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Relaxed-Inertial Proximal Point Algorithms for

Nonconvex Equilibrium Problems with

Applications

Sorin-Mihai Grad∗ Felipe Lara †‡ Raúl Marcavillaca§

December 29, 2023

Abstract We propose a relaxed-inertial proximal point algorithm for sol-
ving equilibrium problems involving bifunctions which satisfy in the se-
cond variable a generalized convexity notion called strong quasiconvexity,
introduced by Polyak in 1966. The method is suitable for solving mixed
variational inequalities and inverse mixed variational inequalities involving
strongly quasiconvex functions, as these can be written as special cases
of equilibrium problems. Numerical experiments where the performance
of the proposed algorithm outperforms the one of the standard proximal
point methods are provided, too.

Communicated by Alexander Vladimirovich Gasnikov.
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In loving memory of Boris Teodorovich Polyak.

1 Introduction

Let K ⊆ Rn be a nonempty, closed and convex set and f : K × K → R a
bifunction. Then the equilibrium problem is defined by

find x ∈ K : f(x, y) ≥ 0, ∀ y ∈ K. (EP) EP0

Problem (EP) is a very general formulation which includes several mathe-
matical models from continuous optimization and variational problems such as
minimization problems, variational inequalities, minimax problems, fixed point
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raultm.rt@gmail.com, ORCID-ID: 0000-0003-3748-0768

1



problems and complementarity problems among others (see the excellent semi-
nal work [6] for more on this).

In particular, (EP) includes also two families of mixed variational inequalities
in which we have special interest since applications in several fields of engineering
and economics among others (see [1, 21, 22, 31, 15, 34, 38]) can be cast as such.
Recall that given an operator T : K → Rn and a function ϕ : K → R, the mixed
variational inequality (MVI) problem is defined as

find x ∈ K : 〈T (x), y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀ y ∈ K, (MVI) MVI

while the inverse mixed variational inequality (IMVI) problem is defined as

find x ∈ K : 〈x, T (y)− T (x)〉+ ϕ(y)− ϕ(x) ≥ 0, ∀ y ∈ K. (IMVI) IMVI

Both problems are very general formulations, too, and have been intensively
studied in the literature (see [1, 17, 21, 22, 36, 38, 51, 54] among others) since
they encompass variational inequalities and inverse variational inequalities as
a special case (when ϕ = 0, see [12, 13]); constrained optimization problems
(when T = 0) and even the minimization of the sum of two functions (when
T is the gradient of a differentiable function defined on K in problem (MVI)).
Furthermore, problem (IMVI) generalizes standard mathematical programming
problems such as the extended linear-quadratic programming studied in [42]
(see [21]). For all these reasons, problem (EP) became the object of study for
many researchers in applied mathematics, engineering, economics and computer
sciences, among others, especially, when the involved bifunction f is assumed
to be convex on its second argument.

The convexity assumption in problems (EP), (MVI) and (IMVI) is standard
and hard to be dropped since even usual results may fail without this hypothesis.
Indeed, if ϕ is not convex, then problem (MVI) may have no solutions even on
convex and compact sets (see the example in [26, page 127]) and the same
happens with (IMVI). The reason behind this is the “conflict” between the
properties of the function ϕ and those of the operator T (see [17, 26, 51]), that
occurs because one is searching for a point where an inequality is satisfied for
all possible values of a variable, so, if the function ϕ is monotonically decreasing
on a certain subset of K, the operator needs to “go upwards” faster on the
same subset, and vice-versa. As a consequence, an assumption regarding the
relation between the involved function and operator needs to be imposed in
order to ensure the existence of solutions to (MVI) and (IMVI) when ϕ is
not convex even on convex and compact sets. Usually in the literature (see
[17, 26, 27] and references therein), the so-called mixed variational inequality
property introduced in [51, Definition 3.1]) is employed for this. Furthermore,
similar obstacles or even higher are expected for algorithms for dealing with
such problems, as indicated, for instance, by the projected gradient method for
solving variational inequalities (ϕ = 0 in problem (MVI)) where T is assumed µ-
strongly monotone and L-Lipschitz-continuous (with L, µ > 0) which converges
when L <

√
2µ (see for instance [13, page 1109]).
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In this paper, we propose an iterative method for solving problem (EP)
without the usual convexity assumption. In particular, we use the generalized
convexity notion of strong quasiconvexity, a class of functions broader than the
strongly convex ones.

Strongly quasiconvex functions were introduced by Polyak in his famous pa-
per [39] and were investigated by different authors who provided various results
involving them in works like [30, 50]. Moreover, as anticipated by Polyak in
[39], there is also a significant literature on the calculus of variations involving
strongly quasiconvex functions (see [32] for instance). New studies involving
strongly quasiconvex functions in the field of optimization can be found, for in-
stance, in [11], which provides asymptotic convergence properties of the saddle-
point dynamics involving bifunctions which are strongly quasiconvex in one or
both variables, and in [43], where one finds results on the asymptotic behavior
of quasi-autonomous gradient expansive systems governed by a strongly qua-
siconvex function. The recent work [33] of one of the authors of this paper
provides a fresh view on this class of functions, by recalling the most important
existing results and providing a first investigation on minimizing its members
by means of modern iterative methods. More precisely, there it is shown that
the classical proximal point algorithm converges under standard assumptions
when employed for minimizing a strongly quasiconvex function, too, while in
[18] the authors of this study obtained a similar conclusion for a relaxed-inertial
proximal point method.

Different proximal point type algorithms have been considered for solving
equilibrium problems in the convex case, in some of them the employed bi-
function being endowed with a generalized monotonicity property rather than
the classical monotonicity. There are only a few (very recent) works where
iterative methods for solving equilibrium problems with the underlying func-
tion (strongly) quasiconvex can be found, namely [28], where arguably the first
proximal point method in such a framework is proposed; [52] with a subgradient
method; [53] that contains a proximal subgradient algorithm and the recent con-
tribution [4], which contains an extension of [28] to Bregman distances.

The main contribution of this work consists in showing that the relaxed-
inertial proximal point algorithm for solving equilibrium problems (RIPPA-EP
from now on) introduced in [2, 3] for solving monotone inclusion problems and
extended to equilibrium problems in [24, 48] in the convex case remains conver-
gent, under slightly different, but still standard assumptions, when the employed
bifunction is strongly quasiconvex in its second variable and pseudomonotone,
following thus in a certain sense our recent works [18, 24, 28, 33]. Therefore,
the influence of B.T. Polyak’s work on this paper is twofold, because the inertial
proximal algorithms are based on his heavy ball method from [40]. Numerical
experiments for solving problems (MVI) and (IMVI) where the involved function
ϕ is strongly quasiconvex are presented, and the performance of the proposed
algorithm is shown to be superior to the one of the standard proximal point
method.

The paper is structured as follows. In Section 2, we introduce notations and
preliminary results. In Section 3, the proposed algorithm is presented and its
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convergence is investigated. Relevant special cases are discussed, and sufficient
conditions that guarantee the fulfillment of the hypotheses of the convergence
statements are provided, too. Section 4 contains computational results that
illustrate the theoretical achievements.

2 Preliminaries and Basic Definitions
sec:2

We denote by 〈·, ·〉 the inner product of Rn, while the corresponding Euclidean
norm is ‖·‖. For x, y, z ∈ Rn and β ∈ R, one has

〈x− z, y − x〉 =
1

2
‖z − y‖2 − 1

2
‖x− z‖2 − 1

2
‖y − x‖2, (2.1) 3:points

‖βx+ (1− β)y‖2 = β‖x‖2 + (1− β)‖y‖2 − β(1− β)‖x− y‖2. (2.2) iden:1

Consider a function h : Rn → R := R ∪ {±∞}. The effective domain of h is
dom h := {x ∈ Rn : h(x) < +∞} and we call h proper when it has a nonempty
domain and takes nowhere the value −∞. The standard conventions sup∅ h :=
−∞, inf∅ h := +∞, and 0 · (+∞) = +∞, 0 · (−∞) = 0, and +∞+ (−∞) = +∞
are considered. The sublevel set of h at height λ ∈ R is Sλ(h) := {x ∈ Rn :
h(x) ≤ λ}, while its set minimizers is arg minRn h. Denote by Id : Rn → Rn
the identity operator on Rn, and by K∗ := {y ∈ Rn : 〈y, x〉 ≥ 0, ∀ x ∈ K} the
positive dual cone associated to a set K ⊆ Rn.

