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Abstract—By seamlessly integrating wavelet transforms 
into the image patching stage of ViT, we leverage the 
power of multi-level wavelet transforms to decompose 
images into a diverse array of frequency-domain features. 
These features, integrated with spatial characteristics at 
equivalent scales, enrich image details, enhancing ViT's 
proficiency in delineating intricate textures and distinct 
edges. Consequently, we registered a notable 2.7% 
accuracy enhancement on the ImageNet100 dataset in ViT. 
Our wavelet patching module, designed for versatility, 
seamlessly fits into various ViT derivatives without 
necessitating architecture modifications. This 
advancement has uplifted the performance of several 
leading vision transformers by 0.46-4.3%, preserving 
parameter efficiency without notable FLOPs increment.  
 

Index Terms—Vision Transformer, Image patching, Wavelet 
transform, Low-level feature 

I. INTRODUCTION 

HE Vision Transformer (ViT) [1] tokenizes images into 
fixed-size patches, employing Transformer layers akin to 

language models to determine inter-token relationships for 
image classification. However, this method often overlooks 
the vital local nuances [2], [3] within each patch, notably 
textures [4], edges [5], and lines, requiring larger training 
datasets to match CNN benchmarks [6]. In signal processing, 
techniques like the discrete wavelet transform (DWT) can 
distinguish such features across varied frequency bands and 
efficiently spotlight these obscured local features. 
Nevertheless, many ViT variants sidestep patch-processing 
enhancements. 

Existing solutions aim to encode the local structure of 

tokens, with approaches including Tokens-to-Token [7] 
module and the Transformer-iN-Transformer (TNT) [8] 
architecture, as referenced in [9] and [10]; methods that 
exploit wavelet features through convolution layers, as 
demonstrated in [11]; and designs that implement parallel 
channels for high-frequency details, discussed in [12]. 
However, these approaches frequently entail intricate 
architectural changes, raising questions on the need for 
nuanced ViT designs similar to CNNs and the possibility of 
enhancing ViT without altering its fundamental structure. 

Within Vision Transformers, wavelets mainly contribute in: 
[13] introducing the wavelets into position embedding 
enhances the smoothness in pathological feature maps; [14], 
[15], [16] improve self-attention efficiency via additionally 
adding wavelet features into multi-head attention; Parallel 
processing of different wavelet subbands in texture 
recognition [17], denoising [18], super-resolution [19] tasks 
leads to better results. Yet, the potential of wavelet-enriched 
domains to amplify token features remains underexplored, 
presenting an opportunity for deeper utilization. 

Our work introduces an augmented spectrum approach in 
the patching phase to diversify ViT features. We dissect 
images across frequency bands by integrating a multi-level 
wavelet transformation, capturing both macro and micro 
nuances. This method addresses potential gaps in color and 
texture direction overlooked by wavelets, further enhanced by 
a spatial domain module. As shown in Fig. 1, the resulting 
encoding includes a diverse range of spectral features within 
patches, with the spatial domain treated as a distinct frequency 
band. Our wavelet patch module is designed to align 
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Fig. 1. The Spatial-enhanced Multi-level Wavelet Patch (SMWP) 
involves wavelet decomposition of an image into four frequency bands: 
LL, LH, HL, and HH, continued until the number of pixel points aligns 
with the token count required by the ViT. Concurrently, spatial features 
are derived from the original image via down-sampling in a spatial-
enhanced module, then concatenated with wavelet frequencies as a 
unique band. This amalgamation of spatial and frequency data creates 
consolidated tokens for the transformer encoder. 
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seamlessly with numerous ViT derivatives without requiring 
structural changes, offering three key advantages:  
(1) Enhanced spectrum characterization, demonstrated by a 
2.7% improvement in ImageNet100 accuracy with ViT-B/16. 
(2) A versatile design compatible with several state-of-the-art 
ViT variants (T2T-ViT [7], TNT [8], Swin-ViT [22], Pyramid 
TNT [23], Wave-ViT [14], Dual-ViT [24]), positioning it as a 
potential better backbone network for Transformer-based 
vision networks. 
(3) Reduced reliance on position embedding, enhancing ViT 
models’ robustness. 

