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Abstract

We study the impact of techies—engineers and other technically trained workers—on
firm-level productivity. We first report new facts on the role of techies in the firm
by leveraging French administrative data and unique surveys. Techies are STEM-
skill intensive and are associated with innovation, as well as with technology adoption,
management, and diffusion within firms. Using structural econometric methods, we
estimate the causal effect of techies on firm-level Hicks-neutral productivity in both
manufacturing and non-manufacturing industries. We find that techies raise firm-level
productivity, and this effect goes beyond the employment of R&D workers, extending
to ICT and other techies. In non-manufacturing firms, the impact of techies on pro-
ductivity operates mostly through ICT and other techies, not R&D workers. Engineers
have a greater effect on productivity than technicians.
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1 Introduction

Engineers and other technically trained workers (techies) have long been recognized as fun-

damental in driving productivity growth. For example, engineers are at the heart of modern

endogenous growth theory, as highlighted by Romer (1990). The importance of techies for

productivity growth has also been emphasized in the economic history literature.1 In this

paper, we study the role of techies in enhancing firm-level productivity growth. We show

that techies raise firm-level productivity and that this effect extends beyond techies who do

research and development (R&D). Techies that work with information and communication

technology (ICT) and other technical tasks equally affect firm level productivity growth.

We also show that their effect is important not only in manufacturing but also in the non-

manufacturing sector.

We start by providing a comprehensive description of techies based on precise administra-

tive and survey datasets from the French national statistical institute, INSEE. We identify

techie workers by using the comprehensive French occupational classification (INSEE, 2003).

Techie jobs are distinguished from other occupations by INSEE because they are related to

the installation, management, maintenance, and support of ICT, product and process design,

longer-term R&D activities, and other technology-related tasks. We show that techies are

also distinguished from other workers by their STEM (science, technology, engineering, and

math, including computer science) diplomas, skills, and experience. We also show that they

adopt, manage, and diffuse technology within firms.

Techies are not homogeneous, and we classify them based on their specializations in R&D,
1Kelly et al. (2014) and Ben Zeev et al. (2017) highlight the importance of the British apprentice sys-

tem during the British Industrial Revolution in supplying the basic skills needed for technology adoption.
Similarly, Kelly et al. (2023) show that the British Industrial Revolution started in areas where technically
trained mechanics were abundant, and Hanlon (2022) shows how the emergence of “professional” engineers
underpinned the Industrial Revolution. Maloney and Valencia Caicedo (2017) construct a dataset of engineer
intensity for the Americas and U.S. counties around 1880 and show that this intensity helps predict income
today.
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ICT or other technology-related occupations. These distinctions are important because they

allow us to distinguish the impact of these three different types of techies on firm-level

productivity. Importantly, R&D techies are much more common in manufacturing than

they are in non-manufacturing, while the reverse is true for ICT techies. Therefore, limiting

the focus to R&D techies alone does not provide an accurate picture of the overall influence

of techies across industries.

A large literature has studied the role of R&D expenditure in shaping firm, industry and

national outcomes. Our firm-level analysis uses the wage bill of R&D workers instead of total

R&D expenditures, which is not a limitation for two reasons. First, most of R&D expenditure

in France is on wages, and by a large margin, compared to other R&D-related expenditures.

Consistent with this, R&D wages are highly correlated with total R&D expenditures at the

firm level. Second, non-wage R&D expenditures are included in our measure of the firms’

purchased inputs and capital.

The right way to measure firm-level productivity differences is contentious, but there is

broad consensus that these differences are very large. There is much less consensus about,

to echo the title of the influential survey by Syverson (2011), what determines productivity

differences. As noted by De Loecker and Syverson (2021), only a few papers have tried to

answer this question in a structural way, which requires a methodology that permits both

consistent estimation of firm-level productivity and its causal determinants. Our paper adds

to this literature in two dimensions: we are the first to jointly study the impact of R&D,

ICT, and other techies on firm-level productivity, and also the first to study firms in non-

manufacturing in addition to manufacturing. This broadened focus allows us to paint a more

complete picture of the overall influence of techies on productivity growth.

Our analysis of the survey and administrative data are complementary one to the other.

The three surveys that we analyze (one at the individual level and two at the firm-level) allow

us to study the qualifications and tasks of techies, and how techies are correlated with firm-

level innovation effort and outcomes. This lends credence to the structural analysis, which
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is based on administrative data. We use the administrative data to construct a firm-level

unbalanced panel of manufacturing and non-manufacturing firms from 2011 to 2019. The

panel includes data on firms’ inputs (capital, labor by detailed occupation, and expenditure

on materials) and revenue, as well as an indicator for exporting. We use the panel to estimate

structural models of firm-level Hicks-neutral total factor productivity (TFP) and the causal

effect of techies and exporting on productivity. We use two recent structural production

function estimators, due to Grieco et al. (2016) (hereafter, GLZ) and to Gandhi et al. (2020)

(hereafter, GNR), which have different advantages and disadvantages for our application

that we discuss below.

Our econometric strategy is based on two assumptions. First, techies affect Hicks-neutral

TFP with a lag. Second, techies affect output only through their impact on future pro-

ductivity, and not through any contemporaneous contribution to factor services that affect

current output. This is analogous to the way economists usually think about current invest-

ment spending, which doesn’t increase current output but increases future output through

its impact on future capital stock. This is also how economists usually think about R&D

expenditure, affecting only future outcomes. We use a flexible specification of the firm’s

productivity process, which permits us to make causal statements about the effects of firms’

employment of R&D, ICT and other techies, as well as export status.

We find that firms that employ techies have substantially higher future productivity

than those who do not. The presence of techies leads to 4 or 5 percent higher produc-

tivity a year later, with a long run effect of over 45 percent in both manufacturing and

non-manufacturing firms. Our analysis confirms the importance of R&D techies for TFP

growth in manufacturing, as in Doraszelski and Jaumandreu (2013). In addition, we find

that the positive impact of techies on productivity is not limited to R&D. ICT and other

techie workers also positively impact productivity in manufacturing and non-manufacturing

industries. Interestingly, R&D techies do not significantly contribute to the productivity

growth of non-manufacturing firms. In addition, we find that both engineers and technicians
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increase firm productivity in both manufacturing and non-manufacturing industries, with

engineers having a bigger impact than technicians.

TFP is defined as real output per unit of real inputs. However, our data reports revenue

rather than real output, and expenditures on materials rather than quantities—a typical

feature of firm-level datasets and of productivity studies. We address these challenges by

applying the estimator of Grieco et al. (2016), which was developed for such datasets.

The GLZ estimator rests on three main assumptions. First, it assumes that all firms

in an industry have the same constant elasticity of substitution (CES) production function.

Second, it restricts returns to scale to be constant. Third, it assumes that both materials

and labor inputs fully and flexibly adjust in response to current productivity shocks. We

examine the sensitivity of our results by extending the methodology of Gandhi et al. (2020)

to our setting, where real output is not observed.

Unlike GLZ, GNR imposes no functional form restrictions on the production function and

does not require constant returns to scale. Furthermore, GNR’s flexibility in accommodating

labor as a “dynamic” (predetermined in period t) input is particularly attractive given the

labor market institutions in France. We employ two variations of GNR: one in which both

labor and materials are “static” inputs, similar to GLZ, and another, in which labor is

dynamic and does not respond to current productivity shocks. However, our application of

GNR comes with two drawbacks: it assumes that real materials input quantities are known

while they are not, and we can only identify the impact of techies on productivity up to an

unknown parameter. Despite the differences between the estimators, our estimates of the

impact of techies on productivity using the GNR methodology are qualitatively similar to

those we obtain using GLZ.

Our assumption that techies don’t affect the current output but do affect future pro-

ductivity is key to our research design. We examine the validity of this assumption by

considering the simple null hypothesis that techies are no different than other workers and

reject this null in favor of the alternative that our baseline assumption is a better fit to the
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data. We also show that our inferences about the effect of techies are robust to a nonlinear

adjustment process and to a re-classification of Other (not R&D nor ICT) techies as regular

labor.

Related research. A small literature examines the impact of techies’ impact on output,

employment structure, and productivity at the firm level. The motivation for this literature is

stated succinctly by Tambe and Hitt (2014): “the technical know-how required to implement

new IT innovations is primarily embodied within the IT workforce”. Similarly, Deming and

Noray (2018) show that, in their words, “STEM jobs are the leading edge of technology

diffusion in the labor market”. While the literature on firm-level impacts of investment in

IT and in R&D is vast, it rarely studies the importance of those key workers who install,

manage and diffuse IT and other technologies within the firm.

A lack of firm-occupation-level data in most administrative and survey datasets has

hampered firm-level research on this proposition. An exception is Harrigan et al. (2021),

which uses detailed occupational data (including data on techies) for the entire French private

sector from 1994 to 2007. Harrigan et al. (2021) show that employment growth is higher in

French firms with more techies and also that more techies lead to within-firm skill upgrading.

Lichtenberg (1995) and Brynjolfsson and Hitt (1996) find that IT labor has a positive output

elasticity, a result confirmed on later data by Tambe and Hitt (2012). Using a remarkable

dataset that tracks the movement of IT workers across firms, Tambe and Hitt (2014) find

what they interpret as evidence for knowledge spillovers across firms through the channel

of techie mobility. None of these papers structurally estimate the impact of techies on

productivity, nor do they study the different tasks that techies perform (e.g., IT versus

R&D).

We rely on recent advances in the methodology of estimating firm-level productivity and

its determinants. This literature was initiated by Olley and Pakes (1996) (OP) by estimat-

ing production functions and associated firm-specific, time-varying Hicks-neutral total factor
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productivity differences. Other key methodological papers in this literature include Levin-

sohn and Petrin (2003) (LP) and Ackerberg et al. (2015) (ACF), a set of techniques which

we will refer to as OP/LP/ACF. The common thread that runs through these papers is that

they apply the “control function” approach for identifying the production function. Count-

less papers have applied the OP/LP/ACF methodology to estimate TFP, but the study of

the determinants of firm-level TFP is remarkably sparse.

Two pioneering papers that study the determinants of firm-level TFP are De Loecker

(2013) (exporting) and Doraszelski and Jaumandreu (2013) (expenditure on R&D). We dis-

cuss these papers below, as our methodology relies on their insights. The methodology of

Doraszelski and Jaumandreu (2013) requires observing real inputs and outputs, a specific

functional form for the production function, and assumptions on labor flexibility. As dis-

cussed above, our applications of GLZ and GNR address these limitations in our setting, in

different ways.

Two serious concerns have recently been raised for the control function approach. First,

Gandhi et al. (2020) identify a weak instruments problem. Second, Ackerberg et al. (2021)

show that the control function approach suffers from a “weak moments” problem, where the

GMM objective function admits multiple solutions with equal value of the problem. These

problems are not present in the GLZ and GNR estimators, which further motivates us to

apply them, rather than the OP/LP/ACF approach.

The rest of the paper is organized as follows. In Section 2 we provide a detailed account

of the sources and construction of our datasets. In Section 3 we present a comprehensive

analysis of the role of techies, highlighting their technical expertise and their crucial role in

adopting, mediating, and diffusing technology at the firm level. Section 4 outlines the theo-

retical basis for the inclusion of techies in our productivity model and how they can impact

productivity. In Section 5 we describe our methodology, comparing the relative advantages

of the GLZ and GNR estimators. There we also provide a comprehensive discussion of the

econometric challenges and the steps taken to address them. In Section 6 we present the

6



main results of our analysis and perform various sensitivity checks to test the robustness of

our findings. We conclude in Section 7 with a summary of our key results and a discussion

of their implications for policymakers.

2 Data

We construct a panel dataset on firms in the French private sector between 2011 and 2019 by

merging three confidential, administrative firm-level datasets.2 We complement this infor-

mation with survey data to characterize techies and describe their roles in firms. Matching

firms across these datasets is straightforward because firms are identified by the same iden-

tification number (SIREN) in each of the three datasets. We highlight key features of the

data here and relegate other details to Appendix A.

2.1 The composition of labor within firms

Our data on employment is from the DADS.3 All firms with employees are required to report

wages, hours paid, occupation, and the 2-digit sector of activity of the firm. The estimation

sample includes firms in 17 industries in both manufacturing and non-manufacturing sectors.4

The DADS reports detailed 4-digit occupational codes, almost 500 in total, classified

using the French PCS classification. These occupational codes are defined and explained in

great detail in INSEE (2003), and we use these definitions to select the 58 4-digit occupations

that we classify as techies. As we will show in Section 3, workers in these occupations differ

from other workers in their education and training as well as in the tasks they perform.

Their work is closely related to the installation, management, maintenance, and support of

ICT, product and process design, longer-term R&D activities, and other tasks related to
22011 is the first year for which our data are available and 2019 is the last pre-pandemic year.
3Déclaration Annuelle de Données Sociales
4One sector (coke and refined petroleum) is dropped because it has tiny shares of total hours worked,

and one sector (Transportation and storage) is dropped because the estimation of the production function
using GLZ failed to converge. We also drop the computers and electronics sector because of its very high
intensity in techie workers.
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technology. In short, the employment of techies is a direct measure of firms’ investment in

technology.

For analytical purposes, we group the techie occupations in two alternative ways. The

first simply classifies them by their 2-digit categories, technical managers and engineers (PCS

38) and technicians (PCS 47). The second grouping comprises three categories defined by

us: R&D techies, ICT techies, and Other techies, see Table A1. These three categories are

based on the definitions and descriptions of the 4-digit categories in INSEE (2003).

The documentation in INSEE (2003) makes it clear that techies perform different tasks

than workers in other occupations. For example, technical managers and engineers (PCS

38) are distinguished from other managers (PCS 37) by the fact that for the former, “the

scientific or technical aspect takes precedence over the administrative or commercial aspect”,

whereas for the latter “the administrative or commercial aspect prevails”. Similar distinctions

are made between technicians and other occupations.5 Beyond what is suggested by their

occupational titles (reported in Table A1), the INSEE documentation also makes clear that

techies perform tasks that support production but are not production or fabrication tasks per

se. This grounds our assumption that the role of techies is to increase productivity rather

than to contribute to current output like other types of workers.

Our classification of techies into R&D and ICT techies is unambiguous and is based on

a reading of the occupational definitions reported in Table A1 (INSEE, 2003). For example,

all the occupations classified as R&D techies have the phrase “research and development” in

their job descriptions, while those classified as ICT techies all have the phrases “Information

technology”, “computer science” and/or “telecommunications” in their job descriptions. A

close look at the detailed INSEE (2003) descriptions of the Other techies category yields

two observations. First, this group exhibits heterogeneity in their composition comprising

engineers, technical executives, and technicians involved in the adoption and dissemination

of technologies not related to R&D or ICT and new production methods within their firms.
5pages 191, 221 and 343 of INSEE (2003),
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A case in point are the engineers and managers of production method (PCS 387c), who

are responsible for adapting and optimizing manufacturing methods in the private sector.

Secondly, despite being notably different from production and fabrication activities, they

optimize the productivity of workers in those fields. In our baseline results below, we include

Other techies along with R&D and ICT techies as drivers of productivity, but we also report

results that treat Other techies as ordinary workers who contribute to current output rather

than improve productivity with a lag. Our results are not sensitive to this reallocation of

Other techies.

Hours worked in non-techie occupations are assumed to contribute directly to current

output, as is standard in the structural productivity estimation literature.

2.2 Balance sheets and exporting

Firm balance sheet information comes from the FARE dataset for 2011–2019.6 The source

of information is firms’ tax declarations. We use the information on total revenues, material

expenditures, and the necessary series to construct each firm’s capital stock. Appendix A

describes the source data and explains how we construct firm-level capital stocks.

