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Tracking Control of Cooperative Marine Vehicles
Under Hard and Soft Constraints
Esteban Restrepo, Josef Matouš, and Kristin Y. Pettersen Fellow, IEEE

Abstract— We solve the tracking-in-formation problem
for a group of underactuated autonomous marine vehicles
interconnected over a directed topology. The agents are
subject to hard inter-agent constraints, i.e. connectivity
maintenance and collision avoidance, and soft constraints,
specifically on the non-negativity of the surge velocity, as
well as to constant disturbances in the form of unknown
ocean currents. The control approach is based on an input-
output feedback linearization for marine vehicles and on
the edge-based framework for multi-agent consensus un-
der constraints. We establish almost-everywhere uniform
asymptotic stability of the output dynamics with guaran-
teed respect of the constraints. High-fidelity simulations
are provided to illustrate our results.

Index Terms— Formation control, multi-agent systems,
marine vehicles, control under constraints.

I. INTRODUCTION

Applications in marine environments, ranging from trans-
portation to seafloor mapping and infrastructure inspection,
often require the use of autonomous systems due to the remote-
ness or inaccessibility of such environments. Recently, fleets
of surface vehicles (ASVs) and underwater vehicles (AUVs)
have been increasingly considered for such applications due
to the advantages they offer with respect to single vehicles in
terms of versatility, resiliency, and reduced cost [1].

In many applications, the mission objective of the multi-
agent system can be expressed as tracking a predefined tra-
jectory in a formation [2]. Numerous approaches have been
proposed to solve the formation tracking problem; see [3] for
an overview. In order to successfully carry out the tracking-
in-formation mission in the framework of multi-agent systems
of autonomous vehicles, some practical challenges need to be
addressed. For instance, in order to guarantee the safety of
the system and the success of the mission, the vehicles must
guarantee the maintenance of a safe distance between them.
Moreover, due to the use of onboard sensors and the challenges
posed by the underwater environment, the vehicles need to
keep a sufficiently close distance to guarantee the reliability
of the communication and the connectivity of the multi-agent
system. Furthermore, in special cases when the vehicles use
optical sensors or communications, the followers are limited
by field-of-view (FOV) constraints.
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Many works in the literature address the coordination
problem of multiple marine vehicles under such inter-agent
constraints. In [4], [5] planning-based methods are developed
to generate trajectories that satisfy the constraints. However,
planning algorithms usually require a priori knowledge of the
environment, which might be unrealistic in highly dynamical
marine environments. Reactive algorithms based on artificial
potential fields are proposed in [6], [7] for formation control of
AUVs, but the tracking-in-formation problem is not addressed.
Leader-follower tracking-in-formation control algorithms are
proposed in [8], [9] based on barrier Lyapunov functions.

Under the control designs proposed in the literature, in
many instances, in order to guarantee the satisfaction of
the inter-agent constraints, the vehicles are forced to move
backwards, oftentimes during a prolonged period of time and
at relatively high speeds (for backwards motion of a marine
vehicle). However, although marine vehicles are able to move
backwards, they are not well-suited to do so due to their shapes
and their propulsion system. This issue, however, has not been
addressed in the literature of multi-ASV/AUV systems.

We propose a distributed control law that solves the
tracking-in-formation problem for multiple marine vehicles
interacting over a directed communication graph and that guar-
antees, simultaneously, connectivity preservation and inter-
agent collision avoidance. Moreover, we address the issue of
backwards motion by imposing a non-negativity constraint
on the surge velocity (the forward-motion velocity) of the
vehicles. More precisely, on one hand we encode via barrier
Lyapunov functions the proximity and safety constraints as
hard constraints that need to be always satisfied. On the other
hand, we encode the non-negativity of the surge velocity as a
soft constraint, so that it is imposed on the vehicles as long as
it does not interfere with the hard constraints, in which case
it is dynamically relaxed. The proposed controller is based
on the hand-position-based input-output feedback linearization
method introduced in [10] for marine vehicles and on the so-
called edge-agreement representation of multi-agent systems
[11], in which the relative states of the connected agents are
used instead of the absolute ones, making it well adapted to
practical applications where, usually, only relative measure-
ments are available. With regards to the stability analysis, dif-
fering from most of the existing works in the literature, where
only non-uniform convergence to the formation and to the
target vehicle is guaranteed, we establish almost-everywhere
uniform asymptotic stability of the tracking-in-formation ob-
jective and we show that the output error dynamics converge to
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the origin exponentially fast, while satisfying the constraints.
In this paper, we extend the preliminary work presented in

[12] by considering directed topologies, which better capture
the sensor-based interactions in practical scenarios. Motivated
by the specific control requirements of marine vehicles, we
furthermore extend the control design to deal with the (soft)
velocity constraints on top of the (hard) inter-agent constraints.
Furthermore, we note that dealing with both soft and hard
constraints as we do here for multi-agent systems, to the best
of our knowledge, has never been addressed in the context of
autonomous vehicles. Moreover, we include here the complete
proof of the main Proposition which is not trivial and was
partially omitted in the preliminary work. Finally, in this paper
we include the results of high-fidelity simulation scenarios
taking into account the real physical models of the vehicles as
well as dynamical phenomena and disturbances not modeled
in the Matlab simulations of the preliminary work [12].

In Section II we present the model of the multi-agent system
and the problem formulation. In Section III we present the
control design, followed by the stability analysis in Section
IV. Finally, simulation results and conclusions are presented
in Sections V and VI, respectively.
Notations: A continuous function α : R≥0 → R≥0 is of class
K (α ∈ K), if it is strictly increasing and α(0) = 0; α ∈ K∞
if, in addition, α(s) → ∞ as s → ∞. We use |x| for the
absolute value if x is scalar and for Euclidean norm if x is a
vector. For a set S, the notation ∂S denotes its boundary and
|x|S denotes the set-point distance, i.e. |x|S := inf

s∈S
|x−s|. ‘⊗’

denotes the Kronecker product, and In is the identity matrix of
dimension n. We use G = (V, E) to denote a graph defined by
a node set V = {1, 2, . . . , N} which corresponds to the labels
of the agents and the set of edges E ⊆ V2, of cardinality
M , represents the communication between a pair of nodes.
If agent j has access to information from node i, there is an
edge ek := (i, j) ∈ E , k ≤ M . We use A = [aij ] to denote
the adjacency matrix of the graph where aii = 0, aij > 0 if
ek ∈ E and aij = 0 otherwise.

II. MODEL AND PROBLEM FORMULATION

A. Model of the marine vehicle

The motion of an ASV or an AUV moving in the horizontal
plane can be represented using a three-degrees-of-freedom
model, where the degrees of freedom correspond to the surge,
sway, and yaw motions. For each vehicle i, let [xi yi ψi]

⊤ de-
note the pose of each vehicle in the North-East-Down (NED)
frame, [uri vri ri]⊤ denote the relative (with respect to the
ocean current) velocities in the body frame, that is, the surge
velocity, the sway velocity, and the yaw rate, respectively,
see Figure 1. Assuming port-starboard symmetry and linear
hydrodynamic damping (see [13] for more details), for each
vehicle i, the dynamical model is given by

ẋi =uri cosψi − vri sinψi + Vx (1a)
ẏi =uri sinψi + vri cosψi + Vy (1b)

ψ̇i =ri (1c)
u̇ri =Fur

(vri, ri) + τui (1d)

v̇ri =X(uri)ri + Y (uri)vri (1e)
ṙi =Fr(uri, vri, ri) + τri, (1f)

where τui and τri are the control inputs and V := [Vx Vy]
⊤

is the ocean current velocity in the inertial frame. Moreover,
X(uri) := −X1uri + X2, Y (uri) := −Y1uri − Y2, and
X1, X2, Y1, Y2, Fur

, and Fr are given in Appendix I.
Furthermore, we make the following standard assumptions for
marine vehicles and applications, cf. [14]:

Assumption 1: The ocean current V is constant, irrota-
tional, and bounded, i.e., ∃Vmax > 0 such that |V| ≤ Vmax.