When domh is convex, we say that h is

(a) convex, when for every x, y ∈ domh

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y), ∀λ ∈ [0, 1]; (2.3) def:convex

(b) semistrictly quasiconvex if, given every x, y ∈ domh, with h(x) 6= h(y),
then

h(λx+ (1− λ)y) < max{h(x), h(y)}, ∀x, y ∈ domh, ∀λ ∈ ]0, 1[, (2.4)

(c) quasiconvex, when for every x, y ∈ domh

h(λx+ (1− λ)y) ≤ max{h(x), h(y)}, ∀λ ∈ [0, 1]; (2.5) def:qcx

(d) strongly convex [39] (on dom h) with modulus γ > 0, when there is a
γ ∈ ]0,+∞[ for which

h(λy+(1−λ)x) ≤ λh(y)+(1−λ)h(x)−λ(1−λ)
γ

2
‖x−y‖2, ∀x, y ∈ domh, ∀λ ∈ [0, 1];

(e) strongly quasiconvex [39] (on dom h) with modulus γ > 0, when there is a
γ ∈ ]0,+∞[ for which

h(λy+(1−λ)x) ≤ max{h(y), h(x)}−λ(1−λ)
γ

2
‖x−y‖2, ∀x, y ∈ domh, ∀λ ∈ [0, 1].

When (2.3) (or (2.5)) is strictly fulfilled whenever x 6= y, we call h strictly
(quasi)convex.
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The following scheme exhibits the known relations among the mentioned
(generalized) convexity concepts (where “qcx” stands for quasiconvex)

strongly convex =⇒ strictly convex =⇒ convex =⇒ qcx
⇓ ⇓ ⇓

strongly qcx =⇒ strictly qcx =⇒ semistrictly qcx
⇓

qcx

In [30, Theorem 2] one can see that the Euclidean norm is strongly quasi-
convex on any bounded convex set, but not strongly convex. Note also that a
quasiconvex function can be seen as a strongly quasiconvex one with modulus
γ = 0, so “h is strongly quasiconvex with modulus γ ≥ 0” covers both these
notions.

Examples of strongly quasiconvex functions which are not convex can be
found in [18, 28, 29, 33, 53, 30]. For instance, the function x ∈ Rn 7→

√
‖x‖,

which has been employed in studies on information protection (see [49]) or on
Gram-Schmidt orthogonalization methods (see [47]), is (see [33, Theorem 17])
strongly quasiconvex on any bounded and convex subset of Rn and, as we will
see in Section 4, some classes of fractional functions (intensively studied for their
economic applications, see [44, 46]) are strongly quasiconvex (see [29]), too.

A proper function h : Rn → R is said to be 2-supercoercive when

lim inf
‖x‖→+∞

h(x)

‖x‖2
> 0.

According to [33, Theorem 1], any function that is strongly quasiconvex on
a convex set K ⊆ Rn is also 2-supercoercive. Hence, lower semicontinuous
strongly quasiconvex functions have exactly one minimizer on closed convex
finitely-dimensional subsets (see [33, Corollary 3]), an observation useful when
investigating proximal point type methods for optimization problems involving
such functions (see [18, 28, 33]).

Take h : Rn → R proper and K ⊆ Rn closed and convex, such that K ⊆
dom h. The proximal operator of h on K of parameter β > 0 at x ∈ Rn is

Proxβh : Rn ⇒ Rn, Proxβh(K,x) = argmin
y∈K

{
h(y) +

1

2β
‖y − x‖2

}
.

When K = Rn, we write Proxβh(Rn, ·) simpler as Proxβh(·).
The next result from [33] will be necessary later.

lemma:HL Lemma 1 (cf. [33, Proposition 6]) Let K be a closed and convex set in Rn,
h : Rn → R be a proper, lower semicontinuous, strongly quasiconvex function
with modulus γ ≥ 0 and such that K ⊆ dom h, β > 0 and x ∈ K. If x ∈
Proxβh(K,x), then for all y ∈ K and all λ ∈ [0, 1] one has

h(x)−max{h(y), h(x)} ≤ λ

β
〈x− x, y − x〉+

λ

2

(
λ

β
− γ + λγ

)
‖y − x‖2.
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Different to the convex case, it has been shown in [33, (1.4)] that the sum
of a quasiconvex and a half of a squared norm is not necessarily a strongly qua-
siconvex function. Additionally, [33, Remark 6] exhibits an example where not
even the sum of a strongly quasiconvex function and a half of a squared norm is
strongly quasiconvex. Consequently, (see also [33, Remark 19(ii)]) the proximal
operator of a strongly quasiconvex function is usually set-valued, containing a
singleton when the sum of the strongly quasiconvex function and a half of a
squared norm is strongly quasiconvex.

A bifunction f : Rn × Rn → R is monotone on K ⊆ Rn, when

f(x, y) + f(y, x) ≤ 0 ∀ x, y ∈ K.

When the following weaker condition (see [20] for counter-examples for the op-
posite implication) is fulfilled

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0 ∀ x, y ∈ K,

we say that f is pseudomonotone on K.
The next statement was essentially proven in [3, Theorem 2.1] and it will be

useful for analyzing the convergence of the proposed algorithm.

lm:alv.att Lemma 2 Let the sequences {ϕk}k, {sk}k, {αk}k and {δk}k in [0,+∞[ and let
α ∈ R be such that 0 ≤ αk ≤ α < 1 and

ϕk+1 − ϕk + sk+1 ≤ αk(ϕk − ϕk−1) + δk, ∀ k ≥ 0. (2.6) eq:alv.att02

Then the following assertions hold

(a) for all k ≥ 1, we have ϕk +

k∑
j=1

sj ≤ ϕ0 +
1

1− α

k−1∑
j=0

δj;

(b) if
∑∞
k=0 δk < +∞, then limk→∞ ϕk exists, i.e., the sequence {ϕk}k con-

verges to some element in [0,+∞[.

More on generalized convexity (in particular (strong) quasiconvexity) and
generalized monotonicity can be found, for instance, in [10, 20, 33, 30, 45, 39, 50].

3 Relaxed-Inertial Proximal Point Type Algo-
rithm

sec:3

Let K be a nonempty set in Rn and f : K ×K → R be a bifunction. Consider
the equilibrium problem

find x ∈ K : f(x, y) ≥ 0, ∀ y ∈ K, (EP) EP

and denote by S(K, f) the set of solutions of (EP).
The following assumptions on the mathematical objects involved in the equi-

librium problem are necessary for investigating the convergence of the algorithm
we propose for solving (EP)
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(A1) y 7→ f(·, y) is upper semicontinuous for all y ∈ K;

(A2) f is pseudomonotone on K;

(A3) f is lower semicontinuous (jointly in both arguments);

(A4) f(x, ·) is strongly quasiconvex on K with modulus γ > 0 whenever x ∈ K;

(A5) f satisfies the following Lipschitz-continuity type condition: there exists
η > 0 for which

f(x, z)− f(x, y)− f(y, z) ≤ η(
∥∥x− y‖2 + ‖y − z‖2

)
, ∀ x, y, z ∈ K. (3.1) Lips:cond

As was noted in [28, Remark 3.1(i)], the following usual assumption when
dealing with equilibrium problems is a direct consequence of (A2) and (A5).
We mention it, as it will be employed in some intermediate results which do not
require the satisfaction of (A5).

(A0) f(x, x) = 0 for all x ∈ K.

Moreover, one usually augments (A1) with the following hypothesis:

(A1′) f(x, ·) is lower semicontinuous for all x ∈ K,

that is a consequence of (A3) and will be considered when the latter is not
required.

While (A1), (A2), (A3) and (A5) are standard assumptions in the related
literature, (A4) relaxes the standard convexity hypothesis usually imposed on
f in its second argument in the literature.

Some comments on these hypotheses follow (see also [28, Remark 3.1]).

rem:assumptions Remark 3 (i) We know by [28, Proposition 3.1] that if f satisfies (Ai) with
i = 0, 1, 1′, 2, 4, then S(K, f) 6= ∅ and is actually a singleton.

(ii) When f(x, y) = 〈T (x), y − x〉, with L-Lipschitz continuous T : K → Rn
(L > 0), relation (3.1) is fulfilled for η = L/2 (see [41]).

The relaxed-inertial proximal point type method we propose for solving (EP)
is the following.
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Algorithm 1 RIPPA-EP for Strongly Quasiconvex EP’s
ppa:ep

Step 0. (Initialization). Let x0, x−1 ∈ K, α, ρ ∈ [0, 1[ and {βk}k∈N ⊆]0,+∞[,
k = 0.

Step 1. Choose αk ∈ [0, α], set

yk = xk + αk(xk − xk−1), [extrapolation step] (3.2) step:extr01

and compute

zk ∈ argmin
x∈K

{
f(yk, x) +

1

2βk
‖yk − x‖2

}
. [proximal step] (3.3) step:sqcx1

Step 2. If yk = zk, then Stop. Otherwise, go to Step 3.

Step 3. Choose some relaxation parameter ρk ∈ [1− ρ, 1 + ρ], and update

xk+1 = (1− ρk)yk + ρkz
k. [relaxation step] (3.4) eq:relax.step

Step 4. Let k ← k + 1 and go to Step 1.

