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Abstract 24	

 25	

Highly diverse megabenthic assemblages dominated by passive and active suspension 26	

feeders have been recently reported in shelf edge environments of the Mediterranean 27	



Sea. Due to their frequent association with species of commercial interest, these 28	

assemblages have been heavily impacted by fishing practices. The vulnerability and 29	

low resilience of these assemblages, composed mainly by long-living and slow-30	

growing species, have motivated the implementation of management measures such 31	

as the restriction of bottom trawling, and the establishment of large protected areas 32	

including these environments. The Menorca Channel is one of the areas recently 33	

included in the protection frame of the European Union Natura 2000 network. 34	

Quantitative analysis of video transects recorded at 95–360 m depth by manned 35	

submersible and remotely operated vehicles were used to characterize megabenthic 36	

assemblages, and assess their geographical and bathymetric distribution. Six different 37	

assemblages were identified, mainly segregated by substrate and depth. Hard 38	

substrates hosted coral gardens and sponge grounds, whereas soft sediments were 39	

mainly characterized by large extensions of the crinoid Leptometra phalangium and 40	

the brachiopod Gryphus vitreus. The good preservation of most of the observed 41	

assemblages is probably related to a low bottom trawling pressure, which mainly 42	

concentrates deeper on the continental slope. Because of their biological and 43	

ecological value, management and conservation measures need to be established to 44	

preserve these benthic assemblages. 45	

 46	
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 51	

1. Introduction 52	



 53	

Recent technological advances and increased availability of remotely operated 54	

vehicles (ROVs), manned submersibles, and video-equipped towed gears have 55	

significantly increased accessibility to mid and outer continental shelves, continental 56	

slopes and seamounts, thus allowing the direct observation and quantitative study of 57	

megabenthic assemblages (e.g. Etiope et al., 2010; Buhl-Mortensen et al., 2016). Rich 58	

and highly diverse megabenthic assemblages mostly dominated by passive (e.g. 59	

gorgonians, corals and black corals) and active (e.g. sponges) suspension feeders (e.g. 60	

Emig, 1997; Bo et al., 2013; Bertolino et al., 2013), have been recently reported on 61	

these environments in several locations of the Mediterranean Sea (Deidun et al., 2014; 62	

Bo et al., 2009; 2012; 2015). These assemblages provide habitat (Mastrototaro et al., 63	

2010; Porteiro et al., 2013) and act as nurseries (Colloca et al., 2004; Bo et al., 2015) 64	

for a wide variety of associated species, many of which are of commercial interest 65	

(Abella et al., 2005; Maynou and Cartes, 2012).  66	

 These assemblages have been largely exposed to long-line and trammel net 67	

fishing (Orejas et al., 2009; Sampaio et al., 2012; Mytilineou et al., 2014) as well as to     68	

the impacts of bottom trawling, since they are distributed below 50 m depth where 69	

bottom trawling is allowed (Council Regulation (EC) No 1967/2006) (Maynou and 70	

Cartes, 2012; Fabri et al., 2014). Such fishing practices have dramatic effects on 71	

megabenthic structuring species, which are often removed or severely damaged 72	

(Fosså et al., 2002; Mytilineou et al., 2014), resulting in a decline in the biodiversity 73	

and abundance of the associated fauna (Althaus et al., 2009; Clark et al., 2016). In the 74	

Mediterranean Sea, bottom trawling has progressively increased in intensity since the 75	

first half of the 20th century and has steadily expanded toward greater depths (Sacchi, 76	

2008). Consequently, decades of chronic trawling have widely impacted large areas of 77	



the Mediterranean continental shelf and slope (e.g. Fabri et al., 2014), limiting 78	

relatively well preserved megabenthic assemblages to remote (Díaz et al., 2015) or 79	

inaccessible rough, rocky floors (Bo et al., 2015). The ecological effects of bottom 80	

trawling are extremely long lasting, since no recovery of deep megabenthic 81	

assemblages dominated by anthozoans have been observed in areas closed to trawling 82	

for more than ten years (Althaus et al., 2009; Williams et al., 2010). Due to the slow-83	

growth and high longevity of most of the megabenthic species in these assemblages, it 84	

has been suggested that their possible recovery could span from centuries to millennia 85	

(Clark et al., 2016). 86	

 The vulnerability and low resilience of these communities (Althaus et al., 87	

2009) have motivated the recent establishment of managed and protected areas on 88	

continental shelves, continental slopes (Spalding et al., 2013; Bennecke and Metaxas, 89	

2016) and seamounts (Sheppard et al., 2012; Huvenne et al., 2016) worldwide. In the 90	

Mediterranean Sea, the protection of large areas of the continental shelf and slope has 91	

been recently proposed as a part of an ecosystem-based management strategy of 92	

marine resources and environments, which include the Menorca Channel (European 93	

Union, Natura 2000 network, http://www.eea.europa.eu/data-and-maps/data/natura-94	

2).  Previous studies have investigated and characterized benthic assemblages in the 95	

inner continental shelf (< 100 m) of the Menorca Channel (e.g. Joher et al., 2012; 96	

Barberá et al., 2012; Grinyó et al., 2016), but the composition and distribution of 97	

benthic assemblages on the outer continental shelf and upper slope still remain widely 98	

unknown. Additional information is thus fundamental for the establishment of 99	

effective management and conservation measures, as well as to monitor their 100	

effectiveness.  101	

 Hence, the aims of this study were: (1) to characterize the composition of 102	



megabenthic assemblages (defined here as assemblages constituted by sessile and low 103	

motile invertebrates (i.e. echinoderms) larger than 2 cm (e.g. Seike et al., 2013)) on 104	

the deep continental shelf and upper slope at 95–360 m depth in the Menorca 105	

Channel; (2) to assess their geographical and bathymetric distribution; (3) to quantify 106	

their biodiversity variation with depth; and (4) to compare their distribution with the 107	

pressure of bottom trawling in the area. 108	

 109	

2. Materials and methods 110	

 111	

2.1 Study area  112	

 113	

The Menorca Channel is located in the Western Mediterranean Sea between Mallorca 114	

and Menorca islands (39° 53' 0.73" N, 3° 29' 51.16" E) (Fig. 1a), as part of the 115	

Balearic Promontory (Acosta et al., 2002). The study area covered the outermost 116	

continental shelf (90–110 m), the shelf edge (110–180 m) and the upper slope (180–117	