Assumption 2: The terms Y1 and Y2 are strictly positive.
Remark 1: Note that Y1, Y2 > 0 implies Y (uri) < 0.

This is a natural assumption since Y (uri) ≥ 0 corresponds
to the situation of unstable sway dynamics. That is, a small
perturbation applied along the sway direction would cause an
undamped motion, which is unfeasible for commercial marine
vehicles by design. This is linked to the straight-line stability
properties of the AUVs and USVs, cf. [14, Remark 13]. •

B. Hand-position transformation

The nonlinear dynamic model (1) is the system commonly
used in the literature for the control of marine vehicles. For
system (1) it is common to choose the origin of the body-fixed
frame pi := [xi yi]

⊤ as the control output. However, as can
be seen from Eqs. (1d)-(1f), this system is underactuated since
there is no way to directly control the sway dynamics (1e).
Therefore, by choosing a different output located on the x-axis
of the body-fixed frame at a constant distance l > 0 from the
center of gravity, the underactuated system is transformed into
an input-output linearized system with internal dynamics. The
latter, introduced in [10] for marine vehicles, is reminiscent
of the hand-position point transformation commonly used for
the control of nonholonomic vehicles, see e.g. [15]. Let the
hand-position point be denoted by ξhi := [ξ1i ξ2i]

⊤, with

ξ1i := xi + l cosψi, ξ2i := yi + l sinψi. (2)

See Fig. 1 for an illustration in the case of an ASV.

yi

xi

ψiri

hi

y

x

pi
uri

vri
V

ξ1i

ξ2i

xbyb

Fig. 1: Diagram of an ASV.

Now, we define the following change of coordinates:

ζ1i = ψi (3a)
ζ2i = ri (3b)
ξ1i = xi + l cosψi (3c)
ξ2i = yi + l sinψi (3d)
ξ3i = uri cosψi − vri sinψi − ril sinψi (3e)
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ξ4i = uri sinψi + vri cosψi + ril cosψi. (3f)

In these new coordinates the dynamic model becomes

ζ̇1i = ζ2i (4a)

ζ̇2i = Fζ2(ζ1i, ξ3i, ξ4i) + τri (4b)[
ξ̇1i
ξ̇2i

]
=

[
ξ3i + Vx
ξ4i + Vy

]
(4c)[

ξ̇3i
ξ̇4i

]
=

[
Fξ3(ζ1i, ξ3i, ξ4i)
Fξ4(ζ1i, ξ3i, ξ4i)

]
+R(ζ1i)

[
τui
lτri

]
(4d)

where[
Fξ3(·)
Fξ4(·)

]
=R(ψi)

[
Fur

(·)− vriri − lr2i
uriri +X(·)ri + Y (·)vri + Fr(·)l

]
, (5)

with R(·) : R → SO(2) denoting the rotation matrix and
Fζ2(ζ1i, ξ3i, ξ4i) is obtained from Fr(uri, vri, ri) substituting
uri = ξ3i cos ζ1i+ξ4i sin ζ1i, vri = −ξ3i sin ζ1i+ξ4i cos ζ1i−
ζ2il, ri = ζ2i. Now, we apply the feedback linearizing inputs[

τui
lτri

]
= R(ψi)

⊤
[
−Fξ3(ζ1i, ξ3i, ξ4i) + µ1i

−Fξ4(ζ1i, ξ3i, ξ4i) + µ2i

]
(6)

where µ1i, µ2i are the new inputs to be designed. Substituting
(6) into (4), denoting the velocity and acceleration (control
input) of the hand-position point νhi := [ξ3i ξ4i]

⊤ and µi :=
[µ1i µ2i]

⊤, respectively, and recalling ξhi := [ξ1i ξ2i]
⊤ and

V := [Vx Vy]
⊤, we obtain

ζ̇1i = ζ2i (7a)

ζ̇2i =−
[(
Y1 −

X1 − 1

l

)
Ui cos(ζ1i − ϕi) + Y2 +

X2

l

]
ζ2i

−
[
Y1
l
Ui cos(ζ1i − ϕi) +

Y2
l

]
Ui sin(ζ1i − ϕi)

− sin ζ1i
l

µ1i +
cos ζ1i
l

µ2i (7b)

ξ̇hi = νhi +V (7c)
ν̇hi = µi (7d)

where Ui = |ξhi| and ϕi = arctan 2 (ξ4i/ξ3i).
The main advantage of considering the hand-position point

ξhi instead of the origin of the body-fixed frame pi, is that the
nonlinear system (1) is transformed into (7) with the linear
external dynamics (7c)-(7d) making it possible to use coordi-
nation algorithms normally found in the multi-agent systems
literature. Note, however, that for this system the inputs µi

affect also the internal dynamics (7a)-(7b). Therefore, contrary
to case of linear multi-agent systems, the internal stability of
the states ζ1i and ζ2i has to be verified.

C. Problem statement

We consider a multi-agent system composed of N marine
vehicles modeled by (7) and with an interaction topology given
by a directed graph G = (V, E) which is either a spanning tree
or a cycle. Moreover, we consider that the multi-agent system
is subject to inter-agent distance constraints. For one part, these
constraints may come from embedded relative-measurements
devices, which are reliable only if used within a limited range.

Hence, the vehicles must remain within a limited distance
from their neighbors in order to maintain the connectivity of
the graph. Furthermore, to ensure the safety of the system,
the agents must avoid collisions among themselves, that is,
they must always guarantee a minimal distance with respect
to their neighbors. These connectivity and collision-avoidance
constraints may be defined as a set of restrictions on the
relative (hand) positions. Such constraints may be considered
as hard constraints since they are fundamental for ensuring
the safety of the system and for reaching the control goal.

More precisely, define the distance (with respect to the hand-
position points) between two connected agents as

dij := |ξhi − ξhj | ∀ek := (i, j) ∈ E . (8)

For each ek = (i, j) ∈ E , let δij and ∆ij be, respectively,
the minimal and maximal distances between agents i and j
so that collisions are avoided and that the communication
through edge ek is reliable1. Then, the set of inter-agent output
constraints is defined as

Dij :=
{
dij ∈ R : δij < dij < ∆ij

}
, ∀ek = (i, j) ∈ E . (9)

Note that under the limited range ∆ij the whole topology
may become disconnected if the distances between two ar-
bitrary connected agents go above such range. By imposing
the proximity constraints (9) it is guaranteed that any initially
existing connection will be preserved. Therefore, if the graph
at the initial time is connected and the constraints (9) are
satisfied for all t ≥ t0, the graph will remain connected for
all time. Thus, we assume the following.

Assumption 3: The graph topology G at the initial time t0
is either a directed spanning tree or a directed cycle.

