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Abstract: Botanicals represent a promising source of metabolites in the search for new biofungicides.
In this context, this study aimed at evaluating the in vitro anti-oomycete activity of hop (Humulus
lupulus L.) extracts and metabolites against Phytophthora infestans, an oomycete causing late blight
disease in Solanaceae. Crude hydro-ethanolic extracts and dichloromethane sub-extracts of different
parts (cones, leaves, stems and rhizomes) were characterized by UHPLC-UV–MS and some cone
specialized metabolites were purified by CPC and preparative HPLC. A commercial hop cone
essential oil was also analyzed by GC–MS. All extracts succeeded in inhibiting mycelial growth
and spore germination with morphological alteration of the mycelium. Extracts of leaves showed a
significant anti-oomycete activity compared to the extracts of cones, stems, and rhizomes. Moreover,
no difference was noticed between the crude hydro-ethanolic extract and the dichloromethane sub-
extract activity, except for leaves, with the apolar sub-extract being more active than the crude one.
The extracts of cones succeeded in inhibiting more P. infestans than the essential oil, which appeared
to be the less active evaluated modality. Some purified prenylated phenolic compounds also inhibited
P. infestans although copper sulfate, a mineral fungicide control, was still more active. This study
highlights the potential use of hop by-products as biofungicides to manage P. infestans.

Keywords: Humulus lupulus L.; Phytophthora infestans; anti-oomycete activity; morphological
alteration; specialized metabolites; phenolic compounds; by-products

1. Introduction

Hop (Humulus lupulus L.) is a climbing dioecious plant that belongs to the Cannabaceae
family. It is mainly cultivated for its female inflorescences, named hop cones, which are
used in brewing industry for their bittering, aromatic and preserving properties [1,2]. These
properties are due to secondary metabolites synthesized by lupulin glands found in mature
hop cones at the base of the bracts. Indeed, hop cones are mainly composed of terpenoids
(essential oil compounds) and prenylated phenolic compounds including acylphloroglu-
cinols, also named bitter acids (α- and β-acids), and prenylflavonoids [3]. Hop is also
recognized as a medicinal plant thanks to its various biological properties, usually at-
tributed to phenolic compounds [4–6]. Many studies refer to sedative [7], antispasmodic [8],
estrogenic [9,10], antioxidant [4,11], antiproliferative [12,13] and anti-inflammatory proper-
ties [14,15]. In addition, hop constituents have been well-known for many years for their
antimicrobial properties [5] including antibacterial [11,16–18], antiviral [19,20], antipara-
sitic [1,18] and antifungal activities [21,22]. In human health, Gram-positive bacteria were
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shown to be more sensitive to hop extracts than fungi [1,23]. Some prenylated phenolic
compounds, xanthohumol, 6-prenylnaringenin, and to a lesser extent α-acids, have little
or no effect against human pathogenic fungi such as Candida albicans, Fusarium oxysporum,
and Mucor rouxianus. However, they can inhibit the growth of the dermatophytic fungi
Trichophyton mentagrophytes and T. rubrum [16,21,23,24]. In food industry, some authors
showed that bitter acids are not active on Saccharomyces cerevisiae and S. pastorianus; they
can therefore be used to safeguard cultured yeast strains that are vital for beer produc-
tion, while avoiding bacterial contamination [25]. By contrast, hop extracts can inhibit the
growth of some Aspergillus and Penicillium strains making it possible to use them as natural
preservatives in bread making [21,26]. Other studies underlined the antifungal potential
of hop extracts and some of their metabolites against plant fungal pathogens [22,27,28].
The antifungal activity of different vegetative parts of hop was previously tested against
the wheat pathogen Zymoseptoria tritici. Desmethylxanthohumol and co-humulone were
identified as the main bioactive compounds of a crude hydro-ethanolic extract of cones,
whereas the essential oil from cones showed a synergistic action in association with a
synthetic fungicide [6].

Although the composition of cones is well-known and studied in the literature for
their activities, few studies deal with hop by-products such as leaves [11,29] and stems [30],
often considered as wastes. Indeed, leaves and stems represent the major biomass of hop
production (nearly 75%) [29] and they remain unexploited by-products [6,11,30,31] that can
be recovered in a circular economy perspective. [6].

Phytophthora infestans (Mont.) de Bary is the causal agent of late blight in solana-
ceous plants. This plant disease is one of the most devastating potato diseases world-
wide [32,33]. Under favorable conditions, late blight can destroy the whole plot [34,35],
which makes it an economic threat for potato production [33,36]. Due to late blight, annual
crop losses, including costs of control and damage, were estimated at more than 3 billion
dollars worldwide [34] and around 900 million dollars in Europe [37]. This pathogen is a
heterothallic (A1 and A2 mating types) and hemibiotrophic fungus-like microorganism that
belongs to the oomycetes class [34]. Currently, among all available management techniques
(resistant cultivars, cultural methods, chemical control), the use of fungicides still prevails
over other methods. Fungicides are used to control the development of P. infestans on aerial
plant parts, up to 20 treatments per year in some cases [38]. However, intensive use of these
fungicides is causing not only the appearance of resistant strains but also environmental
pollutions [37,39].

Nevertheless, chemical fungicides are not the only problematical products. Copper-
based products represent another concern, especially in organic productions that create
ecological, health, and economic issues [40]. Even if copper has been prohibited in some
northern European countries [40], the European authorization has been renewed for 7 years
with the use of 4 kg/ha/year (Commission Implementing Regulation (EU) 2018/1981)
starting from the beginning of 2019. Nonetheless, in vitro studies have been carried out on
botanicals with the aim of finding a potential substitute for copper products or fungicides
which are systematically used to manage P. infestans infections. Many studies focus on the
activity of plant extracts or essential oils on mycelial growth [41–43] or germination [44–46]
of the pathogen.

