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ARTICLE

Rapid determination of quaternary protein
structures in complex biological samples
Simon Hauri 1, Hamed Khakzad 2,3, Lotta Happonen1, Johan Teleman1,

Johan Malmström 1 & Lars Malmström 1,2,3

The understanding of complex biological systems is still hampered by limited knowledge of

biologically relevant quaternary protein structures. Here, we demonstrate quaternary struc-

ture determination in biological samples using a combination of chemical cross-linking, high-

resolution mass spectrometry and high-accuracy protein structure modeling. This approach,

termed targeted cross-linking mass spectrometry (TX-MS), relies on computational struc-

tural models to score sets of targeted cross-linked peptide signals acquired using a combi-

nation of mass spectrometry acquisition techniques. We demonstrate the utility of TX-MS by

creating a high-resolution quaternary model of a 1.8 MDa protein complex composed of a

pathogen surface protein and ten human plasma proteins. The model is based on a dense

network of cross-link distance constraints obtained directly in a mixture of human plasma and

live bacteria. These results demonstrate that TX-MS can increase the applicability of flexible

backbone docking algorithms to large protein complexes by providing rich cross-link distance

information from complex biological samples.
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Proteomes are organized into functional modules that act in
concert to dictate cellular responses1. Dynamic networks of
physical protein–protein interactions assemble functionally

related proteins into functional modules and represent one of the
fundamental principles cells use to re-organize dynamically yet
remain functional. Defining the quaternary structure of func-
tional modules at a proteome-wide scale under close-to in vivo
conditions has the potential to increase the understanding of
molecular processes in health and disease but has so far remained
elusive. Most high-resolution methods such as X-ray crystal-
lography, nuclear magnetic resonance, and electron cryo-
microscopy require purified proteins, whereas affinity
purification-mass spectrometry (AP-MS) provides information
on protein connectivity in complex samples but suffer from
limited structural information. In contrast, chemical cross-linking
MS (XL-MS) can support structural modeling by providing evi-
dence that two proteins are interacting by covalently linking
together MS-detectable amino acid pairs2–4. The length of the
cross-linking reagent constrains the distance between the linked
residues and can together with observed or predicted protein
structures provide high-accuracy structural information of pro-
teins or protein interaction networks.

XL-MS is, however, associated with several technical challenges
that limit the confident identification of cross-linked distance
constraints and impedes the routine deployment of this method
at a system-wide scale. The prevailing limitations in the XL-MS
workflow stem from the quadratic expansion of the computa-
tional search space and the unequal fragmentation efficiency of
two cross-linked peptides. The consequence of these limits is that
only one of the two peptides is directly observable in the data and
this, given a large search space, is not sufficient to unambiguously
identify the second peptide based on just the cross-linked pep-
tides precursor mass. Recent computational solutions and com-
bination of MS acquisition types have partly resolved these
problems demonstrating the identification of cross-links from
endogenous protein complexes to provide structural informa-
tion4. Still, previous work suffers, in general, from the identifi-
cation of sparse networks of cross-linked distance constraints,
where a given protein–protein interaction is often supported by
one or a few data points. On the other hand, dense networks of
distance constraints can strongly enhance computational protein
docking and protein structure modeling to determine quaternary
protein structures at high accuracy. This is of particular relevance
for quaternary structures with high molecular weights, as the
required density of the network is proportional to the molecular
weight and number of cross-linkable sites of the protein
complexes.

Computational protein docking tools such as Rosetta have
recently seen improvements5 but are generally applied to small
quaternary structures supported by existing experimental struc-
tures of the individual proteins for which tertiary structures
remain similar in the bound and unbound form. This limitation
stems from the large search space that, in its extreme, includes all
the rotational and translational degrees of freedom and the many
degrees of freedom that comes from flexible backbone and amino
acid side chain modeling. Rosetta is using a complex energy
function, called the Rosetta All-Atom Energy Function (REF)6, to
estimate the fitness of the protein structure at each step of the
folding trajectory. To speed up the calculations, Rosetta initially
relies on a sparse representation of the structure by representing
each amino acid as a centroid. Centroiding necessitates the use of
a REF adapted to centroid-based representation as the needed
details to compute the more physically realistic REF are lacking.
In the later stages of the folding trajectories, Rosetta switches to a
more realistic REF. Some folding trajectories get caught in local
energy minima that are significantly different from the global

energy minimum. Rosetta utilizes a powerful technique to miti-
gate this issue by simulating many folding trajectories and using
population statistics to select the final models. A large search
space requires more folding trajectories and therefore also more
models. Experimental data constraints can be incorporated into
the modeling to both to provide better discrimination between
two models deemed equally fit by REF and to reduce the search
space by excluding vast regions of the search space that are
incompatible with the observed data. By using computational
docking tools to construct a compendium of quaternary struc-
tural models, it becomes feasible to interrogate which of the
models, with similar energy scores, are correct by using experi-
mentally derived distance constraints.