It is important to remark that, in practice, marine vehicles
are not optimized for moving backwards. However, backwards
motion is not prevented from the dynamical model (1). There-
fore, in order to let the vehicles evolve in an optimal way,
besides the inter-agent connectivity and collision-avoidance
constraints, we formulate the additional constraints

uri(t) > 0, ∀ i ≤ N, ∀t ≥ 0. (10)

Nonetheless, in some cases the requirements (10) could enter
into conflict with the inter-agent constraints defined by the
set (9). Indeed, there might exist situations when the only
way to avoid a collision or avoid losing connectivity is to
move backwards. Moreover, although not optimized to, marine
vehicles can move backwards. The latter motivates us to
reformulate the requirements (10) as soft constraints, that is,
to impose a positive surge velocity as long as this does not
interfere with the satisfaction of the hard constraints (9), but
allow negative velocities when required for the satisfaction of
(9). We formulate these soft constraints as follows:

uri(t) + ρi(t) > 0, ∀ i ≤ N, ∀t ≥ 0, (11)

where ρi : R≥0 → R≥0 will be defined later, such that ρi(t) ≊
0 when there are no conflicts with the hard constraints and

1Throughout the rest of this paper and with a slight abuse of notation we
will use sij and sk interchangeably to refer to the same (edge-based) quantity.
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ρi(t) > 0 otherwise, allowing uri(t) to become negative. Akin,
to (9) we may define the set of soft constraints as

Ci :=
{
uri ∈ R : uri > −ρi(t)

}
, ∀ i ≤ N. (12)

Now, let ξho := [ξ1o ξ2o]
⊤ ∈ R2 and νho := [ξ3o ξ4o]

⊤ ∈
R2 define, respectively, the (hand) position and velocity of
a (virtual) target, and µo(t) is its acceleration, and let its
dynamics be modeled as a second-order integrator

ξ̇ho = νho, ν̇ho = µo(t). (13)

Moreover, assume the following.
Assumption 4: For all t there exist positive constants νho,

νho, and µo such that νho ≤ νho(t) ≤ νho, and |µo(t)| ≤ µo.

Assumption 5: The relative velocity of the
target is such that Uo(t) cos(ϕo(t)) > 0, where
Uo(t) =

√
(ξ3o(t)− Vx)2 + (ξ4o(t)− Vy)2 and

ϕo(t) = arctan ((ξ4o(t)− Vy)/(ξ3o(t)− Vx)).
Remark 2: Assumption 5 is required so that the target

moves forward in the surge direction despite the ocean current.
Furthermore, Assumptions 1 and 4 imply that there exist
constants Uo, Uo, U∗

o, and U
∗
o, such that Uo ≤ Uo(t) ≤ Uo

and U∗
o ≤ U̇o(t) ≤ U

∗
o for all t ≥ 0. •

Then, the control goal is for the N marine vehicles to
achieve a desired formation and track the target modeled by
(13), all while guaranteeing that the hard constraints given by
the set Dij in (9) and the soft constraints (11) are respected.

For the tracking part of the problem, we consider the case
that only one agent, labeled i = 1 without loss of generality,
has access to the target’s state, ξho and νho, and knows an
upper bound µ̄o on the target’s acceleration. To address the
formation part, let us denote by zd1ij ∈ R2 the desired relative
position between a pair of neighboring agents over edge
ek = (i, j). Then, mathematically, the tracking-in-formation
problem translates into designing a distributed controllers µi

such that, for all i, j ∈ V ,

lim
t→∞

ξhi(t)− ξho(t) = 0, lim
t→∞

νhi(t)− νho(t) = 0

(14a)

lim
t→∞

ξhi(t)− ξhj(t)− zd1ij = 0, lim
t→∞

νhi(t)− νhj(t) = 0.

(14b)

More precisely, we consider the following problem.
Tracking-in-formation under hard and soft constraints: Con-

sider a system of N autonomous marine vehicles with dynam-
ics given by (1), interacting over a directed graph which is
either a spanning tree or a cycle. Assume, in addition, that the
agents are subject to the hard inter-agent output constraints
given by the set defined in (9) and the soft constraints given
by (12). Under these conditions, find distributed controllers
µi, i ≤ N , so that the limits (14) are satisfied and that render
the sets (9) and (12) forward invariant, i.e., dij(t0) ∈ Dij

(uri(t0) ∈ Ci) implies that dij(t) ∈ Dij (uri(t) ∈ Ci),
ek = (i, j) ∈ E (∀i ∈ V) and ∀t ≥ t0.

III. CONTROL DESIGN FOR TRACKING UNDER HARD AND
SOFT CONSTRAINTS

In this section we design a distributed control law to
solve the tracking-in-formation problem under the previously
formulated (hard) inter-agent and (soft) velocity constraints.
To do so we design the new inputs µi as

µi = µh
i + µs

i , (15)

where µh
i ∈ R2 will be used to deal with the tracking-in-

formation mission and with the hard constraints and µs
i ∈ R2

will deal with the soft constraints. For clarity, we present both
designs separately in what follows.

A. Control design for the hard proximity and safety
constraints

The design of µh
i follows a backstepping approach which

is well adapted to the normal form of the external dynamics
(7c)-(7d). We start by defining a virtual control law for (7c)
with νhi as input, based on the gradient of a Barrier Lyapunov
Function (BLF)—see [16] for more details on BLFs.

First, for each edge ek = (i, j) ∈ E , we define a candidate
BLF of the form

Bh
ij(dij) = κ1ij

[
ln

(
∆2

ij

∆2
ij − d2ij

)
− ln

(
∆2

ij

∆2
ij − |zd1ij |2

)]

+ κ2ij

[
ln

(
d2ij

d2ij − δ2ij

)
− ln

(
|zd1ij |2

|zd1ij |2 − δ2ij

)]
,

(16)
where

κ1ij :=
δ2ij

|zd1ij |2(|zd1ij |2 − δ2ij)
, κ2ij :=

1

∆2
ij − |zd1ij |2

. (17)

Note that Bh
ij is a non-negative function that satisfies:

Bh
ij(|zd1ij |) = 0, ∇Bh

ij(|zd1ij |) = 0, and Bh
ij(dij) → ∞ as

either |dij | → ∆ij or |dij | → δij .
Now, for each edge ek = (i, j) ∈ E the virtual control

inputs, are given by

ν∗hi :=− c1
∑
j≤N

aij

[
(ξhi − ξhj − zd1ij) +

∂Bh
ij

∂dij

∂dij
∂ξhi

]
− c1ηi(ξhi − ξho)− V̂i (18)

where c1 is a positive gain, ηi = 1 if i = 1 and ηi = 0
otherwise, and V̂i is agent i’s estimate of the ocean current
given by the adaptation law

V̂i = cv (ξhi − φi) , cv > 0 (19a)

φ̇i = νhi + V̂i. (19b)

Defining the error coordinates ν̃hi := νhi − ν∗hi, Ṽi := V−
V̂i, replacing (18) into (7c)-(7d) and using (19) we have

ξ̇hi = −c1
∑
j≤N

aij

[
(ξhi − ξhj − zd1ij) +

∂Bh
ij

∂dij

∂dij
∂ξhi

]
−c1ηi(ξhi − ξho) + Ṽi + ν̃hi (20)

˙̃Vi = −cvṼi (21)
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˙̃νhi = µh
i − ν̇∗hi + µs

i . (22)

Then, we design the distributed tracking-in-formation control
law as

µh
i =− c2

∑
j≤N

aij(ν̃hi − ν̃hj)− c2ηi(νhi − νho) + ˙̄ν∗hi

− γsign

∑
j≤N

aij(ν̃hi − ν̃hj) + ηi(νhi − νho)

 (23)

where c2 > 0, ηi is as in (18), ν̄∗hi = ν∗hi + V̂i, and γ is a
positive control gain to be defined.

B. Control design for the soft velocity constraints

Since the soft constraints are only imposed on the surge
velocity uri, we let the signal µs

i (t) be given by

µs
i (t) = [cos ζ1i sin ζ1i]

⊤
τsui. (24)

Note that by substituting (15) and (24) into (6), the surge-
velocity and yaw-rate subsystems yield

u̇ri =Fur (vri, ri) + τhui + τsui (25a)
ṙi =Fr(uri, vri, ri) + τri, (25b)

where

τhui =

[
cos ζ1i
sin ζ1i

]⊤ [−Fξ3(ζ1i, ξ3i, ξ4i) + µh
1i

−Fξ4(ζ1i, ξ3i, ξ4i) + µh
2i

]
.