This study aimed at characterizing essential oil from hop cones by GC–MS as well as
extracts from four parts (cones, leaves, stems, and rhizomes) by UHPLC-UV–MS. Their
in vitro anti-oomycete activity was evaluated against the pseudo-fungus Phytophthora infes-
tans. Afterwards, the main prenylated phenolic compounds were purified by CPC and their
activity was determined and compared to copper sulfate as a reference active substance.
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2. Materials and Methods
2.1. Preparation of Extracts, Sub-Extracts, and Purified Compounds of Hop
2.1.1. Extraction

Whole female plants of the Nugget hop cultivar were harvested at the maturity stage
in the French Flanders (Beck farm, Bailleul, France) in 2017. Each part of the plant was
collected: cones, leaves, stems, and rhizomes. The plants were dried in the dark at room
temperature for 10 days. Each part was grounded independently with a blender and kept
in the dark.

A solid/liquid extraction was rapidly carried out on grounded plant material. Crude
hydro-ethanolic extracts (CHE) were obtained by four successive macerations stirred in the
dark with ethanol/water (9:1, v/v). Ethanol (VWR Prolabo®, Fontenay-sous-Bois, France)
was evaporated with a rotary evaporator (HeidolphTM, Schwabach, Germany) and the
CHEs were then freeze-dried (Telstar CryodosTM, Barcelona, Spain). The yields on a dry
weight basis of each crude extract were: 25.6% (cones), 8.8% (leaves), 8.4% (stems) and
16.8% (rhizomes) dw.

CHE were then subjected to a liquid/liquid extraction with water/dichloromethane
(DCM) (5:5, v/v) to obtain two immiscible phases. Anhydrous sodium sulfate (Na2SO4) was
added to the organic phase to remove water traces. After filtration, DCM (VWR Prolabo®,
Fontenay-sous-Bois, France) was evaporated to obtain a DCM sub-extract (DSE) for each
part. The percentage yields obtained for each DCM sub-extract (cones, leaves, stems, and
rhizomes) were respectively 39%, 31%, 17.6%, 7.7% dw.

2.1.2. Purification of Xanthohumol and the Mixtures of α- and αβ-Acids by CPC
for Bioassays

Xanthohumol was purified from the DCM sub-extract of cones in one step by centrifu-
gal partition chromatography (CPC) on an Armen instrument 250 mL rotor (SCPC-250-L)
provided by Gilson® (Saint-Avé, France) and connected to a Shimadzu® pump (LC-20AP,
Kyoto, Japan) [18]. All organic solvents for CPC were High Pressure Liquid Chromatog-
raphy (HPLC)-grade except for the n-heptane, which was synthesis grade (Carlo Erba
Reagents®, Cornaredo, Italy). Ethyl acetate (EtOAc) and methanol (MeOH) were purchased
from Fisher Scientific® (Hampton, NH, USA). Water was purified using a Millipore Integral
5 (Merck®, Trosly-Breuil, France) water purification system with a resistivity of not less
than 18 MΩ·cm−1. Arizona solvent system P: n-heptane/EtOAc/MeOH/water (6:5:6:5;
v/v) was selected. The analysis was monitored using a DAD detector (SPD-M20A). The
CPC was first filled with the aqueous stationary phase in the ascending mode, introduced at
30 mL·min−1 at 500 rpm, and then incrementally increased to 1600 rpm. The organic mobile
phase was then pumped into the column at a flow rate of 8 mL·min−1 and the extract was
immediately injected after the displacement of the stationary phase was observed (approx-
imatively 80 mL). Prior to injection, DSE of cones (1 g) was dissolved in 10 mL of equal
parts organic and aqueous phases and filtered through a Millipore (0.45 µm) syringe filter.
Fractions of 8 mL were collected every minute. The CPC was run in ascending mode for
60 min and then switched to extrusion mode for an additional 10 min at 30 mL·min−1 with
1600 rpm. The follow-up of CPC was monitored by online UV absorbance measurements
at 330 nm and 370 nm. All the fractions were then characterized by TLC developed with
toluene/ethyl acetate/formic acid (73:18:9; v/v) and then pooled into 5 sub-fractions (MC1
to MC5) from the ascendant mode and 3 sub-fractions (MC6 to MC8) from the extrusion
mode, according to their chemical profiles. This CPC method allowed us to purify xantho-
humol with 98% purity from MC4, as well as a mixture of α- and β-acids from MC2. The
mixture of α-acids was obtained from MC2 by preparative HPLC according to the method
described in 2.1.3.
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2.1.3. Purification and Structural Identification of Major Acylphloroglucinols Obtained by
Preparative HPLC for Characterization in Hop Extracts and Quantification

Major acylphloroglucinols were purified from MC2 using preparative HPLC-UV
according to a protocol adapted from Bocquet et al. [18]. Preparative HPLC was carried out
using a Shimadzu® HPLC system equipped with a LC-20AP binary high-pressure pump,
a CBM-20A controller, and an SPD-M20A diode array detector. The software used was
LabSolution Version 5.3. The stationary phase was a VisionHT HL C18 (5 µm, 250 × 22 mm)
column (Grace®, Epernon, France). The mobile phase was composed of water (solvent A)
and acetonitrile (solvent B). Acetonitrile (LC-MS grade) was purchased from Carlo Erba
Reagents® (Val-de-Reuil, France). The following proportions of solvent B were: 10–75%
(0–5 min), 75% (5–30 min), 75–100% (30–35 min), and 100% (35–45 min) at 12 mL·min−1.
A total of 500 µL of 60 mg·mL−1 fraction solubilized in methanol was injected. This
process allowed us to purify acylphloroglucinols (co-humulone, humulone, ad-humulone,
co-lupulone, lupulone, ad-lupulone) from the sub-fraction with a purity greater than 95%.
The structure of these compounds was determined by comparison of NMR data and mass
spectra with reported values previously obtained in our laboratory [18]. Humulone and
lupulone were obtained in sufficient quantities for quantification. The products were stored
under nitrogen in the dark at −20 ◦C.