French Customs provide data on the exports of firms located in France. We use this

information to generate an indicator of export status for each firm-year.

2.3 Survey data

A novel contribution of our paper is our focus on techies and their impact on firm level

productivity. We focus on techies because of their central role in planning, installing, and

maintaining information and computer technology (ICT), in Research and Development

(R&D) and other technologies, and in training and assisting other workers in the use of

technology. We complement the structural estimation of techies’ impact on productivity by

collecting information from three survey data sources, which provide additional information
6Fichier Approché des Résultats Ésane
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on techies that allows us to characterize better their role in the firm.

First, we provide information on education in STEM fields (Science, Technology, Engi-

neering, and Math, including Computer Science) and STEM training of techie workers from

the Training and Professional Qualification (TPQ) survey in 2015. The survey collects data

on the specialization of the highest degree obtained by the individual and whether and which

training after the highest degree s/he received.

Second, we collect data on firms’ expenditures on R&D (both internal and external) from

the Annual Survey on the Means dedicated to Research and Development (R&D survey).

Among other information, the R&D survey provides information on the labor costs included

in R&D expenditures and the share of R&D expenses that are outsourced. It also provides

information on whether the firm has introduced technologically new or improved products

or services on the market or implemented new or improved production processes due to the

R&D activity and reports the number of patents filed during the year of R&D activity.

Third, we use the Information and Communication Technology survey (ICT survey),

which informs on the relationship between ICT training and technology diffusion within

firms.

Appendix A provides detailed descriptions of all datasets. Both ICT and R&D surveys

can be linked to the administrative datasets described above since they use the same SIREN

firm identifier. We exploit this feature below.

3 Facts about techies

Using the DADS and survey data, this section provides information about techie workers,

their education and training, and how they are essential for adopting, mediating, and dif-

fusing technology at the firm level. Here we report our key descriptive results, with further

results and details on the analysis reported in Appendix B.
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3.1 Fact 1. Techies across industries.

Table 1 reports techie wage bill shares by category in our sample and the French manufac-

turing and non-manufacturing industries (additional details are provided in the Appendix

B).

Table 1: Wage bill shares of techies by categories (2019)

Overall Manufacturing Non-Manufacturing % techie wage bill
in manufacturing

Techies 18.3 31.5 10.8 62.6

R&D 3.4 8.2 0.7 87.3
ICT 2.2 2.3 2.1 38.0
Other 12.7 21.1 8.0 60.2

Engineers (PCS 38) 11.9 19.7 7.4 60.3
Technicians (PCS 47) 6.5 11.9 3.4 66.9

Source: DADS.

Techies account for 18.3% of the French private sector’s wage bill share, with a larger

share within manufacturing than within non-manufacturing. Overall and across sectors,

other techie workers are a larger share of the techie wage bill than the shares of R&D and

ICT workers. This motivates studying the role of techies beyond R&D tasks.

Most expenditures on techies are in manufacturing (62.6%), but more than a third are

in non-manufacturing industries. This is why we do not confine our analysis of productivity

growth to manufacturing, in contrast to almost all of the relevant literature.

We observe interesting patterns when we break down techie workers into different cat-

egories. Most of the expenditure on R&D techies, 87.3%, is in manufacturing. Consistent

with this, manufacturing is much more R&D techie-intensive that non-manufacturing. This

implies that studying the impact of R&D on productivity can be largely done within man-

ufacturing. In contrast, 62% of the expenditure on ICT techies is in non-manufacturing,

while the ICT techie-intensity is almost identical across sectors. This emphasizes the impor-

tance of considering the non-manufacturing sector when studying the impact of techies on

productivity growth.
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Table 1 also reports the wage bill shares of engineers and technicians. Engineers are twice

as large a share of the techie wage bill as technicians.

3.2 Fact 2. Techies have more STEM education and training than

other occupations.

We use the Training and Professional Qualification (TPQ) survey in 2015 to ask whether

techies have more STEM education and STEM training than workers in other occupations.

The TPQ survey provides detailed information on the specialization of the highest degree

obtained by individuals and any training after the highest degree received. We classify these

degrees and training and build an indicator for STEM (see Appendix B). The TPQ survey

has 26,861 individuals with valid observations, among whom 5.4% are Engineers (PCS 38),

and 5.1% are Technicians (PCS 47). These shares are similar to the shares in the DADS

administrative data.

As we report in Table B1, techies have more STEM education and training than other

occupations. In particular, around 63 percent of techies have a degree and/or training in

STEM, with about a fifth having both a STEM degree and further STEM training. STEM

degrees are somewhat more common among engineers (PCS 38, 55%) than technicians (PCS

47, 41%).

STEM education is uncommon in all other PCS codes, with only 11 percent having a

STEM degree, less than a fifth having either a degree or training, and only two percent have

both a STEM degree and further training. These numbers are very similar for the important

skilled occupation of administrative and commercial managers (PCS 37). These findings

support the idea that “the technical know-how required to implement new IT innovations is

primarily embodied within the IT workforce” in a firm (Tambe and Hitt, 2014), and that

their role is distinguished from other workers, including managers.
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3.3 Fact 3. Most R&D spending is on wages and occurs “in-house”.

In our structural analysis below, we use the techie wage bill share to measure firm-level

resources devoted to improving productivity. Here we compare the techie wage bill to total

R&D expenditures.

Firm-level R&D excludes much of the ongoing expenditure and managerial attention that

firms devote to technology adoption and ICT use. Firm-level R&D expenditure includes

spending on materials and capital goods, which can lead to double-counting when it comes

to production function estimation for two reasons. First, total materials are included as an

input to production, and it is not possible to extract expenditure on R&D materials from

total materials. Second, R&D capital expenditure is part of the firm’s total investment, which

we use to construct firm level capital stocks. Thus, using R&D expenditures in the context of

production function estimation raises the potential for double-counting of capital and inputs.

Moreover, capital investment tends to occur in “spikes”, which leads to over-estimating effort

towards productivity growth when this type of investment occurs and under-estimation of

effort in other years.

As shown above, firms employ many scientists and engineers in non-R&D occupations.7

Conversely, R&D is likely impossible without the employment of techies, who are needed

to install, maintain and manage the ICT used in R&D departments. Thus, the techie wage

bill is both broader and more precise as a measure of firm-level effort devoted to technology

adoption and diffusion than R&D expenditures.

The R&D survey reports labor costs associated with R&D, as well as how much of the

firm’s R&D budget is spent in-house, particularly on wages related to R&D. Table B3 shows

that wages account for most of R&D spending, especially when R&D is done within the

firm. For example, the median share of externally-sourced R&D services is zero, while the

mean is only 9 percent. For the average and median firm wage costs are 67 percent of total
7Barth et al. (2017) find that 80 percent of U.S. private sector scientists and engineers worked outside

R&D occupations in 2013.
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R&D spending, and 74 percent of in-house R&D. These findings are consistent with those of

Saunders and Brynjolfsson (2016) in a sample of U.S. firms, where they find that more than

half of all spending on IT was on IT-related techies.8 Similarly, Schweitzer (2019) finds that

in 2014, labor costs accounted for 60 percent of aggregate R&D spending in France.9

One potential threat to our approach that treats firm-level techies as an indicator of firm-

level technological sophistication is that firms can purchase ICT, R&D, and other technology-

related consulting services. By hiring a consultant, firms can obtain and maintain ICT

without increasing the direct labor costs of techies, and expenditures on consulting would

show up in as a purchased service. Table B3 indicates that this is not a large concern, since

expenditure on R&D is overwhelmingly spent within the firm, with the median firm spending

nothing on external R&D. Moreover, less than 3 percent of techie hours are in the IT and

R&D consulting sectors in 2019, which implies that over 97 percent of the hourly services

supplied by techies are obtained in-house rather than purchased from consultants.10

3.4 Fact 4. Techies are positively associated with the diffusion of

ICT skills within firms.

The ICT survey provides information on whether the firm offers training in developing or

improving ICT skills to its workers, including ICT workers. ICT training is uncommon, with

only 18 percent of firms offering training (Table B9). After matching the ICT survey with

the DADS dataset, we examine the correlation between techies and ICT training. We use a

linear probability model to explain the likelihood of offering ICT training. Our regressions

control for firm size, and include sector and year-fixed effects. The results are reported in
8Saunders and Brynjolfsson (2016) find that for a sample of 127 large publicly traded US firms from 2003

to 2006, half of all spending on IT is for “Internal IT Services (e.g., custom software, design, maintenance,
administration)”. Including IT training services brings the share to 0.54.

9The remainder 40 percent are split into 6 percent capital expenditures and 34 percent “other current
expenses”.

10We refer to the IT and R&D consulting sectors as industry codes 62 (Computer Programming, consul-
tancy, and related activities), 631 (Data Processing, Hosting, and related activities; web portals), and 72
(Scientific R&D) in the NAF classification. These are dropped from our analysis.
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Table B10.

We find a strong association between the likelihood of offering ICT training and the

employment of techies, even after controlling for firm size. This effect is mainly driven by

ICT techies rather than R&D and other techies. These other techie categories are positively

associated with the likelihood of offering ICT training, but the effect is smaller.

3.5 Fact 5. Techies are positively associated with patenting and

innovation.

The R&D survey provides information on firms’ patent filings and product and process

innovation. We use these data to study the relationships between patenting, innovation,

R&D spending, and techies. To do this, we match the survey outcomes with the information

on techies from the DADS data. We do not attempt to estimate the causal effects of R&D

or techies on patenting or the measures of innovation, but the reduced form correlations are

informative.

Patenting is rare. The firm at the 75th percentile of the patenting distribution files no

patents, and the 95th percentile firm files only 4 patents. The 99th percentile firm files 26

patents, and the top four firms file around 2,000. By contrast, innovation is quite common:

only a quarter of firms report no process or product innovations in the past year, while half

report having both (Table B11).

Patenting correlates positively with all types of R&D expenditures in the R&D survey:

internal or external, wages or other expenses (Table B12). Interestingly, the strongest cor-

relation between innovation and patenting is with R&D wages and internal R&D. When we

match the R&D survey to our data from the DADS we find a positive correlation between

the techie wage bill and firms’ patenting (Table B13). This correlation is mostly driven by

R&D techies, with a smaller correlation for ICT techies.

Using the matched dataset we also find that techies are positively related to both product

and process innovation (Table B14). Interestingly, the R&D and ICT techie wage bills are
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similarly correlated with product innovation (although in non-manufacturing the relationship

for ICT techies is not statistically significant). In contrast, Other techies are uncorrelated

with product innovation. The R&D and Other techie wage bills are positively related to

process innovation (although in non-manufacturing the relationship for R&D techies is not

statistically significant). In contrast, ICT techies are not associated with process innovation.

The analysis reported here (and in greater detail in the appendix) reveals a clear pattern:

techies are related to patenting and innovation. It also suggests different roles for R&D, ICT

and Other techies: R&D techies are associated with both types of innovation, while ICT

techies are associated only with product innovation, and Other techies are associated only

with process innovation.

Our findings are consistent with Hall et al. (2010), who argue that R&D is related to

product and process innovation. Arora et al. (2017) show how corporate research in the U.S.

leads to innovation and patenting, and how the effect on productivity is positively related to

the quality of researchers employed in such activities. This quality is likely captured by wages.

The implementation of many large and small process innovations is undoubtedly mediated

by techies, who are a good measure of the “organizational capital ” that Brynjolfsson and

Hitt (2003) argue is crucial to ICT adoption. ICT investments foster organizational changes

within firms such as business processes and work practices (Bresnahan et al. (2002)) and

span of control (Bloom et al. (2014)), both of which may enhance productivity (Brynjolfsson

and Hitt (2000)).

4 Why don’t all firms employ techies?

The previous section shows that techies are essential to adopt, mediate, and diffuse technol-

ogy at the firm level. They may therefore enhance productivity. Nonetheless, we also show

that relatively few firms employ techies. This raises an obvious question: why don’t more, if

not all, firms employ techies? A similar finding is well-known to trade economists: in some
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studies of developing countries, exporting is found to raise productivity, yet a minority of

firms export. Following Melitz (2003), the consensus explanation for this phenomenon is

fixed costs: firms choose to export only when the extra revenue from exporting exceeds the

fixed costs of exporting. Alternatively, the variable costs of exporting may make it unprof-

itable for high-cost firms, as shown by Melitz and Ottaviano (2008). Here we sketch a simple

theoretical framework that makes a similar point about techies and gives a rationale for a

constant elasticity relationship between techies and productivity. We do not estimate this

model; rather we use it here to make a few simple theoretical points.

For maximum simplicity, suppose there are only two periods. The firm takes the demand,

costs, and initial period log productivity ωft−1 as given and has to choose optimal techie

employment Tft−1 to maximize profits. The relationship between techies and changes in

productivity is

ωft = ωft−1 +Max

[
β ln

(
Tft−1

τf

)
, 0

]
, β ≥ 0 .

Although the elasticity of productivity with respect to techies is constant and equal to β, the

level of techie employment required to attain a given growth in productivity ∆ωft will differ

across firms because of differences in τf . Fixed costs of employing positive techies are κf and

the wage of techies is r, so the cost of hiring techies is rTft−1 +κf . With heterogeneity in the

costs κf and τf not all firms will employ techies, and we derive the following very intuitive

conclusions in Appendix C. First, the optimal amount of techies is more likely to be positive

when demand and/or initial productivity are higher. Conversely, the optimal amount of

techies is more likely to be zero when their fixed costs are high and/or when the efficiency

of techies is low. Second, the optimal amount of techies may be zero even if the fixed cost

of employing techies is zero. Finally, when the optimal amount of techies is positive, it is

increasing in initial productivity and the efficiency of techies. These predictions are consistent

with findings in Brynjolfsson et al. (2023), who find larger incidence of IT investment in larger

firms, who benefit more from it. A further implication of this framework is that since firms

that export will have a higher demand level, they will also be more likely to employ techies.
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This motivates us to control for exporting in our structural analysis.

5 Methodology

We now describe our methodology for estimating how techies cause higher firm-level TFP.

Total factor productivity is defined as real output per unit of real composite inputs (Caves

et al., 1982). Most of the production function estimation literature assumes that all the

necessary real input and output quantities are available. However, our data reports revenue

rather than real output and expenditures on materials rather than quantities, which is the

case in the large majority of productivity studies.11 We build on two methodologies, pro-

posed by Grieco et al. (2016) (hereafter, GLZ) and Gandhi et al. (2020) (hereafter, GNR),

that address these data issues in different ways. Both methodologies have drawbacks and

advantages, which we discuss below.

Our research strategy rests on two pillars. The first is that techies affect Hicks-neutral

TFP. The second is that techies affect output only through their impact on future produc-

tivity, not through any contemporaneous contribution to factor services that affect current

output. This assumption is analogous to the common assumption in the literature that in-

vestment in R&D has no contemporaneous effect on output, but raises future output through

its contribution to capital (Doraszelski and Jaumandreu, 2013). Similarly, Beaudry et al.

(2016) use a model with cognitive labor affecting future output only through its effect on

organizational capital.

Our research strategy is framed by the following two equations:

rft = (1− ρ) bt + ρωft + ρf (xft) + uft (1)

ωft = g (ωft−1, zft−1) + ξft (2)
11For a discussion of the challenges that such a data environment poses for estimation, see De Loecker and

Goldberg (2014).
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Equation (1) is a firm-level “revenue production function” that is common to all firms in the

industry: rft is log revenue of firm f in year t, bt is an industry-wide demand shifter in logs,

ωft is log TFP, xft is a vector of log inputs, including capital, labor, and materials, and

uft are shocks to revenue. Firms face the same industry-specific downward-sloping demand

curve, with elasticity η = 1/(1− ρ) with ρ ∈ (0, 1), the same market size shifter bt, and the

same production function f . Firms differ in their time-varying Hicks-neutral TFP parameter

ωft, and in an unexpected revenue shock uft.

