0.55

Hahnia nava 575 2.87 0.06
Erigone atra 558 2.78 ↓ (0.030) ↑ (0.010) 0.34

Diplostyla concolor 498 2.48 0.06
Aulonia albimana 471 2.35 ↓ (0.040) ↑ (0.030) 0.11

Agyneta affinis 447 2.23 0.06
Alopecosa pulverulenta 403 2.01 ↓ (0.005) ↓ (0.030) 0.14

Tiso vagans 368 1.84 0.00
Agyneta mollis 324 1.62 ↑ (0.010) 0.16

Pardosa prativaga 304 1.52 0.10
Panamomops sulcifrons 288 1.44 0.13

Trochosa terricola 213 1.06 ↓ (0.020) 0.26
Phrurolithus festivus 207 1.03 0.00

Ozyptila simplex 203 1.01 0.01
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Table 3. Cont.

Species N %

Environmental Variables

Adj-R2
Urbanization UHI Near-Ground

Temperature
Vegetation

Height
Vegetation

Cover

Mermessus trilobatus 142 0.71 0.00
Pachygnatha clercki 100 0.50 ↓ (0.050) 0.06
Pelecopsis parallela 99 0.49 0.00

Palliduphantes pallidus 94 0.47 ↑ (0.050) 0.15
Dicymbium nigrum 84 0.42 0.07

Monocephalus fuscipes 84 0.42 0.00
Cryptachaea blattea 82 0.41 ↑ (0.001) ↓ (0.002) 0.85

Pardosa palustris 76 0.38 0.58

3.3. Relationships between Functional Traits and Environmental Conditions

Mean community body size varied significantly between clusters (Figure 4, p = 0.04).
The mean community size of spiders was significantly lower (4.00 mm) in high vegetated
urban sites, compared to short and high vegetated rural sites (4.34 mm and 4.58 mm,
respectively). GLM analysis showed that body size was positively related to vegetation
height (coeff. = 0.28, p = 0.02, adjusted R2 = 0.21). Community ballooning capacity did not
differ significantly between clusters (p = 0.50). GLM analysis showed a significant negative
relationship between community ballooning capacity and vegetation height (coeff. = −0.03,
p = 0.02, adjusted R2 = 0.16).
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Figure 4. Community-averaged body size in sites belonging to three categories identified by hierarchi-
cal classification. Black dots indicate the exact community-averaged body size in sites, whereas boxes
summarize the information per cluster. Differences between clusters are given by non-matching
lowercase letters (Tukey tests; p ≤ 0.05).

We found significant differences in community thermal affinities between ‘high vege-
tated rural’ and urban sites (Figure 5). Urban sites systematically had higher community
thermal affinities with mean affinities of 10.30 ◦C (mean thermal affinity), 15.10 ◦C (maxi-
mum thermal affinity), and 5.80 ◦C (minimum thermal affinity), whereas high vegetated
rural sites had lower values with 10.10 ◦C (mean thermal affinity), 14.90 ◦C (maximum
thermal affinity), and 5.60 ◦C (minimum thermal affinity). No relationship with environ-
mental variables was identified by GLM analysis regarding the thermal affinity. As the
changes in the community-averaged thermal affinity were similar whether the index was
calculated from mean, maximum, or minimum temperatures, only the mean community
thermal affinity is considered in the following results and discussion.
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Figure 5. Community-averaged thermal affinity based on mean (A), minimum (B), and maximum
(C) temperature data, in sites belonging to three clusters identified by the hierarchical classification.
Black dots indicate the exact community-averaged thermal affinity in sites, whereas boxes summarize
the information per cluster. Differences between clusters are given by non-matching lowercase letters
(Tukey tests; p ≤ 0.05).

3.4. Characterization of Changes in Functional Trait Community Indices

The total number of species was significantly lower in the ‘short vegetated urban’
cluster, compared to ‘high vegetated rural’ and ‘short vegetated rural’ (Figure 6A). Among
species classes sorted by body size, the number of small and large species was significantly
lower in the urban cluster compared to both rural ones, whereas the number of medium
species differed only between the urban cluster and the ‘high vegetated rural’ (Figure 6B).
Proportionally, small species increased whereas large species decreased in the urban cluster,
compared to both rural ones (Figure 6D). We observed a decrease in the absolute number of
species associated to low and intermediate temperatures in the urban cluster, compared to
both rural ones (Figure 6C). In the case of species related to high temperatures, the number
of species did not differ between clusters. The decreasing absolute species richness in
species associated to low and intermediate temperatures resulted in an increased proportion
of species associated to high temperatures in the urban cluster, compared to the rural ones
(Figure 6E).