2.2. Phytochemical Analyses
2.2.1. Characterization of Hop Commercial Essential Oil by GC-MS

Essential oil from hop cones Herbo Arôma™ (HE0518163) was obtained from Bardou
herbalist (Aix les Bains, France). It was analyzed by gas chromatography coupled with mass
spectrometry (GC–MS). A Varian CP-3800 with a capillary column VF-1ms (30 × 0.25 mm)
and a mass-spectrometry Varian Saturn 2000 (Varian S.A., Les Ulis, France) (ion trap in
full scan mode from 40 to 650 m/z) were used. The program started with 40 ◦C for 5 min,
then the temperature was increased by 2 ◦C per minute to reach 200 ◦C for 5 min. The
program finished at 250 ◦C for 10 min. The sample was solubilized at a concentration
of 1% in hexane and 1 µL was injected using helium as a vector gas. Compounds were
identified using some standards (Sigma-Aldrich, Saint-Quentin-Fallavier, France) and the
NIST (National Institute of Standards and Technology) database.

2.2.2. UHPLC-UV-MS Analyses and Quantification

Quantification studies and Ultra-High Performance Liquid Chromatography (UHPLC)-
UV-MS analyses were performed on an Acquity UPLC® H-Class Waters® system (Wa-
ters, Guyancourt, France) coupled with a Diode Array Detector (DAD) and a QDa ESI-
Quadrupole Mass Spectrometer. The software was Empower 3. Separation was achieved us-
ing a Waters® Acquity BEH C18 column (pore size 300 Å, particle size 1.7 µm, 2.1 × 150 mm,
Waters, Milford, MA, USA) connected to a 0.2 µm in-line filter. The column was kept at
30 ◦C with a flow rate at 0.3 mL·min−1. Compounds were eluted using the following
gradients: 50% B (0–1 min), 50–75% B (1–3 min), 75% B (3–5 min), 75–100% B (5–7 min)
and 100% B (7–9.5 min) with mobile phase A being water with 0.1% formic acid (v/v) and
mobile phase B being acetonitrile with 0.1% formic acid (v/v). Total ion chromatograms
were obtained in negative mode with a range of m/z 100–1000. Cone voltage and capillary
voltage were, respectively, 10 V and 0.8 kV. Probe temperature was 600 ◦C.

Solutions of CHE and DSE were prepared in triplicate the same day in MeOH at
100 µg·mL−1 for cones and 1 mg·mL−1 for the other hop parts. The main chalcones and
acylphloroglucinols were identified in CHE and DSE based on their retention time and
their mass spectra, by comparison with purified standards.

The validation of the quantification method of xanthohumol and acylphlorogluci-
nol derivatives was based on The International Conference for Harmonisation (ICH) of
Technical Requirements for Pharmaceuticals for Human Use guideline Q2-R1 [47].

Quantification was achieved in UV at 370 nm for xanthohumol and 330 nm for
acylphloroglucinols. From the corresponding calibration curves of the n-acids (humu-
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lone for α-acids and lupulone for β-acids), co- and ad-acids were also quantified based
on molecular weight ratios. External calibration curves of xanthohumol, humulone, and
lupulone injected simultaneously at several concentrations were prepared to cover the
expected range of concentrations in samples after preliminary injection of CHE and DSE
solutions. Nine concentration levels for xanthohumol and lupulone, and twelve for hu-
mulone, were selected from fifteen working solutions (100 µg·mL−1 to 2.5 ng·mL−1). This
range of concentrations was prepared from a stock solution at 1 mg·mL−1 in MeOH stored
at −20 ◦C. Calibration curves were built by plotting the peak area (y) as a function of
the nominal concentration for each calibration level (x) and then fitted by weighted (1/x)
least square linear regression. Linearity and sensitivity of the method were determined
and reported in Table 1. The linearity was evaluated by plotting the peak area versus the
concentrations of the compounds. Limit of Detection (LOD) was defined as a response of
at least 3 times the level of noise, whereas Limit of Quantification (LOQ) was determined
as the lowest concentration with a deviation <20% on back calculation. Intra and inter-day
precisions were also determined from 2 µL of cone CHE solutions injected 3 times. They
were prepared on three different days, in triplicate each day (n = 3, k = 3).

Table 1. Linearity and sensitivity of the quantification method from xanthohumol, humulone, and
lupulone using UPLC-UV.