In an effort to enable the identification of dense networks of
distance constraints and consequently the modeling of large
quaternary protein structures, we proposed a technical concept
that we called TX-MS (targeted chemical cross-linking MS). TX-
MS relies on a compendium of computationally predicted qua-
ternary structure models to guide the MS analysis of cross-linked
peptides using a combination of MS acquisition techniques to
discriminate between the correct and incorrect predicted models.
In this work, we used computational structural models to guide
and score sets of targeted cross-link signals derived from a
combination of MS acquisition techniques. The experimentally
derived distance constraints are further used to improve the
modeling of high-resolution quaternary structures. This repre-
sents a departure from the de novo identification of individual
cross-linked peptides removing the exponential increase in the
number of potential lysine–lysine pairs that typically need to be
considered. Importantly, TX-MS also mitigates the unequal
fragmentation issue (only one of the cross-linked peptides are
represented in the data), as data from the different MS acquisition
techniques over the same interface strongly corroborate each
other. We used TX-MS to support the generation of dense net-
works of distance constraints for a protein complex directly in
biological mixtures using a large host–pathogen functional
module formed between the important human pathogen Strep-
tococcus pyogenes and human plasma proteins as a model system.
The results show that TX-MS can provide dense networks of
cross-linked distance constraints that enable quaternary protein
structure modeling using data acquired in biological samples.

Results
Structure modeling guided by MS data. In TX-MS, proteins or
proteomes are chemically cross-linked in a dose-dependent
manner and subjected to MS analysis using several MS acquisi-
tion techniques such as data-dependent acquisition (DDA), data-
independent acquisition (DIA), and high-resolution MS1 (hrMS1;
R= 280,000). The proteins of interest are subsequently modeled
to create tertiary structures7 that are docked8 to produce a
compendium of possible quaternary structure models (Fig. 1a).
Each quaternary model is ranked using the hrMS1 data by (i)
calculating the cross-linked peptide mass over charge ratio (m/z)
resulting from proteolytic digestion for all theoretical cross-
linkable amino acid pairs shorter than a given length cutoff and
(ii) extracting and quantifying targeted hrMS1 signal for each
calculated m/z and to select the quaternary models that are best
explained by the acquired MS data. The top-scoring models then
go through a second round of high-resolution flexible backbone
protein docking8, and the resulting model compendium is used to
define all the possible supported distance constraints. The set of
distance constraints is used by a software tool to compute the
theoretical cross-linked peptide and fragment-ion masses and to
find evidence for them in DDA-MS and DIA-MS (Figs. 1b, 2a) in
a targeted data analysis fashion as follows:
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(1) In DDA-MS, we search the MS data for all theoretical m/z
values for fragments of cross-linked peptides across fragment-ion
spectra (MS2) and rank by cross-linked peptide sequence
coverage. The candidate spectra are filtered for the correct
precursor isolation mass at 0.01 Da mass error tolerance and all
MS2 spectra containing cross-linked and conventional peptide
fragments from the cross-linked peptide sequences are considered
as top candidates (Fig. 2a).

(2) In DIA-MS, the theoretical fragments are searched using a
modified openSWATH9 workflow to extract chromatograms for
every fragment in a targeted MS data analysis fashion. The
modified openSWATH software identifies high-confident peak
groups from co-eluting fragments of the cross-linked peptide
pairs and the isotope-labeled cross-linked fragment ions to
provide the strongest evidence of occurrence in the data (Fig. 2a).