II. METHOD 

A. Wavelet Decomposition 

1) 1D-DWT 
For a 1D signal 𝒔 ൌ ൛𝑠௝ൟ௝∈ℤ, DWT decomposes it into its 

low-frequency component 𝒔𝟏 ൌ ሼ𝑠ଵ௞ሽ௞∈ℤ  and high-frequency 
component 𝒅𝟏 ൌ ሼ𝑑ଵ௞ሽ௞∈ℤ, where  

ቊ
𝑠ଵ௞ ൌ ∑ 𝑙௝ିଶ௞𝑠௝ ,௝

𝑑ଵ௞ ൌ ∑ ℎ௝ିଶ௞𝑠௝ ,௝
                                    (1) 

and 𝒍 ൌ  ൛𝑙௝ൟ௝∈ℤ,𝒉 ൌ  ሼℎ௞ሽ௞∈ℤ are the low-pass and high-pass 

filters of a given wavelet basis. In expressions with matrices 
and vectors, Eq. (1) can be rewritten as 

𝒔𝟏 ൌ 𝑳𝒔,𝒅𝟏 ൌ 𝑯𝒔,                                   (2) 
𝒔 ൌ 𝑳்𝒔𝟏 ൅ 𝑯்𝒅𝟏,                                   (3) 

where L and H are the wavelet matrix filters. 
2) 2D-DWT 

For 2D signal X, the DWT does 1D-DWT on every row and 
column, i.e., 

𝐗௟௟ ൌ 𝐋𝐗𝐋்;𝐗௟௛ ൌ 𝐇𝐗𝐋்;𝐗௛௟ ൌ 𝐋𝐗𝐇்;𝐗௛௛ ൌ 𝐇𝐗𝐇் ,  (4) 
3) n-level 2D-DWT 

We can obtain its features from a 1-level discrete wavelet 
decomposition using Eq. (4): 

 𝐗ଵ ൌ ሾ𝐗௟௟,𝐗௟௛,𝐗௛௟,𝐗௛௛ሿ.                            (5) 
For a signal X, its features from an n-level discrete wavelet 
decomposition can be obtained as follows: 
          𝐗௡ ൌ ሾ𝐗௟௟

௡ିଵ,𝐗௟௛
௡ିଵ,𝐗௛௟

௡ିଵ,𝐗௛௛
௡ିଵሿ  

 ൌ ሾ𝐋𝐗𝒏ି𝟏𝐋்,𝐇𝐗𝒏ି𝟏𝐋்,𝐋𝐗𝒏ି𝟏𝐇் ,𝐇𝐗𝒏ି𝟏𝐇்ሿ         (6) 

B. Spatial-enhanced Multi-level Wavelet Patch 

1) Multi-level Wavelet Decomposition module 
In the wavelet decomposition module, the initial step 

involves an adaptive resizing of the input image to a 
resolution of 448×448. This strategic resizing facilitates a 
deeper exploration into the nuanced capabilities offered by 
intricate wavelet decompositions. Notably, this preprocessing 
action is optional, and its adoption depends on the 
requirements of the target application and the specific 
characteristics of the dataset. 

After the resizing phase, our methodology invokes a multi-
level wavelet decomposition. As visualized in Fig. 1, a single 
iteration of wavelet decomposition segregates the image into 
four distinct frequency bands: LL, LH, HL, and HH. Each of 
these bands captures different aspects of the image: 
LL (Low-Low): This band retains the approximate 
coefficients and primarily embodies the lower frequency 

components, representing the more global structures and 
broader contours of the image. 
LH (Low-High) & HL (High-Low): These bands capture 
the horizontal and vertical details, respectively, often 
resonating with the edges and directional features within the 
image. 
HH (High-High): Representing the diagonal details, this 
band captures the high-frequency components, typically 
linked with textural nuances and finer granularity in the 
image content. 

As the image undergoes multiple layers of wavelet 
decomposition, the process is repeated until the pixel points' 
count corresponds precisely with the intended token count in 
the ViT. At this critical juncture, a synthesis is performed 
using the information extracted from the varied frequency 
bands to construct and enrich each token. Consequently, 
these comprehensive tokens, replete with multispectral 
features from distinct decomposition bands, are seamlessly 
integrated into the transformer encoder. 
2) Spatial-enhanced module 

Wavelet decomposition excels in extracting hidden 
frequency details from images, such as texture frequencies 
and edge delineations, which is particularly effective in 
grayscale images. However, its application to RGB color 
channels in parallel independently can diminish the color 
richness and struggle with capturing directional texture 
patterns. 

We integrate a spatial-enhanced module into our wavelet 
decomposition process to address these issues. Our method 
innovatively combines joint convolution and down-sampling 
by altering the convolution stride. This simultaneous process 
efficiently preserves essential spatial domain features, 
treating them as a unique frequency component. The down-
sampled spatial information is then merged with frequency-
domain features, enriching the network encoder's feature 
space. 