Products LOD
(ng·mL−1)

LOQ
(ng·mL−1)

Linearity Range
(µg·mL−1) Equation R2

Xanthohumol 2.5 10 0.010–10 y = 41129.80 x + 159.37 0.9974
Humulone 10 25 0.025–100 y = 7319.23 x + 41.38 0.9975
Lupulone 10 100 0.025–10 y = 9747.26 x + 46.84 0.9979

2.3. In Vitro Anti-Oomycete Activity
2.3.1. Phytophthora infestans Culture Condition

The P. infestans strain was bought from MUCL Belgium (strain 54355, Ottignies-
Louvain-la-Neuve, Belgium). It was maintained on a V8 medium (200 mL of V8 vegetable
juice, 2 g of CaCO3, 0.05 g of β-sitosterol and 15 g of agar per liter) at 18 ◦C in the dark.

2.3.2. Activity on Mycelial Growth

The inhibitory activity on mycelial growth was evaluated on agar medium, using
the supplemented media technique from Andrivon [48] adapted in twelve-well plates
(Cellstar®, Greiner Bio-one GmbH, Frickenhausen, Germany). Each extract or compound
(CHE, DSE, purified compounds, and CuSO4) was dissolved in dimethyl sulfoxide (DMSO)
(Sigma-Aldrich, Saint-Quentin-Fallavier, France) and then added to V8 medium. Two
milliliters were poured per well and three repetitions per concentration were made. Discs
of 0.4 cm were cut from the growth area of a ten-day-old P. infestans culture, grown at 18 ◦C
in the dark on a Petri dish (90 mm) filled with 15 mL of V8 medium. Mycelial discs were
transferred in the middle of the well with the mycelium on top of the disc. Plates were then
sealed with parafilm and placed at 18 ◦C in the dark for 3 days. Two diameters per well
were finally measured thanks to a ruler, which allowed us to determine mycelial growth.

Essential oil was tested separately at six concentrations ranging from 1200 to
20,000 mg·L−1. All extracts and compounds were tested at eight concentrations, with
a maximum of 1% (v/v) DMSO. First, the activity of CHE and DSE from separated plant
parts was determined. For all CHEs, as well as the DSE of cones, stems and rhizomes, con-
centrations were tested between 4 and 500 mg·L−1. For the DSE of leaves, concentrations
tested ranged from 2 to 250 mg·L−1. Xanthohumol was tested at concentrations between 4
and 500 mg·L−1 whereas α- and αβ-acids concentrations were between 2 and 250 mg·L−1.
The activity of purified compounds was compared to copper sulfate (CuSO4, Merck®,
Darmstadt, Germany) which was tested at eleven concentrations from 0.5 to 500 mg·L−1.
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2.3.3. Activity on Spore Germination

The inhibition of spore germination was evaluated by a 96-well plates (Corning® 3595,
Corning Incorporated, New York, NY, USA) assay, using a protocol adapted from Sharma
et al. [49]. Briefly, each extract (DSE or CHE) or pure compound (including copper sulfate
as a positive control) was dissolved in DMSO and diluted with glucose peptone liquid
medium (14.3 g of glucose and 7.1 g of bactopeptone per liter) in a range of concentrations
(between 15.6 and 1000 mg·L−1 for CHE, DSE, bitter acids and between 7.8 and 500 mg·L−1

for copper sulfate and xanthohumol), with a maximal DMSO concentration of 1% (v/v) in
the final volume. Essential oil was tested similarly but from 70 to 27,000 mg·L−1. In each
well, 112 µL of these solutions was poured, and 38 µL of glucose peptone (control for the
net optical density: OD) or spore suspension was added to reach a final volume of 150 µL.
For each concentration tested, controls were done in duplicate and extracts or compounds
were replicated in 4 other wells. The spore suspension was obtained from sporangia that
were recovered on glucose peptone from Petri dishes placed 18 days at 20 ◦C followed
by 2 days at 10 ◦C, and then filtered. The sporangia suspension was calibrated at 1 × 105

sporangia.mL−1 and placed one hour at 4 ◦C before the beginning of the microplate assay.
After adding the calibrated spore suspension, the plates were sealed and incubated at 20 ◦C
in the dark under agitation at 140 rpm for 6 days. The OD values were read at 630 nm with
a spectrophotometer (Biotek EL 808, BioTek Instruments, Santa Clara, CA, USA).

2.3.4. Microscopical Observations

Microscopical observations were done 24 h after germination evaluation under an
optical microscope Nikon Eclipse 80i equipped with a Nikon Digital Camera Ddxm1200c
(Nikon France S.A., Champigny sur Marne, France). Five microliters of glucose peptone and
mycelium were taken from microwells for each extract or product (CHE and DSE extracts,
purified compounds and CuSO4) with three replicates each, and placed on glass slides with
5 µL of lactophenol blue solution. Samples were compared to the untreated control.

2.3.5. IC50 and Statistical Data Analysis

Statistical analysis was performed using R-software (R version 3.5.3, R Core Team,
2019) and its package nlstools. The half maximal inhibitory concentrations (IC50), the
concentration that inhibits the mycelial growth and germination by 50%, were determined
by mycelial diameter measurements and OD values, using nonlinear regression with
four parameters. One IC50 per extract or product was obtained from two independent
experiments as described by Muchembled et al. [50]. A Fisher test with p-value (α = 5%)
was used to determine if there were any differences between extracts or products. Then, a
pairwise comparison of IC50 was performed based on confidence intervals with Bonferroni
adjustments.

3. Results
3.1. Phytochemical Analyses
3.1.1. Characterization of the Essential Oil from Hop Cones by GC-MS Analysis

The essential oil from hop cones was mainly composed of three compounds: myrcene,
trans-caryophyllene and α-humulene (Supplementary Figure S1).