Therefore, from (25), it is clear that the signal µs
i (t), only

directly affects the dynamics of the surge velocity uri.
Now, we design the additional input τsui as the gradient of

a barrier function as follows. For each agent i, let us define
the barrier function

Bs
i (t, uri) := − ln

(
uri + ρi(t)

uri + ρi(t) + 1

)
. (26)

Note that for uri + ρi(t) > 0, Bs
i (t, uri) > 0 for all t ≥ 0,

and Bs
i (t, uri) → ∞ as uri + ρi(t) → 0. Then, we set the

additional control input to

τsui = −∇Bs
i (t, uri) =: −κu

∂Bs
i (t, uri)

∂uri
, i ≤ N, (27)

with κu > 0 and

ρ̇i = −κρρi +
1

2

[
1− sign

(
σ − |Fur + τhui|

)]
|Fur + τhui|,

(28)
where κρ, σ > 0 are design constants and we set ρi(t0) = 0.

Remark 3: Note that under (28) and the initial condition
ρi(t0) = 0, we have that ρi(t) ≥ 0, for all t ≥ t0. To see this,
note that second term on the right-hand side of (28) is always
positive. Therefore, ρ̇i(t) ≥ −κρρi(t), which means that the
set Cρ := {ρi ∈ R : ρi ≥ 0} is forward invariant. •

Remark 4: The definition of (28) is loosely inspired by
the framework developed in [17] to deal with hard and soft
constraints in the setting of prescribed-performance control
of single-agent systems. The signal ρi(t) adjusts the soft
constraints whenever the hard constraints and the positive-
velocity constraint become conflicting. Note that when |Fur+

τhui| ≤ σ for a given σ, it means that the distances from
vehicle i to its neighbors are far from the border of the
set Dij , since under the barrier-function-based law (51) the
controller τhui grows unbounded as dij → ∂Dij for any
ek = (i, j) ∈ E . In this case, the second term on the right-
hand side of (28) is equal to zero. Hence, assuming that in
an interval t ∈ [t0, t0 + T ], |Fur + τhui| ≤ σ, then (11), with
ρ(t) = 0, corresponds to a positive-velocity constraint. On the
other hand, when |Fur + τhui| > σ, the right-hand side of (28)
becomes positive and ρi grows. Hence, uri may take negative
values, i.e. uri > −ρi(t), avoiding possible conflicts between
the constraints. Then, as the vehicles move away from the
border of the set Dij , |Fur + τhui| ≤ σ again and ρi(t) → 0
exponentially fast, recovering the non-negativity constraint. •

Let us define the following variables:

a(t) =

(
Y1 −

X1 − 1

l

)
Uo(t), b =Y2 +

X2

l
(29)

c(t) =
Y1Uo(t)

2

l
, d(t) =

Y2Uo(t)

l
. (30)

Remark 5: Note that from Remark 2 we have that a ≤
a(t) ≤ a, c ≤ c(t) ≤ c, and d ≤ d(t) ≤ d, with a, a, c, c, d, d
being positive constants. •

Then, the first part of the main result is stated as follows:
Proposition 1: Consider N ASVs/AUVs, each described by

the model (1), and interconnected over a directed graph which
is either a spanning tree or a cycle. Consider the hand-position
point ξ⊤hi := [ξ1i ξ2i] = [xi + l cosψi yi + l sinψi], where
[xi yi]

⊤ is the position of the origin of the body-fixed frame
of the ith agent, ψi is its yaw angle, and l > 0 is a positive
constant. Let ϕo(t) = arctan(ξ4o(t)− Vy/ξ3o(t)− Vx) be the
crab angle of the target. Then, under Assumptions 1-5 and

0 <Ūo <
Y2
Y1
, l > max

{
m22

m33
,−X2

Y2

}
(31)

Ū∗
o ≤ 2min{a(d− c), b}

Y1Ūo

l + 2
(
Y1 − X1−1

l

) , (32)

with initial conditions such that dk(t0) ∈ Dk for all ek ∈ E and
uri(t0) ∈ Ci for all i ≤ N , the controller (6), where the new
inputs µi are given by (15) with (23) and (24), achieves the
tracking-in-formation objective (14) almost everywhere and
renders the constraints sets (9) and (12) forward invariant. □

For clarity of exposition, the different steps of the proof of
Proposition 1 are presented in Section IV.

IV. PROOF OF PROPOSITION 1

The proof is developed in multiple steps presented in the
following subsections. We start by rewriting the N systems (7)
in a cascaded form, where the external dynamics act as the
driving system and the internal dynamics is the driven system.
We follow by showing that the soft-constraints set (12) is
forward invariant. Next, we show that the driving system under
the control laws (23), expressed in edge-based coordinates,
is (almost-everywhere) uniformly asymptotically stable with
domain of attraction corresponding to the set of constraints,
and that its trajectories converge exponentially to the origin.
Then, under the property that the trajectories of the external
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dynamics converge to the origin exponentially fast, we show
that the trajectories of the internal dynamics are uniformly
ultimately bounded. Finally, we analyze the stability of the
complete cascaded system.

A. Cascaded system

In order to analyze the stability of the N systems (7) in
closed-loop with the controller (23) we rewrite it in a cascaded
form as follows. Let us define the error variables ζ̃1i :=
ζ1i − ϕo(t), ζ̃2i := ζ2i − ϕ̇o(t), and the velocity errors ν̄hi :=
νhi − (νho(t) − V). Denote ζ̃⊤1 :=

[
ζ̃11 · · · ζ̃1N

]
, ζ̃⊤2 :=[

ζ̃21 · · · ζ̃2N
]
, ζ̃⊤ :=

[
ζ̃⊤1 ζ̃⊤2

]
, ν̄⊤h :=

[
ν̄⊤h1 · · · ν̄⊤hN

]
,

Sin(ζ̃1)⊤ :=
[
sin ζ̃11 · · · sin ζ̃1N

]
. Then, the internal dynam-

ics in compact form yields

˙̃
ζ1 = ζ̃2 (33a)
˙̃
ζ2 =−A(t, ζ̃)ζ̃2 −B(t, ζ̃)Sin(ζ̃1) + Ā(t, ζ̃, ν̄h)ν̄h + B̄(ζ1)µ

−A(t, ζ̃)1N ϕ̇o(t)− 1N ϕ̈o(t) (33b)

where

A(t, ζ̃) := diag{a(t) cos ζ̃1i+b}
B(t, ζ̃) := diag{c(t) cos ζ̃1i+d(t)}

Ā(t, ζ̃, ν̄h) := blockdiag
{[
−α(t, ζ̃i, ν̄hi) β(t, ζ̃i, ν̄hi)

]}
B̄(ζ1) := blockdiag{[− sin ζ1i cos ζ1i]},

and α(t, ζ̃i, ν̄hi), β(t, ζ̃i, ν̄hi) are given in Appendix I.
Now, set the tracking errors ξ̄hi := ξhi − ξho(t) − ξdhio,

with ξdhio denoting a desired position in the formation with
respect to the leader, and let ξ̄⊤h :=

[
ξ̄⊤h1 · · · ξ̄⊤hN

]
. Then, the

N systems (7) in compact form yields

˙̃
ζ = H(t, ζ̃)ζ̃s +Φ(t, ζ̃) +G(t, ζ̃, χ) (34a)
χ̇ = F (t, χ), (34b)

where χ⊤ :=
[
ξ̄⊤h ν̄⊤h Ṽ ⊤

]
, ζ̃⊤s :=

[
Sin(ζ̃1)⊤ ζ̃⊤2

]
, and

H(·)=
[

0 IN
−B(·) −A(·)

]
, F (·)=

 ν̄h
µ− 1Nµo(t)

−cvṼ


G(·) =

[
0

Ā(·)ν̄h + B̄(·)µ

]
, Φ(·) =

[
0

−A(·)ϕ̇o(t)− 1N ϕ̈o(t)

]
.