This approach maintains spatial and wavelet nuances while 
preserving inter-channel correlations in RGB images. The 
stride-modified convolution strategy mitigates the loss of 
color richness and bolsters texture direction cues. Our method 
thus enhances the encoder's capability to integrate 
comprehensive spatial information, offering a robust solution 
for maintaining color fidelity and textural details in wavelet-
transformed images. This combined technique of spatial 
enhancement and strategic convolution presents a balanced 
solution, addressing the inherent limitations of standard 

Algorithm 1: Spatial-enhanced Multi-level Wavelet Patch  

Input:  

𝐗: original images of shape [B, 3, 224, 224]; 

𝑛:  levels of wavelet decomposition. 

Output:  

𝐓: tokens of shape [B, N, C]. ((Batch,196,768) in ViT-B/16). 

1: 𝐗௥ = Resize (𝐗, (448,448)) 

2: 𝐗௡ = 𝐷𝑊𝑇௡ (𝐗௥ ,𝑛) 

3: 𝐗𝐒 = Conv2d (input = 3, output = 4௡, kernel = 2௡, stride = 2௡)(𝐗௥) 

3: 𝐗𝐓= Conv2d (input = 4 ∗ 4௡, output = C, kernel = 2ହି௡, stride = 2ହି௡)([𝐗𝐒, 𝐗௡]) 

4: 𝐓  = Rearrange (‘b e (h) (w)’ -> ‘b (h w) e’) (𝐗𝐓) 

5: Return 𝐓 
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wavelet decomposition in color image processing. 
3) Projection & Transpose 

After merging features from wavelet and spatial domains, 
we adopt a convolution projection layer, mirroring standard 
ViT processing, to adjust channel sizes and ensure token 
dimensions align with the subsequent encoder's requirements. 
Following ViT's structure, a Transpose operation 
immediately follows, yielding the final tokens. The specifics 
of our method are outlined in Algorithm 1, presenting our 
Spatial-Enhanced Multi-level Wavelet Patch (SMWP). 

A distinguishing characteristic of our method is its ability 
to capture many feature types adeptly. With transformer 
encoders fed these enhanced tokens that span various spectra, 
they can keenly identify intricate phase texture patterns 
(evident in the high-frequency HH band) and broader 
structural interrelationships stemming from the subtle low-
frequency LL band. Fig. 2 contrasts the information within 
each signal token from a standard ViT image patch versus 
our wavelet patch. 

III. EXPERIMENTS 

To evaluate SMWP's advantage over ViT's standard spatial 
patching, we used ImageNet100, a 100-class subset of 
ImageNet1000 [20] (details in the Supplementary material). 
Our SMWP, consistent with ViT, utilizes a single convolution 
for dimension projection, preserving the original 
computational and parameter footprint. This module ensures 
parameter consistency with the original network's public code. 
Given their variety, the network parameters are documented in 
the Supplementary material. Experiments were conducted on 
an RTX4090 GPU with PyTorch [21]. The primary batch size 
is 128, with exceptions set at 64. 

A. Ablation Study 

In this section on the study of SMWP architecture, we focus 
exclusively on variations within the image patch component, 
maintaining all other parameters constant to guarantee result 
accuracy. 
1) Wavelet features   
Objective: To systematically assess wavelet features' efficacy 
in tasks compared to original spatial features (ViT-B/16) and 
examine the impact of different wavelet decomposition layers 
on overall framework performance. 
Theoretical Insight: Wavelet transform's strength lies in its 
capability for multi-level signal decomposition. The challenge 

is determining the optimal number of decomposition layers 
and selecting spectral images for the most compelling feature 
representation. 
Empirical Outcomes: Experiments conducted without the 
spatial-enhanced module, using a multi-level wavelet patch 
(MWP) module instead, are presented in Table I. Results 
indicate peak performance with four wavelet decompositions, 
surpassing the spatial domain features (ViT-B/16). Each 
additional decomposition level decreases resolution but 
enriches frequency domain features. For example, Level 1 
decomposition reduces feature resolution to a quarter, with 
further reductions at each subsequent level. At Level 5, 
resolution is minimal, with tokens representing distinct spectra. 
Four decompositions emerge as the optimal balance; fewer 
levels are too similar to spatial domain patches, while more 
levels obscure image details and frequency clarity. (The 
wavelet transformation in MWP, conducted independently 
during image preprocessing, does not participate in 
backpropagation (BP), thus not impacting the network's 
training time.) 