Equation (2) describes the evolution of TFP, assuming a controlled Markov process. zft−1

is a vector that includes techies, and ξft is a shock to productivity that is realized after zft−1

is chosen. Techies appear with a lag, and only in equation (2), not as an input to current

production in (1). While our assumption that techies affect output only through their effect

on future productivity is well-grounded, it is important to consider how our productivity

measurement could go awry if techies directly increase current output. We return to this

issue below.

5.1 Controlled Markov productivity.

Equation (2) is a generalization of the Markov productivity assumption made by the pio-

neering OP/LP/ACF methodologies. Before discussing the estimation of equation (2), it

is important to clarify what is meant by a “controlled Markov process”. In particular, how

should any estimated effects of the elements of zft−1 that are chosen by the firm, such as

the employment of techies, be interpreted? The key is that the Markov assumption breaks

realized productivity into expected and unexpected components, with the function g map-

ping ωft−1 and other firm-level decision variables zft−1 into expected future productivity,

Et−1ωft = g (ωft−1, zft−1). Thus, orthogonality of zft−1 and ξft in (2) is assured, which

allows us to interpret the estimated effects of techies as causal.

De Loecker (2013) discusses how to interpret the learning-by-exporting effect in the con-

text of a controlled Markov process. He emphasizes two things. First, it is lagged exporting
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that enters the Markov process, which is to say that productivity (more precisely, the shock

to productivity ξft) is realized after the exporting decision is made. Second, persistence in

the exporting decision is controlled for by having lagged realized productivity in the con-

trolled Markov equation. For example, the impact of exporting in t−2 is embodied in ωf,t−1.

This means that the coefficient on exporting in t − 1 captures the incremental impact on

productivity in t. These arguments extend directly to our setting, where lagged employment

of techies takes the place of lagged exporting.

In section 4 above, we presented a simple model of optimal techie choice. However, equa-

tion (2) can consistently estimate techies’ effect on productivity even without a structural

model of techie choice. Similar to Doraszelski and Jaumandreu (2013), our estimated effects

of techies on productivity are conditional on the decision of firms to employ techies. That

is, they capture the causal effect of the choice to employ techies for those firms that decided

to do so.

As in both De Loecker (2013) and Doraszelski and Jaumandreu (2013), identification of

the effects of firm choices on productivity is based on cross-sectional differences in produc-

tivity growth between firms that make a given choice and firms that do not. For example,

consider two firms with the same lagged productivity and all other explanatory variables

except that one firm chooses to employ techies and the other does not. If the firm with

techies has higher productivity in the next period, the estimator attributes that to the firm’s

employment of techies.

5.2 Estimation using the GLZ and GNR estimators.

Our objective is to consistently estimate (2). As mentioned above, the data we use to

estimate productivity reports revenue rather than real output and expenditures on materials

rather than quantities. GLZ and our extension of GNR’s estimator address these data issues

in different ways. We discuss in Appendix D these estimators in detail.

Before describing the pros and cons of the GLZ and GNR methodologies, we discuss
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briefly why we do not apply the OP/LP/ACF methods, widely known as the “control function

approach”. Under this approach, the identification of (1) relies on the timing assumptions

in equation (2). In this context, when zft−1 as well as ωft−1 affect expected productivity,

De Loecker (2013) and Doraszelski and Jaumandreu (2013) make the important point that

equations (1) and (2) must be estimated jointly.12 GNR demonstrate that without sufficient

input price variation the control function approach suffers from a weak instruments problem

and is inconsistent. Ackerberg et al. (2021) demonstrate a more severe identification problem

due to multiple global minima for the GMM optimization problem for the control function

approach, which makes the estimates sensitive to the initial values given to the GMM search.

GNR and GLZ do not suffer from these problems. GNR circumvents these problems

by identifying the output elasticities of variable inputs in a way that does not rely on the

timing assumptions of OP/LP/ACF. After doing this, GNR jointly estimates (2) with the

remainder of the production function. GLZ identifies (1) independently from (2) by making

structural assumptions that we discuss below. When we apply the GLZ estimator, we use

the productivity estimates that we obtain from (1) in a second step to identify (2).

The GLZ methodology. GLZ develop an estimator that overcomes the problem of

missing material input quantities and instead uses expenditures on materials in a theory-

consistent way. The GLZ estimator does not rely on (2) for identifying the production

function. However, this comes with some additional structural assumptions. First, the GLZ

estimator assumes that all firms in an industry have the same constant elasticity of substi-

tution (CES) production function. Second, it restricts returns to scale to be constant. In

addition, GLZ assume that a constant elasticity demand curve gives firm-level demand, a

strategy first used by Klette and Griliches (1996).

Rather than using proxy methods as in the OP/LP/ACF methodology, GLZ use first-

order profit-maximizing conditions to eliminate productivity and unobserved materials input
12One reason is that decisions on z in t−1 may be correlated with investment decisions in t−1 that affect

capital in t. Failing to control for zft−1 when estimating the production function will lead to an inconsistent
estimator.
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quantities from the estimating equation. The assumption about demand permits estimation

of the demand elasticity, which is used to implicitly calculate firm-level prices and thus

convert revenue into real output. Remarkably, the GLZ estimator can be computed by

nonlinear least squares (NLLS), without recourse to instruments or assumptions about the

stochastic productivity process. After estimating the industry production function and ρ,

one can recover log productivity for each firm f and year t in a given industry, {ω̂GLZft }.

Key to the derivation of the GLZ estimator is the assumption that at least two inputs,

materials plus at least one type of labor, are chosen optimally after ωft is observed. In the

literature, such inputs are referred to as “static”, in contrast to “dynamic” inputs, such as

capital, that are either predetermined or adjust only partially to realized ωft. Exploiting

the CES functional form, GLZ manipulate the firm’s optimality conditions and use expen-

ditures on materials, expenditures on labor and quantities of labor input to derive materials

quantities. The final timing assumption of GLZ is that an i.i.d. demand shock is realized

after production occurs.13

Given {ω̂GLZft } for each industry, we estimate versions of (2) by OLS pooling across indus-

tries (separately for manufacturing and non-manufacturing). The simplest version specifies

(2) as an AR(1) with industry i by year t fixed effects,

ω̂GLZft = θi(f)t + λω̂GLZft−1 + βzft−1 + ξft. (3)

To account for the fact that {ω̂GLZft } is estimated in the first stage GLZ procedure, we

bootstrap the entire two-stage procedure to compute the standard errors of the estimated

parameters of (3). The bootstrap procedure samples firms f rather than individual f-t

observations, so can be thought of as a way of clustering errors by firm.
13The analogous assumption in OP/LP/ACF is that realized productivity has two components, one ob-

served only after all input decisions have been made.
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The GNR methodology. GNR build an estimator to overcome the weak instrument

problem inherent in the OP/LP/ACF proxy methods. In addition, GNR make no functional

form restrictions, nor do they impose constant returns to scale. However, they do assume

that all quantities, including materials inputs, are observed by the econometrician. GNR

assume that ωft is a Markov process, which may be a controlled Markov, and that one or

more of the inputs to production is static (that is, fully flexibly adjusted after productivity

is realized). We explain in Appendix D how they deal with more than one flexible input.

Their estimator has two steps. First, by manipulating the first-order profit-maximizing

conditions for the static input, they derive a relationship between the cost share of the flexible

input in revenue and the output elasticity of that same flexible input. This relationship is

estimated by non-linear least squares (NLLS). This is used to build the contribution of the

flexible input to output and identify an error term that captures unexpected productivity

shocks that materialize after decisions on demand for the static input occur. Both elements

are used in the second step.

After subtracting the contribution of the flexible input from the output, the second step

uses GMM to identify the rest of the production function that does not rely on the flexible

input jointly with the Markov process for productivity. The Markov assumption (2) is used

to specify the necessary moment conditions and is also identified by the GMM estimator.

The baseline GNR estimator assumes that the data includes physical output quantities.

We use GNR’s extension to the case in which only revenues are available to the researcher.

Like GLZ, GNR’s extension builds on Klette and Griliches (1996) (see Appendix D). How-

ever, without sufficient time variation, that extension cannot precisely identify the elasticity

of demand η. Therefore, we identify productivity scaled by the unknown demand curvature

parameter ρ ∈ (0, 1): ρ̂ωGNRft . Once this is done, we pool across industries (separately for

manufacturing and non-manufacturing) and estimate the following AR(1) controlled Markov

equation

ρ̂iω
GNR
ft = θi(f)t + λ · ρ̂iωGNRft−1 + (βρ)zft−1 + ξft, (4)
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where ρ is an average ρi across industries j. The key difference between (3) and (4) is that the

parameter of interest β cannot be separately identified from ρ. Consistent with ρ ∈ (0, 1),

in our estimates reported below we indeed find smaller coefficients in (4) compared to (3).

As we do for the GLZ procedure, standard errors of the estimated parameters of (4) are

computed using a bootstrap that samples firms.

Comparing GLZ to GNR. Our application of GNR is more general than GLZ because

it does not make any functional form assumptions apart from constant elasticity demand,

which is common to both estimators. In particular, GNR do not impose a CES production

function nor constant returns to scale, as GLZ do. But this generality comes with two

significant drawbacks given our data. First, the parameter vector of interest β in (4) is

identified only up to a constant. Nevertheless, the signs and the relative magnitudes of the

elements of βρ are informative. Second, GNR assume that the researcher observes input

quantities, but in our data they are not. To implement GNR we deflate expenditures on

materials using an industry-specific materials input price series, as does most of the literature.

GLZ show that this can bias productivity measures, in particular productivity dispersion.

GNR has another important virtue compared to GLZ: it does not require labor to be a

static input, which is appealing, given the labor market structure in France. France’s labor

market features both temporary and permanent employment contracts, and firing costs are

high for both. In addition, we use a version of GNR to entertain the case in which both labor

and materials are static inputs, as in GLZ. Thus, for each specification of (4), we estimate

two versions of GNR: (1) labor is predetermined in period t and thus does not adjust to

period t productivity shocks (like capital), and (2) labor is a static input and fully adjusts

to period t productivity shocks (like materials inputs). The second version is closer to GLZ,

while the first represents a distinct assumption about labor adjustment in the model.
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6 Results

We first discuss our baseline results using the GLZ methodology, and then report results

that use GNR. Our focus is on the estimates of the controlled Markov process (2).

Quantification of the control Markov estimates requires descriptive statistics for different

categories of techies, separately in manufacturing and non-manufacturing industries. Table

(2) reports the percentage of observations with positive values for each techie category, as well

as the percentiles of the techie wage bill shares for observations that have positive values and

the 75th-25th percentile difference (also called the interquartile range or IQR). As explained

in Section 2.1 above, overall techies are subdivided in two different ways: as R&D, ICT, or

Other techies, and alternatively as Engineers or Technicians.

Table 2: Descriptive statistics for estimation sample

Percentiles of techie wage bill shares
on positive support, percent

Percent with Mean conditional 10 25 50 75 90 IQR
positive values on positive values

Manufacturing

Techies 71.8 22.6 6.4 11.3 19.1 30.4 44.0 19.1
R&D techies 35.4 7.4 1.2 2.6 5.1 9.7 16.2 7.2
ICT techies 22.4 3.6 0.6 1.0 1.9 3.6 7.1 2.5
Other techies 69.7 18.3 5.5 9.5 15.7 24.4 34.8 14.9
Engineers 60.4 14.5 4.3 7.2 12.0 19.0 28.2 11.8
Technicians 60.6 12.3 2.6 5.1 9.6 16.3 25.3 11.3

Non-Manufacturing

Techies 19.9 16.8 2.2 5.5 12.2 23.4 38.1 17.9
R&D techies 1.3 5.2 0.3 0.9 2.5 6.4 13.1 5.5
ICT techies 5.0 10.5 0.6 1.6 4.0 10.9 31.6 9.3
Other techies 18.3 15.1 2.1 5.1 11.3 21.3 33.8 16.2
Engineers 13.8 13.8 2.1 4.8 10.2 18.9 30.3 14.1
Technicians 13.7 10.5 1.1 2.9 6.6 13.8 25.2 10.9

Table 2 shows that techies are much more prevalent in manufacturing firms (71.8% of the

observations) than in non-manufacturing firms (19.9% of the observations). Furthermore,

Table 2 shows that the wage bill shares of different types of techies vary across industries.

While Other techies have the highest wage bill shares on average in both manufacturing and
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non-manufacturing sectors, R&D techies have higher wage bill shares in manufacturing and

ICT techies have a higher average wage bill share in non-manufacturing. This pattern is

even more pronounced for firms with the highest wage bill shares.

In our estimation sample, we find a higher percentage of exporters in manufacturing

(56.4%) compared to non-manufacturing (11.5%). While this difference is expected, we find

a non-negligible incidence of exporting among non-manufacturing firms, notably in wholesale

and in publishing and broadcasting.14

6.1 Production function estimates

The GLZ production function estimates and implied elasticities are reported in Table 3.

We report industry-by-industry estimates of the production function parameters and the

demand elasticity. All of our estimates of the elasticity of substitution across inputs, σ,

and of the demand elasticity, η, are greater than one, and in all industries, we can reject

the nulls that σ = 1 and η = 1 at conventional levels of statistical significance. Rejecting

σ = 1 is important for identification in the GLZ estimator. This is because the expression

for materials input quantities (as a function of expenditures on materials, the wage bill and

labor input in quantities) is not defined for the knife-edge case of σ = 1 (i.e., a Cobb-Douglas

production function; see Grieco et al. (2016) for details). Additionally, finite profits require

η > 1.

Overall, our estimates of the production function and demand elasticities are very plau-

sible. For example, we find particularly large elasticities in Wholesale and Retail, which

is consistent with low profit margins in these industries. In contrast, elasticites of demand

are estimated to be much lower in industries that exhibit greater product differentiation.