High-resolution protein–protein docking. The final result of
this analysis is a set of lysine–lysine pairs defined by a high-
resolution quaternary model compendium; each lysine–lysine

pair is associated with MS evidence from the three separate MS
acquisition techniques, acquired from samples with an increasing
concentration of disuccinimidyl suberate (DSS). Together with
the negative control (no DSS added), we define a final list of
putative lysine–lysine pairs and use this list to filter out the final
model from the structure compendium. As a consequence, we
extend the applicability of protein docking algorithms to take
models as input instead of crystal structures by reducing the
protein–protein docking search space drastically. The best models
are picked by combing MS compatibility and REF 6, a structural
fitness score based on a statistical energy model10 and a normal
distribution-based scoring of the cross-linked length. The com-
bination of protein structure modeling and MS is powerful
because each method’s strength complements a relative weakness
of the other. It also marks the departure from a discovery-driven
workflow to an inherently hypothesis-driven method that lends
itself to explore interactions of a protein of interest in a targeted
approach that is more sensitive and that results in larger number
of constraints, translating into higher-accuracy models with more
experimental support. The complete TX-MS workflow is
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Fig. 1 The principle of targeted cross-linking mass spectrometry (TX-MS). a Interacting proteins were chemically cross-linked with heavy/light DSS and
digested using trypsin. Cross-linked peptide signals were targeted and extracted from LC-MS data based on theoretical cross-link assays derived from the
protein sequence. The identified candidate cross-linked peptides were used to guide molecular docking of crystal structures of the targeted proteins to
obtain high-accuracy models of the protein–protein interaction. b Schematic workflow of TX-MS. Assays for targeted cross-linked peptides were calculated
from either the protein sequence or structure. Cross-linked peptides were analyzed from LC-MS data using different acquisition modes. For hrMS1-based
cross-link detection, the theoretical assays were used to extract ion chromatograms from high-resolution hrMS1 spectra. A subset was utilized to train a
machine to differentiate true from false-positive cross-linked peptides as defined by experimental protein structures (see Supplementary Note 3 for details
on how the machine was trained). The trained machine was used to evaluate all MS1-derived cross-links. Top scoring results were used to select the best-
supported models for subsequent local high-resolution quaternary structure modeling, yielding high-accuracy models. To supplement the hrMS1 results,
we acquired XL peptide data with the two orthogonal MS2 methods DDA-MS and DIA-MS. Custom software processed MS2 by extracting signals from
fragment ions derived from the predicted cross-linked peptides
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supported by several open source software tools largely written in
python with a few tools developed in Scala and C++ and pro-
vided under permissive software licenses (Fig. 1b and Supple-
mentary Notes 1–5, Supplementary Figures 1–7, Supplementary
Tables 1–4).

Experimental design. To demonstrate that TX-MS can generate
high-density networks of cross-linked peptide distance con-
straints, we applied the method to investigate the quaternary
structure of a host–pathogen complex of unknown structure
using the important human pathogen S. pyogenes as a model
system. Protein interactions between pathogens and their hosts
are difficult to study, yet host–pathogen interaction studies are
becoming increasingly important, as such studies can be used to
support the design of vaccines. S. pyogenes is a Gram-positive
bacterium that causes diverse clinical manifestations ranging
from mild infections such as tonsillitis to life-threating systemic

diseases, like sepsis and meningitis11. The bacterium produces
>150 surface proteins12 forming a wide array of protein inter-
actions with 290 potentially interacting human proteins13,
including fibrinogen and serum albumin14,15. The dominating S.
pyogenes surface protein in these protein interaction networks is
the family of M proteins (referred to as the M- or serotype-
specific M1 protein below) used to classify the >220 known ser-
otypes. The M proteins can be divided into different repeat
regions that can be present in a variable number of copies and
combinations denoted as hypervariable (HVR) A-, B-, and C-
repeat regions as recently reviewed16. It is only partially clarified
how the repeat regions are capable of maintaining dynamic
interactions with a large number of human proteins to form a
large protein complex of unknown structure, yet escape immunity
through antigen variability17. To determine the quaternary
structure of this protein complex, we produced three sets of low-
complexity samples and one set of samples with a highly complex
mixture of a complete bacterial proteome and human plasma
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Fig. 2 Example MS data. a Example data for the three experimental techniques. DDA-MS isolates a single precursor and fragments it; the fragments visible
in the acquired spectra can be associated with fragments from either peptide or in heavy and light form for fragments that contain the cross-linker and
parts of both peptides. DIA-MS is similar to DDA-MS but with important differences. There is no isolation of the precursor. Instead, data are acquired at
high temporal sampling rates, providing the opportunity to compare elution profiles for the fragments. In hrMS1, the precursor is measured at high
resolution resulting in two isotope envelopes, one for the light and one for the heavy cross-linker (b). The scatter plots show the number of lysines as a
function of protein length of the protein identified in the sample mixture. The number of theoretical lysine–lysine pairs in each sample increases
exponentially with sample complexity, from about 10,000 in the simplest mixture to >276 million in the most complex
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proteins (Fig. 2b). Each sample was cross-linked with increasing
amounts of a heavy/light cross-linker (DSS-H12/D12; DSS)
generating a total of 102 MS experiments using the three data-
acquisition techniques (hrMS1, DDA, and DIA) (Supplementary
Table 4).