These major compounds represent around 80% of the composition of the essential oil.
More than 60% of the content corresponds to the two sesquiterpenes: trans-caryophyllene
(33%) and α-humulene (31.4%). Myrcene (or β-myrcene), a common monoterpene, is the
third main compound (16.4%). Six other compounds with levels greater than 1% were also
identified (Table 2). This composition is in agreement with the literature [23].
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Table 2. Compounds with levels greater than 1% in the commercial essential oil from hop cones.

Compound Molar Mass (g·mol−1) Chemical Formula Retention Time (min) Percentage in the EO

Myrcene 136 C10H16 16.8 16.4%
Coapene 204 C15H24 42.8 1.0%

trans-caryophyllene 204 C15H24 45.3 33.0%
α-humulene 204 C15H24 47.3 31.4%
γ-muurolene 204 C15H24 48.6 1.3%
α-selinene 204 C15H24 49.1 1.1%
δ-cadinene 204 C15H24 51.3 1.2%

Humulene epoxide 220 C15H24O 55.5 1.1%
Cembrene 272 C20H32 73.4 2.4%

Compounds <1% - - - 11.3%

3.1.2. Characterization and Quantification of Hop Phenolic Compounds from Cones,
Leaves, Stems, and Rhizomes

To gain insight into the anti-oomycete activity of different hop parts, a phytochemical
investigation was conducted on crude hydro-ethanolic extracts (CHE) and DCM sub-
extracts (DSE) of the Nugget cultivar used for bioassays. Major prenylated chalcones
and acylphloroglucinols were first identified by UHPLC-UV–MS in CHE and DSE based
on their retention times and their mass spectra (Figure 1). They were then quantified by
UHPLC-UV in the extracts thanks to the standards purified in our laboratory by CPC and
preparative HPLC from the DSE of cones [18].
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Figure 1. UHPLC-UV chromatograms (330 nm) of DCM sub-extracts (DSE) prepared at 100 µg·mL−1

in MeOH for (A) cones, and 1 mg·mL−1 in MeOH for (B) leaves, (C) stems and (D) rhizomes.
Identified compounds and their retention time (rt) are: xanthohumol (1) rt 2.78 min, co-humulone
(2) rt 4.37 min, humulone (3) rt 4.75 min, ad-humulone (4) rt 4.86 min, co-lupulone (5) rt 6.31 min,
lupulone (6) rt 6.92 min, ad-lupulone (7) rt 7.05 min.
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The method used showed a good linearity for each compound over the concentration
range used for calibration. In addition, acceptable intra and inter-day precisions for
xanthohumol (RSD % = 10.6, 12.0), humulone (RSD % = 12.3, 13.89) and lupulone (RSD %
= 10.37, 11.86) were observed for the CHE of cones.

As previously highlighted [18], the CHE of cones showed the highest content of
prenylated phenolic compounds in comparison with the CHE from other parts (Table 3,
Supplementary Figure S2). No prenylated phenolic compounds could be quantified in
the extract of rhizomes (values below LOD) and only xanthohumol and humulone were
quantified in the extract of stems. Moreover, humulone was the main compound in the
extract of cones (147 µg·mg−1), with a total α/β-acid (humulone/lupulone derivatives)
ratio of 2.4, whereas lupulone was the most abundant compound in the extract of leaves,
with a ratio of 0.5.

Table 3. Content (in µg·mg−1) of prenylated chalcones and acylphloroglucinols in (A) Crude hydro-
ethanolic extracts (CHE) and (B) DCM sub-extracts (DSE) of different hop parts (n = 3, mean ± SD).

Xanthohumol Co-Humulone N-Humulone Ad-Humulone Co-Lupulone N-Lupulone Ad-Lupulone

Crude Hydro-Ethanolic Extracts (CHE)

Cones 19.475 ± 1.738 64.452 ± 6.000 146.784 ± 13.715 41.584 ± 3.824 46.806 ± 4.173 32.053 ± 2.824 13.524 ± 1.195

Leaves 1.084 ± 0.126 0.674 ± 0.142 1.741 ± 0.211 0.556 ± 0.071 1.851 ± 0.240 4.290 ± 0.527 0.676 ± 0.091

Stems 0.106 ± 0.009 <LOQ 0.066 ± 0.017 <LOD <LOQ <LOQ <LOQ

Rhizomes <LOD <LOD <LOD <LOD <LOD <LOD <LOD

DCM sub-extracts (DSE)

Cones 19.017 ± 0.546 71.232 ± 2.956 162.368 ± 6.608 45.805 ± 1.772 35.247 ± 1.212 24.189 ± 1.182 10.191 ± 0.441

Leaves 1.029 ± 0.051 0.542 ± 0.030 1.379 ± 0.066 0.401 ± 0.017 0.461 ± 0.021 2.335 ± 0.150 0.161 ± 0.011

Stems 0.685 ± 0.021 0.166 ± 0.007 0.590 ± 0.005 0.101 ± 0.003 <LOD 0.268 ± 0.011 <LOQ

Rhizomes 0.062 ± 0.004 0.077 ± 0.006 0.307 ± 0.018 0.374 ± 0.043 <LOD <LOQ <LOQ

LOD = Limit Of Detection; LOQ = Limit Of Quantification.

The liquid/liquid extraction with DCM tends to eliminate more polar compounds and
to concentrate more α-acids. However, it has a lesser impact on xanthohumol levels except
in stems and rhizomes. The partitioning even tends to slightly decrease the β-acid content,
which can be explained by the sensitivity of these molecules to oxidation [51,52] (Table 3).