350 m) of the channel. The continental shelf is characterized by smooth reliefs, 118	

covered by maërl beds alternating with outcropping rocks of coralligenous, and 119	

detritic coarse sediments (Barberá et al., 2012). Fine sands cover vast areas of the 120	

northern part of the investigated section of the continental shelf at 100–110 m depth 121	

(Grinyó et al., 2016). Smooth reliefs and large extensions of detritic sediments with 122	

few isolated patches of outcropping rocks characterize most of the shelf edge and 123	

continental slope (Grinyó et al., 2016). Vertical walls and sharp-edged rocky outcrops 124	

are the dominant substrate near Cap Formentor (Fig. 1b) and in the Menorca Canyon 125	

head (Fig. 1c) (Grinyó et al., 2016).  126	



 The northern shelf edge and continental slope of the Menorca Channel is 127	

influenced by the Balearic Current (Balbín et al., 2012), which flows northward at 128	

approximately 200 m depth (Ruiz et al., 2009). Conversely, the southern shelf edge 129	

and upper slope are mostly influenced by the sporadic arrival of mesoscale structures 130	

detached from the Algerian Current and the Almería Oran front (Millot, 1987; García 131	

et al., 2005). 132	

 133	

 134	

Fig. 1. The study area. (a) Bathymetry of the Menorca Channel: the map shows the location of the 135	

video transects (1 to 45) and the location of the study area in the western Mediterranean. Frontal views 136	
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of the continental slope of the north (b) and south (c) of the Menorca Channel with the continental shelf 137	

in the background. Black lines indicate the 100 and 500 m isobath and the red line indicates the shelf 138	

edge. 139	

 140	

2.2 Sampling procedure 141	

 142	

A total of 45 video transects (Fig. 1a, Supplementary material 1) were recorded 143	

during four surveys conducted on board of the R/V “García del Cid” (September 144	

2010, April 2011, October 2011, June 2012): 17 video transects were recorded with 145	

the manned submersible JAGO (IFM–GEOMAR) during the first two surveys, and 28 146	

video transects were recorded with the NEMO ROV (Gavin Newman) during the last 147	

two surveys. Both instruments were equipped with a 1080 horizontal line resolution 148	

camera, a manipulator arm and two parallel laser beams (0.5 m and 0.12 m for the 149	

JAGO and the NEMO, respectively). Laser beams were used to determine a fixed 150	

width of 0.5 m during video analysis and all transects were recorded with a close 151	

zoom (~0.5–1.5 m width). Both JAGO and NEMO moved at a constant speed of ~0.3 152	

knots, and explored a depth range between 90 to 347 m. The positioning of JAGO and 153	

NEMO was achieved with an underwater acoustic positioning system LinkQuest 154	

TrackLink 1500 HA. Transects were haphazardly located in order to cover the entire 155	

study area, but areas showing morphological features possibly related to the presence 156	

of rocky bottoms were explored more intensively (Fig. 1). Overall, a total seabed 157	

length of 37.7 km was video recorded. 158	

 In order to confirm the taxonomic identification of the megabenthic organisms 159	

observed in the video transects, organisms of all 69 species considered in this study 160	

were collected by means of the JAGO and the NEMO manipulator arm, and 161	

epibenthic sledges equipped with video cameras. Sampled organisms were fixed and 162	



preserved in 10% formalin as well as in absolute ethanol for posterior taxonomical 163	

and genetic analyses. Organisms were identified to the lowest possible taxon, which 164	

corresponded to species or genus. 165	

 166	

2.3 Video analysis 167	

 168	

Quantitative video analysis was performed according to the methodology described 169	

by Gori et al., (2011) and Grinyó et al., (2016), using Apple’s Final Cut Pro software. 170	

The length of each transect was estimated based on the records from the acoustic 171	

positioning system (see details in Grinyó et al., 2016). Sequences with poor image 172	

quality or too far away from the seafloor were considered unsuitable for analysis. The 173	

remaining useful sequences comprised 93.3% of the total recorded material and 174	

corresponded to a total distance of 35 km. The position of all megabenthic organisms 175	

observed within a width of 0.5 m (estimated video coverage based on the laser beams) 176	

was defined by the time elapsed since the beginning of the video transect to the 177	

crossing of the laser beams by the organism (see details in Grinyó et al., 2016). 178	

Seabed substrate type was classified (based on the Wentworth scale) into five 179	

categories: fine sand, medium sand to gravel, cobbles and pebbles, maërl, and rock. 180	

Seabed slope was classified into three categories: horizontal (0º–30º), sloping (30º–181	

80º), or vertical (80º–90º); slope was estimated from the video by looking at the depth 182	

sensor (Gori et al., 2011; Ambroso et al., 2013; Grinyó et al., 2016). 183	

 184	

2.4 Data treatment 185	

 186	

2.4.1 Sampling unit characterization 187	



 188	

Each transect was divided into a string of sampling units. Several sampling unit sizes 189	

(2, 5, 10, 15, 20, 30, 40 and 50 m2) were used in the canonical correspondence 190	

analysis (see below) in order to explore how sampling unit size may affect the 191	

identification of the benthic assemblages, and their associated main environmental 192	

features. Each sampling unit was characterized by the number of megabenthic 193	

organisms of each identified species (density = number of individuals per m2), as well 194	

as by the average depth and coverage percentage for each substrate and slope 195	

category. 196	

 197	

2.4.2 Canonical correspondence analysis 198	

 199	

Canonical correspondence analysis (CCA) is a multivariate constrained ordination 200	

technique used to elucidate the relationships between species abundances (response 201	

variables) and environmental variables (explanatory variables) (Ter Braak, 1986; 202	

Greenacre and Primiceiro, 2013). CCA was used to define megabenthic assemblages 203	

based on species composition, and to explore their relationship with the three 204	

environmental factors obtained from the video transects: substrate, depth, and slope. 205	

Since recording of video transects was restricted in time, other environmental 206	

variables such us seawater temperature, turbidity or fluorescence could not be 207	

considered in this study because they can show high seasonal variability 208	

(consequently, any possible correlation between such variables and the observed 209	

benthic assembles would have been highly fortuitous). Taxa that appeared with less 210	

than three individuals were discarded from the analysis in order to avoid distortions. 211	

Depth of sampling units was coded into four fuzzy categories that preserve all the 212	



information in the variables while reducing it to a categorical scale (Aschan et al., 213	