Analysis of the effect of environmental variables on variation in absolute species
richness showed that the variables studied had a strong influence on large species (Table 4).
In particular, UHI intensity is negatively related to the number of large species, whereas
the vegetation height is positively related to the number of large species. In addition, the
number of species related to low and intermediate temperatures were negatively related to
UHI intensity, whereas the number of species related to intermediate temperatures was
also explained by vegetation attributes (Table 4).

Table 4. Significant responses of absolute species richness to environmental variables within classes
of species sorted by body size and thermal affinity. Significant positive and negative relationships are
indicated by ↑ and ↓, respectively. p-values are indicated between brackets. Near-ground temperature
is not shown, as no changes in absolute species richness were associated with this variable.

Environmental Variables
Adj-R2

Urbanization UHI Vegetation Height Vegetation Cover

Body size classes
Small ↓ (0.04) - - - 0.36

Medium - ↓ (0.02) - - 0.29
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Table 4. Cont.

Environmental Variables
Adj-R2

Urbanization UHI Vegetation Height Vegetation Cover

Large - ↓ (<0.001) ↑ (<0.001) ↓ (0.01) 0.60
Thermal affinity classes

Low temperatures - ↓ (0.03) - - 0.45
Intermediate temperatures - ↓ (0.002) ↑ (0.003) ↓ (<0.001) 0.75

High temperatures - - - - 0.10
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Figure 6. Absolute and relative species richness. Upper charts display the total number of species
(A), the number of species belonging to the three body size classes (B), and the number of species
belonging to three classes of thermal affinity (C). Lower charts display the relative species richness
belonging to the three body size classes (D) and relative species richness belonging to the three classes
of thermal affinity (E). Differences between clusters are given by non-matching lowercase letters
(Tukey tests, p ≤ 0.05) within each single body size or thermal affinity class.
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4. Discussion
4.1. Spider Community Composition and Indicator Species along an Urbanization Gradient

We showed that spider community composition varies between urban grasslands,
depending on their environmental characteristics. Urbanization rate, UHI intensity, near-
ground temperature, and vegetation height were identified as factors dissociating the three
clusters of sites with contrasting environmental conditions. While some species are shared
with similar abundance across the three clusters (e.g., P. degeeri, P. cf. tenuipes, T. tenuis), we
found that species composition contrasted strongly in terms of occurrence and abundance
between clusters (Table 2). In particular, we found that ‘high vegetated rural’ and ‘short
vegetated urban’ clusters present indicator species.

In high vegetated rural sites, the two wolf spider species identified as indicators are
closely related species (i.e., Pardosa prativaga and P. pullata). They are known to commonly
co-occur in a widely overlapping range of vegetation structures, although some differences
in habitat preference have been observed, particularly in case of interspecific competi-
tion [83]. Both species are typical of herbaceous vegetation (i.e., agricultural meadows),
although P. pullata prefers open microhabitats with low vegetation, whereas P. prativaga
prefers denser and higher vegetation [83]. Our results show that near-ground tempera-
ture is the variable mostly related to the abundance of P. pullata across the 36 study sites.
Therefore, this result suggests that the stronger association of P. pullata with high-vegetated
grasslands (i.e., meadows) than with short-vegetated grasslands (i.e., lawns) may not be
determined by a particular habitat structure, but could rather result mainly from locally
adapted temperature conditions. We identified two common and widespread linyphiid
spiders, Erigone atra and E. dentipalpis, as indicator species associated with urban sites
characterized by intense UHI conditions, short and dense vegetation, and high near-ground
temperatures. These two species are phylogenetically close and co-occur frequently. They
share identical life cycles, niches, and habits [84,85]. Both species have been well studied
in agricultural landscapes and previous studies have reported high dispersal capacities
(i.e., by ballooning) as well as a particular ability to colonize new habitats in a short time
after human-induced disturbance. In the light of our results, these conclusions drawn from
the agricultural context can easily be transposed to the urban environment. If agricultural
fields are regularly disturbed by multiple operations throughout the year, urban grasslands
may also be subject to multiple mowing operations. The fact that E. atra and E. dentipalpis
are indicators of short vegetated grasslands found in urban areas is therefore not surprising,
since these are also the most frequently mown. In addition, Cryptachea blattea was indicator
for urban areas. This species was first described in New Zealand and is spreading rapidly
throughout Europe, as evidenced by the first records made in the last decade in several Eu-
ropean countries (Germany in 2008 [86], Britain in 2011 [87], Switzerland in 2013–2014 [88],
France in 2014 [89], the Netherlands in 2014 [90], and Ireland in 2019 [91]). The major-
ity of these new records were made in anthropogenic environments, such as ornamental
gardens or nurseries [91]. The strong positive relationship observed between C. blattea
abundance and the urbanization rate is therefore in line with previous studies. It indicates
that the presence of C. blattea is probably related to the intensive use of horticultural plants,
which are widely planted in cities’ urban parks and green infrastructures. The absence of
indicator species associated with the ‘short vegetated rural’ cluster may be explained by
heterogeneous environmental characteristics of sites [92].