3.1.3. Characterization of xanthohumol, α-Acids, and αβ-Acids Mix by UHPLC-UV-MS

As the levels of phenolic compounds are higher in cones than in leaves, xanthohumol,
the α-acids mix and the αβ-acids mix were more easily extracted from cones by CPC
and preparative HPLC. Xanthohumol and the mix were characterized by UHPLC-UV–MS
(Figure 2).
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Figure 2. UHPLC-UV chromatograms (330 nm) of xanthohumol (A), mix of α-acids (B), and mix of
αβ-acids (C). Identified compounds and their retention times (rt) were: xanthohumol (1) rt 2.78 min,
co-humulone (2) rt 4.37 min, humulone (3) rt 4.75 min, ad-humulone (4) rt 4.86 min, co-lupulone (5)
rt 6.31 min, lupulone (6) rt 6.92 min, ad-lupulone (7) rt 7.05 min.
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3.2. In Vitro Anti-Oomycete Activity on Mycelial Growth and Spore Germination
3.2.1. Hop Cone Essential Oil Activity

Essential oil from hop cones was tested on the mycelial growth and germination of
P. infestans and showed a slight anti-oomycete activity at the highest tested concentrations.
Indeed, IC50 values were higher than 1000 mg·L−1 on mycelial growth and higher than
5000 mg·L−1 on spore germination (Table 4). Thus, the mycelium seemed more sensitive to
the essential oil from the hop cones than the spores.

Table 4. Half maximal inhibitory concentration (IC50) values of essential oil from hop cones on
P. infestans mycelial growth and spore germination.

Mycelial Growth Spore Germination

IC50 Confidence Interval (95%) IC50 Confidence Interval (95%)

(mg·L−1) 2.5% 97.5% (mg·L−1) 2.5% 97.5%

1 295 1 159 2 181 5 355 1 714 9 775

3.2.2. Extracts and Sub-Extracts Activity

The activity of hop crude hydro-ethanolic extracts (CHE) and DCM sub-extracts (DSE)
was first evaluated on mycelial growth and spore germination of P. infestans.

For assays on solid medium, all tested extracts inhibited partially or completely the
mycelial growth at the range of tested concentrations (Figure 3A). The extracts of leaves,
both CHE and DSE, appeared to have a better anti-oomycete activity than the other hop
parts, with an IC50 of 37.8 mg·L−1 and 13.4 mg·L−1 respectively (Figure 3A,B). Interestingly,
the CHEs of cones, stems and rhizomes showed the same activity against P. infestans and
were significantly less active than CHE of leaves. Similarly, the DSE of leaves had an IC50
statistically lower than other hop parts. For the same hop part, a different activity between
types of extract was only observed for leaves, with the DSE being more active than the
CHE. On the contrary, there was no significant difference between CHE and DSE activity
of cones, stems and rhizomes.

All the tested extracts showed an antifungal activity on P. infestans spore germination
in a glucose peptone medium (Figure 4A). However, extracts of leaves seemed to be more
effective than other hop extracts (Figure 4B). Indeed, even though the CHE of leaves was
not statistically different from CHE of cones and rhizomes, the DSE of leaves was the most
active extract with an IC50 of 33.7 mg·L−1 . These results also showed that the DSE of leaves
was more active than the CHE of leaves (Figure 4A). Unlike extracts of leaves, there was no
difference of activity between the CHE and the DSE for cones, stems and rhizomes, nor
between these three hop parts.

3.2.3. Prenylated Phenolic Compound Activity

Purified compounds of cones were tested on mycelial growth. Both xanthohumol and
the bitter acid mix showed anti-oomycete activity (Figure 5A). The α-acids mix was signifi-
cantly more active than xanthohumol, with an IC50 of 29.1 mg·L−1. Xanthohumol showed
the highest IC50 (191.2 mg·L−1). It should be noted that mycelium was not completely
inhibited by this compound, with a maximal inhibition of 80% recorded at 500 mg·L−1.
Copper sulfate, used as a reference, was more active than hop compounds with an IC50 of
2.2 mg·L−1.
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Figure 3. Anti-oomycete activity of hop extracts and sub-extracts on P. infestans_mycelial growth.
(A) Half maximal inhibitory concentration (IC50) values. (B) Inhibition of mycelium growth on V8
medium by a range of concentrations (0 to 250 mg·L−1) of DSE of leaves after 10 days. Different
letters represent significant differences.
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Figure 5. Half maximal inhibitory concentration (IC50) values of hop main compounds and copper
sulfate on P. infestans mycelial growth (A) and germination (B). Different letters represent significant
differences.

Interestingly, these differences between bitter acids and xanthohumol were observed
for P. infestans mycelial growth but not for its germination in the microplate. Indeed,
xanthohumol, the α-acids mix, and the αβ-acids mix had a relatively similar activity with
IC50 values of 191.5, 129.3 and 116.8 mg·L−1 respectively (Figure 5B). They were also less
active than copper sulfate (IC50 of 41.2 mg·L−1).

3.2.4. Morphological Modifications of the Mycelium

Observations for each extract and their metabolites are summarized in Table 5 and
changes of the mycelium morphology under different conditions are illustrated in Figure 6.

Table 5. Optical observations of P. infestans mycelium morphology under different hop part extracts,
metabolites, and copper sulfate treatments.