Next, we point out some observations regarding Algorithm 1.

rmk:EP1 Remark 4 (i) Step 1 in Algorithm 1 is actually a proximal point step with
inertial effects applied to the function f(yk, ·) at yk over the set K, for
every k ≥ 0. Recall that inertial effects that improve the performance of
proximal point algorithms were introduced by Alvarez and Attouch in [3]
and are based on the heavy ball method introduced by Polyak in [40]. Even
though the proximal operator is mostly considered in the literature with
respect to the whole underlying space, in papers such as [7, 17, 18] it is
taken on a certain set. The same algorithm has been proposed for solving
(EP) in [24] (of which we became aware only when this paper was com-
plete, hence the possible redundancies) as a relaxed inertial extragradient
method and [48], via an explicit discretization of a second-order dynam-
ical system, under different hypotheses that include the convexity of f in
the second variable. Even if this is not explicitly acknowledged, in these
works the proximal operator is considered with respect to the underlying
set of (EP), too. Other relaxed inertial proximal point type algorithms for
solving convex equilibrium problems were introduced in [23, 37].

(ii) In virtue of relations (3.2) and (3.4), K should be assumed to be an affine
subspace and not only as a closed and convex set. We note that the authors
in [2, 3, 16, 35] considered their algorithms on the whole space, while in
[24, 48] K was taken closed and convex, however the issue of staying
feasible after the extrapolation step does not seem to have been taken into
consideration.
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(iii) If α = 0, then Algorithm 1 reduces to the standard proximal point algo-
rithm in [28] to which a relaxation step (that vanishes when ρk = 1 for all
k ≥ 0) is added.

3.1 Convergence Analysis
sec:3-1

As a first result, we validate the stopping criterion of Algorithm 1 whose proof
is skipped as it is similar to the one of [28, Proposition 3.2].

stop:criteria Proposition 5 Let K be an affine subspace in Rn, {βk}k and {ρk}k sequences
of positive numbers, {xk}k, {yk}k and {zk}k the sequences generated by Algo-
rithm 1 and suppose that assumptions (A0), (A1), (A1′) and (A5) are valid. If
yk = zk, then xk+1 = yk is solution of (EP), i.e., {yk} = S(K, f).

The following result is the starting point of our analysis.

lmm:auxR1 Proposition 6 Let K be an affine subspace in Rn, {βk}k and {ρk}k be se-
quences of positive numbers, {xk}k, {yk}k and {zk}k be the sequences generated
by Algorithm 1 and suppose that assumptions (Ai) with i = 1, 1′, 2, 4, 5 hold.
Take {x} = S(K, f). Then for every k ≥ 0, at least one of the following in-
equalities holds

‖xk+1 − x‖2 ≤ ‖yk − x‖2 − 2− ρk
ρk
‖xk+1 − yk‖2 − ρk(γβk − 1)

2
‖zk − x‖2,

(3.5) conclusion:01

‖xk+1 − x‖2 ≤ ‖yk − x‖2 − 2− 4ηβk − ρk
ρk

‖xk+1 − yk‖2

− ρk(γβk − 1− 8ηβk)

2
‖zk − x‖2. (3.6) conclusion:02

Proof. First, note that the relaxation step (3.4) of Algorithm 1 yields

xk+1 − x = (1− ρk)(yk − x) + ρk(zk − x).

Then using identity (2.2), we have

‖xk+1 − x‖2 = (1− ρk)‖yk − x‖2 + ρk‖zk − x‖2 − ρk(1− ρk)‖yk − zk‖2,

or equivalently,

‖xk+1 − x‖2 − ‖yk − x‖2= ρk(‖zk − x‖2 − ‖yk − x‖2)− ρk(1− ρk)‖yk − zk‖2.

Furthermore, it follows from relation (2.1) that

‖zk − x‖2 − ‖yk − x‖2 = ‖zk − yk‖2 + 2〈zk − yk, yk − x〉.

Therefore, combining the last two inequalities we obtain

‖xk+1 − x‖2 − ‖yk − x‖2= 2ρk〈zk − yk, yk − x〉+ ρ2k‖yk − zk‖2. (3.7) eq:tm01
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On the other hand, for every k ≥ 0, step (3.3) and Lemma 1 yield

f(yk, zk)−max{f(yk, zk), f(yk, x)} ≤ λ

βk
〈zk − yk, x− zk〉

+
λ

2

(
λ

βk
− γ + λγ

)
‖zk − x‖2, ∀λ ∈ [0, 1].

We consider two cases.

(i) If f(yk, zk) ≥ f(yk, x), then

1

βk
〈zk − yk, zk − x〉 ≤ 1

2

(
λ

βk
− γ + λγ

)
‖zk − x‖2, ∀λ ∈ ]0, 1]

λ= 1
2=⇒ 〈zk − yk, zk − x〉 ≤ 1− γβk

4
‖zk − x‖2,

=⇒ 〈zk − yk, yk − x〉 ≤ −‖zk − yk‖2 +
1− γβk

4
‖zk − x‖2. (3.8) eq:TM1

Thus, combining relations (3.7) and (3.8), and then using the fact zk−yk =
(1/ρk)(xk+1 − yk), we obtain (3.5).

(ii) If f(yk, zk) < f(yk, x), then

0 ≤ λ

βk
〈zk − yk, x− zk〉+

λ

2

(
λ

βk
− γ + λγ

)
‖zk − x‖2

+ f(yk, x)− f(yk, zk)

≤ λ

βk
〈zk − yk, x− zk〉+

λ

2

(
λ

βk
− γ + λγ

)
‖zk − x‖2

+ f(zk, x) + η
(
‖zk − yk‖2 + ‖zk − x‖2

)
,

where the last inequality follows from assumption (A5). Furthermore,
since {x} = S(K, f) and f is pseudomonotone, f(zk, x) ≤ 0, so that

0 ≤ λ

βk
〈zk − yk, x− zk〉+

λ

2

(
λ

βk
− γ + λγ

)
‖zk − x‖2

+ η
(
‖zk − yk‖2 + ‖zk − x‖2

)
, ∀ λ ∈ [0, 1].

This implies

λ

βk
〈zk − yk, zk − x〉 ≤ λ

2

(
λ

βk
− γ + λγ

)
‖zk − x‖2 + η

(
‖zk − yk‖2 + ‖zk − x‖2

)
= η‖zk − yk‖2 +

λ

2

(
λ

βk
− γ + λγ +

2η

λ

)
‖zk − x‖2

λ= 1
2=⇒ 〈zk − yk, yk − x〉 ≤ (2ηβk − 1) ‖zk − yk‖2

+

(
2ηβk +

1− γβk
4

)
‖zk − x‖2. (3.9) eq:TM2
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Finally, combining (3.9) with (3.7) and using zk−yk = (1/ρk)(xk+1−yk),
the desired inequality (3.6) holds.

Therefore, for every k ≥ 0, we obtain (3.5) or (3.6).

rmk:bound Remark 7 (i) Observe that

ρk(γβk − 1− 8ηβk)

2
> 0 ⇐⇒ βk >

1

γ − 8η
.

By this and since ρk > 0 for every k ≥ 0, we have ρk(γβk−1) ≥ ρk(γβk−
1− 8ηβk) > 0. Hence, the last terms in the right-hand side of inequalities
(3.5) and (3.6) are nonnegative, i.e.,

ρk(γβk − 1)

2
‖zk − x‖2 ≥ 0 and

ρk(γβk − 1− 8ηβk)

2
‖zk − x‖2 ≥ 0.

(ii) Since {ρk}k ⊆ [1− ρ, 1 + ρ], we have

2− 4ηβk − ρk
ρk

≥ 2− 4ηβk − (1 + ρ)

1 + ρ
=

1− 4ηβk − ρ
1 + ρ

> 0,

if and only if there exists ε > 0 such that βk < ε ≤ 1/(4η) and 0 ≤ ρ ≤
1− 4ηε. So,

1− 4ηβk − ρ
1 + ρ

≥ 1− 4ηε− ρ
1 + ρ

≥ 0 ⇐⇒ 0 ≤ ρ ≤ 1− 4ηε.

As a consequence of the previous remark, and in order to facilitate the
convergence analysis of our proposed algorithm, we assume that the parameter
sequences {βk}k and {ρk}k satisfy the following hypotheses: there exists ε > 0
such that

(C1) 1
γ−8η < βk < ε ≤ 1

4η for every k ≥ 0;

(C2) 0 < 1− ρ ≤ ρk ≤ 1 + ρ with 0 ≤ ρ ≤ 1− 4ηε.

We immediately note the following connections of these hypotheses with the
conditions required for the convergence of the standard proximal point algorithm
for solving (EP) proposed in [28].

rem:link Remark 8 (i) If we consider ε = 1
4η , then ρ = 0, ρk = 1 for all k ≥ 0

and (C1) becomes 1
γ−8η < βk <

1
4η for every k ≥ 0, which is actually [28,

Assumption (A6)] for the usual proximal point algorithm for pseudomono-
tone equilibrium problems. Note also that the hypotheses considered in [48,
Section 5] or [24, Section 3] for ensuring the convergence of Algorithm 1
in the convex case are not significantly less complicated than the ones im-
posed in this paper.
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(ii) Assumption (C1) (in particular, [28, Assumption (A6)]) is related to (MVI)
and (IMVI) and their variants, when the involved function ϕ is noncon-
vex and, as we explained before, this assumption mediates the “conflict”
between the operator T and the function ϕ (e.g. in Example 25), which
in general could lead to equilibrium problems without solutions, even when
they are defined over convex compact sets.

