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ARTICLE

A quantitative Streptococcus pyogenes–human
protein–protein interaction map reveals localization
of opsonizing antibodies
Lotta Happonen1,8, Simon Hauri 1,8, Gabriel Svensson Birkedal1,6, Christofer Karlsson 1,

Therese de Neergaard1, Hamed Khakzad 2,3,4, Pontus Nordenfelt 1, Mats Wikström5,7,

Magdalena Wisniewska5, Lars Björck1, Lars Malmström 1,2,3,4 & Johan Malmström 1

A fundamental challenge in medical microbiology is to characterize the dynamic

protein–protein interaction networks formed at the host–pathogen interface. Here, we gen-

erate a quantitative interaction map between the significant human pathogen, Streptococcus

pyogenes, and proteins from human saliva and plasma obtained via complementary affinity-

purification and bacterial-surface centered enrichment strategies and quantitative mass

spectrometry. Perturbation of the network using immunoglobulin protease cleavage, mixtures

of different concentrations of saliva and plasma, and different S. pyogenes serotypes and their

isogenic mutants, reveals how changing microenvironments alter the interconnectivity of the

interaction map. The importance of host immunoglobulins for the interaction with human

complement proteins is demonstrated and potential protective epitopes of importance for

phagocytosis of S. pyogenes cells are localized. The interaction map confirms several pre-

viously described protein–protein interactions; however, it also reveals a multitude of addi-

tional interactions, with possible implications for host–pathogen interactions involving other

bacterial species.
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Many significant bacterial pathogens produce proteins,
that form interactions with human host proteins to
evade the immune system1, acquire metabolites2, and

facilitate adherence3. At the same time, protein components from
the adaptive and innate immune system of the host, such as
immunoglobulins and proteins of the complement system,
interact with bacterial surfaces and effector proteins to promote
bacterial clearance. This multitude of protein interactions can
result in the formation of complex protein–protein interaction
networks via inter-species and intra-species protein connections,
a reflection of the evolutionary interplay between host and
pathogen3. A quantitative characterization of these
host–pathogen protein interaction networks is central to under-
standing the molecular basis of bacterial infections.

Mass spectrometry (MS) has evolved as a key technology in the
large-scale characterization of protein interactions4. As recently
reviewed, affinity purification–MS (AP–MS), cross-linking MS,
and proximity-dependent labeling–MS have been used to char-
acterize host–pathogen protein interactions5. However, these
efforts have typically focused on characterizing static protein
interaction networks between human host proteins and microbial
species. There is increasing awareness that quantification of
protein interaction networks will provide a more dynamic
understanding of these interactions6. The recent development of
data independent analysis (DIA)-MS7 has provided new oppor-
tunities to consistently quantify protein–protein interactions in
different states6. In DIA-MS, proteome maps are generated based
on data-independent acquisition, followed by protein quantifi-
cation using previously established assay libraries. Importantly,
DIA-MS can provide accurate protein quantification with a high
degree of data completeness and dynamic range without speci-
fying target peptides prior to data acquisition6.

Streptococcus pyogenes is an important human pathogen, cap-
able of forming a dense and protein-rich inter-species interaction
network outside its cell wall2,8,9. This Gram-positive bacterium
has diverse clinical manifestations, ranging from mild and com-
mon local infections, such as tonsillitis, impetigo, and erysipelas
to life-threating systemic diseases like sepsis, meningitis, and
necrotizing fasciitis10. The incidence of tonsillitis caused by S.
pyogenes is 1000-fold higher than invasive S. pyogenes infec-
tions11; even so, S. pyogenes is responsible for over 160,000 deaths
every year12. Infection of the upper respiratory tract by S. pyo-
genes is characterized by vascular leakage, activation of innate and
adaptive immunity, and by infiltration of inflammatory cells13,
resulting in a dramatic increase in protein mass at the infection
site14. Many of the most abundant plasma proteins infiltrating the
site of infection, such as fibrinogen, albumin, and immunoglo-
bulins, have previously been shown to form protein interactions
with the M1 protein8,9,15. M proteins form a fibrillar layer on the
surface of S. pyogenes, and depending on serotype, harbor a variety
of repeat regions that are used to bind human proteins, including
fibrinogen, fibronectin, albumin, plasminogen, proteins of the
complement system, and immunoglobulins (IgA, IgG1–4)16, and
can mediate interactions with additional human proteins creating
large inter-species protein complexes17. The binding can be
environment specific, as IgGs can bind to some M proteins via
their antigen-binding fragments (Fab) under antibody-rich con-
ditions, such as plasma, or via their Fc fragment in an antibody-
poor scenario, such as saliva18. S. pyogenes encodes a wide variety
of other virulence factors, such as adhesins and exotoxins, which
are used in host cell adherence, internalization, and invasion
during infection10, though many of these are poorly characterized.
S. pyogenes also produces a handful of specific enzymes, such as
the immunoglobulin specific protease IdeS19, the glycosidases
EndoS and EndoS220,21 and the cysteine protease SpeB22. These
and other secreted proteins can distort the interactions with

human proteins; thereby, result in a highly dynamic interaction
network at the S. pyogenes cell surface8.

In this study, we generate a quantitative S. pyogenes–human
plasma and saliva interaction map to determine dynamic protein
interactions at the host–pathogen interface. In contrast to pre-
vious studies8,9, we use here DIA-MS and a combined affinity-
purification and bacterial-surface-centered host protein
enrichment strategies to determine how the human–pathogen
interaction networks are regulated. Collectively, the interaction
map reveals how changing microenvironments alter the inter-
connectivity of protein networks based on the formation of both
inter-species and intra-species protein interactions, which facil-
itates the detection of protective epitopes important for S. pyo-
genes interaction and internalization during phagocytosis.

Results
The streptococcal–human protein interaction network. To
catalog the interaction network formed between S. pyogenes and
human proteins we used a combined protein-centered and
bacterial-surface centered AP strategy to isolate interacting pro-
teins, followed by label-free quantitative MS (DIA-MS; Fig. 1a, b).
In the protein-centered AP–DIA experiments 16 putative viru-
lence factors were produced as bait proteins (Fig. 1a, Supple-
mentary Data 1, 2). The bait proteins were selected from previous
proteomic screens of S. pyogenes serotype M1 strains SF370, AP1,
5448, and 5448AP, MGAS5005, as well as 34 clinical strains
isolated in 20122,8,9,23–25. They were expressed as recombinant
proteins with an affinity tag and used to capture interacting
proteins from both pooled normal human plasma and saliva
(Fig. 1a). Quantitative DIA-MS analysis of the captured human
proteins identified 226 high-confidence specific interactions
between 107 human and the 16 streptococcal bait proteins, when
compared to the superfolder green fluorescent protein (sfGFP)
control samples (Fig. 1c, Supplementary Fig. 1). The 226 inter-
actions were distributed unevenly between the baits (Fig. 1d),
with 81 interactions identified in saliva and 145 in plasma. Pro-
tein interaction networks incorporating the interactions between
the individual baits and co-purified human proteins are given in
Supplementary Fig. 2 and Supplementary Data 3. The com-
plementary experiments using S. pyogenes M1 serotype strain
AP1 as bait by surface adsorption (SA–DIA) resulted in the
identification of 55 high-confidence human interacting proteins
in either plasma or saliva, though most were identified in plasma
(Fig. 1e).