B. Forward invariance of the soft-constraints set

Lemma 1: Under the control law (27), with initial condi-
tions such that uri(t0) ∈ Ci for all i ≤ N , the set (12) is
forward invariant for the surge-velocity subsystem (25a). □

Proof: Consider the barrier function (26), whose deriva-
tive along the trajectories of (25a) in Ci yields

Ḃs
i (t, uri)=∇Bs

i (t, uri)
(
−κu∇Bs

i (t, uri)+Fur + τhui + ρ̇i(t)
)
.

(35)
Now, in view of (28), we split the analysis into two cases.

Case 1 (|Fur + τhui| ≤ σ): in this case (35) becomes

Ḃs
i (t, uri) ≤− κu|∇Bs

i (t, uri)|2 + |∇Bs
i (t, uri)| [σ−κρρi(t)]

≤− κ′u|∇Bs
i (t, uri)|2 + λσσ

2

+
κρρi(t)

(uri + ρi(t))(uri + ρi(t) + 1)
,

(36)
with κ′u, λσ > 0. Since ρi(t) is non-negative for all t ≥ t0,
cf. Remark 3, in Ci the last term on the right-hand side of (36)
is bounded by a constant λρ > 0. Therefore, we have

Ḃs
i (t, uri) ≤ −κu|∇Bs

i (t, uri)|2 + c (37)

where c := λσσ
2 + λρ.

Case 2 (|Fur + τhui| > σ): in Ci (35) becomes

Ḃs
i (t, uri) ≤− κu|∇Bs

i (t, uri)|2 + |∇Bs
i (t, uri)|

[
|Fur + τhui|

−κρρi(t)− |Fur + τhui|
]

≤− κu|∇Bs
i (t, uri)|2 + c,

(38)
where, with a slight abuse of notation, c = λρ.

From (37)-(38) we conclude that for all i ≤ N and
uri ∈ Ci, the barrier function Bs

i (t, uri) is bounded along
the trajectories. In order to establish forward invariance of the
sets Ci, for all i ≤ N , we proceed by contradiction. Assume
that there exists t0 < T <∞ such that for all t ∈ [t0, t0+T ),
uri(t) ∈ Ci and uri(t0 + T ) /∈ Ci, for at least one i ≤ N .
More precisely, we have uri(t) → ρi(t) as t→ t0 + T . From
the definition of (t, uri) 7→ Bs

i (t, uri) in (26), this implies that
Bs

i (t, uri(t)) → ∞ as t → t0 + T which is in contradiction
with (37)-(38). We conclude that T = ∞ and that the sets Ci
for all i ≤ N are forward invariant, i.e., if uri(t0) ∈ Ci then
uri(t) ∈ Ci for all t ≥ t0.

C. External dynamics in edge-based coordinates

To study the stability of the external dynamics (34b), we
rely on the edge-agreement framework [11] where instead of
considering the states of each individual agent (the nodes of
the graph), we consider the relative variables which correspond
to the edges in the graph. For that purpose, recalling that only
one agent labeled i = 1 has access to the target’s state, define
the tracking-error states with respect to the leader as

z1o := ξh1 − ξho, z2o := νh1 − νho. (39)

Similarly, define the formation error and the relative velocity
between two connected agents, i.e., for all ek ∈ E , by

z1k := ξhi − ξhj − zd1k (40)
z2k := νhi − νhj . (41)

Now, let us denote by E ∈ RN×M the incidence matrix of
graph G, where its (i, k)th entry is defined as follows: [E]ik :=
−1 if i is the terminal node of edge ek, [E]ik := 1 if i is the
initial node of edge ek, and [E]ik := 0 otherwise. Let ξ⊤h =[
ξ⊤h1 · · · ξ⊤hN

]
∈ R2N and ν⊤h =

[
ν⊤h1 · · · ν⊤hN

]
∈ R2N be,

respectively, the collection of the hand-position point positions
and velocities of all the agents of the system. Then, in compact
form we can write

z1 = [E⊤ ⊗ I2]ξh − zd1 (42)
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z2 = [E⊤ ⊗ I2]νh. (43)

where z⊤1 = [z⊤11 · · · z⊤1M ]⊤ ∈ R2M and z⊤2 =
[z⊤21 · · · z⊤2M ]⊤ ∈ R2M .

Now, as observed in [18], using an appropriate labeling of
the edges, the incidence matrix can be expressed as E =
[ Et Ec ] where Et ∈ RN×(N−1) denotes the full column-
rank incidence matrix corresponding to an arbitrary spanning
tree Gt ⊂ G and Ec ∈ RN×(M−N+1) represents the incidence
matrix corresponding to the remaining edges in G\Gt. Simi-
larly, the edge states may be split as z1 =

[
z⊤1t z⊤1c

]⊤
, where

z1t ∈ R2(N−1) are the states corresponding to the edges of
Gt and z1c ∈ Rn(M−N+1) denote the states of the remaining
edges, G\Gt. The same holds for z2, that is, z2 =

[
z⊤2t z⊤2c

]⊤
.

Moreover, defining

R := [ IN−1 T ] , T :=
(
E⊤

t Et

)−1
E⊤

t Ec (44)

with IN−1 denoting the N − 1 identity matrix, we have the
following identities

E = EtR, z1 =
[
R⊤⊗ I2

]
z1t, z2 =

[
R⊤⊗ I2

]
z2t. (45)

Then, using (45) and (7c)-(7d) a reduced-order model for
the external dynamics in terms of the edges of a spanning tree
is given by

ż1o = z2o +V (46a)
ż1t = z2t (46b)
ż2o = µ1 − µo(t) (46c)

ż2t =
[
E⊤

t ⊗ I2
]
µ. (46d)

Note that in these coordinates, the control objective as defined
in (14) is achieved if the origin of system (46) is asymptoti-
cally stabilized.

Noting that in the edge coordinates the distance in (8)
may be rewritten as dk = |z1k + zd1k|, with a slight abuse
of notation, the candidate BLFs in (16) may be denoted as
Bh

k (z1k) replacing dk by |z1k+zd1k|. Similarly let use redefine
the constraints set as

D̃k :=
{
z1k ∈ R2 : δk < |z1k + zd1k| < ∆k

}
, ∀ek ∈ E . (47)

Now, for each edge ek ∈ E let us define the candidate BLF
Wk : D̃k → R≥0 as

Wk(z1k) =
1

2

[
|z1k|2 +Bh

k (z1k)
]
. (48)

Then, for the complete multi-agent system we define

W (z1) =
∑
k≤M

ϱkWk(z1k), ϱk > 0. (49)

Let us define the so-called in-incidence matrix E⊙ ∈
RN×M , whose elements are defined as follows: [E⊙]ik := −1
if i is the terminal node of edge ek and [E⊙]ik := 0 otherwise.
Then, in the edge-agreement framework, the virtual controllers
(18) are given by

ν∗h = −c1[E⊙ ⊗ I2]∇W (z1t)− c1[C ⊗ I2]z1o − V̂ , (50)

where ∇W (z1t) := ∂W (z1t)/∂z1t
2, V̂ is a vector of estimates

of the ocean current for each agent, and C⊤ :=
[
1 0⊤1×(N−1)

]
.