As a consequence of Proposition 6 and Remark 7(i), we have the following
statement.

prop:auxR1 Corollary 9 Let K be an affine subspace in Rn, f such that assumptions (Ai)
with i = 1, 1′, 2, 4, 5 hold, {αk}k, {βk}k and {ρk}k sequences of positive numbers
such that assumption (C1) holds and {xk}k and {yk}k the sequences generated
by Algorithm 1. Taking {x} = S(K, f), then for every k ≥ 0, at least one of the
following inequalities holds

‖xk+1 − x‖2 ≤ ‖yk − x‖2 − 2− ρk
ρk
‖xk+1 − yk‖2, (3.10) conclusion:T1

‖xk+1 − x‖2 ≤ ‖yk − x‖2 − 2− 4ηβk − ρk
ρk

‖xk+1 − yk‖2. (3.11) conclusion:T2

The following result will be useful later.

prop:01 Proposition 10 Let K be an affine subspace in Rn, f such that assumptions
(Ai) with i = 1, 1′, 2, 4, 5 hold, {αk}k, {βk}k and {ρk}k sequences of positive
numbers such that assumption (C1) holds and {xk}k and {yk}k the sequences
generated by Algorithm 1. Take {x} = S(K, f) and ϕk := ‖xk − x‖2 for every
k ≥ 0. Then, for every k ≥ 0, at least one of the following inequalities holds

ϕk+1 − ϕk − αk(ϕk − ϕk−1) +
2− ρk
ρk
‖xk+1 − yk‖2 ≤ (α2

k + αk)‖xk − xk−1‖2,

(3.12) eq:5

ϕk+1 − ϕk − αk(ϕk − ϕk−1) +
2− 4ηβk − ρk

ρk
‖xk+1 − yk‖2

≤ (α2
k + αk)‖xk − xk−1‖2. (3.13) eq:6

Proof. Observe that using relation (3.2), identity (2.1) and the definition of
ϕk, we have

‖yk − x‖2 = ‖xk + αk(xk − xk−1)− x‖2

= ‖xk − x‖2 + α2
k‖xk − xk−1‖2 + 2αk〈xk − x, xk − xk−1〉

= ϕk + α2
k‖xk − xk−1‖2 + αk(ϕk + ‖xk − xk−1‖2 − ϕk−1)

= ϕk + αk(ϕk − ϕk−1) + (α2
k + αk)‖xk − xk−1‖2. (3.14) for:first-eq

Hence, the desired inequalities (3.12) and (3.13) follow directly by replacing
(3.14) in (3.10) and (3.11), respectively.

Our first main result, which shows that the sequence generated by Algorithm
1 converges to a solution of problem (EP) is given below.
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conver:solution Theorem 11 Let K be an affine subspace in Rn, f be such that assumptions
(Ai) with i = 1, 2, 3, 4, 5 hold, {αk}k, {βk}k and {ρk}k be sequences of positive
numbers such that assumptions (Ci) with i = 1, 2 hold, {xk}k, {yk}k and {zk}k
be the sequences generated by Algorithm 1. If

∞∑
k=0

αk‖xk − xk−1‖2 < +∞, (3.15) eq:th:main.01

then the following assertions hold

(a) for {x} = S(K, f), the limit limk→∞ ‖xk − x‖ exists and

lim
k→+∞

‖xk+1 − yk‖2= lim
k→+∞

‖zk − yk‖2= 0; (3.16) eq:16

(b) the sequences {xk}k, {yk}k and {zk}k converge to the same limit, that is
a solution to (EP).

Proof. (a): Defining δk = (α2
k + αk)‖xk − xk−1‖2, k ≥ 0, and using Propo-

sition 10 we observe that condition (2.6) in Lemma 2 is fulfilled with sk+1 =
((2− ρk)/ρk) ‖xk+1 − yk‖2 or sk+1 = ((2− 4ηβk − ρk)/ρk)‖xk+1 − yk‖2. In
addition, from {αk}k ⊂ [0, 1[ and condition (3.15) follows

+∞∑
k=0

δk =

+∞∑
k=0

(α2
k + αk)‖xk − xk−1‖2 ≤ 2

+∞∑
k=0

αk‖xk − xk−1‖2 < +∞.

Hence, we infer from this and Lemma 2(b) that limk→+∞ ϕk exists. Thus for
{x} = S(K, f), we have that limk→∞‖xk − x‖ exists, which, in particular,
guarantees the boundedness of the sequence {xk}k. Likewise, condition (3.15)
and Lemma 2(a) yield

∑∞
k=0 sk+1 < +∞, and so, sk+1 → 0 as k → +∞.

From this and (Ci), i = 1, 2, we conclude that limk→+∞‖xk+1 − yk‖2= 0, and
since xk+1 − yk = ρk(zk − yk) for all k ≥ 0 by relation (3.4), it follows that
limk→+∞‖zk − yk‖2= 0.

(b): By part (a), the sequence {xk}k is bounded, hence it has cluster points.
Let x̂ ∈ K be one of them. Then, there exists a subsequence {xkl}l of {xk}k
such that xkl → x̂ as l → +∞. Applying (3.16) to {xkl}l and using that
liml→+∞ xkl = x̂, we conclude that

lim
l→+∞

ykl = lim
l→+∞

zkl = x̂. (3.17) eq:sub1

It follows from (3.3) that for any k ≥ 0 one has

f(yk, zk) +
1

2βk
‖yk − zk‖2 ≤ f(yk, x) +

1

2βk
‖yk − x‖2, ∀ x ∈ K

=⇒ f(yk, zk) ≤ f(yk, x) +
1

2βk
‖yk − x‖2, ∀ x ∈ K.
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Take x = λy + (1− λ)x̂ with y ∈ K and λ ∈ [0, 1]. Then,

f(yk, zk) ≤ f(yk, λy + (1− λ)x̂) +
1

2βk
‖λ(yk − y) + (1− λ)(yk − x̂)‖2

≤ max{f(yk, y), f(yk, x̂)} − λ(1− λ)γ

2
‖y − x̂‖2

+
λ

2βk
‖yk − y‖2 +

(1− λ)

2βk
‖yk − x̂‖2 − λ(1− λ)

2βk
‖y − x̂‖2

= max{f(yk, y), f(yk, x̂)}+
λ

βk
〈x̂− yk, y − x̂〉+

1

2βk
‖yk − x̂‖2

+
λ

2

(
λ

βk
− γ + λγ

)
‖y − x̂‖2, ∀ y ∈ K, ∀ λ ∈ [0, 1].

Take β̂ := 1/(γ − 8η). Replace k by k` in the previous inequalities. Then,
taking lim sup`→+∞ and using (3.17) and assumption (A3), we have

0 = f(x̂, x̂) ≤ lim inf
`→+∞

f(yk` , zk`) ≤ lim sup
`→+∞

f(yk` , zk`)

≤ max{f(x̂, y), 0}+
λ

2

(
λ

β̂
− γ + λγ

)
‖y − x̂‖2, ∀ y ∈ K, ∀ λ ∈ [0, 1].

Since γ > 0, we can take λ < (β̂γ)/(1 + β̂γ) in such a way that λ/β̂−γ+λγ < 0.
Thus

0 ≤ max{f(x̂, y), 0} = f(x̂, y), ∀ y ∈ K\{x̂}.

Therefore, x̂ ∈ S(K, f).
Finally, since f is strongly quasiconvex in its second argument, S(K, f) is a

singleton, invoking Opial’s Lemma (cf. [5, Lemma 2.39]), the whole sequence
{xk}k converges to {x} = S(K, f), which completes the proof.

choose:alphak Remark 12 A sufficient condition for the fulfillment of (3.15) is to choose the
inertial parameter αk as follows: for some θ ∈]0, 1[,

αk =

{
min

{
θk

||xk−xk−1||2 , α
}
, if xk 6= xk−1,

α, otherwise.

In the next section, we provide another sufficient condition that connects the
relaxation and Lipschitz condition parameters.