2013). Such fuzzy-coding takes into account possible nonlinear relationships between 214	

fauna abundance and depth (Greenacre and Primiceiro, 2013). The mean depth of 215	

each of the four fuzzy categories are as follow: dep1 = 106 m, dep2 = 130 m, dep3 = 216	

188 m, and dep4 = 252 m. No transformation was applied to either environmental or 217	

biological data. The CCA was performed with the function cca in the vegan package 218	

(Oksanen et al., 2015) of the R software platform (R Core Team 2015). Additionally, 219	

substrate, depth, and slope were tested to determine which was the best predictor by 220	

means of the R function anova in the vegan package (Oksanen et al., 2015). Due to 221	

the lack of previous information about sampling unit size for the characterization of 222	

Mediterranean megabenthic assemblages in the outer continental shelf and upper 223	

slope by means of quantitative video analysis, CCA was performed with different 224	

sampling unit sizes (2, 5, 10, 15, 20, 30, 40 and 50 m2). 225	

 226	

2.4.3 Megabenthic assemblages distribution and depth-related diversity  227	

 228	

The geographical distribution of each identified megabenthic assemblage in the study 229	

area was reported by mapping its occurrence in the video transects on a 230	

geographically referenced map using GIS (ESRI ArcGIS ArcInfo v10). The 231	

bathymetric distribution of each assemblage was represented in 5 m depth intervals.   232	

To compare species' turnover (or beta-diversity) among the outer continental shelf 233	

(90–110 m depth), the shelf edge (110–180 m depth) and the upper slope (180–347 m 234	

depth) randomized species accumulation curves were calculated (Vetter et al., 2010; 235	

De Leo et al., 2014), using the statistical software R and the "vegan" package.  236	

The method used finds the mean species accumulation curves and their standard 237	



deviation from random permutations of data (n = 100), which avoids distortions in the 238	

curves due to variations in species abundance and sampling effort (Gotelli and 239	

Colwell, 2001).  240	

 241	

2.4.4 Fishing activity in the study area 242	

 243	

Fishing activity and location of fishing grounds (i.e. areas consistently fished through 244	

time) in the study area were assessed by means of Vessel Monitoring System (VMS) 245	

location data through the analysis of the number of fishing events per surface units. 246	

VMS data were obtained in the framework of the LIFE+ INDEMARES project from 247	

the General Directorate of Fisheries Management of the Spanish Ministry of 248	

Agriculture, Food and Environment (MAGRAMA). Available VMS records from 249	

January 2007 to July 2012 were included after examination to exclude erroneous 250	

vessel identity, position or speed. To select the records referring to fishing activity, a 251	

set of common criteria (Lee et al., 2010) was followed: duplicated records and records 252	

close to ports were removed, and the interval between records was calculated in order 253	

to only retain vessels moving at 2–3.5 knots, so that only vessel locations while 254	

trawling are represented. The distribution of fishing activity in the study area was 255	

assessed based on fishing events counts per cell unit based on a point summation 256	

method (Hintzen et al., 2010). A 250 m2 cell was selected as the most suitable size 257	

considering geographical factors and the available dataset (for further details, see Piet 258	

and Quirijns, 2009). Only one record per vessel, day and cell was retained to avoid 259	

overestimation of fishing activity (Hintzen et al., 2010). The centroids of each cell 260	

were extracted and weighted by the sum of fishing events for this cell. These 261	

weighted centroids were used to identify statistically significant hot spots of fishing 262	



activity in the study area using the Gi* statistic (Getis and Ord, 1996). 263	

 264	

3. Results 265	

 266	

A total of 69 megabenthic species belonging to seven phyla and twelve classes were 267	

identified in the study area (Supplementary material 3).  268	

 269	

3.1 Canonical Correspondence Analysis (CCA) 270	

 271	

CCA analysis performed with different sampling unit sizes revealed a general 272	

increase in the amount of inertia explained (i.e. explained variation of the data) by 273	

environmental factors as sampling unit size increased (Table 1). However, as 274	

sampling unit size increased, the resolution of the CCA output decreased (Table 1, 275	

Supplementary material 2). This was due to: (1) a reduction in the total number of 276	

sampling units, (2) an increase in the number of sampling units discarded from the 277	

analysis because affected by unsuitable sequences, and (3) an increased variability of 278	

each sampling unit composition (due to the presence of several bottom types in large 279	

sampling units) (Table 1). A 5 m2 sampling unit size was chosen as the best balance 280	

between the inertia explained by environmental factors, and the number of 281	

megabenthic assemblages identified (Table 1). This size exceeds those previously 282	

used for shallow Mediterranean environments (e.g. Weinberg, 1978; Coppari et al., 283	

2016), probably due to the wider range of environmental gradients and the much 284	

larger number of species included in this study. 285	

 286	

Table	1	Results	of	the	CCA	analysis	performed	at	different	sampling	unit	size	(env.	fact.	=	environmental	factors).	287	



	288	
Sampling 

unit size 

Species 

number 

Organism 

number 

Sampling units  

number 

Total inertia Restricted 

inertia 

Unrestricted 

inertia 

% of inertia 

explained by 

env. fact. 

Macrobenthic 

assemblage 

number 

2 69 39138 8639 28.36 3.03 25.32 10.69 6 

5 69 38230 3372 20.96 3.28 17.68 15.6 6 

10 69 32829 1537 18.5 3.39 15.11 18.3 5 

15 69 31632 985 16.15 2.46 13.69 15.2 5 

20 69 31358 713 15.17 3.44 11.73 22.6 5 

30 69 27658 443 13.8 3.45 10.37 24.97 5 

40 67 26023 316 13.25 3.57 9.67 13.25 5 

50 67 20855 248 12.59 3.61 8.98 28.71 4 

 289	

Using 5 m2 sampling units, a total of 38230 organisms belonging to 69 megabenthic 290	

species were considered in the analysis (Table 1). Crinoidea, exclusively represented 291	

by the species Leptometra phalangium, was the most abundant and the third most 292	

frequent class accounting for 31.8% of all observed organisms, occurring in 16.3% of 293	

all sampling units (Table 2). Demospongiae, represented by 21 species 294	

(Supplementary material 3), was the second most abundant and the second most 295	

frequent class, accounting for 30.9% of all observed organisms, in 27.7% of all 296	

sampling units (Table 2). The class Anthozoa, represented by 27 species 297	

(Supplementary material 3), was the third most abundant and the first most frequent 298	

class, accounting for 21% of observed organisms, in 29.8% of all sampling units 299	