Akin to (43), let z̃2t := [E⊤ ⊗ I2]ν̃h and z̃2o = ν̃h1 − νho,
where ν̃⊤h =

[
ν̃⊤h1 · · · ν̃⊤hN

]
∈ R2N and ν̃hi is the backstepping

error previously defined. Then, the control law (23) in compact
form yields

µh =− c2
[
E⊙R

⊤ ⊗ I2
]
z̃2t − c2[C ⊗ I2]z̃2o + ˙̄ν∗h

− γsign
([
E⊙R

⊤ ⊗ I2
]
z̃2t + [C ⊗ I2]z̃2o

)
. (51)

Let ς⊤1 =
[
z1o z⊤1t

]
, ς̄⊤1 =

[
z1o ∇W (z1)

⊤], ς⊤2 =[
z̃2o z̃⊤2t

]
, and

L1 =

[[
1 C⊤Et

E⊤
t C E⊤

t E⊙

]
⊗ I2

]
, R1=

[[
C⊤

E⊤
t

]
⊗I2

]
L2 =

[[
1 C⊤Et

E⊤
t C E⊤

t E⊙R
⊤

]
⊗ I2

]
, R2=

[[
C⊤

RE⊤
⊙

]
⊗I2

]
.

Then, from (46), (21), (50), and (51), the closed-loop external
dynamics in the edge-based perspective becomes

ς̇1 =− c1L1ς̄1 + ς2 +R1Ṽ (52a)

ς̇2 =− c2L2ς2 + cvR1Ṽ +R1 [µ
s(t)− 12Nµo(t)]

− γR1sign
(
R⊤

2 ς2
)

(52b)
˙̃V =− cvṼ (52c)

Remark 6: The function in (48) is reminiscent of scalar
potential functions in constrained environments. Hence, the
appearance of multiple critical points is inevitable [19]. Indeed,
the gradient of the BLF (16), ∇Wk(z1k), vanishes at the origin
and at an isolated saddle point separated from the origin.
Therefore, when using the gradient of (48), the closed-loop
system (52) has multiple equilibria. We address such issues
using tools for multi-stable systems [20], [21]. •

For system (52) we state the following lemma.
Lemma 2: The origin of the edge-based closed-loop system

(52) is almost-everywhere uniformly asymptotically stable
with domain of attraction D := R×D̃×R×R2M ×R2N , with
D̃ :=

⋂
k≤M D̃k, where D̃k is defined in (47). Furthermore,

for almost all initial conditions, the trajectories of the external
dynamics (52) converge to the origin exponentially. □

Proof: First define the function

W1(ς1) :=
1

2
|z1o|2 +W (z1t) (53)

where, with a slight abuse of notation, z1t 7→ W (z1t) is
defined in (49). In light of Remark 6, let us denote by
z∗1 ∈ RnM the vector containing the saddle points of the BLF
for each edge (48). Moreover, let us define the disjoint set

W := {0} ∪ {z∗1}, (54)

which corresponds to the critical points of W in (49). Then,
W satisfies

a1
2
|z1|2W ≤W (z1) ≤ a2|∇W (z1)|2, (55)

where a1, a2 > 0 and |z1|W := min
{
|z1|, |z1 − z∗1 |

}
.

2To avoid a cumbersome notation we write ∇W (z1t) in place of the more
appropriate spelling ∇W

([
R⊤ ⊗ I2

]
z1t

)
.
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The derivative of (53) along the trajectories of (52a) yields

Ẇ1(ς1) = −c1ς̄⊤1 L1ς̄1 + ς̄⊤1 ς2 + ς̄⊤1 R1Ṽ . (56)

Then, invoking [18, Proposition 1], we have that (56) satisfies

Ẇ1(ς1) ≤ −c′1|ς̄1|2 + |ς̄1||ς2|+ c′v|ς̄1||Ṽ |, (57)

where c′1, c′v are positive constants.
Next, define the candidate Lyapunov function

W2(ς2) :=
1

2
ς⊤2 Pς2 (58)

where P is the positive-definite solution to3 −L⊤
2 P −PL2 =

−Q, for any positive definite Q. Then, the derivative of (58)
along the trajectories of (52b), is defined by the differential
inclusion ς2 ∈ F2(t, ς2), where

F2(t, ς2) :=


(52b), R⊤

2 ς2 ̸= 0

−c2L2ς2 + cvR1Ṽ

−γλ+R1 [µ
s(t)− 12Nµo(t)] , R⊤

2 ς2 = 0

and λ ∈ [−1, 1]. From the proof of Proposition 1 and
boundedness of Bs

i (t, uri(t)) for all t ≥ t0 and all i ≤ N
there exists a constant µ̄s such that |µs

i (t)| ≤ µ̄s for all
t ≥ t0. Thus, setting γ ≥

√
2N(µ̄s + µ̄o) in (51) and using

||s||1 = s⊤sign(s), the derivative of W2 yields

Ẇ2(ς2) = −c2ς⊤2 PL2ς2 + cvς
⊤
2 PR1Ṽ

− γς⊤2 PR1sign
(
R⊤

2 ς2
)
+ ς⊤2 PR1 [µ

s(t)− 12Nµo(t)]

≤ −c′2|ς2|2 + c′′v |ς2||Ṽ |, (59)

where c′2 and c′′v are positive constants.
Next, let ς⊤ :=

[
ς⊤1 ς⊤2 Ṽ ⊤

]
and define the candidate

Lyapunov function

Wς(ς) :=W1(ς1) + κ1W2(ς2) +
κ2
2
|Ṽ |2. (60)

From (57), (59), and (52c), we have

Ẇς(ς) ≤− c′1|ς̄1|2 − κ1c
′
2|ς2|2 − κ2cv|Ṽ |2

+ |ς̄1||ς2|+ c′v|ς1||Ṽ |+ κ1c
′′
v |ς2||Ṽ |. (61)

Setting κ1, κ2 large enough, we obtain

Ẇς(ς) ≤− c̄1|ς̄1|2 − c̄2|ς2|2 − c̄v|Ṽ |2
≤− c̄Wς(ς).

(62)

Now, recalling Remark 6, let

Wς := {0} ×W × {0} × {0}2(N−1) × {0}2N (63)

where W is defined in (54), be the set containing the equilibria
of the closed-loop system (52). Then, from (55) we have

Ẇς(ς) ≤− c̄′|ς|2Wς
. (64)

Thus, the closed-loop system (52) is uniformly asymptotically
multi-stable at Wς , cf. [20]. Furthermore, since the critical
point z∗1 of the barrier Lyapunov function is a saddle point,
after [21, Proposition 1], it follows that the region of attraction
of the unstable equilibrium z∗1 has zero Lebesgue measure.

3This holds since for any directed graph containing a spanning tree,
−E⊤

t E⊙R⊤ is Hurwitz, cf. [22]

Therefore, we conclude that the origin of (52) is almost-
everywhere uniformly asymptotically stable in D, except for a
zero-measure set of initial conditions.

To establish forward invariance of the set D̃ we proceed by
contradiction. Assume that there exists 0 < T <∞ such that
for all t ∈ [t0, t0+T ), z̃1k(t) ∈ D̃k and z1k(t0+T ) /∈ D̃k, for
at least one k ≤ M . More precisely, we have |z1k(t)| → ∆k

or |z1k(t)| → δk as t→ t0 +T for at least one k ≤M . From
the definition of z̃1t 7→W (z̃1t) in (49) and z̃1k 7→Wk(z̃1k) in
(48), this implies that Wς(ς(t)) → ∞ as t→ t0 + T which is
in contradiction with (62). We conclude that T = ∞ and that
for all initial conditions such that z̃1(t0) ∈ D̃, z̃1(t) ∈ D̃ for
all t ≥ t0. Satisfaction of the inter-agent constraints follows
from the forward invariance of D̃.

Since (52) is asymptotically stable at the origin, with
domain of attraction D, it follows that for (almost) all initial
conditions ς(t0) ∈ D there exist small positive constants
ϵ(ς(t0)) and ϵ(ς(t0)) such that z1k(t) ∈ D̃ϵk, where

D̃ϵk :={z1k ∈ R2 : δk+ϵ ≤ |z1k+zd1k| ≤ ∆k−ϵ}, ∀k ≤M.