As consequences of Theorem 11, we obtain some particular cases. The first
one discusses the convergence of Algorithm 1 when α = 0 (i.e. without the
inertial step). Note that its convergence statement does not require K to be an
affine subspace when ρk ∈ [0, 1].
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coro:rppa-EP Corollary 13 Let K be an affine subspace in Rn, f such that assumptions
(Ai) with i = 1, 2, 3, 4, 5 hold, and {αk}k, {βk}k and {ρk}k sequences of positive
numbers such that assumptions (Ci) with i = 1, 2 hold. Then, for the sequence
{xk}k generated as follows: choose x0 ∈ K and for k ≥ 0 do

(RPPA-EP)

{
zk ∈ argmin

{
f(xk, x) + 1

2βk
‖xk − x‖2 : x ∈ K

}
xk+1 = (1− ρk)xk + ρkz

k,
(3.18) rppa

we have

(a)

+∞∑
k=0

2− ρk
ρk
‖xk+1 − xk‖2< +∞ and

+∞∑
k=0

2− 4ηβk − ρk
ρk

‖xk+1 − xk‖2 < +∞;

(b) when {x} = S(K, f), limk→+∞‖xk−x‖ exists, and hence {xk}k is bounded;

(c) the sequence {xk}k generated by (3.18) converges to a solution of (EP) as
k → +∞.

Let us now assume that ρ = α = 0, that yields ρk = 1 and αk = 0 for every
k ≥ 0. In this case we obtain a variant of [28, Theorem 3.1].

Corollary 14 Let K be a closed and convex set in Rn, f such that assumptions
(Ai) with i = 1, 2, 3, 4, 5 hold and the sequence {βk}k such that assumption (C1)
holds. Let {xk}k be the sequence generated by the following iterative rule, for
k ≥ 0,

(PPA-EP)


x0 ∈ K,

xk+1 ∈ argmin

{
f(xk, x) +

1

2βk
‖xk − x‖2 : x ∈ K

}
.

Then {xk}k converges to {x} = S(K, f) as k → +∞.

Proof. Take ε = 1/(4η) and use Remark 8.
Another consequence of Theorem 11 is [18, Theorem 3.1], which establishes

the convergence of the inertial relaxed proximal point algorithm for minimizing
strongly quasiconvex functions.

cor:ppa Corollary 15 Let K be a convex and closed set in Rn, h : Rn → R a lower
semicontinuous and strongly quasiconvex function on K with modulus γ > 0,
{αk}k and {βk}k sequences of positive numbers bounded away from 0 and {ρk}k
a sequence of positive numbers such that assumption (C2) holds. Let us consider
the problem

min
x∈K

h(x). (3.19) min:problem

If
∑∞
k=0 αk‖xk − xk−1‖2 < +∞, then the sequence {xk}k, generated by

Algorithm 1 applied to the bifunction fh : K ×K → R, fh(x, y) := h(y)− h(x),
x, y ∈ K, converges to the unique minimizer of h on K. Moreover, the sequences
{yk}k and {zk}k converge both to the same limit.

15



Proof. It can be immediately verified that assumptions (A2) and (A4) hold for
fh. Furthermore, since h is lower semicontinuous, fh is lower semicontinuous
on its first argument and upper semicontinuous on its second argument, so
assumptions (A1) and (A1′) hold, which easily entails the validity of (A3).
Finally, by definition of fh, we have

fh(x, z)− fh(x, y)− fh(y, z) = h(z)− h(x)− (h(y)− h(x))− (h(z)− h(y)) = 0,

i.e., assumption (A5) holds with η = 0, and hence assumption (C1) is valid as
well since γ > 0. Hence, all assumptions needed for our previous results are
valid in this case. Therefore, it follows from Theorem 11 that {xk}k, {yk}k and
{zk}k converge to the unique optimal solution of (3.19).

Remark 16 In particular, considering ρ = α = 0, i.e., ρk = 1 and αk = 0
for every k ≥ 0 in Algorithm 1, Corollary 15 collapses to [33, Theorem 15] (by
taking ε = 1/(4η) and using Remark 8).

3.2 Sufficient Conditions
sec:3-2

In order to provide other sufficient hypotheses for the convergence of the se-
quences generated by Algorithm 1 to the solution of (EP) by ensuring the ful-
filment of (3.15), additionally to assumptions (Ai) with i = 1, 2, 3, 4, 5 and (Ci)
with i = 1, 2, we consider the following condition

(C3) the sequence {αk}k is nondecreasing and there exists α = ξ/(2 + ξ) such
that

0 ≤ αk ≤ αk+1 ≤ α < α < 1, ∀ k ≥ 0, (3.20) eq:alpha

where

ξ :=
1− 4ηε− ρ

1 + ρ
> 0. (3.21) lower.b

To this end, we prove the following auxiliary result. Note that in its proof
we “unify” the statements given in terms of “at least one inequality holds” that
begin with Proposition 6.

prop:02 Proposition 17 Let K be an affine subspace in Rn, f such that assumptions
(Ai) with i = 1, 1′, 2, 4, 5 hold, {αk}k, {βk}k and {ρk}k sequences of positive
numbers such that assumptions (Ci) with i = 1, 2 hold, and {xk} the sequence
generated by Algorithm 1. Take {x} = S(K, f) and ϕk := ‖xk − x‖2 for every
k ≥ 0. Then, for every k ≥ 0, we have

ϕk+1 −ϕk −αk(ϕk −ϕk−1)− νk‖xk − xk−1‖2≤ ξ(αk − 1)‖xk+1 − xk‖2, (3.22) eq:20

where νk := (1 + ξ)α2
k + (1− ξ)αk and ξ is defined by (3.21).
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Proof. To show (3.22) it is enough to bound {‖xk+1 − yk‖2}k from below in
relation (3.12) (and (3.13)) of Proposition 10. For k ≥ 0, a direct calculation
using definition of yk and the Cauchy-Schwartz inequality yield

‖xk+1 − yk‖2 = ‖xk+1 − xk‖2 + α2
k‖xk − xk−1‖2 − 2αk〈xk+1 − xk, xk − xk−1〉

≥ ‖xk+1 − xk‖2 + α2
k‖xk − xk−1‖2 − 2αk‖xk+1 − xk‖ ‖xk − xk−1‖.

Using the well-known identity 2pq ≤ p2 + q2 with p = ‖xk+1 − xk‖ and
q = ‖xk − xk−1‖, we conclude

‖xk+1 − yk‖2 ≥ (1− αk)‖xk+1 − xk‖2 + (α2
k − αk)‖xk − xk−1‖2. (3.23) eq:d1

Moreover, observe that assumptions (C1) and (C2) yield

2− ρk
ρk

≥ 2− 4ηβk − ρk
ρk

>
1− 4ηε− ρ

1 + ρ
= ξ > 0.

Finally, replacing (3.23) in (3.12), and taking into account the latter bound,

ϕk+1 − ϕk − αk(ϕk − ϕk−1) ≤
[
(1 + ξ)α2

k + (1− ξ)αk
]
‖xk − xk−1‖2

+ ξ(αk − 1)‖xk+1 − xk‖2,

which proves relation (3.22).
Our second main result, which provides another sufficient condition for the

convergence of Algorithm 1, is given below.

thM:main3 Theorem 18 Let K be an affine subspace in Rn, f such that assumptions (Ai)
with i = 1, 2, 3, 4, 5 hold, {αk}k, {βk}k and {ρk}k sequences of positive numbers
such that assumptions (Ci) with i = 1, 2, 3 hold, and {xk}k, {yk}k and {zk}k
the sequences generated by Algorithm 1. Then,

∞∑
k=1

‖xk − xk−1‖2 < +∞. (3.24) eq:sum

As a consequence, the sequences {xk}k, {yk}k and {zk}k converge to {x} =
S(K, f).

Proof. Define µ0 := (1− α0)ϕ0 ≥ 0 and

µk := ϕk − αkϕk−1 + νk‖xk − xk−1‖2, ∀ k ≥ 1. (3.25) eq:mu_k

Since ϕk ≥ 0 and αk ≤ αk+1 for all k ≥ 0, it follows from (3.22) and (3.25) that

µk+1 − µk =
(
ϕk+1 − ϕk − αk(ϕk − ϕk−1)− νk‖xk − xk−1‖2

)
+ νk+1‖xk+1 − xk‖2

≤ (ξ(αk − 1) + νk+1) ‖xk+1 − xk‖2

=
(
(1 + ξ)α2

k+1 + (1− ξ)αk+1 + ξ(αk − 1)
)
‖xk+1 − xk‖2

≤
(
(1 + ξ)α2

k+1 + αk+1 − ξ
)
‖xk+1 − xk‖2. (3.26) eq:23
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Now, as αk ∈ [0, 1[ (hence α2
k ≤ αk) for every k ≥ 0, using (3.20), we have

(1 + ξ)α2
k+1 + αk+1 − ξ ≤ (2 + ξ)αk+1 − ξ ≤ (2 + ξ)α− ξ < 0.

This implies that µk+1 ≤ µk for all k ≥ 0, consequently, the sequence {µk}k is
non increasing and bounded above by µ0 = (1−α0)ϕ0. So, equation (3.25) and
the monotonicity of {µk}k yield

µ0 ≥ µk = ϕk − αkϕk−1 + νk‖xk − xk−1‖2 ≥ ϕk − αkϕk−1.