To visualize the overlap between the saliva and plasma
interaction maps, we generated an interconnected view of the
AP–DIA and SA–DIA human interacting proteins, providing
captured protein abundance compared to the respective baits
(Fig. 2). Of the 226 AP–DIA protein interactions identified, the 67
human proteins exclusively identified in AP–DIA are organized
according to functional protein class. In total, 40 out of the 55
proteins identified by SA–DIA overlap with those identified by
AP–DIA (Fig. 2). The combined AP/SA–DIA network consists of
122 human proteins subdivided into nine major functional
groups, such as immunoglobulins, cystatins, acute phase proteins,
apolipoproteins, and proteins involved in the coagulation and
complement system (Fig. 2). The most abundant proteins
adhering to the M1 streptococcal surface in plasma are
coagulation (fibrinogen) proteins, complement system proteins,
apolipoproteins, and immunoglobulins. In saliva, other protein
groups are more abundant, such as salivary defense proteins.
Comparative analysis of the interactions formed in saliva and
plasma reveals a relatively small overlap of known plasma
proteins, such as fibrinogen, albumin, immunoglobulins (IgG1–2
and IgG4), and ceruloplasmin (Fig. 2, Supplementary Data 3).
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Notably, secreted streptococcal proteins tend to interact with
human saliva proteins, whereas cell wall-attached streptococcal
proteins interact with human plasma proteins (Fig. 2). This
suggests that S. pyogenes has developed distinct strategies for host
defense evasion in the different ecological niches of the upper
respiratory tract and plasma. M1 protein showed the highest
number of protein interactions in the interaction network (Fig. 2,
Supplementary Data 3), and is responsible for interactions with
the most abundant human proteins at the bacterial surface, such
as immunoglobulins, fibrinogen, and albumin, consistent with
previous findings8.

Some of the interactions generated by AP–DIA and SA–DIA
were assessed in deletion mutagenesis experiments, western
blot analysis of the original AP reactions, reverse affinity-
capture using human proteins as baits and by targeted
crosslinking MS (TX-MS)17. These verification experiments
confirms that proteins ISP and CovR bound to the complement

membrane attack complex (MAC) composed of proteins C5b-
C926 (Fig. 2, Supplementary Fig. 2), in a manner previously
described for streptococcal inhibitor of complement (SIC)27.
Additional AP experiments in human plasma with truncated
versions of ISP demonstrate that the N-terminus of ISP
is responsible for MAC binding, whereas the C-terminus binds
the complement system proteins C1 and clusterin (Supplemen-
tary Fig. 3). In addition, TX-MS together with western blot
analysis of AP reactions demonstrate that ISP, its truncated
version ISP-N and CovR interact with human fibrinogen
(Supplementary Figs. 2, 3, 4; Supplementary Data 4–6). Reverse
affinity-capture using tagged human serum albumin as the bait,
and western blot analysis of the original AP reactions in human
plasma confirms that the uncharacterized protein Q99XU1
(SPy_2033) interacts directly with albumin, whereas the
uncharacterized protein Q99YI6 (SPy_1686) only does so in
plasma (Supplementary Figs. 5 and 6), indicating either an
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indirect interaction or the need for auxiliary proteins to capture
the interaction.

Dynamic changes at the streptococcal–human interface. As a
next step, the dynamics of the protein interaction networks were
assessed in two separate experiments. In the first experiment,
SA–DIA was used to quantitatively analyze the interaction net-
works formed in different mixtures of plasma and saliva to
measure any inherent competition between plasma and saliva
protein interactions. In the second experiment, the effect of dif-
ferent serotypes and their isogenic M protein (emm) deletion
mutants on plasma protein interactions was determined.

In the first experiment, SA–DIA protein interaction analysis
was performed using mixtures of plasma in saliva (0.01%, 0.1%,
1%, 2.5%, 5%, and 10% plasma; Fig. 3, Supplementary Fig. 7) that
reflects the range of plasma leakage in tonsil swabs from patients
with tonsillitis14,15. Six clusters of proteins with different binding
patterns were identified (Fig. 3a). Protein interactions in the most
numerous clusters (clusters I and II in Fig. 3a) correlates with the
increase in plasma concentration, and includes proteins that
interact in a nonspecific manner or adhere to several binding
sites. An example of a complex in cluster I is the complement
MAC, composed of the complement proteins C5b-C928,29. Other
proteins in these clusters are IgGs of the 1, 2, and 3 subclasses,

which recognize several different epitopes due to their polyclonal
nature (Fig. 3a, b). By contrast, several of the known M1 protein
binders, such as fibrinogen and fibronectin, display saturated
binding profiles at 1% plasma (cluster III in Fig. 3a). The
saturated mode of binding indicates that these proteins have
specific binding sites that become saturated at low plasma
concentrations (Fig. 3b). Cluster IV and V have a variable binding
pattern, while proteins in cluster VI mostly consist of saliva
proteins that are outcompeted by increasing plasma concentra-
tion at around 1% plasma (Fig. 3a). The saturated mode of
binding observed at relatively low concentrations of plasma
possibly reflects the typical situation encountered in vivo during
plasma leakage at local infection sites.

In the second experiment, we compared the interaction
networks in plasma formed around three M protein serotypes:
M1 strain (SF370), with a wild-type csrR regulon genotype; M3
(950771); and M5 (Manfredo; Fig. 4). Collectively, the M1 and
M3 serotypes have been estimated to account for a third of all
clinical isolates in high-income countries in the world, and are
prevalent in cases of invasive disease30, while the less common
M5 strains are associated with acute rheumatic fever31. SA–DIA
experiments with the M1, M3, and M5 strains in human plasma
revealed that the surface interaction maps are similar, although
there are areas of statistically significant differences; for example,
M1 binds more of complement factor H-related protein 3
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(CFHR3) compared to M3 (Fig. 4a). SF370 binds many of the
interactors identified with AP1 (Fig. 2), and which have reduced
binding profiles in M5, such as fibrinogen chain alpha (FGA),
apolipoproteins, and several components of the complement
MAC (Fig. 4a). To further assess the role of M proteins in
mediating these interactions, we performed additional SA–DIA
experiments using isogenic M protein (emm) deletion strains
(Fig. 4b). Removal of M protein leads to an increased binding of
complement proteins C3 and C4, the broad-range protease
inhibitor alpha-2-macroglobulin (A2M; Fig. 4b), and also a
statistically significant increase of CFH on M1 and fibronectin
(FN1) on M3 and M5. In our AP–DIA experiments we identified
A2M as a highly specific binder of protein G-related A2M-
binding protein (GRAB), as previously reported (Fig. 2, Supple-
mentary Figs. 2, 8)32. Other reports have shown that CFH and
FN1 binds to streptococcal FbaA and PrtF2, respectively33,34. To
investigate the reason for the increased levels of A2M, CFH, and
FN1, we performed selected-reaction monitoring MS (SRM-MS)
on the interacting proteins and their target bacterial surface
proteins (Fig. 4c–e). These results confirm the increased
abundance of A2M, CFH, and FN1 on the emm-deletion strains,

whereas their bacterial receptor proteins (GRAB, FbaA, and
Prtf2) remain unchanged. We believe that the increased levels of
A2M, CFH, and FN1 are mainly due to removal of steric
hindrance by the M proteins and associated human binding
proteins. The observation that removal of M protein results in a
significant reduction in binding of human albumin, fibrinogen,
and IgG3 is common to all serotypes. These results imply that
IgG3 is strongly associated to the M proteins, prompting further
investigation.