M1 protein interacts with fibrinogen and albumin. The three
low-complexity samples, consisting of mixtures of the M1 pro-
tein, serum albumin, and fibrinogen (Fig. 2b), were designed to
first provide a positive control, as a crystal structure between the
M1 protein and human fibrinogen exists (PDB: 2XNX), and
second, to characterize the interaction between the M1 protein
and human serum albumin, an important protein interaction
where no experimental structure exists. Fibrinogen binding pre-
vents phagocytosis18, and the interaction with human fibrinogen
has been studied in detail by determining the X-ray structure for
fragments of fibrinogen binding to the M1 protein19. Fibrinogen
binds to the two B-repeats on the M1 protein, with slight dif-
ferences in amino acid composition. As only a small segment of
the M1 protein has an experimental structure (PDB: 2XNX), we
created a full-length M1 protein model using the RosettaCM
multi-template protocol as described in detail in Supplementary
Note 6, Supplementary Figures 8–10, and Supplementary
Tables 5-8. To ensure sufficient coverage of the large search space
between these molecules, we constructed 600,000 fibrinogen and
full-length M1 protein quaternary structure models (Fig. 3a). The
molecular docking on its own was, as expected owing to M1
protein full-length comparative model, unable to predict the
correct quaternary conformation with a root-mean-square
deviation (RMSD) for α-carbons similar to random sampling
when compared to the 2XNX reference crystal structure (Fig. 3b).
To enhance the quality of the structural models, we applied TX-
MS, using the structural compendium to guide the MS data
analysis. With TX-MS, we collectively identified 67 intra and 27
inter high-confidence XL peptides in the low-complexity samples
supported by up to three different MS acquisition methods as
indicated by the heatmaps in Fig. 3. Scoring the 600,000 mole-
cular docking models using the TX-MS-derived distance con-
straints together with 60,000 high-resolution models supported a
model with an RMSD <2.2 Å. The new RMSD is close to the
previously determined crystal structure and demonstrates the
accuracy of TX-MS (Fig. 3b). Importantly the model correctly
reveals that there are two distinct binding sites that both corre-
spond to the M1 protein B-repeats19 (Fig. 3d).

Protein complex modeling. For human serum albumin, the
combined output from the 300,000 low-resolution and 30,000
high-resolution quaternary structure models and 10 TX-MS
identified inter-protein XL peptides supports three separate
models where serum albumin binds to the three conserved C-
repeats of the M1 protein (Fig. 3d)15,20. Based on these models, it
was possible to confidently locate the binding to the three sepa-
rate binding sites, as the small variation in the sequence within
the C-repeat regions of the M1 protein generates different cross-
linked peptides when cross-linking the M1 protein to albumin.
The results indicate that the conserved C regions represent
duplications of albumin-binding M1 sequences to increase the
number of bound albumins as a source for fatty acids21. Inter-
estingly, the T cell- and B cell-protective C-terminal vaccine
epitope (StreptInCor)22 harbors the albumin-binding site, which
likely results in partial masking of this immunogenic epitope
region in the presence of albumin as previously shown for
fibrinogen18.

The initial number of docking models is highly system specific,
where small proteins with experimentally determined structures

need fewer models compared to larger proteins modeled using
evolutionary distant protein structure templates. The number of
models in the second step is also system dependent. As we are
allowing for flexible backbones in this step, flexible proteins
need more extensive sampling. As the search is constrained
to only deviate within a given limit, the size of the proteins is
less of a factor. More complex quaternary structures such as
obligate hetero-trimers further increase the complexity of the
docking steps, requiring more computational effort and more
models.

In the next step, we used the human proteins with known
structure as an internal control to indicate the quality of TX-MS.
In total, we identified 155 intramolecular XL-peptides mapping to
fibrinogen and albumin based on their crystal structures (2XNX
and 1E7I, respectively; Fig. 3c). Out of these 150 (97%), Cα–Cα
distances were less than the 30 Å length cutoff. Eighty-seven of
the cross-links were intra albumin cross-links, whereas 41 were
intra cross-links within the α–α, β–β, and γ–γ fibrinogen chains
26 between the αβγ fibrinogen chains. The supporting MS data
for each cross-link of the purified M1 protein, albumin, and
fibrinogen are listed in Supplementary Data 1.