Branched Mycelium Lysed Mycelium

Untreated - -

Cones
CHE + +
DSE + +

Leaves
CHE + +
DSE 0 0

Stems
CHE - +
DSE - +

Rhizomes
CHE + +
DSE - +

Copper sulfate + +

Purified compounds
Xanthohumol + +

α-acids + +
αβ-acids + +

+ : presence of branched mycelium/presence of lysed mycelium; - : absence of branched mycelium (= filamentous
mycelium)/absence of lysed mycelium (= intact mycelium); 0 : only non-germinated sporangia or germinated
sporangia reforming sporangia.
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Figure 6. Optical microscopy images taken after 7 days of incubation of P. infestans in glucose peptone
medium mixed with hop constituents and copper at concentrations close to their IC50. (A) Untreated
control; (B) Illustration of branched mycelium; (C) Illustration of branched and partially lysed
mycelium; (D) Illustration of lysed mycelium; (E) Germinated sporangia reforming sporangia (1) and
non-germinated sporangia (2) under the DSE of leaves treatment; (F) Xanthohumol treatment leading
to branched tips (1) and thick mycelium (2).



Agronomy 2022, 12, 2826 14 of 19

First, the mycelium from the untreated control was observed and appeared to be well
developed with filamentous hyphae (Figure 6A). Under hop treatments, important morpho-
logical changes were noticed with all extracts of the four hop parts at concentrations around
IC50 values (Table 5). Indeed, the mycelium looked more branched for extracts of cones
(CHE and DSE), as well as the CHE of leaves and rhizomes (Figure 6B,C). Moreover, the
mycelium seemed partially or entirely lysed for all hop extracts (Figure 6C,D). Interestingly,
mycelium under the DSE of leaves treatment was quite different from other treatments.
Most of the sporangia did not germinate (Figure 6E2), but some germinated with a small
hypha, directly reforming sporangia (Figure 6E1).

Microscopical observations were also performed for hop compounds and copper
sulfate. Under copper treatment, the mycelium seemed more branched than the control
one and started to have few lysed hyphae. Observations of the mycelium treated with the
α-acids mix and αβ-acids mix were similar to hop extract treatments (Table 5). However,
the treatment with xanthohumol alone seemed to have a different impact on mycelium mor-
phology. Interestingly, the mycelium looked much more branched on the tips (Figure 6F1)
and thicker (Figure 6F2) than the control one. The mycelium treated with xanthohumol
also looked partially lysed.

4. Discussion

The present study was focused on anti-oomycete activity of various hop extracts and
some of their specialized metabolites on P. infestans. The originality lies in the attempt
for adding value to unexploited hop parts, in particular leaves, that are considered as
by-products by the brewing industry. Hop is a dioecious plant species, and only the
female inflorescences are used because they contribute to the bitterness, aromaticity and
conservation of beer. To a lesser extent, the cones are also present on the market of food
supplements [3]. However, in order to develop circular economy, the emphasis could
be placed on promoting the whole plant and seeking outlets for the use of agricultural
by-products [53]. Hop leaves are mainly recycled by composting [31].

The anti-oomycete activity was evaluated for both hop cone essential oil and extracts
from the different parts of the plant (crude hydro-ethanolic extracts and apolar sub-extracts).
The composition of the essential oil from cones presented in this study was consistent with
Langezaal et al. [23], as myrcene, β-caryophyllene and α-humulene were the three major
terpenoids identified. In addition, this study confirmed the results presented by Zanoli and
Zavatti [8], which showed that bitter acids are the main compounds of cone extracts, where
α-acids (co-humulone, humulone and ad-humulone) and β-acids (co-lupulone, lupulone
and ad-lupulone) form a complex mix. Flavonoids are also present in these extracts,
especially xanthohumol, which is the main prenylated chalcone. The quantification of these
main phenolic compounds in the CHE of cones was consistent with data from Bocquet
et al. [18] for the Nugget cultivar. The liquid/liquid extraction by dichloromethane allowed
us to concentrate further these prenylated phenolic compounds, in particular humulone,
and to eliminate the most polar molecules, such as flavonoid glycosides [3], to compare the
anti-oomycete activity with the crude extract.

The metabolome of hop agricultural by-products, including the leaves, stems and
rhizomes, was barely studied [18,54,55]. Bocquet et al. [18] already reported that leaves
produced bitter acids and xanthohumol, with lupulone being the most abundant compound,
which was confirmed in this study. However, their levels are lower than those in cones.
Lupulone is about 10 times less concentrated in leaves than in cones. DSE and CHE of leaves
contain similar amounts of these phenolic compounds. The presence of co-humulone and
co-lupulone in leaves seems to depend on the hop cultivar, as Mishra et al. [56] noticed their
absence in Osvald’s 72 cultivar. Moreover, xanthohumol and humulone have already been
identified in the CHE of stems, but for the first time xanthohumol, α-acids (co-humulone,
humulone and ad-humulone) and lupulone were quantified in DSE. Even though, neither
xanthohumol nor bitter acids were present in the CHE of rhizomes, xanthohumol and
α-acids were quantified in the DSE.
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The antifungal activities of hop extracts and some of their metabolites were mostly
studied on human pathogens [1,4,5] and more recently on plant or post-harvest pathogens [6,
22,28,57]. The anti-oomycete activity of hop extracts from four parts (rhizomes, stems,
leaves and cones) against Phytophthora infestans was evaluated for the first time. The results
revealed the potential of female cones and agricultural by-products to inhibit mycelial
growth and spore germination despite differences in extract composition. Both the CHE
and DSE of cones revealed close and interesting activity on P. infestans that could be linked
to their relatively similar compositions in xanthohumol and bitter acids. Antifungal ac-
tivity has already been attributed to hop cones. Arruda et al. [28] and Nionelli et al. [26]
demonstrated the potential activity of cones on several post-harvest pathogens such as
Byssochlamys nivea and Penicillium spp. A crude hydro-ethanolic extract of cones also
appeared to be the most active extract of the plant on the phytopathogenic fungus Zy-
moseptoria tritici. Indeed, Bocquet et al. [6] showed that the crude extracts of leaves, stems,
and rhizomes did not really inhibit the mycelial growth of the fungus, whereas the crude
extract of cones was the most active with an IC50 of 730 mg·L−1. In that study, the essential
oil from cones was even more active with an IC50 of 360 mg·L−1. Interestingly, opposite
results were observed on P. infestans as the essential oil from cones was only slightly active.
Through this study, the CHE of cones seemed to be more active on the P. infestans oomycete
than on Z. tritici fungus. Moreover, unlike Bocquet et al. [6], the CHE of leaves appeared to
be the most active CHE on the spore germination and mycelial growth of P. infestans, with
an IC50 of 37.8 mg·L−1 and 86.8 mg·L−1 respectively. The CHE of stems and rhizomes had
anti-oomycete activity close to the CHE of cones. A recent study also showed the potential
of hop stem and root extracts against Verticillium nonalfalfae mycelial growth with an IC50
between 130 and 212 mg·L−1 for stems and between 1172 and 1804 mg·L−1 for roots [57].
These results are particularly relevant with a view of finding a particular application of
agricultural by-products of hop production.