IgG3 antibodies have high affinity to M proteins. Our AP–DIA
experiments (Fig. 2) identify a total of 29 human proteins
interacting with M1 protein, several of which are known binders,
such as fibrinogen and albumin; however, there are also other
human proteins that have not previously been reported to have
this association (Fig. 5a). Furthermore, we observe a strong
association between the M proteins and all different IgG sub-
classes, compared to the other bait proteins (Fig. 5b, c). Previous
work has indicated that S. pyogenes had a strong preference for
IgG3s over other subclasses (IgG1–2 and 4)8. Here, we provide
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Fig. 4 Plasma protein interactomes of S. pyogenes M1, M3, and M5 serotypes. a Volcano plots comparing the plasma interactomes of the different M
protein serotype strains, and b volcano plots of the different M protein serotypes compared to their respective M protein deletion strains. In a, b human
proteins are indicated that do (red sphere) and do not (gray sphere) show a significant difference in the compared interactomes. The data was filtered
using a log2 fold enrichment of >2 and an adjusted P-value < 0.05 using the Welch’s t-test. The size of the spheres indicates protein abundance as
measured in SA–DIA. c–e Quantitative Baccus peptide-based8 SRM-MS comparison between the different M protein serotypes as compared to their
respective M protein deletion strains. Here we compare the interaction with human alpha-2-macroglobulin (A2M) in relation to the amount of expressed
streptococcal protein GRAB, the amount of complement factor H (CFH) and fibronectin (FN1) in relation to fibronectin-binding proteins (FabA and Prtf2).
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deviation (s.d.) from the mean. Source data are provided as a Source Data file
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two additional lines of evidence indicating that IgG3 is the pre-
dominant subclass of M protein-mediated Fab-bound antibodies.
First, analysis of the IgG subclass distribution in the SA–DIA
experiments from the different serotypes (Fig. 4), show a sig-
nificant >90% reduction of IgG3 in the emm-deletion strains,
while the other IgG subclasses remain relatively unchanged
(Fig. 5b). Second, in additional AP–DIA experiments using the

M1 protein and the mixed plasma/saliva samples, IgG3 does not
display a saturated-binding profile, in contrast to the other sub-
classes of immunoglobulins (IgG1, IgG2, and IgG4; Fig. 5d–f).
The pronounced high level of non-saturated IgG3 associated with
the bacterial surfaces and M1 protein indicates that IgG3 might
predominately bind via the Fab domain, whereas the binding of
IgG1–2 and IgG4 is in part Fc-mediated to the M1 protein S-
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region18. With this explanation, IgG3 would not display a satu-
rated binding pattern due to the larger number of surface epitopes
available on the M1 protein, whereas the other subclasses binding
via the Fc domain would be confined to a single binding site.

Immune and non-immune binding of immunoglobulins. To
further determine whether the different subclasses of immu-
noglobulins predominantly bound to M1 protein and to the

surface of S. pyogenes via the Fab or Fc fragment, we pretreated
the plasma with IdeS to cleave the IgGs into Fab and Fc parts
prior to AP/SA–DIA analysis. IdeS is a secreted and highly spe-
cific cysteine protease produced by S. pyogenes that cleaves
human IgGs in the hinge region, while leaving IgA, IgD, IgE, and
IgM molecules intact19. Removal of the Fc part from Fab-bound
IgGs eliminates all Fc-facilitated binding and any downstream
protein interactions mediated via Fc. Focusing first on the
AP–DIA experiments, we observe that the M1 protein interac-
tions with C1Q, C1S, and C1R proteins are completely abolished
upon IdeS treatment and elution of the resulting Fc-domain
(cluster III in Fig. 6a), demonstrating their IgG mediation
(Fig. 6b, c). By monitoring specific peptides sequences specifically
associated with either Fab or Fc fragments of the
IgG1–4 subclasses14, we note a dramatic drop in the M1-coupled
IgG1 Fab-fragment upon plasma IdeS digestion, whereas there is
no difference in the binding profile of IgG3 Fab (Fig. 7a, c). The
trend is the opposite for Fc bound IgG1 and IgG3, showing that
the high levels of IgG3 observed in Figs. 2–5 is explained by Fab-
bound IgG3, whereas IgG1 is partly Fc bound to the M1 protein
(Fig. 7d). Notably, the levels of Fab-bound IgG2 and IgG4 to the
M1 protein are too low for reliable quantitation and were thus
omitted from the graphs. However, this observation further
indicated that the predominant IgG classes interacting with M1
protein were IgG3 and IgG1.

By contrast, in the SA–DIA experiments, involving IdeS-
digested plasma and the S. pyogenes serotype M1 strain AP1
(Fig. 7b), non-immune Fc and immune Fab-binding patterns of
IgG1 and IgG3 were highly similar (Fig. 7e, f). IdeS treatment did
not affect IgG1 Fab binding, most likely due to other available
epitopes present on the bacterial surface in addition to M1
(Fig. 7e). Furthermore, several other known M1-binding proteins,
such as fibrinogen and albumin, are unaffected by IdeS treatment
during SA–DIA analysis (Supplementary Fig. 9). By contrast,
there is also larger complexes adhering to the bacterial surface,
where the binding is dependent on the presence of intact IgG
molecules. For instance, all members of the complement MAC
and the associated vitronectin and clusterin are reduced on the
AP1 surface after pre-treatment with IdeS (Supplementary Fig. 9).
These proteins likely bind as one complex, i.e. the fluid-phase
SC5b-935, as the intensity ratios between the components are
similar in all samples (Supplementary Fig. 9). Taken together, the
combined AP/SA–DIA results demonstrate that the primary M1
protein-mediated interaction with immunoglobulins is with Fab-
bound IgG3, and that streptococci could potentially modify the
host interaction network by secreting immunoglobulin degrading
enzymes, such as IdeS, leading to diminished C1Q deposition and
possible alterations in phagocytosis efficiency.

The C-repeats of the M protein mediate phagocytosis. To fur-
ther locate the M protein regions responsible for the IgG3

Fig. 5 The M protein immunoglobulin interactomes. a The M1 protein–human interactome. Known human–human interactions from the STRING-
database70 are depicted with broken gray lines. Previously identified M1–human interactions are depicted with solid gray lines, and are most recently
described in Hauri et al.17. The interactome views were generated using Cytoscape69 and modified in Adobe Illustrator. b IgG subclass distribution between
the different M protein serotypes and their respective deletion mutants. IgG3 is the only subclass for which the difference in binding to the wild-type strain
as compared to the mutant strain is significant, as indicated with P values: *P < 0.05, **P < 0.01, and ***P < 0.001 using the Welch’s t-test. c IgG subclass
distribution over the different streptococcal bait proteins used in this study. As is evident, the immunoglobulins have a pronounced affinity for the M
protein (emm1). The dominating subclass interacting with the M1 protein is IgG1 (orange sphere) followed by IgG3 (shown in light blue). d–f AP–DIA in a
mixed plasma–saliva environment mimicking vascular leakage. d Different mixtures of plasma in saliva (0.01%, 0.1%, 1%, 2.5%, 5%, and 10% plasma) were
used to study the effect of the host environment on protein–protein interactions. e Cluster analysis of the M1 protein AP–DIA data in a mixed plasma and
saliva environment based on z-score. f AP–DIA interaction patterns of fibrinogen (FGA, FGB, FGG), albumin (ALB) and the different IgG subclasses
(IGHG1–4) in mixed plasma and saliva environments. Error bars are expressed as standard deviation (s.d.) from the mean. All experiments were prepared
using n= 3 biologically independent samples. Source data are provided as a Source Data file
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binding, we performed SA–DIA experiments using plasma and
several M5 mutant strains, ΔN1, ΔB, and ΔC (Fig. 8a)36. Mutant
strains without their hypervariable region (N) result in a slight
but significant reduction of CFH (Fig. 8b). The mutant strains
without B-repeats result in a significant reduction of fibrinogen
and plasminogen (Fig. 8c), as previously shown37 and the mutant
strains without C-repeats result in a significant reduction of
albumin, C1Q, and IgG3 (Fig. 8d). The absence of the B-repeats
significantly elevates the levels of C3 and C4, demonstrating that
removal of the extensive fibrinogen network from the bacterial
surface promote increased binding of C3 and C4 to the bacterial
surface, possibly by providing a greater surface accessibility. To
investigate this phenomenon in more detail, we compared the
relationship between fibrinogen and C3 across all the SA–DIA
experiments in this study. In all cases, a significant reduction of
fibrinogen at the bacterial surface results in a significant increased
binding of C3 (Fig. 8e). Correlation analysis between fibrinogen
and C3 revealed that the two proteins displayed a highly com-
petitive mode of binding, although they adhered to different parts
of the streptococcal surface (Fig. 8f). Our observations were
consistent with previous reports that fibrinogen inhibited com-
plement C3 deposition, both on M protein and on the surface of
bacteria38. In addition, these results demonstrate that the

different binding domains of M proteins are associated with sets
of proteins that can influence S. pyogenes propensity to become
phagocytic. This raised the question as to what alters the degree of
interaction and internalization by human phagocytes; whether it
is loss of fibrinogen binding and subsequent increase of C3, or
loss of IgG3 and C1Q, while the other subclasses of immu-
noglobulins remain constant (Fig. 8g, h). To investigate this, we
performed comparative interaction and internalization analysis of
the bacteria with the monocytic THP-1 cell line, using the ser-
otype M5 and its mutant derivates ΔN1, ΔB, and ΔC, in pooled
normal human plasma. Based on median fluorescence intensity
(MFI), the interaction of intact M5 protein, and the ΔN1 and ΔB
mutants with THP-1 cells are of the same order of magnitude,
while that of the ΔC mutant is reduced >99% (Fig. 8i, Supple-
mentary Fig. 10). Furthermore, when comparing the number of
bacteria showing internalization, we do not observe it for the ΔC
mutant, while the level in intact M5, and the ΔN1 and ΔB
mutants are similar (Fig. 8i).