Determining quaternary structures in complex samples. In
contrast to the synthetic samples above, we analyzed high-
complexity samples to determine the quaternary structure of the
whole M1 protein–human plasma protein network and so far
uncharacterized interactions between M1 protein-bound plasma
proteins. In this experiment, intact bacteria were incubated in
plasma and surface interacting human proteins isolated through
centrifugation of the intact bacteria23 followed by the addition of
a dilution series of heavy/light cross-linker. The cross-linked S.
pyogenes proteome and the bound human proteins were subse-
quently trypsin digested to generate highly complex samples with
>276 million theoretical lysine–lysine pairs (Fig. 2a). However,
the number of lysine–lysine pairs that are considered by TX-MS
is orders of magnitudes lower as the vast majority of pairs are not
supported by the structure models selected after the first docking
round. In previous work, we have identified >20 human proteins
that interact with the M1 protein using AP-MS that likely
represents a combination of direct and indirect protein bindings
to the M1 protein. To determine the quaternary structure of the
M1–human plasma protein complex, we constructed in total
1,410,000 models for 10 of the M1 interactors in addition to the
models previously generated for serum albumin and fibrinogen
(Supplementary Tables 7 and 8). These models were used to guide
the MS data acquisition as outlined above. In addition to serum
albumin and fibrinogen, TX-MS identified cross-links between
the M1 protein and four of the tested proteins, C4b-binding
protein (C4BP), the immunoglobulin IgG, apolipoprotein A1, and
haptoglobin (Fig. 4a). The identified cross-linked distance con-
straints indicate that the heavy/light cross-linker can stabilize
potentially weak or transient interactions as in the case of C4BP,
which was supported by three unique cross-links per interaction
and was previously shown to predominately bind other types of
M proteins24,25 and the M-like protein H26. To verify the
C4BP–M1 protein interaction, we carried out an additional TX-
MS experiment using commercial C4BP. The experiment resulted
in six additional cross-links that all supported the model created
using only the data from the original experiment. Results and
experimental details are described in Supplementary Note 8,
Supplementary Figures 11–14, and Supplementary Table 9.
Interestingly, we also identified a total of 48 inter cross-links
between interacting human proteins. Twenty-one of these are
found between the coagulation factor XIIIA bound to fibrinogen
(14 cross-links; 8, 4, and 2 to α, β, and γ chains, respectively) and
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alpha-1-antitrypsin (SerpinA1) bound to albumin (7 cross-links)
demonstrating a large quaternary structure of both
host–pathogen and host–host interactions. The remaining 27
inter-protein human cross-links are found in Supplementary
Table 8. Collectively across all experiments, we identified 204
distinct inter-protein cross-links supported by up to the three
different MS acquisition methods, with an average of 13.6

constraints per interface. The number of identified inter-protein
cross-links is on par with the number of identified cross-links
from large-scale XL-MS analysis of full cell lysates. However, in
contrast to previous work, the identified cross-links are not dis-
tributed across several functional modules but are rather confined
within one protein complex, considerably increasing the number
of cross-link observations per protein-binding interface.
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resolution models. b Impact on hrMS1 data on molecular docking between fibrinogen and the M1 protein. The inclusion of MS1 data drastically improved
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Fig. 4 Determining the quaternary structure of M1–human plasma protein complex. The 1.8-MDa M1 protein–human plasma protein complex model
created using TX-MS with measurements directly from complex biological samples. S. pyogenes cells were exposed to human plasma and thoroughly
washed. After application of DSS, proteins were digested with trypsin and analyzed with TX-MS. a Schematic binding sites for the M1 protein binders after
plasma adsorption on the bacterial surface. Fibrinogen and albumin were confirmed, and direct (IgG, haptoglobin [HP]) and indirect (alpha-1-antitrypsin
[SerpinA1] and coagulation factor XIII A [F13A]) were identified. b Updated binding interface model of the M1 protein after plasma adsorption on the
bacterial surface. Zoomed views show all the observed cross-links, and the heatmap-like thumbnails represent observation frequencies for the different
acquisition methods. The three pairs of albumin molecules bind to the three M1 protein C-repeats; SerpinA1 is bound to Alb, and we detected no evidence
for direct interaction of that with M1. The fibrinogen heterotrimers bind to the B-repeats. F13A1 is cross-linked to both fibrinogen and the M1 protein. HP
binds to a part of the B1-repeat. The C4b-binding protein (C4BPa) and IgG bind to the A-region of the M1 protein, also known as the hypervariable region,
show possible binding competition in this region. Finally, we detected three separate binding sites of IgG, but for two of them, we have only MS2 support.
The model can be downloaded as a PDB file or a Pymol session
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To demonstrate that dense network of distance constraints
benefits the molecular modeling, we used all the generated XL
distance constraint for local perturbation modeling to create a
comprehensive binding model of the M1 protein on the bacterial
surface (Fig. 4b). This M1-binding protein module contains ten
human plasma proteins and has an estimated size of 1.8 MDa.
The model reveals a highly dense and organized structure where
the interacting proteins are distributed along the M1 protein. The
modeled structure reveals that only a minor part of the M1
protein is surfaced exposed when bound to the human plasma
proteins. Collectively, these results explain how the repeat regions
are efficiently used to line up several plasma proteins along the
M1 protein to prevent phagocytosis, inhibiting complement
activation and securing nutrients for the bacterium and at the
same time masking conserved and vulnerable surface epitopes in
the binding interfaces with human proteins. We anticipate that
this model will contribute to the understanding of the relation-
ship between the molecular organization of the M protein family
and the interaction with human host proteins, which may have
implications for the design of vaccines for S. pyogenes.