(Table 2). The remaining taxa were represented by 1–4 species (Supplementary 300	

material 3), accounting for 0.02–8.2% of observed organisms, in 0.2–14.5% of all 301	

sampling units (Table 2).  302	

 303	

Table 2 Macrobenthic taxa occupancy and abundance in the study area. Occupancy (frequency of occurrence in the set of 304	
sampling units); abundance (number of organisms). (subc. = subclass). 305	
 306	



Phylum Class Species 

number 

Occupancy Abundance 

   Number (%) Number (%) 

Porifera Demospongiae 21 936 27.76 11805 30.96 

Cnidaria Anthozoa 27 1004 29.8 8031 21 

 Hydrozoa 3 14 0.42 16 0.04 

Bryozoa Gymnolaemata 1 31 0.92 47 0.12 

Brachiopoda Rhynchonellata 1 467 13.85 3219 8.20 

Annellida Polychaeta 4 491 14.56 2334 6.12 

 Echiura 1 49 1.45 55 0.14 

Echinodermata Crinoidea 1 549 16.28 12126 31.8 

 Ophiuroidea 1 64 1.90 416 1.09 

 Echinoidea 4 127 3.77 144 0.38 

 Holothuridae 2 15 0.44 15 0.04 

 Astroidea 1 11 0.33 12 0.03 

Chordata Ascidiacea 2 4 0.18 10 0.02 

 307	

In the CCA performed using 5 m2 sampling units, environmental factors explained 308	

15.6% of the variation in species abundance. The first axis (CCA1) explained 26.8% 309	

of the variance, and the second axis (CCA2) explained 22.7% of the variance. 310	

Substrate was the best predictor (inertia = 2.19) followed by depth (inertia = 1.30), 311	

and slope (inertia = 0.70). Six different megabenthic assemblages (Fig. 2a), 312	

characterized by environmental factors (Fig. 2b) and most contributing species (Fig. 313	

2c) were identified in the CCA analysis, for which illustrative in situ pictures (Fig. 3) 314	

and geographic (Fig. 4) and bathymetric distribution (Fig. 5) are also provided:   315	

 316	

Assemblage A: occurring on shallow (95–110 m depth) maërl beds alternated with 317	

small patches of coralligenous outcrops (Fig. 2b), is mostly characterized by the 318	

sponges Haliclona cf. elegans and Aplysina cavernicola (Figs. 2c, 3a 3b and 319	

Supplementary material 4).  320	



 321	

Assemblage B: occurring on horizontal grounds covered by fine and coarse sands 322	

throughout most of the explored depth range (110–280 m depth) (Fig. 2b), is mostly 323	

characterized by the presence of the crinoid Leptometra phalangium (Figs. 2c, 3c and 324	

Supplementary material 5). 325	

 326	

Assemblage C: occurring on horizontal grounds covered by medium sand to gravel 327	

from shallow to deep (110–330 m depth) environments (Fig. 2b), is characterized by 328	

the presence of the brachiopod Gryphus vitreus (Figs. 2c, 3d and Supplementary 329	

material 6).  330	

 331	

Assemblage D: mostly found at shallow and intermediate depth (95–140 m depth) on 332	

mixed cobbles and pebbles bottoms (Fig. 2b), is characterized by the polychaete 333	

Salmacina dysteri and two unidentified sponge species belonging to the genus 334	

Hamacantha and Haliclona (Figs. 2c, 3e, 3f and Supplementary material 7). 335	

 336	

Assemblage E: occurring in sloping rocky outcrops from shallow to deep 337	

environments (95–337 m depth) (Fig. 2b), is characterized by the presence of the 338	

gorgonians Eunicella cavolinii, Viminella flagellum, the soft coral Nidalia studeri, the 339	

solitary coral Thalamophyllia gasti and the incrusting sponge Hamacantha falcula 340	

(Figs. 2c, 3g, 3h, 3i, 3j, 3k and Supplementary material 8).  341	

 342	

Assemblage F: occurring on vertical rock outcropping mostly at shallow and 343	

intermediate (95–210 m depth) environments (Fig. 2c), is characterized by an 344	



incrusting sponge of the genus Rhabderemia (Figs. 2c, 3l and Supplementary material 345	

9).  346	

 347	



 348	
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Fig. 2. Canonical correspondence analysis (CCA) ordination biplots of megabenthic species. In figure 349	

2a the biplot shows the distribution of the sampling units (n = 3372), sampling units are colored 350	

according to the dominant substrate: fine sands (yellow), medium sands to gravels (green), cobbles and 351	

pebbles (orange), maërl (blue), outcropping rock (red). In figure 2b the biplot shows the substrate type 352	

(FS = fine sands, MG = medium sands to gravels, PC= cobbles and pebbles, M = maërl, OR = 353	

outcropping rock), seabed slope (Hor = horizontal, Slo = slopping, Ver = vertical) and depth, being 354	

dep1 the shallowest and dep4 the deepest. In figure 2c the biplot shows the contribution of the different 355	

species to the megabenthic assemblages, the scale of greys in the vectors indicate the degree of 356	

correlation, being in black the highest correlation degree. Hal_eleg = Haliclona cf. elegans, Ap_cav = 357	

Aplysina cavernicola, Ham_sp2 = Hamacantha sp., Hal_sp20 = Haliclona sp., Sal_dys = Salmacina 358	

dysteri, Lep_pha = Leptometra phalangium, Gry_vit = Gryphus vitreus, Tha_gas = Thalamophyllia 359	

gasti, Ham_fal = Hamacantha falcula, Vim_fla = Viminella flagellum, Eun_cav = Eunicella cavolinii, 360	

Nid_stud =Nidalia studeri, Rhab_sp2 = Rhabderemia sp. 361	

 362	

3.2 Spatial and bathymetric distribution of megabenthic assemblages 363	

 364	

Assemblage A was only observed in one single transect in the north eastern side of 365	

the Menorca Channel (Fig. 4) and presented the narrowest bathymetric distribution 366	

(95–110 m depth) (Fig. 5). Assemblages B and C were widely distributed in both the 367	

northern and southern areas of the channel occurring between 110 and 180 m depth 368	

and between 110 and 240 m depth, respectively (Fig. 4). Assemblage D was observed 369	

in only four locations in the channel, three in the northern side and one in the head of 370	

the Menorca Canyon (Fig. 4), and partially coincided with assemblages A, E and F. 371	

