
HAL Id: hal-04429001
https://hal.science/hal-04429001v1

Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing EL minimal modules: a combined approach
Hui Yang, Yue Ma, Nicole Bidoit

To cite this version:
Hui Yang, Yue Ma, Nicole Bidoit. Computing EL minimal modules: a combined approach.
BDA2022 :“ Gestion de Données – Principes, Technologies et Applications ”, Oct 2022, Clermont-
Ferrand, France. �hal-04429001�

https://hal.science/hal-04429001v1
https://hal.archives-ouvertes.fr

Unp
ub

lis
he

d work
ing

dra
ft.

Not
for

dis
tri

bu
tio

n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Computing EL minimal modules: a combined approach
Hui Yang

yang@lisn.fr
LISN, Univ. Paris-Sud, CNRS,

Université Paris-Saclay
Orsay, France

Yue Ma
ma@lisn.fr

LISN, Univ. Paris-Sud, CNRS,
Université Paris-Saclay

Orsay, France

Nicole Bidoit
nicole.bidoit@lisn.fr

LISN, Univ. Paris-Sud, CNRS,
Université Paris-Saclay

Orsay, France

ABSTRACT
Because widely used real-world ontologies are often complex and
large, one important challenge has emerged: designing tools for
users to focus on sub-ontologies corresponding to their specific
interests. To this end, minimal modules have been introduced to
provide concise ontology views. However, computing such minimal
modules remains highly time-consuming. In this paper, we design a
new method combining graph and SAT techniques, to address the
computation cost of minimal modules. Our approach first introduces
a new abstract notion of invariant to characterize sub-ontologies
sharing the same logical information. Then, we construct a finite
invariant using graph representations of EL ontologies. Finally,
we develop a SAT-based algorithm to compute minimal modules
using this invariant. Finally, in some cases, when the computation
is still too time-consuming, we provide approximations of minimal
modules. Our experiments on real-world ontologies outperform the
state-of-the-art algorithm. Our algorithm provides more compact
approximate results than the well-known locality-based modules
without losing efficiency.

CCS CONCEPTS
• Computing methodologies → Description logics.

KEYWORDS
Ontology, Description Logic EL, Minimal module

1 INTRODUCTION
Description logic-based ontologies have been widely studied and
used in many areas. However, real world ontologies are often too big
to be handled by humans. The most evident approach for overcoming
this problem, called module extraction, is to extract sub-ontologies
related to the user interests. For example, the well-known biomed-
ical ontology Snomed CT contains 300,000+ axioms. By module
extraction, we could provide doctors with small sub-ontologies of
Snomed CT based on symptoms to establish a diagnostic. Module
extraction has also been used for different problems, like ontology
debugging [1], re-use [10], and forgetting [17].

We can distinguish two classes of module extraction. In the first
class, methods such as MEX-module [14], AMEX-module [8] and
locality-based module [22] are efficient however they are not accu-
rate in the sense that they provide sub-ontologies containing many
unnecessary terms. In the second class, methods such as minimal
module [6] and justification [5] are precise and provide minimal
results, but they suffer from high complexity [21] and are time con-
suming in practice. We engage these issues by concentrating on
computing minimal modules, which is also investigated as minimal
deductive module [15] in [16].

Minimal modules provide concise information focusing on one’s
interest. They are specified as the minimal sub-ontologies that pre-
serve all the logical entailments over a particular set of items called
the signature. The state-of-the-art method [6] for computing all
minimal modules of an EL terminology is based on subsumer and
subsumee simulations following the idea from [7, 18]. For the more
expressive language ALCH , uniform interpolation [19] has been
investigated to compute one minimal module at a time [16].

In this paper, we propose a new efficient method for comput-
ing all minimal modules of an EL terminology based on graph
representations of ontologies. This method is inspired by the SAT-
based approach developed to compute justifications. Justifications
are minimal sub-ontologies that preserve one logical entailment. The
SAT-based methods [2, 3, 11, 20] are the state of the art methods for
computing justifications for specific languages such as EL-ontology.
Their main idea is to translate the computation of justifications to a
SAT problem and then solve it using SAT tools.