From this and (3.20), we recursively obtain

ϕk ≤ αϕk−1 + µ0 ≤ · · · ≤ αkϕ0 + µ0

k−1∑
j=0

αj ≤ αkϕ0 +
µ0

1− α
.

By using relation (3.26), the above inequality, and taking into account that
µk+1 ≥ −αϕk, we have

k∑
j=0

‖xj+1 − xj‖2 ≤ 1

ξ − (2 + ξ)α
(µ0 − µk+1) ≤ 1

ξ − (2 + ξ)α
(µ0 + αϕk)

≤ 1

ξ − (2 + ξ)α

(
µ0 + α

(
αkϕ0 +

µ0

1− α

))
=

1

ξ − (2 + ξ)α

(
µ0

1− α
+ αk+1ϕ0

)
. (3.27) eq:rate

Hence, taking k → +∞, we obtain

+∞∑
k=0

‖xk+1 − xk‖2 ≤ 1

ξ − (2 + ξ)α

µ0

1− α
< +∞,

which proves (3.24). The other conclusions follow directly from (3.24) and
Theorem 11.

plans Remark 19 The above result extends [35, Theorem 3.2] and [18, Theorem 4.1]
from minimization problems to pseudomonotone equilibrium problems involving
strongly quasiconvex functions.

As a consequence of Theorem 18, we obtain the following result, which pro-
vides an estimate for the number of iterations necessary for Algorithm 1 to reach
a solution of (EP).

numer:iter Corollary 20 Consider the hypotheses of Theorem 18. For {x} = S(K, f) and
any positive integer k, there exists i ∈ {0, . . . , k} such that

‖xi+1 − xi‖ ≤ 1√
k
C, (3.28) eq:MT1
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where C :=

√
1 + α− α2

(1− α) [ξ − (2 + ξ)α]
‖x0−x‖. Moreover, given a tolerance ‖zk−

yk‖ < ε, Algorithm 1 finds a solution of (EP) after performing at most

(1 + α)(1 + α− α2)

(1− α) [ξ − (2 + ξ)α]

‖x0 − x‖2

ε2
,

iterations.

Proof. Indeed, since α ∈]0, 1[, from (3.27) we have

k∑
i=0

||xi − xi−1||2 ≤ 1

ξ − (2 + ξ)α

(
µ0

1− α
+ αk+1ϕ0

)
≤ 1 + α− α2

(1− α) [ξ − (2 + ξ)α]
‖x0 − x‖2. (3.29) eq:130

Choosing some i ∈ {0, 1, . . . , k} in (3.29), we deduce (3.28).
Since ‖xk+1 − yk‖ ≤ ‖xk+1 − xk‖ + αk‖xk − xk−1‖ and ρk‖zk − yk‖ =

‖xk+1 − yk‖ by (3.2), the last statement follows directly from (3.28).
We conclude this section by discussing the choice of the parameters involved

in our analysis.

rem:disc Remark 21 (i) Recall that the idea behind the proximal point algorithm is
the regularization of a possibly ill-conditioned problem 0 ∈ T (x) (where
T is a nonlinear operator, for instance, the subdifferential of a convex
function) by replacing it with a sequence of well-conditioned subproblems of
the form 0 ∈ βkT (x)+x−xk, k ≥ 0. For any k ≥ 0 the choice of βk in each
specific instance must be a trade-off between numerical stability and fast
progress of the algorithm, because if βk is very small, the subproblem is very
well-conditioned, but the progress of the algorithm slow because xk remains
very close to xk−1. On the other hand, when βk is large, the algorithm
advances fast (in the limit, when βk approaches +∞, the regularization
term becomes negligible, and we solve the problem in one iteration), but
when the problem is ill-conditioned, this entails high numerical instability.
Therefore, in the proximal type methods we consider for solving equilibrium
problems the choice of βk must adhere to the trade-off between numerical
stability and fast progress. This is ensured by (C1).

On the other hand, the choice of the parameters of the inertial and relax-
ation parameters {αk}k and {ρk}k is controlled by the input parameters
ρ, α, and the Lipschitz-type constant η, as can be observed in (C2) and
(C3).

(ii) Note that the sequence {βk}k can be updated by using in each iteration a
line-search procedure or a self-adaptive strategy. When employing them,
there is no need to know the value of the Lipschitz-type condition parameter
(which can be challenging to calculate in many situations), but the price

19



to pay is that an extra gradient step is needed. For further details on this
approach, see, for instance, [24, 41] in the convex case and [53] in the
quasiconvex setting (without inertial and relaxation effects).

(iii) Relaxation techniques are another ingredient in the formulation of algo-
rithms in continuous optimization because they provide more flexibility to
the output of an iterative scheme (see [5]) and have the property of speed-
ing up the algorithm in a similar manner to the effect of inertial steps.
Without using inertia, over-relaxation (i.e. ρk > 1 when k ≥ 0) provides
a natural way of speeding up algorithms. The interplay of the inertial and
relaxation parameters plays a crucial role in the convergence analysis of
our proposed algorithm. The choice of the values of α and ρ (given as
inputs to the algorithm) is thus crucial, as they need to satisfy condition
(C3).

4 Applications and Numerical Experiments
sec:4

In this section, we discuss some equilibrium problems involving bifunctions that
are strongly quasiconvex in the second variable and fulfill the hypotheses guar-
anteeing the convergence of the proposed algorithm.

4.1 Strongly quasiconvex ratios

Given a subset K ⊆ Rn, and functions h : Rn → R and g : Rn → R such that
K ∩ dom h 6= ∅ and 0 /∈ g(K), consider the fractional minimization problem
given by

min
x∈K

ϕ(x) = min
x∈K

h(x)

g(x)
. (FMP) FMP

This problem has been intensively studied in the literature (see [10, 44, 46]
among others) due to its concrete applications in several fields of mathematical
sciences as well as in economics, for instance, in the theory of productivity as
maximization of return/risk or profit/cost and minimization of cost/time among
others.

In general, problem (FMP) is not convex. Indeed, if, for instance, h is convex
and g is affine, then ϕ : K → R, ϕ = h/g, is semistrictly quasiconvex, and the
same happens when h is nonnegative and convex, and g is positive and concave,
see [10, Theorem 2.3.8]. Sufficient conditions for guaranteeing that ϕ is strongly
quasiconvex are given below.

prop:frac Proposition 22 (cf. [29]) When h is strongly convex with modulus γ > 0, g is
positive and bounded from above by M > 0, and one of the following hypotheses
holds

(a) g is affine;

(b) h is nonnegative on domh and g is concave;
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(c) h is nonpositive on domh and g is convex,

then ϕ : K → R, ϕ = h/g, is strongly quasiconvex with modulus γ′ = γ/M > 0.

A consequence of this statement follows.

quad:frac Corollary 23 (cf. [29]) Let A,B ∈ Rn×n, a, b ∈ Rn and α, β ∈ R, h(x) =
1
2 〈Ax, x〉+〈a, x〉+α and g(x) = 1

2 〈Bx, x〉+〈b, x〉+β. Take K = {x ∈ Rn : m ≤
g(x) ≤M}, with 0 < m < M , and ϕ(x) = h(x)/g(x), with x ∈ K. Suppose that
A is a positive definite matrix, and λmin(A) is its smallest eigenvalue. If any of
the following conditions holds

(a) B = 0 (the null matrix);

(b) h is nonnegative on K and B is negative semidefinite;

(c) h is nonpositive on K and B is positive semidefinite,

then ϕ is strongly quasiconvex with modulus γ′ = λmin(A)/M > 0.

In the following example, we present families of problems of type (IMVI)
for which assumptions (Ai) with i = 0, 1, 2, 3, 4, 5 are satisfied. This example
already appears in [29], but we include it here for completeness.

ex:IMVI Example 24 (cf. [29]) Let A,B ∈ Rn×n be matrices, a, b, c ∈ Rn and α, β ∈ R.
Let us consider K := {x ∈ Rn : m ≤ 〈c, x〉 + α ≤ M} with 0 < m < M , and
F : K → Rn and ϕ : K → R be the operator and function defined by

F (x) :=
1

〈c, x〉+ α
(Ax+ a), ϕ(x) :=

1
2 〈Bx, x〉+ 〈b, x〉+ β

〈c, x〉+ α
. (4.1) ex:operators

By taking f : K ×K → R given by

f(x, y) :=

〈
x,

Ay + a

〈c, y〉+ α
− Ax+ a

〈c, x〉+ α

〉
+

1
2 〈By, y〉+ 〈b, y〉+ β

〈c, y〉+ α
−

1
2 〈Bx, x〉+ 〈b, x〉+ β

〈c, x〉+ α
, (4.2) equi:bifunction

(IMVI) reduces to an equilibrium problem (EP).
Let us check that the bifunction f defined in (4.2) satisfies assumptions (Ai)

with i = 0, 1, 2, 3, 4, 5 under mild hypotheses. Indeed, (Ai) with i = 0, 1, 3 are
straightforward while (A2) follows from the monotonicity of F .