One of the leading candidates from current vaccine focus on M
proteins16,39 is the J8-peptide, located in the C-region of M140;
the same region that is shown above to be crucial for interaction
and internalization with monocytic cells (Fig. 8i). Enzyme-linked
immunosorbent assays (ELISA) with synthetic peptides
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constructed from sequence repeats of the M1 protein in pooled
intravenous immunoglobulins (IVIG) show that the immunoglo-
bulins present have a preferential affinity for the C-repeat region
containing the 12 amino acid J8-sequence, as compared to the B-
regions (Supplementary Fig. 11). Hence, these results confirm
that peptides in the C-region of M protein are potent epitopes for
opsonizing antibodies41, and that these repeat regions are central
targets for peptide-based vaccine development.

Discussion
The development of vaccines and other treatment strategies to
combat bacterial infections is dependent on knowledge of the

natural human immune response against these pathogens.
Exposure to streptococcal bacteria induces immune responses
against members of the M protein family and other less studied
streptococcal protein targets42. In this study, we use the quanti-
tative aspects of DIA-MS to identify over 100 human blood
plasma and saliva proteins targeted by S. pyogenes during the
infection process. We identify several key components of the
human immune system that are bound to the bacterial surface as
larger protein complexes, and which are dependent on the site of
infection. In saliva, S. pyogenes preferentially uses secreted pro-
teins to target salivary defense proteins. This is consistent with a
previous report where several streptococcal extracellular virulence
factors were produced during growth in saliva43. However, in
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Fig. 8 Localization of opsonizing antibodies on the M5 protein. a Schematic representation of the M5 protein, and the arrangement of the different domains
(N, B, and C). Volcano plots comparing the SA–DIA plasma interactome of the wild-type M5 protein to the: b ΔN1 mutant strain, c ΔB mutant strain, and
d ΔC mutant strain. In panels b–d a red sphere indicates a human protein with a significant difference in the compared interactomes, while a gray sphere
indicates no significant difference, in the interaction between the wild-type and the respective mutant strain. The data was filtered using a log2 fold
enrichment of >2 and an adjusted P-value < 0.05 using the Welch’s t-test. The size of the spheres indicates protein abundance as measured in SA–DIA. e A
comparative analysis of the relationship between fibrinogen and complement C3 bound to the surface of the bacteria in all SA–DIA experiments used in
this study. In all M protein mutant strains studied, the binding of fibrinogen to the surface of the bacteria is significantly reduced compared to the wild-type
bacteria (indicated with ***P-value < 0.001 using the Welch’s t-test), as the binding of complement C3 increases on the surface of mutant bacteria.
f Correlation analysis between fibrinogen and C3 reveals that the two proteins display a highly competitive mode of binding. g IgG subclass distribution
between wild-type M5 strain and its different derivative mutant serotypes. IgG3 has specific affinity for the C-repeat region of the M5 protein. h C1QA-C
association with wild-type M5 strain and the different derivative mutant serotypes. C1QB and C1QC both have specific affinity for the C-repeat region of
the M5 protein, mediated by IgG3 Fc-binding. Q1QA was detected with one peptide only, Q1QB and C1QC each with two peptides. i Flow cytometry-based
interaction (phagocytes associated with bacteria) and internalization (average number of bacteria inside phagocyte) of the wild-type M5 strain and
different mutant strains with human THP-1 monocytes. The data is based on four separate experiments. Error bars in panels e, g, and h are expressed as
standard deviation (s.d.) from the mean and in panel i as standard error of the mean (s.e.m). All experiments were prepared using n= 3 biologically
independent samples, except in panel i, where n= 4 biologically independent samples were used. Source data are provided as a Source Data file
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plasma, surface-attached proteins are used to target many
important plasma proteins, both to sequester fatty acids via
human serum albumin in the late stages of infection, leading to
bacterial fatty acid synthesis being shut down and thus saving
energy2, but also to bind host proteins to protect the bacteria
against human immune defenses8. In a mixed plasma–saliva
environment mimicking vascular leakage during an
infection2,14,15, binding of saliva proteins is outcompeted by
plasma proteins. This suggests that S. pyogenes is adapted to
specifically sequester plasma proteins at low concentrations that
might typically be found during plasma leakage at local
infection sites.

We explore in detail the human interactions which are crucial
for immune evasion and phagocytosis. For instance, in a dynamic
setting aimed at resembling plasma leakage during tonsillitis and
pharyngitis, we observe that binding of human plasma fibrinogen
and fibronectin to the bacterial surface is saturated at very low
plasma concentrations, indicating that this interaction is pri-
marily a survival mechanism of S. pyogenes when causing infec-
tions in the upper respiratory tract. By binding a large, elongated
molecule such as fibrinogen in a network-like structure44, the
binding sites for IgGs, albumin, and other crucial interaction
partners might be masked and made inaccessible. Indeed, it has
been suggested that fibrinogen bound to the M5 protein promotes
phagocytosis resistance by inhibiting complement deposition by
the classical pathway, possibly by causing steric hindrance on the
bacterial surface, thus inhibiting the formation of C3 con-
vertase38. Our results confirm that fibrinogen and C3 binding
are mutually exclusive. These collective observations of exclusive
and non-exclusive protein–protein interactions in different eco-
logical niches strengthens the notion that quantitative approaches
in different states are needed to deduce molecular disease
mechanisms6.

The AP–DIA and SA–DIA experiments identify M1 protein as
an important binder of IgG-molecules, and both approaches
demonstrate that Fab-mediated IgG3 binding is the predominant
interaction. This is consistent with previous studies describing
IgG1 and IgG3 as the most abundant subclasses against M
protein8,45,46. Importantly, in immune responses, IgG1 and IgG3
are the most important IgGs in activating the complement cas-
cade via the classical pathway47, and in triggering Fc-mediated
phagocytosis48. However, the exact role of IgG3 in S. pyogenes
infections still remains to be determined, even though there is
broad evidence that IgG3 has a strong affinity for S. pyogenes.
Notably, complement C1Q binding has previously been asso-
ciated with the streptococcal surface49,50. Based on AP–DIA and
SA–DIA, we show that enzymatic removal of IgG-Fc completely
abolished the C1Q–M1 protein association, leading to decreased
C3 deposition on the surface of the bacteria. This direct IgG-
mediated association of C1Q to the M proteins has a subsequent
impact on the interaction with monocytic cells. In addition, the
J8-peptide located in the M protein C-region has a strong affinity
for pooled human immunoglobulins as compared to the B-
regions, with possible implications for immunoglobulin-based
therapies for invasive streptococcal infections. Finally, in school-
age children, pharyngitis caused by S. pyogenes is more common
than in adults42, which could in part be explained by the lower
levels of IgG3 and IFN-γ in children compared to adults42; again,
possibly highlighting the importance of IgG3 in adaptive
immunity against S. pyogenes infections.