Discussion
In this work, we demonstrate a targeted cross-link MS strategy to
create a high-accuracy model of a 1.8-MDa multi-species protein
complex consisting of 11 unique polypeptide chains. We identi-
fied an average of 13.6 distance constraints per interaction,
thereby demonstrating that the method described here, TX-MS,
can model large quaternary protein structures by extracting a
high-density network of distance constraints directly from com-
plex, unfractionated, biological samples. The deep integration of
XL-MS and protein structure modeling enables us to overcome
limitations associated with each method; a scoring function
allows us to model larger quaternary structures, also with limited
access to experimental tertiary structures. The generated struc-
tural models enable the analysis of sets of cross-linked peptides,
thereby reducing the necessity of confidently identifying both
peptides in a single MS spectrum.

The directed MS data analysis guided by a compendium of
computationally predicted quaternary structure models enables
the departure from the traditional de novo identification of
individual cross-links; instead, TX-MS uses hrMS1 data to score
low-resolution protein–protein docking models, then uses the
best-supported models to identify multiple highly informative
cross-links in a targeted data analysis approach. The final models
are created through a high-resolution flexible backbone docking
protocol that uses both models and all identified distance con-
straints as input. The targeted data analysis approach allowed us
to integrate data from three separate MS acquisition methods.
The use of three different MS acquisition protocols is advanta-
geous as the methods generated similar but not perfectly over-
lapping sets of identified cross-links allowing us to discriminate
between correct and incorrect models in a powerful way. In this
work, we required each interface to be supported by three or
more cross-links and that at least one of these cross-links could be
identified using all three acquisition methods. All reported
interfaces had significantly more support than this strict
requirement and the on average 13.6 identified cross-links per
interface demonstrates the sensitivity of the method. True nega-
tive protein–protein interactions, such as M1 protein–serpinA
and M1 protein–C1Q, were rejected by TX-MS as they fell below
our inclusion criteria, allowing us to correctly model these pro-
teins as indirect interactors of the M1 protein. The complete TX-
MS workflow is supported by several open source software tools
that are found in a pre-installed software container designed to
make software portable by installing all needed software and their

dependencies in a file that can be easily shared (Supplementary
Note 7).

The modeling of the quaternary structure of the host–pathogen
protein complex was, in the final steps, made using high-
resolution flexible backbone docking protocols using low-
resolution models supported by the experimentally derived dis-
tance constraints. In this case, access to high-resolution atomic
structures or Rosetta-generated macromolecular models shows
that TX-MS is capable of generating quaternary structures of
large protein complexes in noisy biological backgrounds without
the need for monodispersed stable protein complexes for co-
crystallization or cryo-EM studies. Furthermore, the confident
identification of cross-links provides the computational coordi-
nates representing a given cross-linked peptide pair. These
computational coordinates can be iteratively improved and
incorporated in MS assay libraries and re-used in future experi-
ments. We anticipate that high-confident libraries of MS assays
for cross-linked peptides distance constraints can, in future work,
be used to determine dynamic changes of the quaternary struc-
tures in biological samples after, for example, chemical and
genetic perturbation. Ultimately, the applicability of the method
is restricted by the ability to model the quaternary structure in
Rosetta, which in turn is restricted by the availability of experi-
mental tertiary structures of the monomers, docking protocols,
energy functions, and computational power; as all these are
continuously improved, the applicability of TX-MS is increasing
rapidly. In conclusion, the flexibility and generic nature of TX-MS
enable the workflow to be extended to model the quaternary
structure of other types of protein complexes and may represent a
valuable tool to improve our understanding of protein bio-
chemistry and protein complex formation in general.