Our contribution is three-fold: (i) we introduce an abstract notion
of invariant; a given invariant is meant to capture sub-ontologies
sharing the same logical information and, here, we provide a finite
invariant specifically relevant for minimal module extraction; (ii) we
develop a SAT-based method for computing minimal modules based
on our invariant; (iii) to validate the efficiency of our method, we
implement a prototype GIMM which outperformed the state-of-the-
art algorithm [6] on real-world ontologies.

Building our finite invariant relies on the hyper-graph and direct-
graph representations of EL ontology. Our method also provides an
approximation result for minimal modules. This may be helpful, for
example, if there are too many different minimal modules making
impossible enumerating all of them. An empirical comparison with
the locality-based module method implemented by OWL API [9]
shows that the GIMM approximation is promising: it is more concise
without loss of efficiency.

Due to space limitations, some proofs and details about experi-
ments as well as the description of prototype GIMM are available
here: shorturl.at/iwW49.

2 PRELIMINARY
2.1 Ontology and minimal module
In this paper, we focus on the EL-ontology defined as follows.
Given finite sets of atomic concepts N𝐶={𝐴, 𝐵, · · · } and atomic
roles N𝑅={𝑟, 𝑠, · · · }, the set of EL concepts 𝐶 and axioms 𝛼 are
built by the grammar rules (i) 𝐶 ::= ⊤ | 𝐴 | 𝐶⊓𝐶 | ∃𝑟 .𝐶 or (ii)
𝛼 ::= 𝐶⊑𝐶 | 𝐶≡𝐶 . We denote by 𝑠𝑖𝑔(𝐶) the atomic concepts and
roles that compose 𝐶. For example, 𝑠𝑖𝑔(∃𝑟 .(𝐵1⊓𝐵2))={𝑟, 𝐵1, 𝐵2}.

An EL-ontology O is a finite set of EL-axioms. An interpretation
I=(△I , ·I) of O consists of a non-empty set △I and a mapping

2022-05-24 19:11. Page 1 of 1–7.

shorturl.at/iwW49

Unp
ub

lis
he

d work
ing

dra
ft.

Not
for

dis
tri

bu
tio

n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Hui and Yue, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

from atomic concepts 𝐴∈N𝐶 to a subset 𝐴I⊆△I and from roles
𝑟∈N𝑅 to a subset 𝑟I⊆△I×△I . For a concept 𝐶 built from the gram-
mar rules, we define𝐶I inductively by: (⊤)I=△I , (𝐶⊓𝐷)I=𝐶I∩𝐷I ,
(∃𝑟 .𝐶)I={𝑎∈△I | ∃𝑏∈𝐶I , (𝑎, 𝑏)∈𝑟I }. An interpretation is a model
of O if it is compatible with all axioms in O, i.e., for all 𝐶⊑𝐷,𝐶≡𝐷 ,
we have 𝐶I⊆𝐷I ,𝐶I=𝐷I respectively.

An EL-ontology O is normalized if all its axioms are of the form
𝐴⊲⊳𝐵1⊓𝐵2⊓· · ·⊓𝐵𝑚, 𝐴⊲⊳∃𝑟 .𝐵, where ⊲⊳∈{≡, ⊑}, 𝐴, 𝐵, 𝐵𝑖∈N𝐶 , 𝑟∈N𝑅 .
Every EL-ontology can be normalised in polynomial time by intro-
ducing new atomic concepts. Moreover, we say the O is a terminol-
ogy if any atomic concept 𝐴 appears at most once on the left-hand
side of axiom in O.

We say O|=𝛼 where 𝛼 is an axiom if and only if each model of O
is compatible with 𝛼 .

Definition 1. (Justification) Given O such that O|=𝐴⊑𝐵. A justifi-
cation of 𝐴⊑𝐵 is a minimal subset 𝐽⊆O such that 𝐽 |=𝐴⊑𝐵.