For (A4): note that f can be rewritten as

f(x, y) = 〈x, F (y)− F (x)〉+ ϕ(y)− ϕ(x)

=
1
2 〈By, y〉+ (x>A+ b>)y + a>x+ β

〈c, y〉+ α
− x>(Ax+ a)

〈c, x〉+ α
−

1
2 〈Bx, x〉+ 〈b, x〉+ β

〈c, x〉+ α
.
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Hence, in virtue of Corollary 23, for any x ∈ K the function f(x, ·) is
strongly quasiconvex on K when the matrix B is positive definite, and its mo-
dulus of strong quasiconvexity is γ = λmin(B)/M > 0.

For (A5): Since F is continuously differentiable on K, it is Lipschitz-continuous
on K. Let us denote by L > 0 its Lipschitz constant. Then, for every x, y, z ∈ K,

f(x, y) + f(y, z)− f(x, z) = 〈x− y, F (y)− F (z)〉

≥ −
√
L

2
‖x− y‖2 − 1

2
√
L
‖F (y)− F (z)‖2

≥ −
√
L

2
(‖x− y‖2 + ‖y − z‖2),

i.e., (A5) holds.
Finally, for (C1) and (C2), we simply take the matrix B having its smallest

eigenvalue large enough to satisfy (A6). This can be done because η depends on
A, a, c, α, but not on B.

In the following example, we present families of problems that satisfy our
assumptions (Ai) with i = 0, 1, 2, 3, 4, 5. This new example will be used for the
numerical experiments below.

ex:MVI Example 25 Let B ∈ Rn×n, b, c ∈ Rn and α, β ∈ R, K := {x ∈ Rn : m ≤
〈c, x〉+α ≤M} where 0 < m < M , T : K → K be an operator and the function
ϕ : K → R defined as in (4.1). Taking f : K ×K → R given by

f(x, y) := 〈T (x), y − x〉+
1
2 〈By, y〉+ 〈b, y〉+ β

〈c, y〉+ α
−

1
2 〈Bx, x〉+ 〈b, x〉+ β

〈c, x〉+ α
, (4.3) equi:bifunction2

problem (MVI) reduces to an equilibrium problem.
Let us check that bifunction f defined in (4.3) satisfies assumptions (Ai) with

i = 0, 1, 2, 3 under mild hypotheses. Indeed, again the verification of assumptions
(Ai) with i = 0, 1, 3, is straightforward; if T is monotone, then (A2) holds and
if T is L-Lipschitz-continuous, then (A5) follows from Remark 3(ii).

For (A4): note that f can be rewritten as

f(x, y) = 〈T (x), y − x〉+ ϕ(y)− ϕ(x)

= 〈T (x), y〉+
1
2 〈By, y〉+ 〈b, y〉+ β

〈c, y〉+ α
− 〈T (x), x〉 −

1
2 〈Bx, x〉+ 〈b, x〉+ β

〈c, x〉+ α

=
y>(T (x)c> + 1

2B)y + (b+ αT (x))>y + β

〈c, y〉+ α
− 〈T (x), x〉 −

1
2 〈Bx, x〉+ 〈b, x〉+ β

〈c, x〉+ α
.

Take an x ∈ K such that T (x)>c 6= 0. Then, by Brauer’s Eigenvalue The-
orem (see [8]), the matrix T (x)c> has rank 1 and its only nonzero eigenvalue
is λ 6=0(x) = T (x)>c. Hence, in virtue of Proposition 22, for any x ∈ K the
function f(x, ·) is strongly quasiconvex on K when the matrix T (x)c>+ (1/2)B
is positive definite for all x ∈ K.

Finally, for (C1) and (C2), we simply take b ∈ int K∗ and the matrix B
such that its smallest eigenvalue is large enough to satisfy (C1) and (C2).
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4.2 Numerical Experiments

In order to stress the applicability of the algorithms proposed in this paper
to equilibrium problems for which until recently there have been no reliable
iterative solving methods we present some computational results obtained in
matlab 2019b-Win64 on a Dell Latitude 5420 Laptop with Windows 11 Pro
and an Intel Core i7 1165G7 CPU with 2.80 GHz and 32GB RAM by imple-
menting the relaxed-inertial proximal point method investigated in this work
Algorithm 1 (RIPPA-EP) and its non-inertial version (3.18) (RPPA-EP), and,
for comparison, the “pure” proximal point method [28, Algorithm 1] (PPA-EP).
The examples treated below exhibit situations where the methods proposed in
this paper have a superior performance (in terms of the number of necessary
iterations and CPU time until reaching the solution to (EP)) to their “pure”
proximal point counterpart. As stopping criteria of the proposed algorithms we
considered the situations when the norm, in particular the absolute value, of the
difference between yk and zk, respectively xk and zk in the non-inertial case, and
between two consecutive members of {xk}k in the “pure” proximal point case is
not larger than an a priori given error ε > 0, i.e., we stop when ‖zk−yk‖ < ε for
(RIPPA-EP), ‖zk−xk‖ < ε for (RPPA-EP), and ‖xk−xk−1‖ < ε for (PPA-EP).

We begin with two simpler equilibrium problems, followed by the fractional
one considered in Example 25.

ex1 Example 26 Take p, q ∈ N, p, q > 1, and the bifunction f : R× R→ R,

f(x, y) := p
(

max{
√
|y|, (y − q)2 − q}

)
−p
(

max{
√
|x|, (x− q)2 − q}

)
+x(y−x).

(4.4) bifunction

We solve (EP) with Algorithm 1 and [28, Algorithm 1]. Its solution set
S(R, f) depends on the values of p, q > 1.

Assumptions (A1) and (A3) trivially hold by the continuity of f , while (A5)
holds when, for instance, η = 1/2. Taking x, y ∈ K one has

f(x, y) + f(y, x) = x(y − x) + y(x− y) = −(y − x)2 ≤ 0,

hence f is monotone on K, i.e. (A2) holds as well.
Regarding (A4), for all x ∈ K, since the functions y 7→ x(y − x) and

y 7→ p
(

max{
√
|y|, (y − q)2 − q}

)
are increasing on [0,+∞[, their sum is in-

creasing too, so that f is quasiconvex in its second argument by, for instance,
[19, Proposition 4.9]. Furthermore, f is strongly quasiconvex in its second argu-
ment as the maximum of two strongly quasiconvex functions. Indeed, for every
q ∈ N, taking δ > 0 to be larger than the positive solution of the equation
p(y − q)2 −

√
|y| = pq, the function y 7→ p

√
|y| + x(y − x) is strongly quasi-

convex on [0, δ] with modulus γ = 1/(2
√
δ3) > 0 by [28, Example 4.2], while

the function y 7→ (y − q)2 − q + x(y − x) is strongly convex, hence also strongly
quasiconvex on [δ,+∞[. Therefore, f is strongly quasiconvex on [0,+∞[ and
assumption (A4) holds. Also, as q > 1, the functions

√
|y| and (y− q)2− q take

the same value twice on [0,+∞[, so

y 7→ pmax{
√
|y|, (y − q)2 − q}+ x(y − x) = p((y − q)2 − q) + x(y − x),
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is strongly convex on ]−∞, 0], hence also strongly quasiconvex. Therefore, (A4)
holds when K = R. Finally, p, q > 1 have to be chosen such that γ satisfies
conditions (C1) and (C2), while {αk}k needs to fulfill (C3). Note that one
can multiply the last term of (4.4) by a parameter t > 0 without affecting the
mentioned properties of the considered problem.

We performed several experiments in matlab for various constellations of
the involved elements, that confirm the conclusions reached in [2, 3, 24] for the
convex case, namely that a clever choice of the parameters makes the relaxed-
inertial proximal point algorithms faster and cheaper to use than their “pure”
proximal point counterparts.

For instance, when q = 99, ε = 1/4, η = 1/2, ρ = 2/5, ε = 10−7, α = 1/29−ε
(as α = 1/29 by (3.21)), αk = α − 1/(10 + 7k), βk = 1/(8k + 4), k ≥ 0, and
the starting points x0 = 8297 and x−1 = 3210, taking ρk = (1 − 1/k)(1 −
ρ) + (1/k)(1 + ρ), k ≥ 0, made Algorithm 1 (RIPPA-EP) deliver the solution
x̄ = 88.5879 to (EP) in 20 iterations that required 0.6232 seconds, while [28,
Algorithm 1] (PPA-EP) provided x̄ in 123 steps, after 1.3024 seconds. Moreover,
when ρk = (1/k)(1 − ρ) + (1 − 1/k)(1 + ρ), k ≥ 0, Algorithm 1 (RIPPA-EP)
remained faster and cheaper than the standard proximal point method as it
delivered x̄ after 38 iterations, in 0.9610 seconds. Improving the accuracy to
ε = 10−9, Algorithm 1 (RIPPA-EP) reached x̄ in 30 iterations and 0.8728
seconds with the first choice of the relaxation parameters, and in 53 iterations
and 1.3601 seconds with the second one, while [28, Algorithm 1] (PPA-EP)
required 124 iterations and 1.9781 seconds. These results are summarized in
Table 1.