Methods
Protein cloning and expression. The S. pyogenes open reading frame (amino acids
42–484) encoding for the M1 protein (UniProt ID: Q99XV0, emm1) was cloned at
the Lund Protein Production Platform (LP3) (Lund, Sweden). The encoding
sequence was ordered as a synthetic construct from Genscript (NJ, USA), cloned
into the EcoRV site of pUC57, and subsequently subcloned into a pNIC28-Bsa4-
based vector incorporating a tandem affinity purification tag (histidine-hemag-
glutinin-StrepII-tobacco etch virus protease recognition site) at the C-terminus of
the construct. The M1 protein was expressed in Luria-Bertani Broth (Difco) at 37 °
C in E. coli BL21 (DE3) cells. Protein expression was induced with 1 mM IPTG at
OD600 0.5–0.6. The M1 protein was purified from harvested cells using an in-house
prepared fibrinogen-column15. Pooled fractions from the fibrinogen column were
dialyzed against 1× phosphate-buffered saline (PBS) pH 7.4, and loaded on Ni-
coupled Imac Sepharose 6 Fast Flow (GE Healthcare). The column was washed
with 20 mM imidazole in 1× PBS pH 7.4, and bound protein was eluted with 500
mM imidazole in 1× PBS pH 7.4 using gravity flow. Pooled fractions from the Ni-
column were buffer exchanged into 1× PBS pH 7.4 and concentrated using Mil-
lipore Amicon 30 kDa molecular weight cutoff concentrators. Purified protein was
stored at −80 °C until usage.

Commercial proteins and human plasma. Albumin from human serum (A3782)
and fibrinogen from human plasma (F4883) were obtained from Sigma. Pooled
normal human plasma from healthy donors was purchased from Innovative
Research (MI, USA).

Cross-linking of purified proteins. Fifty micrograms of purified M1 protein was
incubated with 66 μg of albumin (1:1 molar ratio) or 100 μg of fibrinogen (2:1
molar ratio due to an average of 50% impurities in the commercial fibrinogen)
resuspended in 1× PBS pH 7.4 at 37 °C, 500 rpm, 30 min2. Alternatively, 50 μg of
purified M1 protein was incubated together with 66 μg of albumin and 100 μg of
fibrinogen at 37 °C, 500 rpm, 30 min. Heavy/light DSS (DSS-H12/D12, Creative
Molecules Inc., https://www.creativemolecules.com) resuspended in dimethylfor-
mamide (DMF) was added to final concentrations of 0, 100, 250, 500, 1000, and
2000 μM and incubated for a further of 30 min at 37 °C, 900 rpm. The cross-linking
reaction was quenched with a final concentration of 50 mM ammonium bicarbo-
nate at 37 °C, 500 rpm, 15 min.

Cross-linking of plasma adsorption samples. The S. pyogenes strain SF370, a
clinical isolate of the M1 serotype, was grown at 37 °C and 5% CO2 from a single
hemolytic colony to mid-exponential phase (OD620nm∼ 0.4) in Todd–Hewitt broth
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supplemented with 0.3% (w/v) yeast extract. The cells were harvested by cen-
trifugation (3500 × g, 5 min), washed with HEPES-buffer, recentrifuged, and
resuspended to an approximate concentration of 1 × 109 colony-forming units/ml.
Four hundred microliters of pooled normal human plasma was mixed with 100 μL
of bacteria and incubated at 37 °C, 30 min, 500 rpm13. The bacteria with adsorbed
plasma proteins were again harvested by centrifugation (5000 × g, 5 min) and
washed three times with HEPES-buffer, with subsequent centrifugations. The
bacteria with adsorbed plasma proteins were resuspended in HEPES buffer, and
heavy/light DSS in DMF was added to final concentrations of 0, 500, 2000, and
4000 μM and incubated for 60 min at 37 °C, 900 rpm. The cross-linking reaction
was quenched with a final concentration of 50 mM ammonium bicarbonate at
37 °C, 500 rpm, 30 min. The surface proteins with attached plasma proteins were
digested off with 2 μg trypsin (Promega)23, prior to cell debris removal by cen-
trifugation (1000 × g, 15 min), supernatant recovery, and heat inactivation of any
remaining pathogenic bacteria (85 °C, 5 min) and finally sample preparation for
MS.