Many plant extracts or essential oils already appeared to be active in vitro on mycelial
growth [41,42,58] and spore germination of P. infestans [44–46] but in most of the cases high
concentrations were tested. However, Abdelgaleil et al. [59] evaluated several extracts of
Curcuma longa L. rhizomes on mycelial growth and obtained an EC50 equal to 159.8 mg·L−1

for the most active extract. Concerning germination, Rogozhin et al. [60] demonstrated that
the most active tested product was a mixture of peptides from three plants (Chelidonium
majus, Inula helertium, and Equisetum arvense) with an IC50 of 250 mg·L−1. Thus, the results
in this study showed that hop extracts have an interesting potential to control P. infestans
in in vitro conditions, with an IC50 ranging from 13.4 to 188.5 mg·L−1 for mycelial growth
and from 33.7 to 500 mg·L−1 for spore germination.

This study also aimed to determine the anti-oomycete activity of well-known hop
phenolic compounds, xanthohumol and bitter acids. Purified xanthohumol, α-acids mix,
and αβ-acids mix were active on P. infestans. α-acids were more active than xanthohumol,
especially on oomycete mycelial growth, with an IC50 equal to 29.1 mg·L−1. However, hop
compounds remained less active than copper sulfate, a mineral fungicide causing envi-
ronmental problems. Besides its antifungal activity against human pathogenic fungi [24],
co-humulone demonstrated interesting antifungal activity against the phytopathogenic
fungus Z. tritici [6]. Biofungicide properties of xanthohumol were only demonstrated on
human pathogenic fungi [1] but not on phytopathogenic fungi yet. However, its close
analogue, desmethylxanthohumol, has shown a weak antifungal activity against Z. tritici.

The active identified compounds, xanthohumol and bitter acids, are mainly present
in hop cones and this could not explain the activity of other parts of the plant as they
were only barely detected in some extracts. Thus, other compounds not yet identified
might be behind this anti-oomycete activity. For now, there is no clear link between the
anti-oomycete activity of extracts and the content of main metabolites of cones.

Even though the main prenylated phenolic compounds of hop cones are not responsi-
ble for the activity of all parts, every extract showed close morphological changes of the
mycelium grown in liquid medium. A branched and/or lysed mycelium was observed
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under the optical microscope. Morphological damages on P. infestans were already observed
under several treatments with compounds from microbial origin [61–63] but also with
botanicals [41,60,64]. The mode of action was not determined here, but according to the
Fungicide Resistance Action Committee (FRAC), plant extracts could have an impact on
cell walls and membranes (FRAC BM01). Thus, lyses and ramification of the mycelium ob-
served under hop treatments could be linked to the loss of cell wall integrity or membrane
permeability.

5. Conclusions

For the purpose of seeking alternatives to conventional treatments to manage diseases
caused by P. infestans, the anti-oomycete potential of essential oil from hop cones as well
as crude hydro-ethanolic extracts and apolar sub-extracts of different parts of hop plant
was evaluated. The essential oil from hop cones was not very active. By contrast, the crude
and apolar extracts of cones, leaves, stems and rhizomes displayed an in vitro activity on
both mycelial growth and spore germination of P. infestans. Some prenylated phenolic
compounds were also tested and showed a moderate anti-oomycete activity. α-acids were
more active than xanthohumol, especially on oomycete mycelial growth. The activity
of these specialized metabolites could partly explain the activity of cone extracts, but
is not sufficient to elucidate the full activity of the other parts of the plant where these
compounds are less concentrated. Further investigations will be required to identify other
active compounds and to fully understand the anti-oomycete activity of these hop parts.
In addition, many hop extracts tested also induced changes in mycelium morphology. In
conclusion, leaves seem to be the most promising hop part against this oomycete, which
makes this abundant agricultural by-product particularly interesting for pest management.
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caryophyllene (2), and α-humulene (3); Figure S2: Content (in µg·mg−1) of prenylated chalcones and
acylphloroglucinols in (A) Crude hydro-ethanolic extracts (CHE) and (B) DCM sub-extracts (DSE) of
different hop parts (n = 3, mean ± SD).
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