Algorithm RIPPA-EP(a) RIPPA-EP(b) [28, PPA-EP]
ε = 10−7

Time (s) 0.6232 0.961 0.8727
Iterations 20 38 123

ε = 10−9

Time (s) 1.1303 1.3601 1.9781
Iterations 30 53 124

Table 1: Comparison of the performance of RIPPA-EP(a) (Algorithm 1 witht1
ρk = (1 − 1/k)(1 − ρ) + (1/k)(1 + ρ)), RIPPA-EP(b) (Algorithm 1 with ρk =
(1/k)(1 − ρ) + (1 − 1/k)(1 + ρ)), and [28, Algorithm 1] with starting points
x0 = 8297 and x−1 = 3210 while reaching the stopping criterion.

Taking the starting points closer to the obtained solution, x0 = 200 and
x−1 = −300, the tendency observed above remained valid, as Algorithm 1
(RIPPA-EP) reached x̄ in 13 iterations and 0.4052 seconds, while [28, Algorithm
1] (PPA-EP) required 83 iterations and 0.8381 seconds.

We can also report on the curious fact that when we mistakenly implemented
βk = 1/(8k)+4 (instead of βk = 1/(8k+4)), k ≥ 0, in the last parameter constel-
lation presented above, Algorithm 1 converged and delivered the same solution
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x̄ to (EP), requiring 25 iterations and 0.8981 seconds for this. In this situa-
tion, however, (C1) is violated and thus Theorem 11 does not apply, hence the
convergence of the proposed algorithm cannot be theoretically guaranteed. As
this seems to work in practice, at least in this case, the legitimate (at the mo-
ment open) question of alternative hypotheses that keep Algorithm 1 convergent
beyond the setting of Theorem 11 is raised.

Next we consider the problem from (4.4) in higher dimensions. The relaxed-
inertial proximal point algorithm turns out to outperform its standard proximal
point counterpart in this case, too.

ex3 Example 27 Take p, q ∈ N, p, q > 1, and the bifunction f : Rn × Rn → R,

f(x, y) := p
(

max{
√
‖y‖, (y − qe)2 − q}

)
− p

(
max{

√
‖x‖, (x− qe)2 − q}

)
+ x>(y − x), (4.5) high

where e = (1, . . . , 1)> ∈ Rn. We solve (EP) with Algorithm 1 and [28, Algorithm
1]. Its solution set S(Rn, f) depends on the value of q > 1. One can verify the
fulfillment of the hypotheses in a similar manner to Example 26.

For n = 60, ε = 10−8, αk = α−1/(120+3k), βk = 1/(28k+4), ρk = (1/k)(1−
ρ) + (1 − 1/k)(1 + ρ), k ≥ 0, the other parameters as above, and randomly
generated starting points, Algorithm 1 (RIPPA-EP) delivered the solution to
(EP) in 84 iterations that required 4.8055 seconds, while [28, Algorithm 1] (PPA-
EP) provided it in 137 steps, after 7.8315 seconds. Increasing the dimension to
n = 99 and relaxing the admissible error to ε = 10−6, for αk = α−1/(120+7k),
ρk = (1 − 1/k)(1 − ρ) + (1/k)(1 + ρ), k ≥ 0, the other parameters as above,
and randomly generated starting points, Algorithm 1 (RIPPA-EP) needed 71
iterations that required 5.6575 seconds to solve (EP), while [28, Algorithm 1]
(PPA-EP) did the job in 228 steps, after 22.3490 seconds. The results are
summarized in Table 2. The observed tendency was confirmed by testing the
algorithms for higher dimensions like n = 500 and n = 1000, too.

Algorithm
n = 60, ε = 10−8

RIPPA-EP(a) [28, PPA-EP]
Time (s) 4.8055 7.8315
Iterations 84 123

Algorithm
n = 99, ε = 10−6

RIPPA-EP(b) [28, PPA-EP]
Time (s) 5.6575 22.3490
Iterations 71 228

Table 2: Comparison of the performance of RIPPA-EP(a) (Algorithm 1 witht2
ρk = (1/k)(1 − ρ) + (1 − 1/k)(1 + ρ)), RIPPA-EP(b) (Algorithm 1 with ρk =
(1− 1/k)(1− ρ) + (1/k)(1 + ρ)), and PPA-EP [28, Algorithm 1].
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Next, we examine an equilibrium problem related to the one discussed in
Example 26. In this scenario, the governing bifunction is strongly quasiconvex
in its second variable, representing a special case of the strongly quasiconvex
equilibrium problem outlined in [28, Example 4.2]. This specific case has been
addressed in [53, Example 1] using a proximal subgradient algorithm.

ex:22 Example 28 Consider the equilibrium problem from Example 25 with n = 2,

α = 0.3, c = (2, 3)>, B = 10 ·
(

2 1
1 2

)
, b = (3, 8)>, β = 0, T = (1/13) · Id,

m = 1 and M = 10. Hence γ = 1. Because of the structure of the considered
problem, as the feasible set is convex and closed, but not an affine subspace, we
solved it with the non-inertial version (3.18) (RPPA-EP) of Algorithm 1 (as the
extrapolation steps could lead to infeasible points). We performed experiments
in matlab for various constellations of the involved parameters. For instance,
when ε = 10−6, ε = 1/3, η = 1/13, ρ = 0.15, βk = 1/(k + 20), ρk = (1/k)(1 −
ρ)+(1−1/k)(1+ρ), k ≥ 0, with the starting point x0 = (5, 5)>, (3.18) (RPPA-
EP) delivered the solution (0.1948, 0.1035)> to the considered problem after 66
iterations and 0.6249 seconds. This performance was improved when we took
larger relaxation intervals, the best result being achieved for ρ = 0.7, namely
41 iterations and 0.3625 seconds. Interestingly, for higher values of ρ (up to
its maximal value of 35/39 allowed by (C2)) the performance of the algorithm
resembles the one of the standard proximal point method [28, Algorithm 1],
which reached the solution after 78 iterations, in 0.7149 seconds. Lowering
the acceptable error to ε = 10−8, (3.18) (RPPA-EP) delivered an approximate
solution to the equilibrium problem from Example 25 after 75 iterations and
0.6980 seconds when ρ = 0.7, that is improved to 69 iterations and 0.6211
seconds for ρ = 0.45, while [28, Algorithm 1] required 127 iterations and 1.4180
seconds. These findings are summarized in Table 3.

Algorithm RPPA-EP (ρ = 0.15) RPPA-EP (ρ = 0.7) [28, PPA-EP]
ε = 10−6

Time (s) 0.6244 0.3649 0.7149
Iterations 66 41 78

RPPA-EP (ρ = 0.45) RPPA-EP (ρ = 0.7) [28, PPA-EP]
ε = 10−8

Time (s) 0.6211 0.6980 1.4180
Iterations 69 75 127

Table 3: Comparison of the performance of (3.18) RPPA-EP with ρk =t3
(1/k)(1− ρ) + (1− 1/k)(1 + ρ)) and PPA-EP [28, Algorithm 1].

All these experiments confirm, again, that a suitable choice of the parameters
makes the relaxed-inertial proximal point algorithms faster and cheaper to use
than their “pure” proximal point counterparts.

Remark 29 When implementing all three considered algorithms the proximal
step (3.3) and its counterpart in [28, Algorithm 1] were computed by employing
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the Matlab function fmincon because, as it is unfortunately often the case
when dealing with nonconvex functions, a closed form of the proximal operator
of the involved function (even when K = Rn) is not available for the moment.
Depending on the involved function, it might derived by direct calculation or
possibly by adapting the method considered in [9] for determining the proximal
operator of the root function.

Remark 30 As noted in [18], the optimal choices of the involved relaxation and
inertial parameters derived in the convex case do not always accelerate the prox-
imal point algorithm in the strongly quasiconvex case. It remains thus an open
question to determine choices of these parameters that deliver a theoretically
guaranteed acceleration in the strongly quasiconvex setting.

5 Conclusions
sec:5

We show that the relaxed-inertial proximal point algorithm for solving equi-
librium problems, recently introduced in the convex case, remains convergent,
under standard hypotheses, when the employed bifunction is strongly quasicon-
vex in its second variable, and pseudomonotone. Various sufficient conditions
for guaranteeing the fulfillment of these hypotheses are provided. Numerical ex-
periments illustrate the theoretical achievements by showing that the proposed
algorithm outperforms the standard proximal point one.

In subsequent work, we plan to provide similar results achieved under a
more general quasiconvexity assumption on the involved bifunction in its second
variable. Moreover, we aim to investigate the extension to the quasiconvex
framework considered in this work of the modified relaxed inertial extragradient
method proposed in [24, 48] in the convex case.
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