Beyond this, the estimates of the distribution parameters αN , αM and αK reflect the relative

importance of each input in production in ways that are in line with what one may expect,
14In our estimation sample 49% of wholesale firms export, and 22.6% of publishing and broadcasting firms

export.
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both in manufacturing and in service sectors.15

Table 3: GLZ Production function estimates

Industries αN αM αK σ η # Obs. #Firms

Food, beverage, tobacco 0.223 0.597 0.180 2.629 5.339 29277 4721
(0.002) (0.006) (0.009) (0.199) (0.249)

Textiles, wearing apparel 0.341 0.573 0.086 1.752 2.741 8936 1312
(0.006) (0.010) (0.017) (0.279) (0.074)

Wood, paper products 0.283 0.417 0.300 1.362 4.142 17384 2543
(0.006) (0.009) (0.014) (0.067) (0.229)

Chemical products 0.157 0.56 0.283 1.581 4.446 7380 941
(0.003) (0.012) (0.015) (0.078) (0.281)

Pharmaceutical products 0.18 0.451 0.37 1.594 3.303 1703 222
(0.015) (0.038) (0.053) (0.215) (0.58)

Rubber and plastic 0.226 0.532 0.242 1.677 3.895 16100 2143
(0.004) (0.009) (0.012) (0.095) (0.169)

Basic metal and fabricated metal 0.303 0.392 0.306 1.466 3.436 30407 4148
(0.004) (0.005) (0.008) (0.046) (0.09)

Electrical equipment 0.196 0.56 0.244 1.687 3.755 5094 675
(0.006) (0.019) (0.025) (0.17) (0.308)

Machinery and equipment 0.189 0.548 0.263 1.525 3.524 11526 1502
(0.005) (0.015) (0.021) (0.132) (0.214)

Transport equipment 0.177 0.546 0.277 1.818 5.445 6465 873
(0.005) (0.017) (0.022) (0.205) (0.588)

Other manufacturing 0.333 0.424 0.243 1.605 2.872 24178 3601
(0.006) (0.007) (0.013) (0.084) (0.077)

Construction 0.393 0.396 0.211 1.448 2.672 119766 22417
(0.004) (0.004) (0.008) (0.032) (0.039)

Wholesale 0.119 0.735 0.146 1.284 8.931 188565 27882
(0.000) (0.002) (0.002) (0.018) (0.186)

Retail 0.131 0.794 0.074 1.793 6.033 258474 40393
(0.000) (0.002) (0.002) (0.072) (0.066)

Accommodation and food services 0.396 0.265 0.339 1.861 5.518 116511 22411
(0.006) (0.004) (0.017) (0.053) (0.298)

Publishing and broadcasting 0.381 0.062 0.557 1.237 2.272 15771 2680
(0.018) (0.003) (0.021) (0.023) (0.119)

Administrative and support activities 0.465 0.069 0.466 1.702 3.339 31177 5707
(0.014) (0.002) (0.017) (0.044) (0.184)

Notes. The CES production function can be written as: Qft = eωft(αNN
γ
ft+αKK

γ
ft+αMM

γ
ft)

1/γ , where
Qft is the quantity of output produced using labor Nft, intermediate inputs Mft and capital Kft. The
elasticity of substitution across inputs σ is determined by γ, where γ = (σ − 1)/σ, and η is the elasticity
of demand. We reject the null hypothesis of σ being equal to one in all industries at significance levels
well below 1%. We also reject the null hypothesis of η being smaller than one in absolute value in all
industries at significance levels well below 1%.

We relegate the estimates of the “revenue production function” using the GNR method-
15The GLZ estimator ensures that the distribution parameters are equal to output elasticities at the

geometric mean of the data.
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ology to Appendix E. Despite using quite different methodologies, the estimates from the

two methodologies are broadly in line with each other. For example, the relative importance

of materials, labor and capital are quite similar (the levels are not comparable because we

do not identify ρ in GNR).

6.2 Baseline results

We report our baseline controlled Markov estimates of (3) in Table 4. We capture the effect

of techies along two margins. The first is the “extensive techie margin”, measured by an

indicator for whether the firm employs techies, either overall or separately for each category

of techies. The second is the “intensive techie margin”, measured by the techie wage bill

share, either overall or by category of techies. We always control for the extensive margin

when examining the intensive margin.16

These estimates are computed by OLS, with productivity computed from industry-by-

industry estimates of equation (1) using the GLZ estimator. In Table F1, we report estimates

of the controlled Markov process where we add ω2
f,t−1 and ω3

f,t−1. The results using this more

elaborate specification of the Markov process are not materially different from the baseline

results reported in Table 4. We report the effects of techies on firm-level productivity in

the samples of manufacturing industries (columns 1 to 6) and non-manufacturing industries

(columns 7 to 12). Our analysis of non-manufacturing firms contrasts with most of the

literature, which mostly restricts attention to manufacturing firms.

Columns (1) and (7) show that firms that employ techies have higher future productivity

than firms without techies. The effect is sizable at 4.0 log points in manufacturing industries

and 5.7 log points in non-manufacturing industries. Using the persistence coefficient for

lagged techies from the final row of the Table, we find that the steady state, cross-sectional

effect of techies is virtually identical in both sectors, at around 45 log points. Using equation

(3), the steady state effect of z is β/(1−λ). While the estimated effects of employing techies
16Quantitatively, using the inverse hyperbolic sine transformation yields virtually identical results. These

results are available upon request.
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are the same in both sectors, the incidence of techies is 3.5 times higher in manufacturing,

so the overall effect of techies on within-industry productivity dispersion is estimated to be

higher in manufacturing.

Table 4: Impact of techies on productivity – GLZ estimates

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.040*** 0.016*** 0.057*** 0.024***
(0.002) (0.003) (0.003) (0.003)

Tft−1 0.123*** 0.207***
(0.008) (0.012)

I
(
TRDft−1 > 0

)
0.017*** 0.011*** 0.010* -0.002
(0.002) (0.003) (0.006) (0.007)

I
(
T ICTft−1 > 0

)
0.021*** 0.014*** 0.025*** 0.015***
(0.002) (0.003) (0.004) (0.004)

I
(
TOTHft−1 > 0

)
0.029*** 0.011*** 0.053*** 0.018***
(0.002) (0.003) (0.003) (0.003)

TRDft−1 0.069*** 0.160*
(0.023) (0.088)

T ICTft−1 0.101*** 0.117***
(0.036) (0.021)

TOTHft−1 0.113*** 0.243***
(0.010) (0.015)

I
(
T 38
ft−1 > 0

)
0.030*** 0.012*** 0.048*** 0.013***
(0.002) (0.003) (0.003) (0.003)

I
(
T 47
ft−1 > 0

)
0.017*** 0.006** 0.033*** 0.022***
(0.002) (0.002) (0.003) (0.003)

T 38
ft−1 0.144*** 0.263***

(0.013) (0.018)
T 47
ft−1 0.093*** 0.112***

(0.011) (0.017)
I (xft−1 > 0) 0.009*** 0.007*** 0.002 0.003 0.004* 0.005** 0.008*** 0.006** 0.006** 0.005** 0.004* 0.004*

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002)
ω̂ft−1 0.911*** 0.913*** 0.908*** 0.911*** 0.910*** 0.913*** 0.874*** 0.875*** 0.874*** 0.876*** 0.874*** 0.875***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Obs. 131,697 523,877
No. firms 21,854 106,430

Notes. The table reports estimates of equation (3) in the text. The dependent variable is ω̂ft, log estimated productiv-
ity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47} denote R&D,
ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year fixed effects
included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value ≤ 0.01, **
p-value ≤ 0.05, * p-value ≤ 0.10

Columns (2) and (8) include the techie wage bill share in addition to the techie indicator.
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We find statistically significant effects of techies on productivity along the intensive margin.

The coefficients on the techie indicator remain statistically significant but are more than

halved in both samples. This shows that the presence of even a small number of techies

raises future productivity, and that the effect increases with greater techie employment. Two

simple calculations using Tables 4 and 2 illustrate the magnitudes. First, comparing firms

with no techies to those with the median level of positive techies, the latter have 3.9 and 4.9

log points higher future productivity in manufacturing and non-manufacturing, respectively.

Second, comparing firms at the 75th percentile of the positive techie distribution to those at

the 25th percentile (the inter-quartile range, or IQR), the former have 2.3 and 3.7 log points

higher future productivity in manufacturing and non-manufacturing, respectively.

The long-term effects are about 11 times larger than the impact effects for manufacturing

firms and 8 times larger in non-manufacturing.17 These can be seen in Table 5, where we

see that firms with the median intensity of techies are estimated to have 57.45% greater

productivity in manufacturing, compared to 48.29% in non-manufacturing. The long run

intensive margin IQR techie effect on productivity is estimated at 31% in manufacturing

and 34.5% in non-manufacturing. Overall, these estimates are not very different across

broad sectors.

Columns (3), (4), (9), and (10) in Table 4 display the estimates when techie workers

are broken down by their detailed job descriptions. We find that both the presence and

the intensity of R&D techies have a large impact on productivity in manufacturing. These

findings corroborate the results of Doraszelski and Jaumandreu (2013), indicating that R&D

expenditures, most of which are accounted for by techie wage bills, play an important role

in explaining the differences in productivity across manufacturing firms.

However, techies’ positive impact on productivity is not limited to R&D techie workers.

In columns (3) and (9), we also find positive impacts of the presence of ICT and other techie

workers on the productivity of both manufacturing and non-manufacturing firms. Interest-

17The long-term estimated effects are calculated by multiplying the short-run effects by 1/(1− λ̂), where
the λ̂ are taken from the last row of Table 4.
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ingly, the presence of R&D techie workers at the extensive margin has a smaller impact on

productivity than ICT and Other techies in both sectors, especially in non-manufacturing.

Other techie workers have the largest impact on productivity in both manufacturing

and non-manufacturing sectors, with a 1.7 times larger impact in manufacturing and 5.3

times larger impact in non-manufacturing than the impact of R&D techie workers. Using

the estimates reported in Table 4, we find that in manufacturing, a one IQR difference

in R&D and ICT techies leads to 0.49 and 0.26 percent higher productivity, respectively,

while the IQR effect of other techies is 1.7 percent. For non-manufacturing firms, the IQR

effect of R&D and ICT techies is comparable, at 0.88 and 1.09 percent, respectively, but the

IQR effect of Other techies is quite large, at 4 percent. These results convey an important

message: firm-level productivity is driven more by non-R&D techies than by R&D techies,

especially outside manufacturing.

Columns (5), (6), (11), and (12) in Table 4 display the estimates when we distinguish

between engineers (PCS 38) and technicians (PCS 47). Engineers and technicians positively

affect productivity, although the engineers exhibit a greater effect than the technicians, both

at the extensive and intensive margins. This makes sense, as engineers are more knowledge-

able and skilled, and thus matter more in the technology-enhancing and diffusion process.

However, technicians’ impact is not negligible.

Turning to the effect of exporting, we find a positive impact on productivity, in line with

what De Loecker (2013) finds in manufacturing firms. We estimate similar effects in manu-

facturing and in non-manufacturing firms. We note that only 11.5% of non-manufacturing

firms in our sample are exporters (primarily in wholesale, publishing, and broadcasting).

This suggests that exporting is not a significant factor accounting for the variability of pro-

ductivity in non-manufacturing. We estimate smaller impacts of exporting on productivity

when we employ more flexible specifications for techies, distinguishing them by their tasks

or occupation types, such as engineers versus technicians. This enables us to gauge bet-

ter the influences of different types of techies on productivity. This finding is in line with
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De Loecker (2013), who argues that investments in technology partly drive the impact of

exports on productivity.

We summarize the main results of the overall impacts of techies on productivity in Table

5, which reports estimates of the magnitudes of the short run impacts and steady-state effects

in percent points. The table illustrates that while the short-run impacts of techies are larger

in non-manufacturing, the higher persistence of productivity in manufacturing mitigates

these differences in the long run, and in some cases overturns the relative magnitudes.

Table 5: Impact of techies on productivity – Magnitude of the baseline estimates (percent)

Manufacturing Non-Manufacturing
0−p50 IQR 0−p50 IQR

A. Impact effects

Techies 4.03 2.38 5.05 3.77
R&D techies 1.46 0.49 0.20 0.88
ICT techies 1.60 0.26 1.99 1.09
Other techies 2.92 1.70 4.65 4.02
Engineers 2.97 1.71 4.06 3.53
Technicians 1.50 1.05 2.98 1.23

B. Steady state effects

Techies 57.45 31.00 48.29 34.50
R&D techies 17.72 5.66 1.63 7.35
ICT techies 19.59 2.99 17.20 9.17
Other techies 38.12 20.83 44.28 37.36
Engineers 40.01 21.57 37.52 32.01
Technicians 18.72 12.72 26.51 10.26
Notes. Units are percent points. We use the statistics on the median and IQR from
the descriptive statistics in Table 2 and the estimated parameters from columns (2),
(4), (6), (8) (10) and (12) in Table 4 to compute the impact and steady-state effects
of the baseline specification. For instance, when comparing a firm with no techies
to a firm with the median intensity of techies, the estimated impact effect of techies
is equal to β̂Tft−1

+ β̂I(Tft−1>0) × p50. The steady-state effects are computed by

multiplying the impact effects by 1/(1 − λ̂), where λ̂ is the estimated coefficient on
lagged productivity, reported in the final row of Table 4. These magnitudes are then
translated from log points to percent points by taking the exponent, subtracting 1
and multiplying by 100.

6.3 Sensitivity analysis

Our baseline results reported in Section 6.2 are computed using the GLZ estimator, and

include the full range of techies in the estimation of equation (2). In this section, we report
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sensitivity analysis in two dimensions. We begin by exploring how our results change when we

modify the way techies enter the analysis. We next report results using the GNR estimator.

Alternative assumption: techies belong in the production function. Central to

our methodology is that we assume that techies affect output only through their effect on

future productivity and not through any contemporaneous contribution to factor services

that affect current output. This assumption is analogous to the standard assumption that

investment in t − 1 does not affect output in t − 1, but raises output in t through its

contribution to capital in time t. One way to check if this methodology makes sense is to

compare it to a simple alternative where techies are no different from other workers. To

do so, we estimate the production functions and associated Hicks neutral productivity series

with techies included in the definition of labor. If techies only contribute to production, then

they should not affect productivity when we estimate the controlled Markov specification for

productivity with techies, as given by equation (3).

Table 6 reports the results of this exercise. The full results are reported in the Appendix

in Table F2. The estimated effects of techies on productivity are somewhat smaller than

in our baseline estimates in Table 4, but the null hypothesis that the effects are zero is

easily rejected. We thus conclude that the data reject the model that techies affect output

only through a contemporaneous effect on output. Of course, under our baseline model, the

results in Table 6 are inconsistent, so they should not be compared to our baseline results

in Table 4. This is because the GLZ production function estimator requires labor to be a

static input, and the results in Table 6 contradict this.

Alternative assumption: Other techies belong in production, not in the con-

trolled Markov equation. Considering the heterogeneity of the occupations that we

group into Other techies, it is possible that not all of them satisfy our assumption that

techies contribute to output only through their effect on future productivity. To address

this, here we make the opposite assumption and allocate Other techies to general labor.
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Table 6: Allocating techies to production – GLZ estimates

Manufacturing Non-Manufacturing

(1) (2) (3) (4)

I (Tft−1 > 0) 0.022*** 0.006* 0.028*** 0.008***
(0.003) (0.003) (0.003) (0.003)

Tft−1 0.086*** 0.124***
(0.010) (0.012)

I (xft−1 > 0) 0.009*** 0.007*** 0.024*** 0.023***
(0.002) (0.002) (0.003) (0.003)

ω̂ft−1 0.917*** 0.915*** 0.880*** 0.880***
(0.003) (0.003) (0.002) (0.002)

Other controls Yes Yes
Obs. 130,605 525,725
No. firms 21,744 106,450

Notes. The table reports estimates of equation (3) in the text. The dependent
variable is ω̂ft, log estimated productivity. I (.) is the indicator function. T is
the techie wage bill share, x is the value of firm exports. Industry-year fixed
effects included in all columns. Bootstrap standard errors clustered by firm in
parentheses. *** denotes p-value ≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10

We then estimate the effects of R&D and ICT techies on productivity estimated with this

alternative treatment of Other techies.

Table 7 report results of this modified specification. Comparing Table 7 to our baselien

results in Table 4, the most important comparison is the estimated effects of R&D and ICT

techies reported in columns (3), (4), (9) and (10) in the two tables. The estimated effects

at both the intensive and extensive margins are substantially larger in Table 7, which is to

be expected since the incidence of Other techies is correlated with R&D and ICT techies.

This means that when we take Other techies out of the controlled Markov, more of the

explanatory power of techies is shifted onto R&D and ICT techies.

Our conclusion from this exercise is that our baseline conclusions about the importance

of R&D and ICT techies for productivity are not sensitive to the treatment of Other techies.