In conclusion, this study provides a quantitative resource of
protein interactions between S. pyogenes and human proteins,
confirming several previously described interactions; however, it
also provides new instances. The usefulness of the resource is
demonstrated by investigating binding orientation and localiza-
tion of IgG in an unbiased manner. Such information will be

important in developing new targeted therapies or vaccines. The
low level of protein conservation between bacterial virulence
factors from different species prevents comparative protein ana-
lysis across species; however, many of the proteins bound to the
streptococcal surface have also been reported to bind to virulence
factors in other bacterial species. Clearly, similar mapping of
protein interaction network in other bacterial species will allow
for comparative analysis, potentially enhancing the future use-
fulness of the species-specific resources.

Methods
Cloning, protein expression, and purification. S. pyogenes open-reading frames
(ORFs) encoding for the proteins M1 (Uniprot ID: Q99XV0, gene name: emm1),
GRAB and its mutant derivates (Q7DAL7, SPy_1357), CovR (O87527, csrR), sor-
taseA (Q99ZN4, SPy_1154), ISP (Q99XU7, SPy_2025), and its truncated version
ISP-N, as well as sfGFP used as a negative control in our AP experiments, were
cloned, expressed, and purified at the Lund Protein Production Platform (LP3;
Lund, Sweden). All ORFS were ordered as synthetic constructs from Genscript,
USA, cloned into the EcoRV site of pUC57, and were subsequently subcloned into
a pNIC28-Bsa4-based vector carrying the AP 6xHis-HA-StrepII-TEV (histidine-
hemagglutinin-StrepII-tobacco etch virus protease recognition site) tag used in
this study.

The proteins were expressed in Terrific Broth (TB; Difco) at 30 °C (GRAB,
sortaseA, ISP, ISP-N) or 18 °C (CovR) in Escherichia coli TUNER (DE3) cells, with
expression being induced with 1 mM Isopropyl β-D-1-thiogalactopyranoside
(IPTG) at OD600 0.5–0.7. Expressed cells were harvested and resuspended in
phosphate buffer (25 mM sodium phosphate pH 8.0, 300 mM NaCl, 20 mM
imidazole) supplemented with EDTA-free Complete Protease Inhibitor tablets
(Roche). The cells were lysed using a French pressure cell at 18,000 psi. The lysate
was cleared via ultracentrifugation (Ti 50.2 rotor, 244,000 × g, 60 min, 4 °C) and
subsequently passed through a 0.45 μm filter prior to loading on a HisTrap HP
column (GE Healthcare). The column was washed with 20 column volumes (CVs)
of phosphate buffer, and bound protein was eluted using a gradient of 0–500 mM
imidazole in phosphate buffer. Fractions containing the desired protein were
pooled, and dialyzed against 1 × phosphate buffer saline (PBS; 10 mM phosphate
buffer, 2.7 mM KCl, 137 mM NaCl) pH 7.3, after which the concentration was
adjusted to 1 mgml−1 using 1 × PBS pH 7.3, and stored at −80 °C.

ORFs encoding for the uncharacterized S. pyogenes proteins Q9A170
(SPy_0433), Q99YH8 (SPy_1697), Q99XU1 (SPy_2033), Q99YI6 (SPy_1686),
P67274 (SPy_0931), as well as arcB (P0C0D0, SPy_1544), nga (Q7DAN2,
SPy_0165), smeZ (Q99XW1, SPy_1998), prsA1 (P60811, SPy_1390), inlA (Q99Z76,
SPy_1361), and spnA (Q9A0J7, SPy_0747) were expressed and purified at the Novo
Nordisk Foundation Center for Protein Research, Copenhagen, Denmark. The
DNA sequences were introduced into the expression vector pNIC28-Bsa4 by
ligation-independent cloning (LIC)51. All proteins were expressed in TB at 18 °C
overnight in E. coli, and expression was induced with 0.5 mM IPTG at OD600 1.5.
The cells were then harvested and resuspended in phosphate buffer (50 mM
sodium phosphate pH 8.0, 300 mM NaCl, 10 mM imidazole, 10% glycerol, 0.5 mM
tris(2-carboxyethyl)phosphine, TCEP) supplemented with EDTA-free Complete
Protease Inhibitor tablets (Roche). The cells were lysed using a French pressure cell
or sonication. The lysate was cleared via centrifugation and subsequently passed
through a 0.22 μm filter prior to loading on a HisTrap HP column (GE
Healthcare). Column elution and sample storage was as described above.

Protein M1 was expressed in Luria-Bertani Broth (LB; Difco) at 37 °C in E. coli
BL21 (DE3) cells. Protein expression was induced with 1 mM IPTG at OD600

0.5─0.6. Protein M1 was purified from harvested cells using a fibrinogen
column1,52. Briefly, the cells were harvested and lysed using osmotic shock in
500 mM sucrose, 100 mM Tris–HCl, 1 mM EDTA pH 8.0. The cells were incubated
on ice for 10 min prior to the addition of lysozyme and MgSO4 to final
concentrations of 0.25 mgml−1 and 10 mM, respectively. The cell debris was
removed by centrifugation at 4 °C, 8500 × g, 30 min. The supernatant was collected
and incubated with CNBr sepharose beads (GE Healthcare) coupled with human
fibrinogen (Sigma). The column was washed with 8 CVs of 1 × PBS, and bound
protein was eluted using 0.1 M glycine pH 2.0. Pooled fractions from the
fibrinogen-column were dialyzed against 1 × PBS pH 7.4 and loaded on a Ni-
coupled IMAC Sepharose 6 Fast Flow column (GE Healthcare). The column was
washed with 20 mM imidazole in 1 × PBS pH 7.4, and bound protein was eluted
with 500 mM imidazole in 1 × PBS pH 7.4 using gravity flow. Pooled fractions from
the Ni-column were buffer exchanged into 1 × PBS pH 7.4 and concentrated using
Millipore Amicon 10 or 30 kDa molecular weight cutoff concentrators. Purified
protein was stored at −80 °C.

Protein names, Uniprot IDs, gene names, SPy-numbers, construct lengths
(amino acids), location of affinity tag (N-terminal or C-terminal), reference to
Protein Data Bank (PDB) structures (when relevant) and sequence coverage of the
expressed constructs as determined by data-dependent acquisition (DDA) liquid
chromatography tandem mass spectrometry (LC–MS/MS) are presented in
Supplementary Data 1, and the overall protein purity as determined by DDA
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LC–MS/MS in Supplementary Data 2. The DNA sequences for the constructs are
provided in Supplementary Data 7.

Human plasma, saliva, and pooled immunoglobulins. Pooled human plasma
(catalog number IPLA-N) and pooled human saliva (catalog number IR100044P)
from healthy donors were purchased from Innovative Research, USA. Saliva was
centrifuged at 1500 × g 15 min 4 °C, sterile filtered using 0.22 μm Steriflip filtration
units (Millipore), concentrated to 5 mgml−1 using Millipore Amicon 3.5 kDa
molecular weight cut-off concentrators, and supplemented with Protease Inhibitor
Cocktail (Sigma; 10 μl ml−1 saliva) prior to use. Pooled human IVIG (Octagam
100 mgml−1, catalog number 158007) were obtained from Octapharma.

AP in human plasma and saliva. AP reactions using pooled normal human
plasma and saliva were essential as described51. Strep-Tactin Sepharose beads
(IBA) were equilibrated in 1 × PBS pH 7.4, and charged with 10 μg of recombinant,
affinity-tagged bait proteins. Affinity-tagged sfGFP was used as a negative control
in all experiments. Pooled normal human plasma (100 μl) or saliva (200 μl) was
incubated with the protein-charged beads at 37 °C, 800 rpm, 1 h. The saliva was
complemented with 10 μl protease inhibitor (Sigma) per 1 ml of saliva. The beads
were washed with 4 ml ice-cold PBS at 4 °C, and the proteins were eluted using
120 μl 5 mm biotin in 1 × PBS pH 7.4 at room temperature (RT). The samples were
reduced, alkylated, and trypsin digested for MS as described below.