Sample preparation for mass spectrometry. Samples from cross-linking of
purified proteins and cross-linking of plasma adsorption were denatured in 8M
urea–100 mM ammonium bicarbonate, and the cysteine bonds reduced with 5 mM
tris(2-carboxyethyl)phosphine (37 °C, 30 min) and alkylated with 5 mM iodoace-
tamide (22 °C, 60 min). Samples were diluted with 100 mM ammonium bicarbo-
nate to a final urea concentration of 1.5 M, and sequencing-grade lysyl
endopeptidase (37 °C, 2 h) (Wako Chemicals) followed by trypsin (37 °C, 18 h)
(Promega) was added for protein digestion. Digested samples were acidified with
10% formic acid to a pH of 3.0, and the peptides were subsequently purified with
C18 reverse-phase spin columns according to the manufacturer’s instructions
(Macrospin columns, Harvard Apparatus). Dried peptides were reconstituted in
2% acetonitrile and 0.2% formic acid prior to MS analyses.

MS experiments. Modern MS-based proteomics relies on several data acquisition
protocols, each with strengths and weaknesses. Here we rely on three different
acquisition strategies; hrMS1, DDA (MS2), and DIA. We cover each method in
more detail throughout supplementary notes, but in brief, MS1 measures the intact
peptide ions at high resolution, both in the m/z and time dimensions. DDA does a
quick scan of the eluting peptides and then uses a simple algorithm to select a few
of the peptides to fragment and measure. In DIA, we fragment several peptides at
once, thereby increasing the capacity, enabling us to comprehensively measure the
resulting fragments at high time resolution; the penalty is highly complex and
convoluted data that requires specialized software to analyze. Supplementary
Table 4 contains the sample id of all experimental data (hrMS1, MS2-DDA, and
DIA).

Liquid chromatography-MS. All MS measurements were performed on a Q
Exactive Plus (Thermo Scientific) connected to an EASY-nLC 1000 liquid chro-
matography system (Thermo Scientific). Peptides 1 µg were separated by C18
reverse-phase chromatography using a 25-cm EASY-Spray column (P/N: ES802,
column temperature 45 °C) with a linear gradient from 5% to 35% acetonitrile in
aqueous 0.1% formic acid at a flow rate of 300 nl/min for 60 min (DDA), 90 min
(hrMS1), or 120 min (DIA). Column equilibration and sample loading were per-
formed at 600 bar. Resolution (R) is defined at 200 m/z. For hrMS1, high-resolution
MS scans (R= 280,000) were acquired using automatic gain control (AGC) was set
to 1e6 and a fill time of 100 ms (MS). For DDA, the 15 most intense precursor ions
of charges ≥2 from an MS1 scan (R= 70,000) were allowed to be fragmented and
measured at R= 17,500. AGC was set to 1e6 for both MS and MS/MS with ion
accumulation times of 100 ms (MS) and 60 ms (MS/MS). Precursor ions were
fragmented using higher-energy dissociation (HCD) at a normalized collision
energy of 30.

For DIA, one MS1 scan (R= 70,000; mass range from 400 to 1200 m/z) was
followed by 32 MS/MS full fragmentation scans (R= 35,000) using an isolation
window of 26 m/z (0.5 m/z overlap between consecutive windows). AGC was set to
1e6 for both MS and MS/MS with ion accumulation times of 100 ms (MS) and 120
ms (MS/MS). Precursor ions were fragmented using HCD at a normalized collision
energy of 30.

Code availability. The software is available via a singularity container in zenodo
with the https://doi.org/10.5281/zenodo.1438111, making it easy to use as software
installation is not necessary. Detailed instructions are provided in Supplementary
Note 7.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All structural models and PyMOL sessions to support the findings of this study are
available in zenodo with the https://doi.org/10.5281/zenodo.1438111. MS data have
been deposited to ProteomeXchange via the MassIVE partner repository with

accession codes MSV000082982 and PXD011969. A reporting summary for this
article is available as a Supplementary Information file. All other data supporting
the findings of this study are available from the corresponding authors on rea-
sonable request.
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