Alternative estimator: results using the GNR estimator. All the results discussed

so far have been computed using the GLZ estimator. Here we consider how our results

change using the GNR estimator, for two reasons. The first is simply a general robustness
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Table 7: Allocating Other techies to production – GLZ estimates

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.037*** 0.019*** 0.058*** 0.040***
(0.002) (0.002) (0.003) (0.003)

Tft−1 0.264*** 0.192***
(0.026) (0.021)

I
(
TRDft−1 > 0

)
0.027*** 0.012*** 0.034*** 0.023***
(0.002) (0.003) (0.006) (0.007)

I
(
T ICTft−1 > 0

)
0.024*** 0.018*** 0.055*** 0.038***
(0.002) (0.003) (0.003) (0.004)

TRDft−1 0.274*** 0.296***
(0.032) (0.110)

T ICTft−1 0.219*** 0.188***
(0.051) (0.022)

I
(
T 38
ft−1 > 0

)
0.028*** 0.011*** 0.049*** 0.031***
(0.002) (0.003) (0.004) (0.005)

I
(
T 47
ft−1 > 0

)
0.021*** 0.016*** 0.036*** 0.027***
(0.002) (0.003) (0.004) (0.004)

T 38
ft−1 0.331*** 0.222***

(0.040) (0.031)
T 47
ft−1 0.149*** 0.119***

(0.039) (0.036)
I (xft−1 > 0) 0.000 0.002 -0.001 0.000 -0.001 0.000 0.021*** 0.022*** 0.020*** 0.022*** 0.020*** 0.022***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
ω̂ft−1 0.915*** 0.915*** 0.914*** 0.915*** 0.914*** 0.915*** 0.878*** 0.878*** 0.878*** 0.878*** 0.878*** 0.878***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Obs. 131,697 523,877
No. firms 21,854 106,430

Notes. The table reports estimates of equation (3). Other techies are allocated to production. The dependent
variable is ω̂ft, log estimated productivity. I (.) is the indicator function. T is the techie wage bill share, superscripts
{RD, ICT, 38, 47} denote R&D, ICT, other techies, engineers and technician respectively, x is the value of firm exports.
Industry-year fixed effects included in all columns. Bootstrap standard errors clustered by firm in parentheses. ***
denotes p-value ≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10

check. The second is that the GNR estimator allows us to relax the assumption that labor

is a static input, which is an important consideration given that there are large firing costs

in the French labor market. Table 8 reports the results when labor is assumed to be “static”

(like materials, and as we assumed when implementing the GLZ estimator), and Table 9

reports the results for when labor is assumed to be “predetermined” (like capital).

Recall that the estimates here are not directly comparable to our GLZ estimates because
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GNR does not separately identify the coefficients β in equation (2) from the demand param-

eter ρ in equation (1). This implies that the numbers we report in Tables 8 are estimates

of βρ, not β. In both tables, the estimated effects of the control variables are generally

lower than those reported in Table 4, which is consistent with ρ < 1 and with the demand

elasticities that we estimate using the GLZ estimator (see Table 3 in the appendix).

Despite differences in methodologies, including assumptions on the response of labor

to innovations to productivity and on returns to scale, the results in Tables 8 and 9 are

consistent with those using the GLZ estimator that are reported in Table 4. In particular, we

find that techies cause higher productivity both via the extensive and the intensive margins,

both in manufacturing and non-manufacturing industries—more so in the former than in the

latter. We also identify causal effects of techies on productivity that extend beyond their

involvement in R&D. The impact of R&D on productivity in manufacturing is stronger and

more tightly identified than in non-manufacturing. Overall, the impact of ICT and Other

techies is greater than that of R&D. Finally, we find that engineers have a greater impact

than technicians on the extensive and intensive productivity margins in both manufacturing

and non-manufacturing industries.

Some differences with Table 4 are apparent. For example, in Table 8 we do not identify

a statistically significant impact of ICT in the intensive margin in manufacturing. And in

Table 9, we find that the extensive margin of ICT techies in non-manufacturing industries is

nil, although the intensive margin is very large. However, these differences do not undermine

the main conclusions from the baseline analysis. Broadly, the two sets of GNR estimates are

consistent with those in the main analysis, for example, in the relative magnitudes of the

effects of R&D, ICT and Other techies.
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Table 8: Impact of techies on productivity – GNR estimates assuming labor to be static

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.037*** 0.029*** 0.025*** 0.015***
(0.002) (0.002) (0.001) (0.001)

Tft−1 0.041*** 0.051***
(0.004) (0.003)

I
(
TRDft−1 > 0

)
0.014*** 0.012*** 0.008*** 0.007***
(0.001) (0.001) (0.002) (0.002)

I
(
T ICTft−1 > 0

)
0.014*** 0.012*** 0.010*** 0.006***
(0.001) (0.002) (0.001) (0.001)

I
(
TOTHft−1 > 0

)
0.031*** 0.026*** 0.023*** 0.014***
(0.002) (0.002) (0.001) (0.001)

TRDft−1 0.019* -0.016
(0.011) (0.025)

T ICTft−1 0.017 0.036***
(0.016) (0.008)

TOTHft−1 0.029*** 0.057***
(0.005) (0.004)

I
(
T 38
ft−1 > 0

)
0.028*** 0.024*** 0.022*** 0.014***
(0.002) (0.002) (0.001) (0.001)

I
(
T 47
ft−1 > 0

)
0.021*** 0.019*** 0.014*** 0.010***
(0.001) (0.002) (0.001) (0.001)

T 38
ft−1 0.026*** 0.050***

(0.006) (0.005)
T 47
ft−1 0.021*** 0.034***

(0.006) (0.005)
I (xft−1 > 0) 0.015*** 0.014*** 0.013*** 0.013*** 0.013*** 0.013*** 0.008*** 0.007*** 0.007*** 0.006*** 0.006*** 0.006***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
ω̂ft−1 0.916*** 0.918*** 0.915*** 0.916*** 0.913*** 0.914*** 0.932*** 0.933*** 0.933*** 0.933*** 0.932*** 0.933***

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Obs. 157,660 715,861
No. firms 22,515 117,594

Notes. The table reports estimates of equation (4) in the text. The dependent variable is ρ̂ωft, log estimated
productivity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47}
denote R&D, ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year
fixed effects included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value
≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10
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Table 9: Impact of techies on productivity – GNR estimates assuming labor to be predeter-
mined

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.028*** 0.017*** 0.014*** 0.010***
(0.002) (0.002) (0.001) (0.001)

Tft−1 0.052*** 0.024***
(0.007) (0.004)

I
(
TRDft−1 > 0

)
0.004** -0.001 0.003*** 0.005***
(0.002) (0.002) (0.001) (0.002)

I
(
T ICTft−1 > 0

)
0.010*** 0.005*** 0.00017 -0.001
(0.002) (0.002) (0.001) (0.001)

I
(
TOTHft−1 > 0

)
0.024*** 0.015*** 0.010*** 0.008***
(0.002) (0.002) (0.001) (0.001)

TRDft−1 0.044*** -0.024
(0.014) (0.016)

T ICTft−1 0.073*** 0.018***
(0.021) (0.008)

TOTHft−1 0.052*** 0.013***
(0.008) (0.003)

I
(
T 38
ft−1 > 0

)
0.019*** 0.012*** 0.010*** 0.008***
(0.002) (0.002) (0.001) (0.001)

I
(
T 47
ft−1 > 0

)
0.016*** 0.011*** 0.012*** 0.009***
(0.002) (0.002) (0.001) (0.001)

T 38
ft−1 0.046*** 0.011**

(0.008) (0.005)
T 47
ft−1 0.042*** 0.026***

(0.008) (0.006)
I (xft−1 > 0) 0.028*** 0.027*** 0.026*** 0.027*** 0.026*** 0.026*** 0.009*** 0.009*** 0.006*** 0.006*** 0.008*** 0.008***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
ω̂ft−1 0.689*** 0.687*** 0.690*** 0.687*** 0.690*** 0.687*** 0.820*** 0.820*** 0.846*** 0.845*** 0.821*** 0.820***

(0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.007) (0.007) (0.008) (0.008) (0.007) (0.007)

Obs. 157,660 715,861
No. firms 22,515 117,594

Notes. The table reports estimates of equation (4) in the text. The dependent variable is ρ̂ωft, log estimated
productivity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47}
denote R&D, ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year
fixed effects included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value
≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10
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7 Conclusion and implications

This paper documents the importance of techies in productivity growth across firms in

manufacturing and non-manufacturing industries. The role of techies is not confined to

R&D and extends to ICT and other technologies. While R&D may be the most important

channel to expand the production possibilities frontier, firms that wish to approach the

frontier and increase their productivity can do so without R&D, through the mediating role

of ICT and Other techies.

This interpretation of our work has implications for education policy and making the

trade-off between basic research and investment in more applied technical skills. Our results

imply that neglecting the latter at the expense of the former runs the risk of crippling overall

productivity growth. Striking a balance between the two requires knowledge of the relative

costs and efficiency of training applied engineers and technicians versus investing in R&D.

Finding the optimal balance between the two is an important avenue for future research.
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Appendices
A Data definitions and construction
Here we discuss in detail the three administrative and survey datasets used in our paper, as
well as details on supplementary publicly available data.

A key feature of the French statistical system is that establishments are identified by a
unique number, the SIRET, used by all data sources. The first 9 digits of an establishment’s
SIRET comprise the SIREN of the firm to which the establishment belongs. This makes it
easy to aggregate from establishments to firms.

Workers: DADS Poste. Our source for information on workers is the DADS Poste,
which is based on mandatory annual reports filed by all firms with employees, so our data
includes all private-sector French workers except the self-employed.18 The DADS Poste is an
INSEE database compiled from the mandatory firm-level DADS reports. For each worker,
the DADS Poste reports gross and net wages, hours paid, occupation, tenure, gender and
age. There is no information about workers’ education or overall labor market experience.
The data do not include worker identifiers, so we can not track workers over time, but this
is of no concern to us given our focus on firm-level rather than individual outcomes.19 Our
unit of analysis is a firm-year observation.

The DADS reports detailed 4-digit occupational codes, almost 500 in total, beginning
in 2009, which determines the first year of our sample. We use the French occupational
classification PCS-ESE and the exhaustive definition of tasks for each occupation provided
by the INSEE (2003) to identify techie workers precisely. We distinguish between three types
of techie workers: ICT, R&D, and other techies. Table A1 reports our classification.

Table A1: Classification of ICT, R&D and other techies

PCS-ESE Description (see, INSEE (2003))
Research and Development
383a Engineers and R&D managers in electricity and electronics
384a Engineers and R&D managers in mechanics and metalworking
385a Engineers and R&D managers in the transformation industries (food processing,

chemistry, metallurgy, heavy materials)
386a Engineers and R&D managers in other industries (printing, soft materials, furniture

and wood, energy, water)
473b R&D technicians and manufacturing methods technicians in electricity, electrome-

chanics, and electronics
474b R&D technicians and manufacturing methods technicians in mechanical construc-

tion and metalworking
475a R&D technicians and production methods technicians in the transformation indus-

tries
Information and Communication Technologies
388a Engineers and R&D managers in computer science

18All employers and their employees are covered by the DADS declaration with the exception of self-
employed and government bodies, domestic services (section 97-98 of NAF rev. 2) and employees in businesses
outside French territory (section 99 of NAF rev. 2). However, local authorities and public-employed hospital
staff are included since 1992. Public institutions of industrial and commercial nature are also included.

19A related dataset, made famous by Abowd et al. (1999), is the DADS Panel. This sample from of the
DADS data does include worker identifiers.
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388b Engineers and managers in administration, maintenance, support, and user services
in computer science

388c IT project managers and IT managers
388e Engineers and specialist managers in telecommunications
478a Computer design and development technicians
478b Computer production and operation technicians
478c Computer installation, maintenance, support, and user services technicians
478d Telecommunications technicians and network IT technicians
Other
380a Technical directors of large companies
381a Engineers and management staff in agriculture, fishing, water, and forestry studies

and operations
382a Engineers and management staff in building and public works studies
382b Architects
382c Engineers, site managers, and construction supervisors (managers) in building and

public works
382d Technical sales engineers and managers in building and public works
383b Manufacturing engineers and managers in electrical and electronic equipment
383c Technical sales engineers and managers in professional electrical or electronic equip-

ment
384b Manufacturing engineers and managers in mechanics and metalworking
384c Technical sales engineers and managers in professional mechanical equipment
385b Manufacturing engineers and managers in transformation industries (food process-

ing, chemicals, metallurgy, heavy materials)
385c Technical sales engineers and managers in intermediate goods transformation indus-

tries
386d Production and distribution engineers and managers in energy and water
386e Manufacturing engineers and managers in other industries (printing, soft materials,

furniture, and wood)
387a Industrial purchasing and procurement engineers and managers
387b Logistics, planning, and scheduling engineers and managers
387c Production method engineers and managers
387d Quality control engineers and managers
387e Maintenance, maintenance, and new works technical engineers and managers
387f Technical engineers and managers in the environment
388d Technical sales engineers and managers in IT and telecommunications
389a Technical engineers and managers in transport operations
389b Technical and commercial navigating officers and managers of civil aviation
389c Technical navigating officers and managers of merchant navy.
471a Technical experts and consultants in agriculture, water, and forestry studies
471b Technical experts in operation and production control in agriculture, water, and

forestry
472a Building and civil engineering draftsmen
472b Surveyors and topographers
472c Quantity surveyors and various building and civil engineering technicians
472d State and local government public works technicians
473a Electrical, electromechanical, and electronic draftsmen
473c Electrical, electromechanical, and electronic production and quality control techni-

cians
474a Mechanical and metal construction draftsmen
474c Mechanical and metal construction production and quality control technicians
475b Production and quality control technicians in the transformation industries
476a Technical assistants, printing and publishing technicians
476b Soft materials, furniture, and wood industry technicians
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477a Logistics, planning, and scheduling technicians
477b Installation and maintenance technicians for industrial equipment (electrical, elec-

tromechanical, and mechanical, excluding IT)
477c Installation and maintenance technicians for non-industrial equipment (excluding

IT and telecommunications)
477d Environmental and pollution treatment technicians
479a Public research or teaching laboratory technicians
479b Independent expert technicians of various levels

Source: INSEE (2003): https://www.insee.fr/fr/information/2400059. Own classification.
Notes: The PCS (Professions et Catégories Socioprofessionnelles) system of occupational codes is
used to classify all workers in France.

Balance sheet data: FARE. Firm-level balance sheet information is reported in an
INSEE dataset called FARE. The balance sheet variables used in our empirical analysis
include revenue, expenditure on materials, and the book value of capital. We do not use
balance sheet data on employment or the wage bill, because the DADS Poste data is more
detailed, but the FARE wage bill and employment data are extremely highly correlated with
the corresponding DADS Poste data.

We begin constructing capital stocks with the book value of capital recorded in FARE.
We follow the methodology proposed by Bonleu et al. (2013) and Cette et al. (2015). Since
the stocks are recorded at historical cost, i.e. at their value at the time of entry into the firm
i’s balance sheet, an adjustment has to be made to move from stocks valued at historic cost
(KBV

i,s,t) to stocks valued at current prices (Ki,s,t). We deflate KBV by a price by assuming
that the sectoral price of capital is equal to the sectoral price of investment T years before
the date when the first book value was available, where T is the corrected average age of
capital, hence pKs,t+1 = pIs,t−T . The average age of capital is computed using the share of
depreciated capital, DKBV

i,s,t in the capital stock at historical cost.

T =
DKBV

i,s,t

KBV
i,s,t

× Ã

where

Ã = mediani∈S

(
KBV
i,s,t

∆DKBV
i,s,t

)
with S the set of firms in a sector. We use the median value Ã to reduce the volatility in the
data, as investments within firms are discrete events.