AP in IdeS pre-treated human plasma. Pooled human plasma from healthy
donors was treated with 20 μG IdeS (Hansa Medical AB) per 1 ml of plasma (37 °C,
800 rpm, 3 h). Subsequently, 1 μl 10 mM argatroban (Sigma-Aldrich), a thrombin
inhibitor, was added per ml of plasma, and incubated for 10 min at RT to prevent
plasma clotting. Untreated plasma supplemented with argatroban was used as a
control. AP experiments were performed in triplicate with 10 μG affinity-tagged
M1 protein as described above, using sfGFP as a negative control. To remove the
biotin used in sample elution, the eluted samples were trichloroacetic acid (TCA)
precipitated, washed with acetone, and dried in a speedvac. The TCA precipitated
samples were reduced, alkylated, and trypsin digested for MS as described below.

Removal of the affinity-tag via TEV-protease digestion. For reverse affinity-
capture experiments using His-tagged human protein (see below), the affinity-tag
attached to the streptococcal bait proteins M1, Q99XU1 (SPy_2033), and Q99YI6
(SPy_1686) was removed by TEV-protease digestion. Briefly, the bait proteins were
digested with a 1:20 (μg μg−1) ratio of TEV–protease in the presence of 1 mM DTT
in 1 × PBS pH 7.4 at 16 °C for 22 h. To retrieve the tag-free bait protein, the
protease-treated samples were run over a 0.5 ml column prepared from IMAC
Sepharose 6 Fast-flow beads (GE Healthcare) charged with Ni2+-ions according to
the manufacturer’s protocol. The beads were equilibrated with 20 mM sodium
phosphate, 0.5 M NaCl, 20 mM imidazole prior to sample loading, and retrieval
using gravity-flow. In addition to the flowthrough fraction, three subsequent 0.5 ml
wash fractions (20 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole) were
collected, pooled, and stored at −80 °C.

Reverse affinity-capture using His-tagged human serum albumin. The inter-
action of the streptococcal bait proteins M1, Q99XU1 (SPy_2033), and Q99YI6
(SPy_1686) with human serum albumin was verified by reverse affinity-capture,
followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS–PAGE). IMAC Sepharose 6 Fast-flow beads (GE Healthcare) were charged
with Ni2+-ions according to the manufacturer’s protocol. The beads were equili-
brated in 1 × PBS pH 7.4, and charged with 10 μg affinity-tagged human serum
albumin (Acro Biosystems). TEV-cleaved streptococcal bait proteins (10 μg each)
were incubated with the protein-charged beads at 37 °C, 500 rpm, 30 min. Naked
Ni2+-charged beads incubated together with the TEV-cleaved streptococcal protein
were used as a negative control. The beads were washed with 8 ml ice-cold PBS
buffer at 4 °C, and proteins were eluted using 120 μl 0.5 M imidazole in 1 × PBS pH
7.4. The samples were analyzed by SDS–PAGE using 4–20% Criterion TGX gels
(Bio-Rad).

Western blot analysis. The interactions between the streptococcal bait proteins
CovR, ISP, and its truncated version ISP-N with human fibrinogen, and between
the uncharacterized proteins Q99XU1 (SPy_2033) and Q99YI6 (SPy_1686) and
human serum albumin were validated from AP reactions in human plasma by
western blot analysis. The AP reactions were separated on a 4─20% Criterion TGX
gel (Bio-Rad) and transferred to polyvinylidene difluoride (PVDF) membranes
(Bio-Rad).

To detect fibrinogen binding by western blot analysis, the membrane was
blocked with 2% bovine serum albumin (BSA) in 1 × PBS and 0.05% Tween-20
(1 × PBST) for 1 h at 37 °C, and then washed three times for 5 min with 1 × PBST.
Purified mouse anti-human fibrinogen monoclonal antibody (BD Pharmingen,
catalog number 555866) diluted 1:1000 with 2% BSA in 1 × PBST was added and
incubated for 1 h at 37 °C. The membrane was washed three times for 5 min with
1 × PBST, and goat anti-mouse IgG horseradish peroxidase (HRP) conjugate (Bio-
Rad, catalog number 172-1011) diluted 1:3000 with 2% BSA in 1 × PBST was added

and incubated for 1 h at 37 °C. The membrane was then washed three times for 5
min with 1 × PBST. After washing, the membrane was developed using Clarity
Western ECL substrate (Bio-Rad), and analyzed using a Chemidoc XRS (Bio-Rad).

To detect human serum albumin binding by western blot analysis, the same
procedure was used, except 5% nonfat dry milk blotting-grade blocker (Bio-Rad),
sheep anti-human serum albumin antibody (Bio-Rad, catalog number AHP102)
diluted 1:1000, and rabbit anti-sheep IgG HRP conjugate (Bio-Rad, catalog number
5184-2504) diluted 1:3000 were used as blocking agent, primary antibody and
secondary antibody, respectively. Uncropped and unprocessed scans of all blots are
included in the Source Data file.

Bacterial strains and culture conditions. S. pyogenes M1 serotype strain AP1
(40/58; covS truncated) was obtained from the World Health Organization (WHO)
Collaborating Centre for Reference and Research on Streptococci, Prague, Czech
Republic, and the M1 serotype strain SF370 from the American Type Culture
Collection (ATCC; strain reference 700294), originally isolated from an infected
wound. The emm1 deletion mutant strain was originally developed from the emm1
SF370 wild type strain53, the emm3 deletion strain from the emm3 wild type strain
95077154, and the emm5 deletion strain from the emm5 Manfredo wild type
strain55. The emm5 Manfredo-derived mutant strains ΔN1, ΔB, and ΔC have
previously been described36. The bacteria were grown on blood agar plates or from
single colonies in Todd–Hewitt (TH) broth supplemented with yeast extract at
0.3% (w/v; AP1) or 0.5% (w/v; M1 SF370, M3 950771 and M5 Manfredo and their
respective mutants; THY-media). The bacteria were grown at 37 °C, in 5% CO2 to
mid-logarithmic phase (OD600 nm 0.4–0.5), harvested by centrifugation (2300 × g,
10 min, 4 °C), and the cell pellets were washed with a total of 3 ml 50 mM
Tris–HCl, 150 mM NaCl, pH 7.6 (WB). The cells were redissolved in WB to a 1%
concentration (700 μl per 10 ml of original culture), corresponding to 2 × 109

colony forming units (CFU) per ml, and used for plasma adsorption experiments as
described below.

Plasma adsorption experiments. The plasma adsorption protocol has been
described8,9. Briefly, 50 μl AP1 bacteria solution was mixed with 200 μl plasma,
saliva, or dilutions of plasma in saliva (0.01%, 0.1%, 1%, 2.5%, 5%, and 10%), and
incubated at 37 °C, 500 pm, 30 min. The plasma could be treated with IdeS and
argatroban, and the saliva was complemented with protease inhibitors as described
above. For studies using M1 SF370, M3 950771, and M5 Manfredo and their
respective mutants, 150 μl of bacteria were used in 450 μl plasma. Bacteria that had
adhered plasma and/or saliva proteins were harvested by centrifugation and
washed with a total of 1.5 ml WB. The pellets were resuspended in 100 μl LC grade
H2O and transferred to sample tubes containing 0.1 mm silica beads. The bacteria
were lysed with a cell disruptor (MP Biomedicals FastPrep-96; 2 × 3 min, 1600
rpm), and dried in a speedvac. The lysed cells were reduced, alkylated and trypsin
digested for MS as described below.