This assemblage was distributed between 95 and 140 m depth (Fig. 5). Finally, 372	

assemblages E and F mostly co-occurred in transects located in the proximity of Cap 373	

Formentor and the Menorca Canyon's head (Fig. 4). However, assemblage E 374	

presented a shallower distribution respect to assemblage F that reached the deepest 375	

areas of the channel (340 m depth) (Fig. 5).  376	



 377	

Fig. 4. Spatial distribution of megabenthic assemblages observed in the study area. Assemblages were 378	

represented on the study area based on the transects where they occur, and following the colours as in 379	

Figure 2a. Grey line represents the 100, 200 and 400 m isobath, red line represents the shelf edge.  380	

 381	

 382	

 383	

Fig. 5. Bathymetric distribution of the megabenthic assemblages observed in the study area. 384	

Assemblages were represented based on the colour as in Figure 2a. 385	

 386	
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3.3 Variation of megabenthic diversity with depth 387	

 388	

The highest species turnover is found in the shelf edge (110–180 m depth), followed 389	

by the outer continental shelf (90–110 m depth) and continental slope (180–347 m 390	

depth) (Fig. 6). Both shelf edge and continental slope species accumulation curves 391	

reach asymptote, highlighting that both depth ranges were representatively sampled. 392	

Conversely, species accumulation curve for the outer continental shelf does not reach 393	

an asymptote as a consequence of limited sampling.  394	

 395	

Fig. 6. Mean species accumulation curve calculated for the outer continental shelf (red), the shelf edge 396	

(blue) and the continental slope (orange).  397	

 398	

 399	

 400	
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A total of 34 fishing vessels from eleven ports trawled the Menorca Channel's sea 402	

floor from January 2007 to July 2012, according to VMS data. Vessels from the ports 403	

of Cala Ratjada, Alcúdia and Ciutadella (Fig. 7) accounted for 80.3% of the VMS 404	

fishing events. One large (E) and two small (D and C) hot spot areas of bottom 405	

trawling were identified on the continental shelf of the channel at 50–75 m depth (Fig. 406	

7). Four additional small and large hot spots were identified deeper on the continental 407	

slope in the north (A) and south openings (F, G and H) of the channel at 500–600 m 408	

depth (Fig. 7). Finally, a small hot spot area was also observed near Cap Formentor 409	

(B) at ~50 m depth (Fig. 7). Three hot spots (A, E and G) concentrated 73% of the 410	

total bottom trawling fishing effort in the area.  411	

 412	

Fig. 7. Bottom trawling effort in the Menorca Channel. Vessel speed has been filtered to the 2-3.5 413	

knots range so that only vessel locations while trawling are represented. Colors are proportional to 414	



trawling effort (see legend) and hot spot areas (identified using the Gi* statistic) are surrounded in 415	

black lines and indicated by capital letters. Video transects are represented by black dots, and the area 416	

included as Site of Community Interest in the Natura 2000 network is indicated by the green line. None 417	

of the video transects considered in this study are located in the VMS hot spot areas. 418	

 419	

4. Discussion 420	

 421	

The six megabenthic assemblages identified in the study area are distributed 422	

throughout the outermost continental shelf and upper slope of the Menorca Channel, 423	

and are mainly segregated by substrate type and depth. 424	

 Sponge grounds composed by large demosponge species (>15 cm in height), 425	

mostly characterized by the branched Haliclona cf. elegans and the tubular sponge 426	

Aplysina cavernicola (Assemblage A), occur on a shoal located near the shelf edge 427	

off Cap Formentor at 95–110 m depth (Fig. 4). This shoal presents a highly irregular 428	

topography of vertical walls alternating with areas covered by maërl and 429	

coralligenous outcrops. The close proximity of the shoal to the shelf edge (Fig. 4), and 430	

its highly irregular topography, are in keeping with deep sponge grounds distribution 431	

in the Mediterranean Sea (Bertolino et al., 2015) and in other areas of the world (e.g. 432	

Klitgaard and Tendal, 2004; Maldonado et al., 2016). It has been suggested that the 433	

irregular topography of these environments may cause the acceleration of local 434	

currents (Rice et al., 1990) potentially favouring the presence of sponges (Beazley et 435	

al., 2015). A. cavernicola and H. cf. elegans account for 73% of all observed 436	

organisms, followed by other demosponge species such us Poecillastra compressa, 437	

Aaptos aaptos and Siphonochalina sp., representing 21% of the observed organisms. 438	

Species composition resembles that of other sponge grounds from flat rocky shoals 439	



exposed to moderated currents, and high silting (derived from river discharge), 440	

between 70 and 130 m depth in the Gulf of Santa Eufemia (southern Tyrrhenian Sea) 441	

(Bertolino et al., 2013). Overall, sponge density (9.2 ± 8.4 individuals m-2 (mean ± 442	

SD), max = 43 individuals m-2) is similar to those observed in other Mediterranean 443	

sponge grounds (Bo et al., 2011a), exceeding those observed in deep multispecific 444	

sponge grounds in the North Atlantic (Kutti et al., 2013; Howell et al., 2016). The 445	

lack of gorgonians (only represented by a few colonies of Paramuricea macrospina) 446	

and antipatharians distinguishes this assemblage from Assemblage E, in which almost 447	

all the same sponge species (except A. cavernicola) co-occur together with large 448	

gorgonians and antipatharians (see below) (Supplementary material 3).  449	

 Leptometra phalangium beds (Fig. 3c) are widely distributed between 110 and 450	

250 m depth in areas covered with both coarse and fine sands (Assemblage B), 451	

agreeing with previous reports from detritic bottoms of the Western Mediterranean 452	

shelf edge (e.g. Pérès, 1967; Michez et al., 2014). L. phalangium may reach very high 453	

densities of more than 30 individuals m-2 (5.3 ± 3.2 individuals m-2 (mean ± SD)), as 454	

previously observed on detritic substrates at the foot of seamounts in the Tyrrhenian 455	

Sea (Bo et al., 2010). In the Menorca Channel, this almost monospecific assemblage 456	

(L. phalangium represents 95% of all observed organisms) mostly occurs on the shelf 457	

edge (96% of occupied sampling units) (Fig. 4), in agreement with studies identifying 458	

it as a typical shelf edge assemblage (e.g. Fredj, 1964; Kallianiotis et al., 2000; 459	