Trade data: Douanes. Data on bilateral exports of firms located in France are provided
by French Customs. For each observation, we know exporting status of the firm. We use
the firm-level SIREN identifier to match the trade data to other sources. This match is not
perfect: we fail to match about 11 percent of imports and exports to firms. The imperfect
match is because there are SIRENs in the trade data for which there is no corresponding
SIREN in our other data sources. This is likely to lead to a particular type of measurement
error: for some firms, we will observe zero trade even when true trade is positive. This is
not a big concern because most of the missing values are in the oil refining industry, which
we drop from our sample.

Survey data. The data is taken from four French surveys related to R&D, ICT, patent and
innovation activities at the level of the firm and individual information on techies’ vocational
training.
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• The Annual Survey on the Means dedicated to Research and Development (R&D sur-
vey: Enquête R&D Entreprises) provides information on the means devoted to R&D
by firms in terms of in-house and external expenditure and the number of researchers
and research support personnel. The survey is exhaustive for firms that have conducted
in-house R&D expenditures for a level greater than or equal to 400keand firms that
have newly declared in-house R&D expenditures during the year of the survey. These
“new” firms in terms of R&D are taken from administrative sources (the Research Tax
Credit (RTC) database, the Young Innovative Companies (YIC) database, companies
created via public incubators, i-Lab competition winners) or from the Innovation Ca-
pacity and Strategy (ICS) survey. The survey is completed with a sample of firms
whose in-house R&D expenditure is strictly smaller than 400ke. We focus on the pe-
riod from 2010 to 2019 to match the period of analysis in the DADS data. The survey
provided pooled cross-sectional data on about 10,000 firm-level observations each year.
For our purposes, we are mostly interested in how much of the firm’s R&D budget is
spent on internal R&D wages. Moreover, the survey asks firms if they filed patents
and had any process or product innovations in the past year. We are also interested
to see if internal R&D spending and employment of techies is related to patents or
innovation.

• The Information and Communication Technology survey (ITC survey: Enquête sur
les technologies de l’information et de la communication et le commerce électronique
– TIC entreprises) provides information on the computerization and the diffusion of
information and communication technologies in firms. The survey is exhaustive for
firms with more than 500 employees or having the highest turnover – about 2,800
firms in the sample. It is complemented by the ICT information of smaller firms. We
collected data on a pooled cross-sectional sample of about 10,000 firm-level observations
per year from 2012 to 2018. For our purpose, the survey provides useful information
on the relationship between ICT training and the diffusion of technology within a firm.

• The Training and Professional Qualification survey (TPQ survey: Enquête formation
et qualification professionnelle) provides information on professional mobility, initial
training, continuing education, social origin, and work income. Every ten years, the
INSEE collects detailed information on 45,000 individuals aged 21 to 64 and residing in
France. We use the 2015 edition of the survey. It gives a precise account of the specialty
of the highest degree obtained by the individual and whether and which training after
the highest degree he/she received. The survey provides a detailed classification of
specialties and training that allows us to classify the individual’s skills as STEM. It
also provides characteristics such as the individual’s occupation. Table A2 provides
information on the list of diplomas and training that we group to identify individuals
with education and training in science, technology, engineering, and math (STEM). .

Each firm in the survey has the same identifier as in the administrative dataset. We show
below that the information provided in the survey correlates well with the information in
the DADS dataset.

B Facts on Techies
Facts 1. Techies have more STEM education and training than other occupa-
tions. We argue that techie workers are engineers and technicians with skills and experience
in STEM. We use the TPQ survey to analyze whether techies have more STEM education
and more STEM training than other occupations. We find 26,861 individuals with valid
observations, among which 5.4% are Engineers (PCS 38) and 5.1% are Technicians (PCS
47). These shares are similar to the shares in the DADS administrative data.

Table B1 reports the results. We show that around 60 percent of techies have a degree
and/or training in STEM, with about a fifth having a STEM degree and further STEM
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Table A2: Mapping diplomas’ specialties into STEM skills

French National Code Title

Diploma

110 Multi-science specialties
111 Physical chemistry
112 Chemistry, Biology, Biochemistry
113 Natural Sciences (Biology, Geology)
114 Mathematics, statistics
115 Physics
116 Chemistry
117 Earth Sciences
118 Life Sciences
200 Basic industrial technologies
201 Automation, robotics, industrial process control
230 Civil engineering, construction, wood
240 Multi-technology specialties in flexible materials
250 Multi-technology specialties mechanics-electricity
253 Aeronautics and space mechanics
255 Electricity, electronics
326 Computer science, information processing, networks

Training

420 Life Sciences
440 Physical Sciences
460 Mathematics and Statistics
481 Computer Science
482 Computer use
500 Engineering, processing and production

Source: TPQ, 2015. French classifications of diploma and vocational
training.

training. STEM degrees are more common among engineers (PCS 38, 55%) than technicians
(PCS 47, 41%). By contrast, STEM education is quite uncommon in all other PCS codes,
with only 11% having a STEM degree and less than a fifth having a degree or training.
These results show that techies have more STEM education and more STEM training than
other occupations.

Table B1 gives some additional details on STEM degrees and training for large non-techie
occupations. Less than a fifth of upper managers have any STEM education, a share that is
even lower among middle managers and clerical workers. By contrast, over a third of skilled
industrial workers have some STEM education. However, the degrees earned by these workers
are primarily general and technical high school degrees rather than university degrees. More
than two-thirds of skilled industrial workers have either a professional baccalaureate (14%), a
vocational school certificate (in French, CAP, 29%), or a certificate of vocational proficiency
(in French, BEP, 15%).

Fact 2. Techies across industries. Table B2 reports the techie wage bill shares by
category in France and the French manufacturing and non-manufacturing sectors. Our
analysis indicates that most techie workers are employed in manufacturing, accounting for
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Table B1: STEM education share by occupation

Degree or Degree and
Degree Training Training Training

Techies

Engineers 0.55 0.27 0.64 0.19
Technicians 0.41 0.35 0.59 0.18

Other occupations

Average 0.11 0.09 0.18 0.02
Upper managers 0.12 0.09 0.19 0.02
Middle managers 0.09 0.08 0.16 0.01
Other office workers 0.04 0.07 0.11 0.01
Skilled industrial workers 0.19 0.22 0.36 0.05

Source: TPQ, 2015 .

roughly two-thirds of the total techie wage bill. We also observe interesting patterns when
we break down techie workers into different categories (ICT, R&D, and other tech workers).
The share of R&D workers in the manufacturing wage bill is considerably higher at 87.3%
compared to the share of ICT workers, which is only 38.0%. The wage bill share of other
techies workers is similar to the aggregate pattern.

Techies represent 18% of the French private sector’s wage bill share, with a larger share in
manufacturing than in non-manufacturing. Overall and across sectors, other techie workers
are a larger share of the techie wage bill than the shares of R&D and ICT workers. The share
of R&D techies is much more prominent in manufacturing, while the share of ICT techies is
almost identical across sectors. Table B2 also reports the wage bill shares of engineers and
technicians. Engineers are twice as large a share of the techie wage bill than technicians.

Table B2: Wage bill shares of techies by categories (2019)

Overall Manufacturing Non-Manufacturing % techie wage bill
in manufacturing

Techies 18.3 31.5 10.8 62.6

R&D 3.4 8.2 0.7 87.3
ICT 2.2 2.3 2.1 38.0
Other 12.7 21.1 8.0 60.2

Engineers (PCS 38) 11.9 19.7 7.4 60.3
Technicians (PCS 47) 6.5 11.9 3.4 66.9

Regarding the presence of both R&D and ICT techie workers in manufacturing and non-
manufacturing firms, we observe that 47% of manufacturing firms that employ R&D techies
also have ICT techies. In contrast, the corresponding figure for non-manufacturing firms is
44%.

When considering the co-existence of R&D and other techie workers in manufacturing
and non-manufacturing firms, we find that many manufacturing firms with R&D techies also
employ other techies.
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Specifically, 96% of such manufacturing firms have other techies on their payroll. In non-
manufacturing firms, this proportion is slightly lower, with 84% of firms with R&D techies
also employing other techies.

Facts 3. Most R&D spending is on wages. The R&D survey provides detailed in-
formation on firms with positive internal R&D expenditures, which are the amounts spent
on R&D that originate within the firm’s control. The survey distinguishes between internal
and external R&D expenditures, which are spent outside the control of the firm. We show
in Table B3, that expenditure on R&D is overwhelmingly spent within the firm, with the
median firm spending nothing on external R&D. We conclude that conditional on reporting
positive internal R&D, most R&D expenditures originate within the control of the firm.

Table B3: External R&D and wage bill shares

Mean Median P90 P10

External share of total 0.09 0.00 0.32 0.00

Wage bill share:

– Total R&D 0.67 0.67 1.0 0.35
– Internal R&D 0.74 0.72 1.0 0.48

Source: R&D survey .

The R&D survey is interesting for our purpose because it gives the labor costs of those
workers who effectively do R&D. It is important because we cannot assume that all labor
costs in the firm’s R&D department are for R&D activities. We use the R&D survey to
analyze how much of the firm’s R&D budget is spent on in-house R&D wages. We show in
Table B3 that R&D spending is mainly spending on wages, especially when R&D is done
within the firm.

Table B4: Correlations

External Share Wage bill share Total R&D
of total R&D of total R&D Expenditures

External share of total R&D 1
Wage bill share of total R&D -0.60 1
Total R&D expenditures 0.08 -0.08 1

Source: R&D survey.

In Table B4, we show that the external share of R&D spending is weakly correlated with
overall R&D spending and strongly negatively correlated with the wage bill share of total
R&D. We conclude that firms indirectly hire some R&D workers through external R&D
spending, but not many: most R&D workers are employed by the firm paying for the R&D,
and their wages make up the bulk of firm R&D spending.

Our main data analysis uses information on various types of techies from the DADS data
to explain productivity growth. In Table B5, we show that the wage bills of techies in the
administrative data are highly correlated with different measures of R&D workers in the
survey data. We show that the strength of the correlation is about the same whether we
measure R&D workers in the survey by wage bill, headcount or FTEs. Reassuringly, the
correlations are highest for R&D techies.
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Table B5: Correlations between techie measures in the R&D survey and wage bills in DADS

R&D survey

Wage bill Headcount FTEs

All techies 0.72 0.83 0.79
DADS R&D techies 0.82 0.88 0.84

ICT techies 0.60 0.56 0.55
Other techies 0.49 0.65 0.61

Source: R&D survey matched with DADS data.

Facts 4. Techies are positively associated with the diffusion of ICT within firms.
We use the ICT survey to understand better the relationship between techies and the

diffusion of technology within firms. For our purpose, we exploit three questions in the
questionnaires received by the firms.

1. In 2018, was training in developing or improving skills in ICT offered by the firm to...

• ... specialists in ICT?
• ... other employees?

2. Does the firm employ specialists in ICT?

Table B6 shows that only 20 percent of firms surveyed offer ICT training. However, firms
that employ ICT workers are six times more likely (0.66/0.11) to offer ICT training. About
11 percent of firms offer ICT training even though they do not employ ICT workers. This
fact suggests a role for ICT training from outside the firm.

Table B6: ICT workers and ICT training

Offer ICT
training?
No Yes

Employ No 0.89 0.11
ICT workers? Yes 0.34 0.66

Mean 0.80 0.20

Source: ICT survey.

Table B7 shows further detail on the exposure of different types of workers on ICT
training. We distinguish between ICT workers, non-ICT workers, and both categories. The
table shows that firms that employ ICT workers are four times as likely to train non-ICT
workers in ICT. To see this, note that the first row reports that only 11 percent of firms that
don’t employ ICT workers train non-ICT workers in ICT. In contrast, the second row shows
that among firms that do employ ICT workers, about half train non-ICT workers in the use
of ICT.20

We match the ICT survey to the DADS sample. We find very small discrepancies between
the information in the DADS and ICT datasets. In particular, 10 percent of firms have ICT

200.12 + 0.35 = 0.47 which is about half.
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Table B7: Exposure to ICT training

Which workers get ICT training?

None Only ICT Only non-ICT ICT & non-ICT

Employ No 0.89 0.00 0.11 0.00
ICT workers? Yes 0.34 0.18 0.12 0.35

Mean 0.80 0.03 0.11 0.06

Source: ICT survey.

techies from the DADS, and 12 percent have ICT workers from the survey, a small difference.
We check how having ICT workers in the survey is related to having ICT techies (both and
others) in the DADS. Both panels A and B of Table B8 show that the answer is that the
two are closely related. The left panel shows that the conditional probability of having ICT
workers in the survey given that a firm has ICT techies in the DADS is 0.62, which is 9
times the conditional probability of having ICT workers in the survey given no ICT techies
in the DADS (0.07). The right panel of Table B8 shows that the conditional probability of
having ICT workers in the DADS given that a firm has ICT techies in the survey is 0.49,
which is 12 times the conditional probability of having ICT workers in the DADS given no
ICT techies in the survey (0.04).

Table B8: ICT workers in the ICT survey and DADS dataset

Panel A Panel B

ICT workers ICT techies
in survey? in DADS?

No Yes No Yes

ICT techies No 0.93 0.07 ICT workers No 0.96 0.04
in DADS? Yes 0.38 0.62 in survey? Yes 0.51 0.49

Mean 0.88 0.12 Mean 0.90 0.10

Source: ICT survey.

We next ask if ICT techies are associated with training of workers in ICT. To answer this
question, Table B9 repeats the analysis of Table B6 on the matched ICT survey and DADS
sample. However, we now examine crosstabs of training with ICT techies from the DADS
rather than ICT workers from the survey. Not surprisingly, the inferences are similar: firms
that have ICT techies are 0.49

0.14
= 3.5 times likely to offer ICT training.

Next, we ask what firm characteristics are associated with ICT training, using linear
probability regressions for the training dummy from the survey. All regressions include
industry × year fixed effects, and the log wage bill excluding techies, as a control for firm
size.

Table B10 shows that there is a strong association between the likelihood of having
techies and offering ICT training, even after controlling for firm size. To interpret the effect
sizes, keep in mind that ICT training is uncommon, with only 18 percent of firms offering
training (Table B9). Columns (1)-(3) use indicator variables to measure techie presence,
and the results are clear: firms with techies are substantially more likely to offer training.
Column (1) shows that firms with any techies are 6 percent more likely to offer ICT training.
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Table B9: ICT workers and ICT training

Offer ICT
training?
No Yes

Employ No 0.86 0.14
ICT techies? Yes 0.51 0.49
(DADS information) Mean 0.82 0.18

Source: Matched dataset.

This effect is driven by ICT techies, as shown in columns (2) and (3): the coefficient on the
dummy for ICT techies is 0.20, while R&D (0.06) and other techies (0.04) have a smaller
albeit positive effect. Columns (4)-(6) are restricted to firms that have positive techies, and
we see that the intensive margin effect is large: firms with 10 percent more expenditure on
techies have a 5 percentage point higher likelihood of offering ICT training, an effect that is
driven by ICT techies.

Table B10: Explaining ICT training

(1) (2) (3) (4) (5) (6)

I (techies > 0) 0.061***
(0.006)

I (ICT techies > 0) 0.203*** 0.188***
(0.009) (0.009)

I (R&D techies > 0) 0.063***
(0.009)

I (Other techies > 0) 0.037***
(0.006)

Wage bill (log):
– Techie 0.048***

(0.003)
– ICT techies 0.063*** 0.035***

(0.005) (0.007)
– R&D techies 0.024***

(0.006)
– Other techies 0.015

(0.011)
– Ex-techies 0.087*** 0.074*** 0.065*** 0.068*** 0.083*** 0.083***

(0.002) (0.002) (0.002) (0.004) (0.005) (0.011)

Obs. 47,363 47,363 47,363 30,859 15,720 8,727

Dependent variable is an indicator for whether the firm offers ICT training to any of its
workers. Regressions include industry×year fixed effects, with robust standard errors in
parentheses.*** denotes p-value ≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10.