Crosslinking of human plasma proteins on bacterial surfaces. For the cross-
linking experiment, pooled normal human plasma was adsorbed onto the surface
of S. pyogenes bacteria17. S. pyogenes strain SF370 was grown at 37 °C, 5% CO2 to
mid-exponential phase (OD620nm∼ 0.4) in TH broth supplemented with 0.3% (w/
v) yeast extract. The cells were harvested by centrifugation (3500×g, 5 min), washed
with HEPES-buffer, recentrifuged and resuspended to an approximate con-
centration of 1 × 109 colony forming units ml−1. Four hundred microliters of
pooled normal human plasma was mixed with 100 μl of bacteria and incubated at
37 °C 30min 500 rpm. The bacteria with adsorbed plasma proteins were harvested
by centrifugation (5000 × g, 5 min) and washed three times with HEPES-buffer,
and resuspended in 100 μl HEPES-buffer. Heavy/light disuccinimidylsuberate
crosslinker (DSS-H12/D12, Creative Molecules Inc., www. creativemolecules.com)
resuspended in dimethylformamide (DMF) was added to final concentrations of 0,
500, 2000, and 4000 μM and incubated for 30 min 37 °C 900 rpm. The crosslinking
reaction was quenched with a final concentration of 50 mM ammonium bicarbo-
nate at 37 °C 30min 500 rpm. The bacterial surface proteins with attached plasma
proteins were digested off with 2 μG trypsin (Promega), prior to cell debris removal
by centrifugation (1000×g, 15 min) and subsequent supernatant recovery. Any
remaining bacteria were killed by heat inactivation (85 °C, 5 min) prior to sample
preparation for MS. The data analyzed here originates from the same set of samples
as described in Hauri et al.17.

Sample preparation for MS. The samples from AP and plasma adsorption
experiments were mixed with 8 M urea and 100 mM ammonium bicarbonate, and
the cysteine bonds were reduced with 5 mM TCEP (37 °C for 30 min) and alkylated
with 10 mM iodoacetamide (22 °C for 60 min). Samples were diluted with 100 mM
ammonium bicarbonate to a final urea concentration of 1.5 M, and sequencing
grade trypsin (Promega) was added for protein digestion (37 °C for 18 h). Samples
were acidified (to a final pH 3.0) with 10% formic acid, and the peptides subse-
quently purified with C18 reverse phase spin columns according to the manu-
facturer’s instructions (Microspin and Macrospin columns, Harvard Apparatus).
Peptides were dried in a speedvac and reconstituted in 2% acetonitrile, 0.2% formic
acid prior to mass spectrometric analyses.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10583-5

12 NATURE COMMUNICATIONS |         (2019) 10:2727 | https://doi.org/10.1038/s41467-019-10583-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Liquid chromatography tandem mass spectrometry. All peptide analyses were
performed on a Q Exactive Plus mass spectrometer (Thermo Scientific) connected
to an EASY-nLC 1000 ultra-high-performance liquid chromatography system
(Thermo Scientific). For DDA, peptides were separated on an EASY-Spray column
(Thermo Scientific; ID 75 μm× 25 cm, column temperature 45 °C) operated at a
constant pressure of 600 bar. A linear gradient from 5% to 35% acetonitrile in
aqueous 0.1% formic acid was run for 60 min (cross-linked samples) or 120 min
(affinity-purification and surface digestion samples) at a flow rate of 300 nl min−1.
One full MS scan (resolution 70,000@200 m/z; mass range 400–1600 m/z) was
followed by MS/MS scans (resolution 17,500@200 m/z) of the 15 most abundant
ion signals. The precursor ions were isolated with 2 m/z isolation width and
fragmented using higher-energy collisional-induced dissociation at a normalized
collision energy of 30. Charge state screening was enabled, and precursors with an
unknown charge state and singly charged ions were rejected. The dynamic
exclusion window was set to 15 s and limited to 300 entries. The automatic gain
control was set to 1e6 for both MS and MS/MS with ion accumulation times of 100
and 60 ms, respectively. The intensity threshold for precursor ion selection was set
to 1.7e4.

For data-independent acquisition (DIA, DIA-MS), peptides were separated
using an EASY-Spray column (Thermo Scientific; ID 75 μm× 25 cm, column
temperature 45 °C) as described for the DDA analysis. A full MS scan (resolution
70,000 @200 m/z; mass range from 400 to 1200m/z) was followed by 32 MS/MS
full fragmentation scans (resolution 35,000@200 m/z) using an isolation window of
26 m/z (including 0.5 m/z overlap between the previous and next window). The
precursor ions within each isolation window were fragmented using higher-energy
collisional-induced dissociation at a normalized collision energy of 30. The
automatic gain control was set to 1e6 for both MS and MS/MS with ion
accumulation times of 100 ms (MS) and 120 ms (MS/MS).

For crosslinked samples, peptides were additionally analyzed in high-resolution
MS1 (hrMS1). The peptides were separated as in DDA and DIA analysis via C18
reverse phase chromatography using a 25 cm EASY-Spray column (column
temperature 45 °C) with a linear gradient from 5% to 35% acetonitrile in aqueous
0.1% formic acid for 90 min at a flow rate of 300 nl min−1. High-resolution MS
scans (R= 280,000) were acquired using automatic gain control (AGC) set to 1e6
and a fill time of 100 ms.

AP–DIA and SA–DIA data analysis. MS raw data were converted to gzipped and
Numpressed56 mzML using the tool msconvert from the ProteoWizard,
v3.0.5930 suite57. Acquired spectra for the AP–DIA and the initial SA–DIA
interactomes with the M1 serotype strain AP1 were analyzed using the search
engine X! Tandem (2013.06.15.1-LabKey, Insilicos, ISB)58 against an in-house
compiled database containing the Homo sapiens and S. pyogenes serotype M1
reference proteomes (UniProt proteome IDs UP000005640 and UP000000750,
respectively), with the S. pyogenes Protein H added (UniProt ID P50470), yielding a
total of 72,241 protein entries and an equal amount of reverse decoy sequences. For
data-analysis using the other serotypes, the same database was used, expect that it
was with the M3 (UniProt proteome ID UP000000564) and M5 (UniProt pro-
teome ID UP000002591) proteomes. Fully tryptic digestion was used allowing one
missed cleavage. Carbamidomethylation (C) was set to static and oxidation (M) to
variable modifications, respectively. Mass tolerance for precursor ions was set to 20
ppm, and for fragment ions to 50 ppm. Identified peptides were processed and
analyzed through the Trans-Proteomic Pipeline (TPP v4.7 POLAR VORTEX rev 0,
Build 201403121010) using PeptideProphet59.

The spectral libraries were generated from the PeptideProphet data using the
Fraggle–Franklin–Tramler pipeline60. The multi-level false discovery rate (FDR)
was set at 1%, and the libraries were trimmed to include the 3–6 most intense
transitions per assay. Spectral libraries were used by DIANA61 to analyze the DIA-
MS data. Each analyte (unique peptide sequence, charge state and post-
translational modification profile) in the spectral library was used to extract ion
chromatograms. The quantitative value was calculated by integrating the ion
current for each of the fragments under the peak. The DIA data was filtered as
described using a bait to sfGFP log2 fold enrichment of >2 and an adjusted P-value
< 0.01 using the Student’s t-test6. Additionally, all proteins passing the above
selection criteria but identified by less than three peptides were omitted from the
interaction maps.

TX-MS data analysis. The crosslinked samples were analyzed used the TX-MS
workflow17. Briefly, proteins with experimentally determined structures (Sup-
plementary Data 4) were downloaded from the PDB. For GRAB and CovR, the
RosettaCM protocol was used to generate tertiary structure models62, and the
rest of the targets were analyzed without tertiary structures. For interacting
protein pairs of interest (Supplementary Fig. 2), a machine-learning algorithm
used the acquired hrMS1 data and a compendium of quaternary structure
models to predict potential binding interfaces63. Each of the generated models
was ranked by analyzing the presence of theoretical crosslinked peptides and
fragment ion masses in DDA and DIA data. In DDA data analysis, all theoretical
m/z values for fragments of crosslinked peptides across fragment-ion spectra
(MS2) were ranked by crosslinked peptide sequence coverage. In DIA data
analysis, the theoretical fragments were searched using a modified openSWATH
workflow64, which identified high-confidence peak groups from co-eluting

fragments of the crosslinked peptide pairs and the isotope-labeled cross-linked
fragment ions to provide the strongest evidence of occurrence in the data17. The
top scoring models were subsequently subjected to high-resolution flexible
backbone protein docking63, and the resulting models used to define the final set
of distance constraints. Finally, for proteins without structural information, all
computational cross-links were analyzed used the DDA data as input, and
putative interactions were manually inspected.