Mangano et al., 2010). It has been suggested that Leptometra beds are mainly 460	

constrained to shelf edge environments as they depend upon the exposure to bottom 461	

currents that regularly carry high concentrations of suspended organic particles 462	

(Lavaleye et al., 2002; Colloca et al., 2003). Absence of trawling activity is 463	

fundamental for the persistence of high-density L. phalangium populations since the 464	



fragility of this organism makes it extremely vulnerable to mechanical damage (Smith 465	

et al., 2000). L. phalangium populations impacted by bottom trawling on the Cretan 466	

continental shelf presented significantly lower densities five months after trawling 467	

than non-impacted ones, suggesting a low recovering capacity (Smith et al., 2000). 468	

Facies of L. phalangium have been associated with elevated densities of 469	

benthopelagic fish, with high juvenile abundances, suggesting that this assemblage 470	

may play a crucial role in the life cycle of numerous fish species, some of which are 471	

of high commercial interest (e.g., Merlucius merlucius and Mullus barbatus) (Colloca 472	

et al., 2004). The sea pen Funiculina quadrangularis, the polychaete Lanice 473	

conchilega and the anemones Cerianthus membranaceus and Arachnanthus 474	

oligopodus accompany L. phalangium on coarse sands. In submarine canyons of the 475	

Western Mediterranean C. membranaceus and F. quadrangularis have also been 476	

reported to occur alongside facies of L. phalangium (Würtz, 2012). F. quadrangularis 477	

presents a sparse distribution and occurs at low densities (0.6±0.3 colonies m-2 (mean 478	

± SD), max = 2.5 colonies m-2) contrasting with observations in bathyal 479	

environments, where this species forms dense facies (Pérès and Picard, 1964). In fine 480	

sand environments, L. phalangium generally occurs along with the sea pen Virgularia 481	

mirabilis, the soft coral Alcyonium palmatum, and the sponge Thenea muricata on 482	

fine sands. The presence of T. muricata and V. mirabilis on the shelf edge (~130 m 483	

depth) is rather surprising, as both species have mostly been reported in deeper 484	

settings (e.g. Michez et al., 2014). On fine sand floors, large hydrozoans have been 485	

occasionally observed, such us Nemertesia antennina, Nemertesia ramosa or 486	

Lytocarpia myriophyllum, which co-occurred alongside with L. phalangium in 487	

agreement with previous observations in the Tyrrhenian Sea (Massi, 2005). However, 488	

these hydrozoans present very low abundances in the Menorca Channel 489	



(Supplementary material 3), in contrast with dense facies observed in other areas of 490	

the Mediterranean Sea (Pérès and Picard, 1964). 491	

 The brachiopod Gryphus vitreus (Fig. 3d) constitutes 81% of all observed 492	

organisms in Assemblage C. G. vitreus forms beds that sparsely cover (2 ± 3 493	

individuals m-2 (mean ± SD)) sandy grounds on and beyond the shelf edge, at 110–494	

330 m depth. This bathymetric distribution contrasts with observations from Corsica 495	

and Provence where G. vitreus beds reach a maximum depth of 200 m and 250 m, 496	

respectively (Emig, 1985; 1987). Conversely, communities dominated by G. vitreus 497	

have been reported in deeper environments of 660–870 m depth in the Balearic Basin 498	

(Cartes et al., 2009). In the upper slope, at 180–200 m depth, G. vitreus forms dense 499	

aggregations with more than 25 individuals m-2. However, these densities are rather 500	

low if compared to those reported from continental slopes exposed to intense bottom 501	

currents (600 individuals m-2) (Emig, 1987). In this regard, occurrences and 502	

abundances of G. vitreus and other brachiopod appear to be directly related to 503	

hydrodynamic conditions (Eshleman and Wilkens, 1979; Emig, 1987). 504	

In the study area, G. vitreus beds (assemblage C) and L. phalangium facies 505	

(assemblage B) present similar distributions, occasionally co-occurring for tens of 506	

meters as previously shown in the Balearic Archipelago (Aguilar et al., 2014). 507	

However, while facies of L. phalangium (Assemblage B) have been observed on both 508	

fine and coarse sands, G. vitreus beds (Assemblage C) are basically restricted to 509	

coarse sands (Figs. 2 and 4). This substrate segregation responds to the necessity of G. 510	

vitreus to attach to small pebbles or shells on the surface of the sediment (Emig, 511	

1987). The composition of accompanying species in coarse sands of assemblage B 512	

and C is very similar, with the sea pen F. quadrangularis, the polychaete L. 513	

conchilega and the anemones C. membranaceus and A. oligopodus amongst the most 514	



abundant. A. oligopodus and L. conchilega have often been reported in soft sediments 515	

of the shelf edge and continental slope of the Mediterranean Sea (e.g. Pérès and 516	

Picard, 1964; Emig, 1997), whereas, in the G. vitreus beds of the Menorca Channel, 517	

both species occasionally reach high densities (9.5 and 9 individuals m-2, 518	

respectively), agreeing with previous observations  in the Western Mediterranean Sea 519	

(Aguilar et al., 2014; Michez et al., 2014). The accompanying species reported in 520	

assemblage C differ from those observed in deeper G. vitreus beds in the Balearic 521	

Basin, which are accompanied by several sponge species and nemerteans (Cartes et 522	

al., 2009).  523	

 The polychaete Salmacina dysteri (Fig. 3e) and two unidentified sponges 524	

belonging to the genus Hamacantha and Haliclona (Fig. 3f) characterize the 525	

Assemblage D, occurring on coarse sand with scattered cobbles and pebbles, at 95–526	

140 m depth. These three species represent 63% of all observed organisms, and rarely 527	

exceed densities of 1.5 individuals m2. Despite the mixed substrate where this 528	

assemblage has been observed, the vast majority of the organisms are associated with 529	

hard substrates (e.g. the sponges P. compressa, A. aaptos and Pachastrella monilifera 530	

(26% of observed organisms), and the gorgonians E. cavolinii and Swiftia pallida 531	