4.2. Relationships between Functional Traits and Environmental Conditions

As a first step, to determine whether the spider communities belonging to the three
identified clusters were functionally distinct, we tested whether the community-averaged
body size differed between clusters. We observed a significant decrease in body size
in urban spider communities associated with the highest levels of urbanization, UHI
intensity, and near-ground temperature (Figure 7). This result is consistent with previous
research showing that community-averaged body size of terrestrial arthropods generally
tends to decrease with increasing urbanization [93–95]. Furthermore, this relationship has
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recently been linked to temperature increases in urban areas caused by the UHI effect [45].
However, our examination of the links between body size and environmental variables
(taken individually) calls this latter hypothesis into question. It revealed that vegetation
structure (more that the UHI) was related to changes in community-averaged body size.
Interestingly, community-averaged dispersal capacity was also related to local vegetation
attributes, although no differences among clusters were observed. This is consistent with
previous studies, showing a lack of relationship between landscape-scale urbanization rate
and community-averaged dispersal capacity of spiders [5]. It is therefore not surprising
that the community-averaged functional traits (i.e., body size and dispersal capacity)
showed significant relationships with the vegetation height. The fact that short-vegetated
habitats, whether in rural or urban areas, host smaller, more dispersive species than
high-vegetated habitats is supported by previous findings concerning spiders. Indeed,
community-averaged body size is driven by local vegetation height [42]. In addition, a
decrease in vegetation structure complexity may prevent colonization and establishment of
large prey, which in turn may limit feeding opportunities for large spiders. Although we
focus on the community-averaged body size response, intraspecific changes in functional
trait can occur along urban environmental gradients, resulting either from phenotypic
plasticity or genetic adaptation [96]. For example, moths showed that intraspecific body
size changes toward smaller individuals with increasing temperature. It is consistent with
the observed global trend observed at the community level, characterized by a negative
relationship [44]. In spiders, however, only a few species have been the subject of such
studies (e.g., [97]). Future urban studies on spiders should compare the intraspecific
variation in body size across species. This approach would enable researchers to determine
whether community-averaged and intraspecific changes are consistent, or whether the
direction of relationships with environmental drivers is species-dependent [44].

In a second step, we tested whether changes in community-averaged thermal affin-
ity occurred between clusters. We observed a significant increase in thermal affinity in
the urban cluster, compared to communities in the ‘high vegetated rural’ cluster. This
suggests that thermophilic species are favored by urban environments (Figure 7). Simi-
lar community-averaged functional changes along an urbanization gradient have been
observed in ants [53] and grassland carabid communities [7]. In these studies, changes
were interpreted as a result of species being selected to succeed in intense UHI conditions
thanks to an affinity for high temperatures (which diverges from our UHI index based
on daily minimum temperatures). Species tolerating a wider range of temperatures were
hypothesized to be favored in urban areas [7]. These authors found only the thermal affinity
index based on maximum temperatures to increase with urbanization, while the index
based on minimum temperatures did not respond. This latter assumption is contradicted
by our results, since we observed a constant change, whether the mean, minimum, or
maximum temperature index was considered. If the range of temperature tolerance does
not change in our study system, interspecific variation in critical thermal limits (i.e., CTmax)
may be of prime importance. For example, in a study exploring the relationship between
thermal tolerance of bee species and their ability to persist under intense UHI conditions,
thermal tolerance was shown to be a critical thermal trait for predicting species-specific
responses to warming [98]. This study highlights the importance of species’ thermal phys-
iology in shaping community compositions through functional filtering processes. This
importance is also supported by the large number of studies focusing on intraspecific
variation in thermal tolerance [47–51]. An alternative explanation for the observed change
in community-averaged thermal affinities could be an indirect effect of body size, through
the covariation of species’ thermal affinity and body size. Intraspecific studies on spiders
have already shown that larger individuals tend to prefer higher temperatures [52], and
the general positive association between body size and thermal tolerance is striking in
arthropods [99–101]. However, as we found that species’ trait for body size and mean ther-
mal affinity are weakly correlated (r = 0.22), we argue that the predominant patterns from
intraspecific studies cannot be extended to the community level in our system. Furthermore,
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communities sampled in warm urban sites, and therefore belonging to the urban cluster,
were composed of smaller species than rural communities, which in itself invalidates this
alternative interpretation. Nevertheless, it cannot be excluded that traits other than thermal
affinity are associated with biogeographical distribution and directly or indirectly influence
the ability of species to succeed in urban areas.
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Figure 7. Map of Rennes (black line) and surrounding area. Symbols represent sampling sites. The
shape of the symbols indicates the cluster to which a sampling site belongs (circles = ‘high vegetated
rural’, triangles = ‘short vegetated rural’, squares = ‘short vegetated urban’). Symbol size indicates the
mean community body size (from 3.30 mm to 5.73 mm). Symbol color indicates the mean community
thermal affinity, with white symbols indicating low values (from 9.89 ◦C to 10.16 ◦C), light red
symbols indicating intermediate values (from 10.17 ◦C to 10.43 ◦C), and dark red symbols indicating
high values (from 10.44 ◦C to 10.70 ◦C). The atmospheric UHI (1 March to 30 September 2022) is
illustrated by a color gradient from blue (low intensity; minimum = 0 ◦C) to red (high intensity;
maximum = 3 ◦C). Impervious surface is shown in grey.