 
2) Spatial Domain Integration   
Objective: To explore the potential gains of merging 
information from the spatial domain. 
Theoretical Insight: The fusion of spatial domain intricacies 
into tokens potentially enriches the mosaic of encapsulated 
features, offering a more panoramic feature perspective. 
Empirical Outcomes: Table II shows that merging spatial-
domain features with wavelet patching consistently enhances 
model performance. This suggests the value of spatial-domain 
details like color and texture direction, which might be 
overlooked with only wavelet features. Notably, this 
integration leads to a significant 2.4% accuracy increase over 
the baseline ViT-B/16 with four wavelet decompositions. The 
SMWP variant displays notable variance attributed to 
downsampling spatial attributes to match wavelet resolutions. 
We used a single-layer downsampling approach to keep 
computational demands consistent, though a multi-layer 
method might reduce this variance, a subject for future 
research. The Spatial-enhanced module is involved in BP, and 
the DWT module can still be left out of the operation, and we 
compare the training time of networks. 

 
3) Exploration of Wavelet Basis Functions 
Objective: To navigate the landscape of wavelet basis 
functions and discern the most congruous role for the task. 
Theoretical Insight: Wavelet bases with distinct operational 
strengths—ranging from Haar wavelets' edge discernment 
capabilities to the multifaceted attributes of Symlets and 

TABLE II. SPATIAL-ENHANCED WAVELET PATCH 
Network ViT-B/16 SMWP 

1-level 
SMWP 
2-level 

SMWP 
3-level 

SMWP 
4-level 

SMWP 
5-level 

Top-1 
Accuracy 

70.71% 
(0.018) 

72.45% 
(0.71) 

72.89% 
(0.27) 

72.90% 
(0.66) 

73.11% 
(0.004) 

72.78% 
(0.56) 

Training Time 17.54h 14.54h 14.73h 14.68h 15.32h 15.17h 

TABLE I. WAVELET PATCH OF DIFFERENT LEVEL 
Network ViT-B/16 MWP 

1-level 
MWP 
2-level 

MWP 
3-level 

MWP 
4-level 

MWP 
5-level 

Top-1 
Accuracy 

70.71% 
(0.018) 

71.27% 
(0.0072) 

71.8% 
(0.04) 

71.87% 
(0.02) 

72.38% 
(0.18) 

71.58% 
(0.34) 

Training Time 17.54h 14.24h 14.191h 14.23h 14.33h 15.12h 

 
Fig. 2. The difference between the standard image patch and our 
wavelet patch. In standard ViT image patching, pixels of a local spatial 
domain are projected into a ‘word’ (token) according to the embedding 
size. In a wavelet patch, the features of different frequency bands of the 
entire image are projected into a ‘word’ based on the image block. 
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DMeyer wavelets—potentially harbor the key to optimal 
model performance. 
Empirical Outcomes: Rigorous evaluations, framed within 
the context of 4-level decomposition, brought forth the 
performance metrics of these wavelet bases, all of which have 
been meticulously cataloged in Table III. Upon innovatively 
integrating wavelet patching into the ViT image patching 
module, a consistent improvement was observed across 
various wavelet functions over the baseline ViT-B/16 model 
(70.71%). Notably, the Sym4 and Bior1.1 wavelets delivered 
top-tier performance, achieving 73.4% and 73.28% accuracy, 
respectively. Even wavelet functions with modest accuracy 
increments, like the Daubechies series, still surpassed the 
baseline. This consistent enhancement across multiple 
wavelets underscores the potential and efficacy of wavelet 
patching, suggesting its promising role in future ViT 
adaptations. 

 

B. Extended Study 

1) Performance Improvement w.r.t. Network Depth. 
Our SMWP seamlessly integrates into ViT networks across 

varying complexities. Table IV elucidates the performance 
enhancement of the wavelet patch across diverse ViT sizes, 
underscoring the sustained benefits of spatial-enhanced 
wavelet patching. 

 
2) Wavelet Patch in other Advanced Transformers 

Our module serves as a patching method, and unlike 
previous networks that improve the local feature extraction 
ability of ViT through a complex structure, we are seamlessly 
implanting Transformer-based networks without changing the 
design of the network, which can be used as an alternative to 
ViT's backbone network. We validate our ability as a new 
backbone on multiple ViT variants. Table V provides a 
comprehensive breakdown of the results. The tags '-Ti', '-S', 
and '-B' differentiate models by size, while '-7' and '-14' 
indicate the depth variations in T2T models. Notably, our 
method elevates T2T-7 performance from 84.82% to 85.38%. 
There is an impressive gain of 4.32% for TNT-S, a 1.82 % 
improvement on Pyramid-TNT-Ti, and notable increments 
ranging from 0.76% to 1.26% percentage points on Wave-ViT 
and Dual-ViT. Such outcomes underscore the adaptability and 
efficacy of our wavelet patches across transformer networks. 
Despite these networks having more complex image patching 
procedures than ViT, we detail a straightforward approach to 
integrate our wavelet patch in the Supplementary material, 
ensuring the original network architectures remain undisturbed. 