Moreover, for any z1 ∈ D̃ϵ, with D̃ϵ :=
⋂

k≤M D̃ϵk, we have
that the BLF W in (49) satisfies

a1
2
|z1t|2W ≤W (z1t) ≤

a′2
2
|z1t|2W . (65)

Therefore, from (65) and (62), we conclude that for almost
all initial conditions ς(t0) ∈ D, the trajectories ς(t) of the
external dynamics converge to the origin exponentially.

D. Internal dynamics

The ith component of the nominal part of (34a) yields

˙̃
ζ1i =ζ̃2i (66a)
˙̃
ζ2i =− (a(t) cos ζ̃1i + b)ζ̃2i − (c(t) cos ζ̃1i + d(t)) sin ζ̃1i

+ ϑ(t, ζ̃i), (66b)

where ϑ(t, ζ̃i) := −(a(t) cos ζ1i + b)ϕ̇o(t) − ϕ̈o(t). Due to
ϑ(·), (66) does not have an equilibrium at the origin. Thus,
we analyze the ultimate boundedness of ζ̃i(t).

For this purpose, define the candidate Lyapunov function

Wζ̃,i(t, ζ̃i) =
1

2
ζ̃⊤si

[
a2(t) + c(t) a(t)

a(t) 1

]
ζ̃si

+ (a(t)b+ d(t)) (1− cos ζ̃1i). (67)

Note that, Wζ̃,i > 0 for all
[
cos ζ̃1i, sin ζ̃1i, ζ̃2i

]
̸= [1, 0, 0].

The derivative of (67) yields

Ẇζ̃,i(t, ζ̃i) =− ζ̃⊤si

[
a(t)(d(t)− c(t) cos ζ̃1i) 0

0 b

]
ζ̃si

+
∂Wζ̃,i

∂ζ̃i

⊤ [
0

ϑ(t, ζ̃i)

]
+ ζ̃⊤si

[
2ȧ(t)a(t) + ċ(t) ȧ(t)

ȧ(t) 0

]
ζ̃si

+
(
ȧ(t)b+ ḋ(t)

)
(1− cos ζ̃1i).

Note that, ȧ, ċ, and ḋ are only function of ˙̄Uo, cf. (29)-(30).
Therefore, from Remark 2 there exist constants ā∗, c̄∗, d̄∗ such
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that |ȧ(t)| ≤ ā∗, |ċ(t)| ≤ c̄∗, and |ḋ(t)| ≤ d̄∗. Moreover, from
Remark 5 and the definition of ϑ, we have that∣∣∣∣∂Wζ̃,i

∂ζ̃i

∣∣∣∣ ∣∣∣∣[ 0

ϑ(t, ζ̃i)

]∣∣∣∣ ≤ α2ϑ̄|ζ̃si| (68)

where α2 > 0 and the bound ϑ̄ > ϑ(t, ζ̃i) exists since ϑ
is a function of bounded signals. Hence, there exist positive
constants α1 and α3 such that

Ẇζ̃,i(t, ζ̃i) ≤ −α1|ζ̃si|2 + α2ϑ̄|ζ̃si|+ α3, (69)

From (69) and [23, Corollary 5.1] we conclude that for every
i ≤ N the nominal subsystem (66) is uniformly bounded.

E. Complete cascaded system

Consider now the system (34). From Lemma 2 we have
that the driving system (52) in edge coordinates is uniformly
asymptotically stable almost everywhere in D, which implies
that so is the subsystem (34b). Moreover, in D the trajectories
of (34b) converge to the origin exponentially. Therefore, from
converse Lyapunov theorems there exists a function Wχ that,
in D, satisfies

α′
4|χ|2 ≤Wχ(t, χ) ≤α′

5|χ|2 (70a)

Ẇχ(t, χ) ≤− α′
6|χ|2 (70b)∣∣∣∣∂Wχ

∂χ

∣∣∣∣ ≤α′
7|χ|, (70c)

for some positive constants α′
4, α′

5, α′
6, and α′

7.
Now, note that the interconnection term G on the right-hand

side of (34a) satisfies the bound

|G(ζ̃, χ)| ≤ G1(|χ|)|ζ̃s|+G2(|χ|), (71)

where G1, G2 ∈ K∞. Moreover, from the forward invariance
of D̃ established in the proof of Lemma 2 and the asymptotic
stability of (34b), the bound (71) may be simplified to

|G(ζ̃, χ)| ≤ Ḡ1|χ||ζ̃s|+ Ḡ2|χ|, (72)

for some positive constants Ḡ1 and Ḡ2.
Define the candidate Lyapunov function

W̃ (t, ζ̃, χ) := kWχ(t, χ) +
∑
i≤N

Wζ̃,i(t, ζ̃i), (73)

where Wζ̃,i is defined in (67). From, (68), (69), (70), and (72),
in D the derivative of W̃ along the trajectories of (34) satisfies

˙̃W (t, ζ̃, χ) ≤− α1|ζ̃s|2 + α2ϑ̄|ζ̃s| − kα′
6|χ|2 + α3

+ α2

∣∣∣ζ̃s∣∣∣ [Ḡ1|χ||ζ̃s|+ Ḡ2|χ|
]

≤− α′
1|ζ̃s|2 + α2Ḡ2|χ||ζ̃s| − kα′

6|χ|2

+ α2Ḡ1|χ||ζ̃s|2 + α′
3 (74)

where α′
1 and α′

3 are positive constants.
Now, since the trajectories of (34b) converge to the origin

exponentially fast, the exists a time T > t0 such that for all

t ≥ t0 + T , |χ(t)| ≤ α′
1/(2α2Ḡ1). Hence, for all t ≥ t0 + T

and for a sufficiently large k we have

˙̃W (t, ζ̃, χ) ≤− α′
1

2
|ζ̃s|2 + α2Ḡ2|χ||ζ̃s| − kα′

6|χ|2

+ α2Ḡ1|χ||ζ̃s|2 + α′
3

≤− α′′
1 |ζ̃s|2 − α′′

6 |χ|2 + α′
3, (75)

for some positive constants α′′
1 and α′′

6 . On the other hand, for
all t < t0 + T we have

˙̃W (t, ζ̃, χ) ≤ k′W̃ + α′
3, k′ > 0, (76)

implying that there is no finite escape time. Thus, from (75)
and (76) the trajectories of the closed-loop system (34) are
uniformly ultimately bounded, the limits in (14) are achieved
exponentially and the hard and soft constraints sets, respec-
tively (9) and (12) are forward invariant.

V. SIMULATION RESULTS

In this section we illustrate the performance of the con-
troller (6), (51), through high-fidelity simulations in DUNE
[24]. DUNE (Unified Navigation Environment) is a software
platform designed to run on autonomous underwater vehicles.
DUNE also contains a high-fidelity AUV simulator, allowing
us to validate the proposed control algorithm, reproducing
as closely as possible a physical experiment. We conduct
two simulation cases of the tracking-in-formation problem for
six ASVs subject to hard (distance) and soft (positive surge
velocity) constraints. It is only assumed that the vehicles are
interconnected at the initial time, so the controller must pre-
serve such connectivity. An animation of the simulation results
is accessible at https://youtu.be/1yJm3_0jYfI.