To summarize what we have found in this sub-section, measures of ICT employment in
the survey are closely associated with the presence of ICT and other techies in the DADS.
In addition, firms with ICT techies are much more likely to offer ICT training to their ICT
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and non-ICT workers.

Facts 5. Techies are positively associated with patenting and innovations.
We describe the relationship between R&D spending, techies and patents, and innovation
outcomes. The R&D survey provides information on whether the firm has introduced tech-
nologically new or improved products or services on the market or implemented new or
improved production processes as a result of the R&D activity. It also gives the number of
patents filed during the year as a result of R&D activity. We make no attempt to estimate
the causal effects of R&D or techies on these measures of innovation, but the reduced form
correlations are informative.

We find that the distribution of patents is extremely skewed: the 75th percentile firm-
year files no patents, and the 95th percentile files only 4. The 99th percentile firm files 26,
and the top four firm-year observations are around 2,000. Responses to questions related
to innovations are much less skewed, as seen in Table B11: only a quarter of firms say that
they had no process or product innovations in the past year, while half had both.

Table B11: Innovation activity, share of firms

Process
innovation?
No Yes

Product No 0.24 0.10
innovation? Yes 0.19 0.47

Source: R&D survey.

Next, we analyze the relationship between patenting, R&D spending, and techies. We
proceed in two steps. First, we analyze the patenting and innovation activities of firms using
the R&D variables from the R&D survey. Second, we match the R&D survey with the
administrative DADS data to correlate the wage bill of techies with the firms’ patenting and
innovation activities. Both samples are restricted to firm-year observations with positive
R&D expenditures. We use a negative binomial model as the dependent variable is the
number of patents filed by the firm and a linear probability model to analyze innovation
activities. The estimates have the interpretation of elasticities as the right-hand side variables
are taken in logs. In the two sets of regressions, we include the firm’s non-techie wage bill
as a control for size, which turns out to be unimportant. Industry and year-fixed effects are
included in all regressions.

In Table B12, we report the results of the analysis of the R&D survey.
The results presented in columns (1) and (2) suggest that there is a positive relationship

between R&D spending and the number of patents, with an elasticity of around 0.60. This
elasticity hardly changes when we use the R&D wage bill in column (2). When we break
down R&D spending into wage and non-wage components in column (3), we still find a
positive correlation between patenting activity and R&D expenditures. This indicates the
importance of labor in producing R&D services.

Moving on to columns (4) to (12), we find a strong positive correlation between R&D
spending and the likelihood of innovation in both products and processes. Interestingly, the
elasticity of the R&D techie wage bill to innovation is almost five times greater than that of
the R&D ex-wage bill. This underscores the importance of R&D workers in driving product
innovation.

There, we find that ICT techies are also associated with patenting and innovation, In
contrast, when using the matched sample, our analysis suggests that Other techies do not
significantly impact product innovation, while ICT techies do have an effect. We find a
positive correlation between R&D and other workers on process innovation.
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Table B12: Number of patents (Results using the R&D survey)

Patent Innovation Product Process
Innovation Innovation

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Total R&D 0.609*** 0.084*** 0.045*** 0.039***
(0.015) (0.002) (0.001) (0.001)

R&D Wage Bill 0.592*** 0.333*** 0.083*** 0.066*** 0.047*** 0.045*** 0.037*** 0.021***
(0.016) (0.051) (0.002) (0.003) (0.001) (0.002) (0.001) (0.002)

R&D ex-wage bill 0.271*** 0.014*** -0.001 0.015***
(0.053) (0.003) (0.002) (0.002)

Obs. 87,393 86,339 76,297 87,393 86,339 76,297 87,393 86,339 76,297 87,393 86,339 76,297

Notes: Dependent variable is firm-level patent count from R&D survey data. All explanatory
variables are in logs. Industry and year-fixed effects are included in all regressions, with robust
standard errors in parentheses.*** denotes p-value ≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10.

We now study the results in the matched sample in Tables B13 and B14. We include the
firm’s non-techie wage bill as a control for size, which turns out to be unimportant.

In Table B13, we report the results from the matched R&D and DADS datasets on the
impact of techies on the number of patents.

Table B13: Number of patents (results using the matched dataset)

Non-
Manufacturing Manufacturing

(1) (2) (3) (4)

Wage bill (log):
– Techies 0.787***

(0.067)
– R&D techies 0.433*** 0.465*** 0.321***

(0.039) (0.046) (0.047)
– ICT techies 0.186*** 0.152*** 0.221***

(0.040) (0.043) (0.066)
– Other techies 0.096 0.238*** -0.127

(0.079) (0.063) (0.112)

Obs. 18,155 18,155 16,070 2,085

Source: Matched dataset.
Notes: Dependent variable is firm-level patent count from R&D survey
data. All explanatory variables are in logs. Firm’s non-techie wage bill
and industry and year-fixed effects are included in all regressions, with
robust standard errors in parentheses.*** denotes p-value ≤ 0.01, **
p-value ≤ 0.05, * p-value ≤ 0.10.

In column (1), we estimate the impact of techies and observe a striking similarity to the
effect of total Research and Development (R&D) spending presented in Table B12. We then
split techies into their three subgroups by function in columns (2) to (4). We find a larger
correlation between patenting and R&D techies than with ICT techies. The correlation of
Other techies with patenting is much smaller and not well identified. It is noteworthy that
the results on R&D and ICT techies hold across both manufacturing and non-manufacturing
sectors.
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Our last statistical exercise in this section reports linear probability models for the three
innovation outcome indicator variables. The parameter estimates reported in Table B14
have the interpretation of semi-elasticities. Overall, Techies have a statistically significant
positive relationship with the likelihood of innovation. This suggests that techies can lead
to increased innovation in product development or process improvement.

Table B14: Innovation (Results using the R&D survey)

Innovation Product Innovation Process Innovation
Manuf. Non-

Manuf.
Manuf. Non-

Manuf.
Manuf. Non-

Manuf.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Wage bill (log):
– Techies 0.102*** 0.028*** 0.074***

(0.011) (0.006) (0.007)
– R&D techies 0.041*** 0.041*** 0.030*** 0.017*** 0.015*** 0.017*** 0.025*** 0.026*** 0.013

(0.008) (0.009) (0.015) (0.005) (0.005) (0.009) (0.005) (0.006) (0.009)
– ICT techies 0.017** 0.017** 0.019 0.015*** 0.015*** 0.014 0.002 0.002 0.005

(0.007) (0.008) (0.016) (0.004) (0.005) (0.011) (0.004) (0.005) (0.011)
– Other techies 0.037*** 0.031** 0.048** -0.001 -0.003 0.006 0.038*** 0.034*** 0.042***

(0.011) (0.013) (0.022) (0.007) (0.008) (0.014) (0.007) (0.008) (0.013)

Obs. 18,305 18,305 16,209 2,096 18,305 18,305 16,209 2,096 18,305 18,305 16,209 2,096

Source: Matched dataset.
Notes: Dependent variables indicators for innovation. All explanatory variables are in logs. Firm’s non-
techie wage bill and industry and year-fixed effects are included in all regressions, with robust standard
errors in parentheses. *** denotes p-value ≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10.

R&D techies have a statistically significant positive relationship with both process and
product innovation, in both manufacturing and non-manufacturing industries—except that
when we focus on process innovation in non-manufacturing firms, this correlation vanishes.
This suggests that while R&D techies are beneficial for innovation outcomes in general, their
impact on process innovation in non-manufacturing industries may be limited.

In addition, we find that ICT techies have a positive relationship with product innova-
tion in the manufacturing industry, but they are not associated with product innovation in
non-manufacturing industries. This implies that the presence of ICT techies may be partic-
ularly beneficial for product innovation in the manufacturing industry, but may not have a
significant impact on product innovation in other industries. Interestingly, ICT techies have
no impact on process innovation, regardless of the industry considered.

Finally, we show that Other techies have a positive relationship with process innovation
across industries. In contrast, Other techies are not associated with product innovation.
This suggests that having techies with expertise not specifically related to R&D or ICT can
still contribute to innovation outcomes, but their impact may be more important in process
innovation, in both manufacturing and non-manufacturing industries.

C Firm choice of techies
In this section, we describe a very simple model of a firm’s choice of how many techies
to employ. The purpose is to give intuition about why some but not all firms choose to
hire techies. We describe the firm’s optimal choice of techies, given a simple function from
current techies to future productivity. A simple two-period model is sufficient to illustrate
the mechanisms at work. We also assume that the firm faces an inverse demand curve given
by

Pft = AY
1
η

ft , (5)

The relationship from techies to changes in log productivity is
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ωft = ωft−1 +Max

[
β ln

(
Tft−1

τf

)
, 0

]
, β ≥ 0 (6)

Here, effective techie services per unit of techies employed is 1
τf
≤ 1. Fixed costs of employing

positive techies are κf . Although the elasticity of productivity with respect to techies is
constant and equal to β, the level of techie employment required to attain a given ∆ωft will
differ across firms because of differences in τf .

The production function is
Yft = ΩftLft

where Lf is a bundle of inputs available at cost w, and Ωft = eωft . By equation (5), revenue
is

Rft = A [ΩftLft]
η−1
η

The static profit-maximizing input choice is

Lft = Ωη−1
ft

[
η − 1

η

A

w

]η
Plugging this back into the expression for revenue gives optimized revenue for given produc-
tivity,

Rft = BΩη−1
ft , B = Aη

(
η − 1

η

)η−1

w1−η

With no discounting, the firm chooses Tft−1 to maximize two-period profits,

Πf = BΩη−1
ft−1 +BΩη−1

ft − rTft−1 − κfI (Tft−1 > 0)

where I () is the indicator function. There will be two solutions, one the corner solution with
Tft−1 = 0 and the other an interior optimum with Tft−1 > 0. When Tft−1 > 0, equation (6)

implies Ωft =
[
Tft−1

τf

]β
Ωft−1. Substituting this into the expression for profits gives

ΠT
f = BΩη−1

ft−1 − rTft−1 − κf +B

([
Tft−1

τf

]β
Ωft−1

)η−1

(7)

At the interior solution, the firm chooses Tft−1 to maximize ΠT
f . The solution of this problem

is

Tft = (βη − β)
1

1−β(η−1) r
1

1−β(η−1) τ
β(η−1)
β(η−1)−1

f Ω
1−η

β(η−1)−1

f1 (8)

For high enough values of β, the second order condition of the profit maximization problem
doesn’t hold and optimal techie employment is infinite. To rule this out we assume β <

1
η−1

< 1. This restriction implies that the elasticities of techies with respect to r and τf are
negative, and that the elasticity of techies with respect to ωf1 is positive.

Plugging the solution (8) back into the expression for Ωft gives

Ωft =

[
τfr

β (η − 1)

] −β
1−β(η−1)

Ω
1

1−β(η−1)

ft−1 (9)

This equation establishes the intuitive result that optimized Ωft is decreasing in r and τf ,
and increasing in Ωft−1.
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To figure out whether Tf1 = 0 or Tf1 > 0 yields higher profits, the firm simply computes
maximized profits in each case. Profits at the corner solution are

ΠC
f = 2BΩη−1

f1

To compute profits at the interior solution, substitute (8) and (9) into (7) to obtain

ΠT
f = BΩη−1

f1 − rκf +

(
Ωf1

τβf

) η−1
1−β(η−1)

[
B

[
r

β (η − 1)

] β(η−1)
β(η−1)−1

− rβ (η − 1)
1

1−β(η−1)

]
Thus the difference between the two profit levels is

ΠT
f − ΠC

f = −rκf +

(
Ωf1

τβf

) η−1
1−β(η−1)

[
B

[
r

β (η − 1)

] β(η−1)
β(η−1)−1

− rβ (η − 1)
1

1−β(η−1)

]
A necessary condition for this to be positive is that the term in brackets is positive. This will
be more likely when demand (captured by B) is higher, and less likely when r is higher. If
the term in brackets is positive, the whole expression is more likely to be positive the smaller
is τf and κf and the larger is Ωf1. If the term in brackets is negative, then ΠT

f − ΠC
f < 0

even if κf = 0, which shows that fixed costs are not a necessary condition for zero techies to
be optimal.

The lessons from this exercise are quite simple and intuitive:

• The optimal amount of techies is more likely to be positive when demand and/or initial
productivity are higher.

• The optimal amount of techies is more likely to be zero when fixed costs of techies are
high and/or when the efficiency of techies are low.

• The optimal amount of techies may be zero even if the fixed cost of employing techies
is zero.

• When the optimal amount of techies is positive, it is increasing in initial productivity
and the efficiency of techies.

D Production function and productivity estimation methodology
We refer the reader to Grieco et al. (2016) for their methodology. We do not deviate from
it. Here we provide complete details on our implementation of GNR.

GNR start with a production function (within some industry)

Qft = AftF (Xft) , (10)

for some input vector X and Hicks-Neutral productivity A. Taking logs this becomes

qft = lnQft = ln[AftF (elnXft)] = lnAft + ln[F (exft)] = aft + f (xft) , (11)

where all lower case letters denote logs of upper case variables and functions. Let

aft = ωft + uft, (12)
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where ω is the part of the productivity shifter that the firm observes before making input
demand decisions and u is the unexpected part. While both ω and u affect output, the
important distinction is that ω is be correlated with variable input choices, while u is not.

Assume that ωft follows a 1st order controlled Markov (CM) process, and for purposes of
exposition, let it be a simple AR(1),

ωft = const + λωft−1 + βzft−1 + ξft, (13)

where zft−1 is a vector that includes firm choices (techies, exporting, etc.) and ξft is an
orthogonal innovation.

We do not observe quantities. Therefore we adjust the basic GNR model. We assume
that—as in GLZ—firms face an industry-specific downward sloping demand curve, with
elasticity η = 1/ (1− ρ) > 1, ρ ∈ (0, 1), á la Klette and Griliches (1996), as in GNR’s
Appendix O6-4 “Revenue Production Functions”.

A firm that sets price Pft sells quantity

Qft = Bt

(
Pft
Πt

)−η
, (14)

where Πt is the aggregate price index and Bt is aggregate demand. Alternatively, write

Pft = Q
−1/η
ft B

1/η
t Πt = Q−1+ρ

ft B1−ρ
t Πt. (15)

Therefore, revenue is
Rft = PftQft = Qρ

ftB
1−ρ
t Πt. (16)

Given an aggregate price index Πt we have deflated revenues

R̃ft =
Rft

Πt

= Qρ
ftB

1−ρ
t . (17)

The theory-consistent measure of Bt is given by

Bρ
t =

∑
f∈Θt

Qρ
ft =

∑
f∈Θt

R̃ftB
−1+ρ
t =⇒ Bt =

∑
f∈Θt

R̃ft =
1

Πt

∑
f∈Θt

Rft, (18)

i.e., the sum of deflated revenues, where Θt is the set of all firms that serve the (single)
market. Taking logs of (16) we have

rft = ρqft + (1− ρ) lnBt + ln Πt, (19)

and using the production function and rearranging we have the deflated “revenue production
function”

r̃ft = ln
Rft

Πt

= (1− ρ) lnBt + ρf (·) + ρωft + ρuft. (20)

In principle, time variation in Bt can identify ρ, which can be used to “unpack” the
production function from the “revenue production function”—but since we have only a few
years we will take a different route. We absorb (1− ρ) lnBt in time fixed effects (see below),
so that in practice we don’t need to deflate revenues, which is inconsequential for the results.