3) Low Sensitivity to Position Embedding of Wavelet Patch 
From the wavelet transform defined in Eq. 1, it is evident 

that features from various spectra are derived from the 
comprehensive spatial domain information of the original 
image. As evidenced by the experimental results, a 
consequential advantage of our wavelet patch is its capability 
to attenuate the ViT's dependence on location encoding. To 
substantiate this, we removed the position embedding module 
from the ViT architecture, and the outcomes are cataloged in 
Table VI. Despite forgoing location encoding, our network 
maintains a commendable accuracy rate in the ballpark of 69-
70%. This indicates that our wavelet-infused enhancement 
bestows the ViT with low sensitivity to location encoding, 
potentially eliminating the need for such modules in specific 
scenarios, thus streamlining the architecture and improving 
efficiency. 

 

 

IV. CONCLUSION 

Our research introduces a groundbreaking enhancement in 
the ViT texture and local feature extraction capabilities 
through the integration of a SMWP into its image patching 
module. This advancement significantly outperforms 
traditional spatial domain patching methods. Our approach 
allows for more effective capture and analysis of textures and 
intricate local details in images, surpassing previous ViT 
models that depended on larger datasets or complex structural 
modifications. 

The key feature of our method is its exceptional 
effectiveness in texture feature extraction, enabling ViT to 
discern fine-grained details. This capability is vital across 
various applications, especially in critical detail and texture 
interpretation areas. Our patching method's adaptability across 
different ViT architectures showcases its potential as a 
universal upgrade, offering compatibility with various ViT 
variants without necessitating extensive architectural changes. 
This versatility positions our approach as a potential new 
backbone network for ViT models, representing an update to 
their core functionality. 

TABLE VI. LOW SENSITIVITY TO POSITION 
EMBEDDING 

Network 1-level 2-level 3-level 4-level 5-level 

With position 
embedding 

MWP_ViT-B/16 71.27% 71.8% 71.87% 72.38% 71.58% 

SMWP_ViT-B/16 72.45% 72.89% 72.90% 73.11% 72.78% 

Without position 
embedding 

MWP_ViT-B/16 69.28% 69.26% 69.54% 70.53% 69.10% 

SMWP_ViT-B/16 69.02% 70.66% 70.95% 71.11% 69.28% 

TABLE V.  SMWP IN LOCAL ATTENTION-
ENHANCED TRANSFORMERS 

Network size -7 -14 Network size -S -B (Batch 64) 
T2T[7] 84.82% 86.00% TNT[8] 69.28% 71.22% 

MWP T2T 85.34% 85.76% MWP TNT 72.82% 72.55% 
SMWP T2T 85.38% 86.16% SMWP TNT 73.60% 73.30% 
Network size -Ti -S Network size -Ti -S (Batch 64) 

Swin [22] 86.72% 87.18% Pyramid TNT[23] 76.88% 78.64% 
MWP Swin 86.70% 87.00% MWP Pyramid  78.70% 77.74% 

SMWP Swin 87.18% 87.58% SMWP Pyramid 78.60% 79.52% 

Network size -S -B (Batch 64) Network size -S -B (Batch 64) 
Wave-ViT [14] 77.54% 79.34% Dual-ViT [24] 78.20% 76.26% 

MWP Wave 77.44% 80.60% MWP Dual 78.91% 77.48% 
SMWP Wave 78.30% 80.24% SMWP Dual 79.01% 77.10% 

TABLE IV. DIFFERENT ViT SIZE 
Different Size 

(Model size/Patch size) 
Base/32 Base/16 Large/32 Large/16 

ViT 63.76% 70.71% 53.98% 68.87% 
MWP ViT 62.78% 72.56% 59.39 69.13% 

SMWP ViT  64.2% 73.4% 60.52% 70.13% 

TABLE III. DIFFERENT WAVELET BASIS 
Wavelets basis ViT-B/16 Haar 

Biorthogonal 
Dmeyer 

Bior1.1 Bior2.2 Bior3.3 Bior3.5 
Top-1 

Accuracy 
70.71% 73.11% 73.28% 72.48% 71.76% 71.83% 72.99% 

 Wavelets 
basis 

Daubechies Symlets 
Db1 Db4 Db8 Sym2 Sym4 Sym8 

Top-1 
Accuracy 

72.13% 72.21% 71.95% 73.14% 73.4% 72.48% 
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