(10% of observed organisms)). A similar situation has been identified in sandy 532	

bottoms with Dendrophyllia cornigera coral rubble, which also present high 533	

abundances of organisms associated to hard substrates (Michez et al., 2014). 534	

Conversely, coarse sand patches are mainly occupied by echinoids, holothurians and 535	

polychaetes (1% of observed organisms). Isolated L. phalangium has been 536	

occasionally observed as well. The occurrence of Assemblage D in the same transects 537	

than Assemblages A and E (Fig. 4) (mainly in the immediate proximities of 538	

outcropping rocks and vertical walls on the shelf edge, and in areas of dead maërl 539	



rhodolites in the proximities of shelf shoals) suggests that Assemblage D is a 540	

transition between assemblages occurring on hard substrates and those located on 541	

coarse sand ones. 542	

 The gorgonians E. cavolinii and Viminella flagellum, the soft coral Nidalia 543	

studeri, the small solitary coral Thalamophyllia gasti and the incrusting sponge 544	

Hamacantha falcula (Figs. 3g, 3h, 3i, 3j and 3k) characterize (43% of all observed 545	

organisms) the sloping rocky substrates (Assemblage E) from the outer continental 546	

shelf to the upper slope (95–340 m depth). Despite this wide bathymetric distribution, 547	

this coral garden assemblage (sensu Stone, 2006; Buhl-Mortensen and Buhl-548	

Mortensen, 2013) mostly occurs on the shelf edge and uppermost slope at 110–190 m 549	

depth (72% of observed sampling units), on rocky outcrops and vertical walls near 550	

Cap Formentor and at the Menorca canyon head (Fig. 4). Similarly, other coral 551	

gardens have also been observed in the proximities of the shelf edge in several 552	

locations of the Western Mediterranean Sea (e.g. Bo et al. 2012; Cau et al., 2017). 553	

These environments are most likely exposed to regular currents, which may enhance 554	

food availability for the large sized passive suspension feeders that characterize this 555	

assemblage (Shepard et al., 1974; Balbín et al., 2012). Both the gorgonians E. 556	

cavolinii and V. flagellum had previously been reported as dominant species of rocky 557	

assemblages on the Mediterranean shelf edge (Bo et al., 2011b; Angiolillo et al., 558	

2014). In the Menorca Channel, both species mostly form mixed assemblages along 559	

with other species (Grinyó et al., 2016), but they can punctually form dense 560	

monospecific patches of more than 20 colonies m-2, as also observed in other areas of 561	

the Mediterranean Basin (Pedel and Fabri, 2011; Angiolillo et al., 2014). N. studeri 562	

and T. gasti form dense monospecific assemblages (30 colonies m-2). N. studeri 563	

mostly occurs on gently sloping rocky outcrops, whereas T. gasti occurs on steeply 564	



sloping rocky outcrops. The incrusting sponge H. falcula shows low maximum 565	

densities of 5 individuals m-2 but of large size (> 20 cm diameter), covering large 566	

areas of the rocky bottom, and perhaps excluding other species (Fig. 3k). Assemblage 567	

E is the most diverse of the six megabenthic assemblages identified in the study area. 568	

Eighteen species of demosponges have been observed as accompanying species (25% 569	

of all observed organisms) mostly as scattered individuals spread throughout the 570	

transects (2.4 ± 4 individuals m2 (mean ± SD)), only occasionally reaching high 571	

densities (15 individuals m-2). Some of these sponges reach large dimensions (> 20 572	

cm height and width) such as the massive Haliclona magna or the fan shaped 573	

Phakellia robusta, P. monilifera and P. compressa. Anthozoans account for 57% of 574	

all observed organisms in Assemblage E, with 22 different species. Besides E. 575	

cavolinii and V. flagellum, eight gorgonian species have been also observed in this 576	

assemblage: Acanthogorgia hirsuta, Bebryce mollis, Callogorgia verticillata, 577	

Corallium rubrum, Muriceides lepida, Paramuricea clavata, P. macrospina, and S. 578	

pallida. Gorgonians formed multispecific high-density patches (~20 colonies m-2) 579	

(Grinyó et al., 2016), which contrasts with the lower gorgonian diversity in coastal 580	

and bathyal environments of the Mediterranean Sea (e.g. Gori et al., 2011; Cartes et 581	

al., 2013). The antipatharians Antipathella subpinnata, Antipathes dichotoma and 582	

Leiopathes glaberrima occur in low densities (1–4 colonies m-2) in mixed 583	

assemblages with gorgonians, as also observed at similar depths in other areas of the 584	

Mediterranean Sea (e.g. Bo et al., 2009, 2012; Deidun et al., 2014). Finally, the 585	

recently described soft coral Chironephthya mediterranea (López-González et al., 586	

2015) and Paralcyonium spinulosum are also largely represented in these rocky 587	

bottoms. Very similar anthozoan assemblages have also been described at similar 588	

depths on rocky substrates in the southern Sardinian shelf edge (Cau et al., 2017). Due 589	



to the complex three-dimensional structure they form, and the slow growth of 590	

gorgonian and antipatharian species (Sherwood and Edinger, 2009), deep coral 591	

gardens are extremely vulnerable to physical damage by fishing, (Angiolillo et al., 592	

2015) and pollution (Silva et al., 2015), displaying extremely slow recovery (Althaus 593	

et al., 2009). 594	

 Finally, vertical rocky substrates at 95–210 m depth are dominated by 595	

incrusting sponges (Assemblage F), with an unidentified incrusting sponge of the 596	

genus Rhabderemia (Fig. 3l) accounting for 64% of all observed organisms (max = 23 597	

individuals m-2), and other incrusting sponges representing 10% of all observed 598	

organisms. Incrusting sponges seem to be the only organisms adapted to colonize this 599	

environment, alternating with the conversely highly diverse coral gardens 600	

(Assemblage E), depending on the substrate slope.  601	

 Unlike areas of the Gulf of Lion (Pérès and Picard, 1964; Orejas et al., 2009; 602	

Gori et al., 2013; Fabri et al., 2014) and the Catalan margin (Lastras et al., 2016), only 603	

a few colonies of the cold-water coral Madrepora oculata have been observed on 604	

vertical rocky walls at 320 m depth in the Menorca Channel. This could suggest that 605	

this species might be restricted to deeper environments in the study area (> 350 m 606	

depth), as observed in other places of the Mediterranean Basin (e.g. Etiope et al., 607	

2010; Taviani et al., 2015). 608	

 Benthic communities in the shallow area of the Menorca Channel have been 609	

also classified according to the European Nature Information System (EUNIS) 610	

(Barberá et al., 2012). Amongst the deeper assemblages described in this study, L. 611	

phalangium beds (Assemblage B) correspond to the EUNIS facies "L. phalangium in 612	