4.3. Changes in Functional Trait Community Indices

Finally, we aimed to investigate the mechanisms associated with the observed changes
in community-averaged functional traits, by assessing the role of functional replacement
versus filtering between environmental clusters. We found that sites belonging to the
urban cluster were less rich in species than sites belonging to the two rural clusters. This
confirms previous results obtained on carabids, supporting the filtering process theory [7].
Under this condition, community-averaged functional changes result, at least partially,
from a subset of species with particular trait values, enabling them to establish in urban
environmental conditions [7,102]. We further aimed to understand the mechanisms under-
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lying the observed community-averaged functional changes by studying the variations in
species richness partitioned into classes of species characterized by particular functional
trait values.

We found that urban sites were linked to a decrease in species richness in all body size
classes (e.g., small, medium, large). This decrease in species number was more important
in large species than in small and medium species. Therefore, the decrease in community-
averaged body size in urban sites results from a size-related loss of species, with the
urban filter being more effective for larger species. Furthermore, this acute loss of large
species within urban spider communities could be the direct result of a negative effect of
temperature increase. Indeed, the number of large species was strongly negatively related
to the UHI intensity. This result is in line with the global prediction of a warming-induced
decrease in body-size within communities of ectothermic taxa [103]. At the scale of a city,
UHI could limit the body size of spider communities by increased metabolic costs in warmer
conditions compared to adjacent rural areas, allowing only small and medium-sized species
to maintain themselves. Such filtering of large species reflects common temperature-size
rules observed at the intraspecific level. For example, Bergmann’s rule states that warmer
conditions (e.g., low latitudes or altitudes) are associated with intraspecific changes in
body size in favor of smaller individuals [104]. Furthermore, according to Atkinson’s
rule, ectothermic individuals that have developed in warm conditions generally become
smaller in the adult stage than individuals from colder environments [46]. Furthermore,
our analysis of species richness confirms the importance of local vegetation structure as
a driver of the community-averaged body size. It also indicates that these variables are
particularly determinant of the presence of large species. In the light of our results, the loss
of availability of vertical and horizontal structural complexity of the vegetation through
decreasing height and increasing density limits the establishment of large species. This
suggests that vegetation homogenization, e.g., by increasing mowing frequency, limits the
establishment of large spiders, possibly by reducing hiding opportunities or the availability
of large prey [42].

The hypothesis of a functional filtering process is also supported by an examination
of species richness distribution within thermal affinity classes. Indeed, we found that
the increase in community-averaged thermal affinity in the urban cluster resulted from
an increased proportion of thermophilic species, combined with a reduced proportion
of species associated with intermediate temperatures. Closer examination of the abso-
lute number of species reveals that these changes in proportions are due to a relatively
greater deficit of species with low and intermediate temperature affinities in the urban
compared to the rural clusters. As with body size, the difference in community-averaged
thermal affinity observed between urban and rural clusters is therefore the result of de-
creasing species richness when comparing the rural clusters to the urban one. It indicates a
functional filtering process. Indeed, the absence of an absolute increase in thermophilic
species in sites belonging to the urban cluster shows that the observed functional trait
change toward higher temperature values is due to a filtering process against heat-sensitive
species in urbanized areas. Detailed analysis of individual variables showed that this
functional filtering is linked to the intensification of UHI conditions. This result provides a
better understanding of the mechanisms. Indeed, previous studies have linked changes in
community-averaged temperature affinities to global urbanization but have not formally
identified the underlying driving variables. Our study provides the first evidence that
temperature is the determining variable and goes further by showing that landscape-scale
UHI, rather than local temperature increase, filters species according to their thermal affini-
ties. Thus, the large heat zones generated by the UHI effect can be considered as thermal
barriers at the edge of the city, where only species physiologically able to cope with urban
warming persist. On the contrary, near-ground temperature in cities has been shown to be
a dominant factor associated with the abundance of locally present species, as supported
by previous studies on different arthropod groups [24,105,106].
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5. Conclusions