Selected reaction monitoring MS. SRM assays were acquired from previously
published SRM assay repositories23,65. Additional SRM assays were developed based
on DDA data presented here with spectral library generation in Skyline66. SRM
analyses were performed on a TSQ Quantiva triple quadrupole mass spectrometer
(Thermo Scientific) connected to an EASY-nLC II liquid chromatography system
(Thermo Scientific). Briefly, peptides were separated on an EASY-Spray column
(Thermo Scientific; ID 75 μm× 15 cm, column temperature 45 °C). A two-step gra-
dient of buffer B (100% acetonitrile, 0.1% formic acid) in buffer A (aqueous 0.1%
formic acid) was applied at a flow rate of 300 nl min−1. In the first step a gradient of
5–15% of buffer B was run for 3min followed by a 15–35% gradient of buffer B for 34
min. MS was operated in SRM mode with a spray voltage of 1.9 kV and an ion
capillary temperature of 325 °C. Unit resolution was 0.7 Da full width at half max-
imum for both Q1 and Q3. Collision energies were obtained from Skyline and all
measurements were performed without scheduling. For the data presented herein,
around 800 transitions were measured per run using a cycle time of 1.6 s. Data was
acquired using Xcalibur software (version 3.0.63). The data was analyzed in Skyline,
and statistical significance at protein level was calculated from the average peptide
contribution for each sample using a paired, two-tailed Student’s t-test.

The AP–DDA and AP–DIA, the SA–DDA and SA–DIA, and the SRM MS data
were deposited in PeptideAtlas67 with the identifier PASS01167, and the TX-MS
data was available for download from ProteomeXchange with the identifier
PXD011969.

Phagocytosis assays. Single colonies of the M5 strain and its mutant derivates,
ΔN1, ΔB, and ΔC, were isolated from blood agar plates and cultured at 37 °C, 5%
CO2 in 3% (w/v) TH broth supplemented with 0.5% (w/v) yeast extract to an
exponential phase (optical density ~0.5 at 620 nm). The bacteria were washed three
times with 3 ml total volume Na-medium (5.6 mM glucose, 127 mM NaCl,
10.8 mM KCl, 2.4 mM KH2PO4, 1.6 mM MgSO4, 10 mM HEPES, 1.8 mM CaCl2;
pH adjusted to 7.3 with NaOH). The bacteria were heat inactivated (80 °C, 5 min)
and subsequently stained at 37 °C for 30 min with 2 µg ml−1 DyLightTM 650
(ThermoFisher). The bacteria were washed once in Na-medium and sonicated to
disperse possible aggregates (VialTweeter; Hielscher). The bacteria were opsonized
with 1% pooled citrated human plasma (VisuConTM-F Frozen Normal Control
Plasma) for 30 min at 37 °C. Opsonized samples were washed five times with a total
volume of 5 ml Na-medium and the concentration of the bacteria was measured by
flow cytometry.

Human monocytic cell line Tamm–Horsfall protein 1 (THP-1), used as a model
phagocyte68, was cultured in L-glutamine and sodium bicarbonate containing
RPMI 1640 medium (Sigma), supplemented with 10% fetal bovine serum (Gibco),
1% Penicillin–Streptomycin (ThermoFisher), and 2 mM GlutaMAX (Life
Technologies) at 37 °C with 5% CO2. The cells were kept at 0.2–1 × 106 cells ml−1

with over 95% viability, and were harvested at 0.7 × 106 cells ml−1 for the assay. For
the phagocytosis assay, the cell media was changed to Na-medium, and the cells
labeled with a LIVE/DEAD™ Fixable Violet Dead Cell Stain Kit (ThermoFisher).
The cell concentration was calculated by flow cytometry to obtain 105 cells per
sample. The cells were added to the bacteria on ice and directly transferred to a
heating-block and incubated for 30 min at 37 °C. Final reaction volumes were
150 µl in Na-medium, with bacteria to cell ratio of 1, 2, 5, 10, 20, 50, 100, 150, and
200. Samples were fixed in 1% paraformaldehyde (PFA; ThermoFisher) overnight
on ice. Post-fixation samples were incubated with 50 mM glycine and 5% BSA for
10 min at RT. Samples were stained for 30 min at RT with Fab-specific DyLight
488-conjugated AffiniPure F(ab’) Fragment Goat Anti-human IgG (1:1000, Jackson
ImmunoResearch).

Data was acquired by flow cytometry (CytoFlex Beckman-Coulter; 15,000
events, threshold 50,000 FSC-H). FlowJo version 10.2 (Tree Star) and Prism
version 7.0c (GraphPad) were used for data analysis. Live cells were gated on
forward and side scatter, followed by excluding doublets by gating on FSC-H versus
FSC-A; dead cells were excluded. Interaction was defined by cells positive for
DyLight 650, and internalization by cells positive for DyLight 650 and negative for
DyLight 488. The results were based on four different experiments. Interaction data
was presented as DyLight 650 median fluorescence intensity (MFI). Internalization
was presented as number of bacterial units ingested for cells positive for at least one
bacterium. The signal of a bacterial unit was determined by measuring the MFI of
single bacterial units. Internalization was determined by subtracting the attached
bacteria from the total number of interacting bacteria, and the differences in
interaction were normalized by using the MOP evoking half-maximal interaction
for each experiment and strain.

Synthetic peptides. Synthetic peptides with a C-terminal StrepII AP tag
(WSHPQFEK) covering the B1-region, B2B3-region, and the C-region of the M1
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protein were purchased from ProteoGenix, France. The 12 amino acid-long J8-
vaccine trial peptide (SREAKKQVEKAL)40 is included in the C-region peptide. A
GFP-based peptide was used as a negative control. The sequences for the peptides
are provided in Supplementary Table 1.

ELISA. In order to validate human IgG binding to different M1 protein regions
ELISA was used. The recombinant, full-length M1 protein and the synthetic
peptides from ProteoGenix (see above; all 10 μg ml−1) were immobilized on
MaxiSorp 96-well ELISA plates (Thermo Fisher Scientific) overnight at 4 °C. The
plates were washed three times with 1 × PBST, and blocked with 2% BSA in 1 ×
PBST for 1 h at 37 °C. The plates were washed again three times with 1 × PBST, and
IVIG (4 mgml−1) was added as a two-fold dilution series. The plates were incu-
bated 1 h at 37 °C, washed three times with 1 × PBST and affinity-purified protein
G HRP conjugate (Bio-Rad, catalog number 170-6425) diluted 1:3000 in 1 × PBST
was added to the wells. The plates were incubated 1 h at 37 °C, washed three times
with 1 × PBST and color developed with 2,2′-azino-di-(3-ethylbenzthiazoline sul-
fonic acid) (ABTS; Sigma) for 5 min at RT in the dark, prior to determining the
absorbance at 415 nm. The GFP-based peptide was used as a negative control in the
assays, and its absorbance values were subtracted from the experimental data prior
to analysis in Prism version 8.0.2 (GraphPad). Data analysis used two-way analysis
of variance (ANOVA) followed by Tukey’s multiple comparison tests. Statistical
significance levels were set at P < 0.0332, P < 0.0021, P < 0.0002 and P < 0.0001.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The mass spectrometry data have been deposited in the ProteomeXchange member
repository PeptideAtlas with the identifier PASS01167. The TX-MS data presented here
is from Hauri et al.17, and is available for download from ProteomeXchange with the
identifier PXD011969. The source data underlying Figs. 1–8 and Supplementary Figs. 1–7
and 9–11 are provided as a Source Data file. A reporting summary for this Article is
available as a Supplementary Information file. All other data supporting the findings of
this study are available from the corresponding author on reasonable request.
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