Mediterranean communities of the shelf-edge detritic bottom" (A5.472), whereas G. 613	

vitreus beds (Assemblage C) correspond to the EUNIS category "Communities of 614	



bathyal detritic sands with G. vitreus" (A6.31). Conversely, the remaining 615	

assemblages characterized in this study do not have a clear correspondence to EUNIS 616	

categories. Sponge grounds (Assemblage A) can be only generically classified into 617	

the EUNIS "Maërl bed" category (A5.51), whereas the transition assemblage 618	

(Assemblage D) could fall within the EUNIS category of "Mosaics of mobile and 619	

non-mobile substrata in the circalittoral zone" (X33). Classification into EUNIS 620	

categories is more complex for the hard-bottom assemblages described in this study. 621	

Coral gardens (Assemblage E) and vertical walls (Assemblage F) would both be 622	

classified as EUNIS "Rocky substrates in circalittoral" (A4.2) and "Deep-sea 623	

bedrocks" (A6.11). These results highlight the limitations of EUNIS and the need to 624	

improve this classification system for Mediterranean benthic environments occurring 625	

below 100 m depth. 626	

 The highest megafaunal species richness and beta-diversity (i.e. species 627	

turnover) is observed in the shelf edge (Fig. 6). This pattern probably results from the 628	

synergy caused by habitat heterogeneity and hydrodynamic conditions along the shelf 629	

edge. Indeed, rocky outcrops and vertical walls alternate with soft sedimented 630	

grounds of varying grain sizes over the shelf edge. Moreover, both passive and active 631	

suspension feeders may benefit from the stable environmental conditions and 632	

hydrodynamic processes that enhance particle suspension in the near-bottom water 633	

layers on the shelf edge (Thiem et al., 2006). It has also been suggested that the 634	

observed increase in megafauna diversity at intermediate depths may result from the 635	

merging of species with shallower and deeper distributions, causing a mid domain 636	

effect (Colwell and Lees, 2000) as previously observed for deep coral communities in 637	

the north Pacific (Stone, 2006; Matsumoto et al., 2007).  638	

 Benthic megafauna such as erect and massive sponges (Klitgaard and Tendal, 639	



2004), gorgonians (Maynou and Cartes, 2012), antipatharians (Koslow et al., 2001) 640	

and crinoids (Smith et al., 2000), are extremely sensitive to bottom trawling fishing. 641	

Low trawling pressure at 100–500 m depth in the study area (Fig. 7) and the natural 642	

protection offered by rocky escarpments and vertical walls may explain the 643	

preservation of the observed high-density and high-diverse megafauna assemblages 644	

on the continental shelf edge. Protected bottom trawling on the continental shelf and 645	

edge (Watling and Norse, 1998) has probably fragmented megabenthic assemblages 646	

(Hall-Spencer et al., 2002), confining them to remote an inaccessible environments 647	

(Díaz et al., 2015; Bo et al., 2015). The observed complexity and high-diversity of 648	

benthic megafauna in the Menorca Channel, portrays how benthic community may 649	

have been in several areas of the Mediterranean continental shelf and shelf edge 650	

before the cumulative impact of decades of bottom trawling. Knowledge the 651	

composition and distribution of deep benthic communities represent the 652	

imprescindible baseline for the establishment of effective management measures for 653	

the conservation and recovery of deep ecosystems in large marine protected areas 654	

such as the Menorca Channel. Although the establishment of these large protection 655	

zones may pose potentially challenging situations amongst stakeholders, economic 656	

benefits may eventually materialize, including the recovery of degraded fisheries 657	

(Pipitone et al., 2000) and the maintenance of ecosystem services (Balmford et al., 658	

2002). 659	

 660	

5. Conclusions:  661	

 662	

- Six megabenthic assemblages are distributed throughout the outermost continental 663	

shelf and upper slope of the Menorca Channel, being mainly segregated by substrate 664	



type and depth. 665	

 666	

- Beds of the crinoid Leptometra phalangium and the brachiopod Gryphus vitreus 667	

dominate soft substrates.  668	

 669	

- Sponges dominate hard substrates on the outer shelf, whereas gorgonians, corals and 670	

incrusting sponges dominate hard substrates on the shelf edge and upper slope. 671	

 672	

- The highest diversity of megabenthic species is found in the shelf edge, within the 673	

studied bathymetric range.  674	

 675	

- Trawling pressure concentrates above 100 m depth and below 500 m depth; 676	

consequently, low trawling pressure between 100 and 500 m depth probably 677	

contributes to the preservation of the observed benthic assemblages.  678	

 679	
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Fig. 3 Most contributing species to the CCA a) Haliclona cf. elegans, b) Aplysina cavernicola, c) 1181	

Leptometra phalangium, d) Gryphus vitreus, e) Salmacina dysteri, f) Hamacantha sp. 2 (white circle) 1182	

and Haliclona sp. 1 (black circle), g) Eunicella cavolinii, h) Viminella flagellum i) Nidalia studeri, j) 1183	

Thalamophyllia gasti, k) Hamacantha falcula, l) Rhabderemia sp. Scale Bar: 5 cm. 1184	
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Supplementary material 1: Transect	location,	length,	depth	(minimum	and	maximum	depth),	main	1188	

substrate	(>	50%	coverage	of	sampling	units)	(M: maërl, CBP: cobbles and pebbles, MS: medium 1189	

sands, FS: fine sands, R: rocky substrates), main slope (>	50%	coverage	of	sampling	units)(H:	1190	

horizontal,	S:	slopping,	V:	vertical).	1191	
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Supplementary material 2: Variation in the resolution of the canonical correspondence analysis (CCA) 1193	

ordination biplots when using different sampling unit sizes. Sampling units are colored according to the 1194	
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Supplementary material 3: Megabenthic species abundance, mean and maximum density, bathymetric 1198	

distribution, and assemblage occurrence. 1199	
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Supplementary material 4: Multispecific demosponge assemblage (pink sponge = Haliclona cf. 1201	

elegans, bright yellow sponges = Aplysina cavernicola) on maërl beds located on the continental shelf 1202	
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Supplementary material 5: Leptometra phalangium bed at the shelf edge at 130 m depth (transect 44 on 1205	
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Supplementary material 7: Cobble grounds with few large demosponges at 130 m depth (transect 30 on 1211	
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depth (transect 3 on Fig. 1).    1216	

 1217	
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at 130 m depth (transect 45 on Fig. 1).  1219	