Our study shows that changes in the functional composition of spider communities
occurs at both local and landscape scales and those functional traits are filtered at both
scales. Landscape-scale UHI negatively affects species richness by filtering species ac-
cording to their thermal affinity, leading to biotic homogenization at the community level.
Furthermore, the local habitat structure is also related to the functional composition of
spider communities. Indeed, the reduction in vegetation height led to a reduction in the
number of species, with larger species being extirpated. As the vegetation in urban sites
was on average shorter than in rural sites in our study system, urban communities changed
towards low-diversity communities composed of small species. As predatory arthropods,
spiders play an important role in the trophic chain, controlling a wide range of invertebrates.
Consequently, lower abundance of specific functional traits due to reduced species richness
may lead to imbalance in urban ecosystems caused by a lack of biocontrol at lower trophic
levels. Here, we provide further evidence that complexifying grassland vegetation, e.g., by
increasing mowing height or decreasing management frequency, enables the establishment
of more functionally diverse communities. Improving the structure of green infrastructures
could therefore not only compensate for the loss of species induced by urban warming at
taxonomic and functional levels, but also help to locally mitigate the effects of the UHI [107],
thus offering valuable co-benefits to urban climate and biodiversity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land13010083/s1. Table S1: Species list of spiders and related
traits based on literature data [64–69].
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Appendix A. Sampling Site Selection Procedure

Prior to data collection, we performed a spatial analysis in order to identify suitable
sampling areas where land cover and atmospheric UHI were not significantly correlated.
We based this sampling site selection procedure on two maps: a raster map showing the
proportions of built-up areas and a raster map showing the intensity of the atmospheric
UHI in 2020 (both at 100 m resolution). As the proportion of built-up areas was identified
as a major factor in atmospheric UHI intensity in Rennes [22], we identified the areas where
the two maps were least spatially correlated. To achieve this, we proceeded as follows:

(1) We performed a Spearman spatial correlation analysis to identify all pixels showing a
non-significant covariation between atmospheric UHI intensity and the proportion
of built-up areas. This analysis was performed using the ‘rasterCorrelation’ function
from the ‘spatialEco’ package (version 1.3.7). Correlations were calculated within
a 500 m square sliding window (i.e., 25 pixels), centered on each map pixel. This

https://www.mdpi.com/article/10.3390/land13010083/s1
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window size corresponds to a trade-off between a number of pixels large enough to
calculate a reliable correlation (N = 25) and an area small enough (25 ha) to identify
uncorrelated areas;

(2) We extracted all pixels corresponding to non-significant correlations (p-value > 0.05),
resulting in a raster map indicating suitable (i.e., uncorrelated) areas for sampling;

(3) We selected all patches of herbaceous vegetation (excluding agricultural fields) from
the Rennes land cover map that overlapped the suitable sampling area (Figure A1);

(4) We identified 39 accessible sampling sites encompassing a broad gradient of built-up
cover proportions and UHI intensities;

(5) Once fieldwork was completed in 2022, we repeated the first four steps with updated
atmospheric UHI data from 2022 corresponding to the arthropod sampling period, to
check that all sampling sites were still located in suitable (i.e., uncorrelated) areas;

(6) We removed three sites located in unsuitable areas, resulting in 36 remaining sam-
pling sites.

This sampling site selection procedure was an important prerequisite, as it determined
the subsequent discrimination of individual effects of land cover (i.e., urbanization) and
atmospheric UHI related to arthropod communities.
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Figure A1. Map of Rennes (black line) and its surroundings. Areas identified as suitable for sampling
(uncorrelated) after spatial correlation analysis are in purple (p-value > 0.05) and associated intersect-
ing grasslands are in green. Impervious surface is displayed in grey. Black crosses display sampling
sites. The red dot on the map at top right indicates the location of the study area.
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