Firms are price takers on input markets. Firms maximize expected profits (the value of
u is not in their current information set). By manipulating the FONC with respect to any
static input j that is chosen without frictions, we obtain the associated first step factor share
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equation
sjft = ln

[
E(eu

′
)ρεj(xft)

]
− u′ft, (21)

where sjft is the log of the cost share of input j in revenue (potentially greater than 1, if
the firm is hit by a large enough negative u shock), εj(xft) = ∂ ln f(xft)/∂ ln j is the output
elasticity w.r.t. input j, and u′ft = ρuft.

We estimate (21) by NLLS, using some parametric assumption on εj(xft). OnceE(eu
′
)ρεj(xft)

is identified, we use the residual to estimate E(eu
′
), which allows identifying ρεj(xft). In or-

der to identify εj(xft) we need an estimate of ρ, which can be obtained in the second step.
However, since our panel is too short to precisely identify ρ, we stay with ρεj(xft).

In (21) u′ft = ρuft because u contributes directly to output. Unlike GLZ, the surprise
shock is not a demand shock. We can assume that, like in GLZ, a = ω and that u is an ex
post demand shock. In that case the same equation (21) arises, with the only difference that
there is no ρ in the residual, i.e., u′ft = uft. All this is inconsequential for what follows, so
henceforth we drop the superscript in u′ft.

In Section 5 of their paper, GNR use in the first step share equation a “complete” second-
order polynomial in m, l and k plus a term that combines all three (m× l × k). They then
integrate this w.r.t. m. They subtract this integral from q, and estimate the second step,
in which there are only second-order terms in l and k. We adapt this to the case in which
output quantities are not observed, while only revenue is.

We entertain two assumptions on labor, Lft:

1. Lft is “predetermined”, i.e., it does not respond to the innovation to productivity ξft,
conditional on ωft−1 (like K).

2. Lft is “static”, i.e., it responds to the innovation to productivity ξft, conditional on
ωft−1, and the static FONC holds (like M).

These are described in the following subsections.

D.1 Single static input M , both L and K predetermined

Assume that, as in GNR, material inputs are static and frictionless, and that both L and K
are dynamic and predetermined. The first step share equation is

smft = lnSmft = ln [E(eu)ρεm(xft)]− uft, (22)

where we drop the “prime” on u because, as noted above, this is inconsequential. Denote

E(eu)ρεm(xft) = γ′(xft)

ρεm(xft) = γm(xft) .

Estimate (22) by NLLS: choose the vector γ′ to minimize∑
ft

[smft − ln

(
γ′0 + γ′mmft + γ′llft + γ′kkft + γ′mmm

2
ft + γ′lll

2
ft + γ′kkk

2
ft

+γ′mlmftlft + γ′mkmftkft + γ′lklftkft + γ′mlkmftlftkft

)
]2. (23)

Once γ′ is estimated, we recover γm by dividing through all point estimates by (1/N)
∑

ft(e
uft).
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Integrating γm(xft) yields∫ mft

0

γm(m, lft, kft)dm =

∫ mft

0

(
γ0 + γmm+ γllft + γkkft + γmmm

2 + γlll
2
ft + γkkk

2
ft

+γmlmlft + γmkmkft + γlklftkft + γmlkmlftkft

)
dm

=

(
γ0 + 1

2
γmmft + γllft + γkkft + 1

3
γmmm

2
ft + γlll

2
ft + γkkk

2
ft

+1
2
γmlmftlft + 1

2
γmkmftkft + γlklftkft + 1

2
γmlkmftlftkft

)
mft

The lower bound for integration implies a normalization on the production function param-
eters and is inconsequential.

The second step equation is

yft = r̃ft − uft −
∫ mft

0

γm(m, lft, kft)dm

= ρωft + (1− ρ) lnBt − C (lft, kft)

= ω′ft + αllft + αlll
2
ft + αkkft + αkkk

2
ft + αlklftkft, (24)

where we absorb (1− ρ) lnBt in

ω′ft = ρωft + (1− ρ) lnBt.

For any guess of the vector of coefficients α we can compute ω̂′ (α)ft as a residual from (24).
Now invoke the Markov assumption (13), and estimate

ω̂′ (α)ft = FEt + λω̂′ (α)ft−1 + ρβzft−1 + ξ′ft, (25)

where ξ′ft = ρξft and the time fixed effects FEt absorb (1− ρ) lnBt. Here we can only identify
ρβ, not β. The estimated ξ̂′ (α)ft are orthogonal to

(
lft, l

2
ft, kft, k

2
ft, lftkft

)
because they are

predetermined by assumption. Use this to build a GMM estimator based on the following
moment conditions:

E
{
ξ̂ (αl, αll, αk, αkk, αlk)ft

(
lft, l

2
ft, kft, k

2
ft, lftkft

)′}
= 0 . (26)

Once we have estimates of α we can compute one last time ω̂′ (α)ft and regress (25) to obtain
estimates of λ and ρβ.

Finally, we compute the revenue elasticities w.r.t. L and K :

γl(xft) = αl + 2αlllft + αlkkft + γlmft + 2γlllftmft +
1

2
γmlm

2
ft + γlkkftmft +

1

2
γmlkm

2
ftkft

γk(xft) = αk + 2αkkkft + αlklft + γkmft + 2γkkkftmft +
1

2
γmkm

2
ft + γlklftmft +

1

2
γmlkm

2
ftlft,

where, as above, the true output elasticities εl(xft) = γl(xft)/ρ are not identified without
information on ρ.
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D.2 Two static inputs M and L, K is predetermined

We estimate the first step share equations for M and L using the same procedure as above.
The first step share equations are

smft = ln [E(eu)γm(xft)]− umft (27)

slft = ln
[
E(eu)γl(xft)

]
− ulft . (28)

Here we obtain two residuals: umft = uft +ψmft and ulft = uft +ψlft. The additional ψjft terms
account for the fact that the residuals do not coincide. They are assumed to be orthogonal
to uft and xft. GNR discuss this in their Appendix O6-3 “Multiple Flexible Inputs”. An
efficient way to consistently estimate u is to use the average (umft + ulft)/2. With some abuse
of notation, let uft = (umft + ulft)/2. We estimate (27) and (28) separately by NLLS, and use
uft to build (1/N)

∑
ft(e

uft) and to obtain γm(xft) and γl(xft) in (27) and (28), respectively.
Denote the coefficients from theM share equation γm and those from the L share equation

γl. Using the result from Varian (1992) we compute the integral

I(m,l) =

∫ mft

m0

γm (m, l0, kft) dm+

∫ lft

l0

γl (mft, l, kft) dl . (29)

This sum of integrals equals

I(m,l) =

(
γm0 + 1

2
γmmmft + γml l0 + γmk kft + 1

3
γmmmm

2
ft + γmll l

2
0 + γmkkk

2
ft

+1
2
γmmlmftl0 + 1

2
γmmkmftkft + γmlk l0kft + 1

2
γmmlkmftl0kft

)
mft

−
(
γm0 + 1

2
γmmm0 + γml l0 + γmk kft + 1

3
γmmmm0 + γmll l

2
0 + γmkkk

2
ft

+1
2
γmmlm0l0 + 1

2
γmmkm0kft + γmlk l0kft + 1

2
γmmlkm0l0kft

)
m0

+

(
γl0 + γlmmft + 1

2
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We choose the lower integration limits so that there is no constant. Choosing (m0, l0) = (0, 0)
does the trick and yields

I(m,l) =

∫ mft

0

εmft (m, 0, kft) dm+

∫ lft
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=
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)
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This ensures that each of the 17 unique variables in the polynomial gets a coefficient that is
identified from only one first step equation.

The second step equation is

yft = r̃ft − uft − I(m,l) = ρωft + (1− ρ) lnBt − C (kft) = ω′ft + αkkft + αkkk
2
ft, (30)

where again we absorb (1− ρ) lnBt in

ω′ft = ρωft + (1− ρ) lnBt .

For any guess of α we can compute ω̂′ (α)ft as a residual from (30). Now invoke the Markov
assumption for ωft (13), and estimate

ω̂′ (α)ft = FEt + λω̂′ (α)ft−1 + ρβeft−1 + ξ′ft, (31)

where ξ′ft = ρξft and the time fixed effects FEt absorb (1− ρ) lnBt. As above, we can
only identify ρβ, not β. The estimated ξ̂′ (α)ft are orthogonal to

(
kft, k

2
ft

)
because they are

predetermined by assumption. Use this to build a GMM estimator based on the following
moment conditions:

E
{
ξ̂′ (αk, αkk)ft

(
kft, k

2
ft

)′}
= 0 . (32)

Once we have estimates of α we can compute one last time ω̂′ (α)ft and regress (25) to obtain
estimates of λ and ρβ.

Now compute the revenue elasticity w.r.t. K :

γkft(·) = αk + 2αkkkft

+γmk mft + 2γmkkmftkft +
1

2
γmmkm

2
ft

+γlklft + 2γlkklftkft +
1

2
γllkl

2
ft

+γlmkmftlft +
1

2
γlmlkmftlftlft.

D.3 Pooling firms across industries for the controlled Markov

We to wish estimate the controlled Markov in a pooled sample of firms across industries i.
This implies estimating

ω̂′ (α)ift = FEit + λω̂′ (α)ift−1 + βeift−1 + ξ′ift . (33)

Writing this more explicitly,

ρ̂iω̂ (α)ift = FEit + λρ̂iω̂ (α)ift−1 + βeift−1 + ξ′ift . (34)

The estimator of λ is consistent for a weighted average of λi across industries. The estimator
of β is consistent for a weighted average of ρiβi across industries—not a weighted average of
βi. Thus, the estimator of β conflates cross-industry variation in demand curvature ρi and
industry-specific impacts in the controlled Markov process βi.
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E Production functions estimates
Table E1 reports the average “revenue elasticity” (output elasticity ×ρ) across firms, by
industry. These estimates arise from the GNR estimator where labor is assumed to be
“dynamic”, i.e., predetermined in time t (like capital), and where we include in the control
Markov an indicator for employment of techies and their wage bill share.

Table E1: GNR Production function estimates

Industries γm γl γk #Obs. #Firms

Food, beverage, tobacco 0.429 0.464 0.175 29093 4677
Textiles, wearing apparel 0.326 0.526 0.094 8871 1299
Wood, paper products 0.289 0.673 0.069 17272 2521
Chemical products 0.399 0.482 0.134 7357 938
Pharmaceutical products 0.260 0.640 0.089 1699 222
Rubber and plastic 0.362 0.497 0.161 16068 2137
Basic metal and fabricated metal 0.267 0.646 0.108 30333 4133
Electrical equipment 0.375 0.439 0.155 5080 674
Machinery and equipment 0.359 0.534 0.103 11489 1495
Transport equipment 0.396 0.570 0.094 6435 867
Other manufacturing 0.250 0.665 0.106 23963 3552
Construction 0.224 0.693 0.112 116713 21409
Wholesale 0.592 0.367 0.058 186147 27296
Retail 0.631 0.311 0.051 256347 39837
Accommodation and food services 0.210 0.642 0.173 113923 21554
Publishing and broadcasting 0.055 0.774 0.111 14213 2378
Administrative and support activities 0.070 0.571 0.240 28518 5120

F More lags of ω̂ft
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Table F1: Adding lags of productivity – GLZ estimates

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I
(
Tft−1 > 0

)
0.038*** 0.014*** 0.053*** 0.018***
(0.002) (0.003) (0.003) (0.003)

Tft−1 0.119*** 0.215***
(0.008) (0.013)

I
(
TRD
ft−1 > 0

)
0.015*** 0.009*** 0.013** 0.000
(0.002) (0.002) (0.006) (0.007)

I
(
T ICT
ft−1 > 0

)
0.018*** 0.011*** 0.025*** 0.015***
(0.002) (0.002) (0.003) (0.004)

I
(
TOTH
ft−1 > 0

)
0.028*** 0.009*** 0.048*** 0.012***
(0.002) (0.003) (0.003) (0.003)

TRD
ft−1 0.071*** 0.151

(0.023) (0.092)
T ICT
ft−1 0.111*** 0.118***

(0.037) (0.022)
TOTH
ft−1 0.114*** 0.251***

(0.010) (0.015)
I
(
T38
ft−1 > 0

)
0.028*** 0.010*** 0.046*** 0.009***
(0.002) (0.003) (0.003) (0.003)

I
(
T47
ft−1 > 0

)
0.015*** 0.005* 0.030*** 0.019***
(0.002) (0.002) (0.002) (0.003)

T38
ft−1 0.141*** 0.271***

(0.013) (0.018)
T47
ft−1 0.094*** 0.117***

(0.011) (0.017)
I
(
xft−1 > 0

)
0.007*** 0.004** 0.001 0.002 0.002 0.003 0.004* 0.003 0.002 0.002 0.001 0.001
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.003)

ω̂ft−1 0.936*** 0.940*** 0.934*** 0.939*** 0.936*** 0.940*** 0.931*** 0.933*** 0.932*** 0.933*** 0.931*** 0.933***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

ω̂ft−2 0.025*** 0.024*** 0.024*** 0.023*** 0.025*** 0.024*** 0.017*** 0.017*** 0.016*** 0.017*** 0.016*** 0.017***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ω̂ft−2 -0.02*** -0.02*** -0.02*** -0.02*** -0.02*** -0.02*** -0.03*** -0.03*** -0.03*** -0.03*** -0.03*** -0.03***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Obs. 131,697 523,877
No. firms 21,854 106,430

Notes. The table reports estimates of equation (3) in the text. The dependent variable is ω̂ft, log estimated productiv-
ity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47} denote R&D,
ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year fixed effects
included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value ≤ 0.01, **
p-value ≤ 0.05, * p-value ≤ 0.10
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Table F2: Allocating techies to production – GLZ estimates

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.022*** 0.006* 0.028*** 0.008***
(0.003) (0.003) (0.003) (0.003)

Tft−1 0.086*** 0.124***
(0.010) (0.012)

I
(
TRDft−1 > 0

)
0.016*** 0.007** 0.017*** 0.019**
(0.003) (0.003) (0.006) (0.008)

I
(
T ICTft−1 > 0

)
0.022*** 0.020*** 0.038*** 0.019***
(0.003) (0.003) (0.004) (0.004)

I
(
TOTHft−1 > 0

)
0.013*** 0.005* 0.020*** 0.009***
(0.003) (0.003) (0.003) (0.003)

TRDft−1 0.115*** -0.022
(0.027) (0.112)

T ICTft−1 0.038 0.205***
(0.040) (0.020)

TOTHft−1 0.054*** 0.079***
(0.011) (0.012)

I
(
T 38
ft−1 > 0

)
0.014*** 0.004 0.017*** 0.004
(0.003) (0.003) (0.003) (0.003)

I
(
T 47
ft−1 > 0

)
0.015*** 0.008*** 0.031*** 0.022***
(0.003) (0.003) (0.003) (0.003)

T 38
ft−1 0.086*** 0.099***

(0.015) (0.017)
T 47
ft−1 0.070*** 0.091***

(0.013) (0.015)
I (xft−1 > 0) 0.009*** 0.007*** 0.001 0.001 0.005** 0.005** 0.024*** 0.023*** 0.020*** 0.021*** 0.021*** 0.021***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
ω̂ft−1 0.917*** 0.915*** 0.915*** 0.914*** 0.916*** 0.915*** 0.880*** 0.880*** 0.880*** 0.879*** 0.880*** 0.879***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Obs. 130,605 525,725
No. firms 21,744 106,450

Notes. The table reports estimates of equation (3) in the text. The dependent variable is ω̂ft, log estimated productiv-
ity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47} denote R&D,
ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year fixed effects
included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value ≤ 0.01, **
p-value ≤ 0.05, * p-value ≤ 0.10
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