In the first scenario, we consider that the agents interact
over a directed spanning tree illustrated in Fig. 2 and follow
a virtual leader describing a circular trajectory (solid black
line in Fig. 4) determined by (13) with the input given by
µo(t) = [−0.022 cos(0.021t) − 0.022 sin(0.021t)]

⊤
,

with initial conditions ho(0) = [200 0]⊤m and
νho(0) = [0 1.05]⊤m/s. In the second scenario, the
agents communicate over a cycle graph illustrated in Fig. 3
and the leader describes a figure-eight trajectory (solid
black line in Fig. 10) given by (13) and the input µo(t) =
[−0.024 cos(0.022t+ 1.57) − 0.048 sin(0.044t+ 3.14)]

⊤
,

with initial conditions ho(0) = [150 0]⊤m and
νho(0) = [−1.1 − 1.1]⊤m/s. In both cases, only the
agent labeled “1” knows the state of the target (labeled “0”).

The initial conditions for both scenarios are presented in
Table I. The desired formation is a regular hexagon described
by the desired relative position vectors zd1k given by (15, 7.5),
(−15, 22.5), (−15, 7.5), (0, 15), (−15, 22.5), for the spanning
tree topology and (15, 7.5), (0, 15), (−15, 7.5), (−15,−7.5),
(0,−15), (15,−7.5), for the cycle topology. The maximal and
minimal distance parameters are ∆k = 75m and δk = 5m.
The hand position point is chosen at l = 1m, and the control
gains are set to c1 = 1, c2 = 0.2, γ = 0.25, cv = 0.2, κu =
0.05, κρ = 4, and σ = 0.3. Furthermore, in order to avoid
discontinuities in the control, the non-smooth sign(s) function

https://youtu.be/1yJm3_0jYfI
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in (51) and (28) is replaced by the smooth approximation
tanh (ca s), ca ≫ 1.

0

1 2

3

4

5

6

e2

e3 e1

e4

e5

e0

Fig. 2: Interaction topology: directed spanning tree.

0

1
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2

3

6

5

e1e2

e3 e4

e5

e0

e6

Fig. 3: Interaction topology: directed cycle.

TABLE I: Initial conditions

Index xi yi ψi uri vri ri
1 103 35 6.25 0 0 0
2 75 34 4.56 0 0 0
3 112 17 1.61 0 0 0
4 90 -12 4.64 0 0 0
5 108 -6 4.65 0 0 0
6 62 4 3.32 0 0 0

50 100 150 200
−50

0

50

Fig. 4: Paths followed by the agents. The initial conditions and final
configuration are marked by blue and red arrows, respectively. The
solid black line represents the trajectory of the virtual leader.

0 50 100 150 200 250 300 350
0

20

40

60

80

t [s]

|z 1
k
|[

m
]

e1 e2 e3
e4 e5

Fig. 5: Inter-agent distances. The dashed lines represent the connec-
tivity and collision-avoidance constraints.

Figs. 4-8 present the results of the simulation scenario with
the spanning tree topology. As shown in Fig. 4, the LAUVs
manage to reach the desired formation (red arrows) as is also
evidenced from the formation and tracking errors in Fig. 5.
Furthermore, the formation and velocity errors are presented
in Figs. 6-7. Note that the errors do not converge to zero but

0 50 100 150 200 250 300 350
0

50

100

t [s]

|z̃ 1
k
|[

m
] e1 e2 e3

e4 e5 e0

Fig. 6: Norms of the formation/tracking errors.
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Fig. 7: Norms of the velocity errors.
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Fig. 8: Surge velocities under the soft-constraint requirement.
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Fig. 9: Surge velocities without the soft-constraint requirement.

rather to a small region around zero. These nonzero steady-
state errors are caused by two factors: the uncertainty of the
navigation system, and the delay in the actuators. The vehicles
still manage to respect the hard connectivity and collision-
avoidance constraints, shown as dashed red lines in Fig. 5. The
surge velocities in Fig. 8 are non-negative. For comparison,
the surge velocities shown in Fig. 9 result from a simulation
without the soft-constraint requirement, and it is clear that in
contrast to Fig. 8, in this case the velocities of vehicles 3, 4,
5, and 6 also become negative between 90s and 150s.

Figs. 10-14 present the results of the second scenario, with
the cycle graph topology. It can be seen from Figs. 10 and
11 that also here the LAUVs manage to reach the desired
formation (red arrows), with a small steady-state error in
the formation and velocity errors, presented in Figs. 12 and
13, respectively. As before, a second simulation without the
soft-constraint requirement was performed for comparison. In
contrast to Fig. 8 where all the surge velocities are positive,
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100 150 200

0

50

Fig. 10: Paths followed by the agents. The initial conditions and
final configuration are marked by blue and red arrows, respectively.
The solid black line represents the trajectory of the virtual leader.
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Fig. 11: Inter-agent distances. The dashed lines represent the
connectivity and collision-avoidance constraints.

0 100 200 300 400 500
0

20

40

60

t [s]

|z̃ 1
k
|[

m
] e1 e2 e3

e4 e5 e6
e0

Fig. 12: Norms of the formation/tracking errors.

it can be seen in Fig. 9 that without the soft-constraint
requirement, the velocities of vehicles 5 and 6 become negative
at around 70s and 110s. Note that in this case the collision-
avoidance constraint is slightly violated for one pair of vehicles
around 50s. This is because in the DUNE simulations, contrary
to the theoretical results presented above, both the velocity
and the acceleration of the LAUVs are bounded due to the
physical limits of the actuators. Therefore, although in theory
the control input should increase unboundedly to prevent that
the constraints are violated, in practice this is not the case and
the control inputs saturate. The consideration of saturation in
the control together with hard and soft constraints is, however,
still an open problem and out of the scope of this paper.
Lastly, we note that, in the included video of the simulations,
it may appear as if there are collisions. Please note that this is
only a visualization issue. Specifically, the sizes of the arrows
representing the LAUVs are chosen larger than their real sizes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the tracking-in-formation con-
trol problem of cooperative autonomous marine vehicles in-
teracting over directed graphs and under hard inter-agent
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Fig. 13: Norms of the velocity errors.
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Fig. 14: Surge velocities under the soft-constraint requirement.
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Fig. 15: Surge velocities without the soft-constraint requirement.

constraints (proximity and collision avoidance) and soft con-
straints (positive surge velocity). We proposed a distributed
control law that solves this problem and that guarantees, simul-
taneously, connectivity preservation and inter-agent collision
avoidance. With respect to the stability analysis, it is important
to emphasize that, beyond mere convergence properties as
usually established in the literature of multi-agent systems,
we establish almost-everywhere uniform asymptotic stability
with exponential convergence of the tracking errors. Current
research focuses on validating the results experimentally and
extending them to consider input saturation and AUVs in 3D.

APPENDIX I

Let mij and dij be, respectively, the ij-th entries of the
mass and damping matrices. Then, we have

X1 =
m11m33 −m2

23

m22m33 −m2
23

; X2 =
d33m23 − d23m33

m22m33 −m2
23

(77)

Y1 =
(m11 −m22)m23

m22m33 −m2
23

; Y2 =
d22m33 − d32m23

m22m33 −m2
23

(78)

Fur
(vr, r) =

1

m11
(m22vr +m23r)r −

d11
m11

ur (79)

Fr(ur, vr, r) =
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr
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+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r. (80)

[
α(ζ̃i, ξ̄3i, ξ̄4i)

β(ζ̃i, ξ̄3i, ξ̄4i)

]
= R⊤(ζ̃1i+ϕo)

[
υ1(ζ̃i, ξ̄3i, ξ̄4i)

υ2(ζ̃i, ξ̄3i, ξ̄4i) +
Y2

l

]
(81)

where R(·) : R → SO(2) is the rotation matrix and

υ1(·) =
Y1
l
Uo sin ζ̃1i +

(
Y1 −

X1 − 1

l

)
ζ2i

υ2(·) =
Y1
l

[
(ξ̄3i cos(ζ̃1i+ϕo) + ξ̄4i sin(ζ̃1i+ϕo))+Uo cos ζ̃1i

]
.
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