Given two ontologies O1,O2 and a signature Σ⊆N𝐶∪N𝑅 , the
logical difference 1 between O1,O2 over Σ is the set:

DΣ (O1,O2)={𝛼 |𝑠𝑖𝑔(𝛼)⊆Σ,O𝑖 |=𝛼,O𝑗 ̸ |=𝛼, {𝑖, 𝑗}={1, 2}}.

Definition 2. (Minimal module) A sub-ontology M⊆O is a mini-
mal module for Σ if DΣ (M,O)=∅ and there is no M ′⊂M such that
DΣ (M ′,O)=∅.

When O1,O2 are terminologies, we have:

Theorem 1. [13] Given two terminologies O1,O2 and a signa-
ture Σ. If DΣ (O1,O2) is not empty, then there exists an axiom in
DΣ (O1,O2) of the form 𝐴⊑𝐶 or𝐶⊑𝐴, where 𝐴 is an atomic concept.

Example 1. For terminology

O0={𝛽1:𝐵2⊑𝐴1⊓𝐴2, 𝛽2:𝐵1⊑𝐴1, 𝛽3:𝐴3≡∃𝑠 .𝐴1, 𝛽4:𝐴4≡∃𝑠 .𝐴2,

𝛽5:𝐵3≡𝐴3⊓𝐴4, 𝛽6:𝐴4⊑∃𝑠 .𝐴5, 𝛽7:𝐴5⊑𝐵4⊓𝐵5},
we have O0 |=𝐵2⊑𝐴1, and 𝐽0={𝛽1} is the only justification for 𝐵2⊑𝐴1.

If we consider a signature Σ0={𝑠, 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5}, there is only
one minimal module for Σ0: M0=O0 \ {𝛽2}.

2.2 Hyper-graph
In this paper, we associate EL-ontologies with hyper-graphs. A
(directed) hyper-graph [4] H={V, E} consists of a node set V =

{𝑣1, 𝑣2, · · · , 𝑣𝑛} and an edge set E = {𝑒1, 𝑒2 · · · , 𝑒𝑚}, 𝑒𝑖 = ⟨𝑇 (𝑒𝑖), 𝑓 (𝑒𝑖)⟩,
where 𝑇 (𝑒𝑖) ⊆ V is a subset and 𝑓 (𝑒𝑖) ∈ V is a node.

Definition 3. Given a hyper-graph H={V, E}, assume 𝑆⊆V and
𝑣∈V. A hyper-path from 𝑆 to 𝑣 is a sequence ℎ=[𝑒1, 𝑒2, · · · , 𝑒𝑛] of
hyper-edges satisfying:

(1) 𝑓 (𝑒𝑛)={𝑣};
(2) for 𝑖=1, · · ·, 𝑛, 𝑇 (𝑒𝑖)⊆𝑆∪{𝑓 (𝑒1; · · · , 𝑓 (𝑒𝑖−1))}
(3) for 𝑖=1, · · ·, 𝑛, 𝑓 (𝑒𝑖)∈

⋃
𝑖< 𝑗≤𝑛 𝑇 (𝑒 𝑗).

If 𝑣∈𝑇 (𝑒1), we say ℎ is a loop. If ℎ does not contain any loop, we
say ℎ is loop-free.

For simplicity, in the following we also write edges ⟨{𝑣1}, 𝑣⟩,
⟨{𝑣1, · · · , 𝑣𝑘 }, 𝑣⟩ as 𝑣1→𝑣, {𝑣1, · · · , 𝑣𝑘 }→𝑣 .

1Notice that our definition of logical difference is symmetric and generalizes the classical
one [12].

3 CONSTRUCTION OF INVARIANT
In this section, we propose the notion of invariant that provides
means to characterize terminologies sharing the same logical infor-
mation with respect to a given signature.

Definition 4. A map Inv taking as input a terminology and a signa-
ture is an invariant if for any two terminologies O1⊆O2,

DΣ (O1,O2)=∅ iff Inv(O1, Σ)=Inv(O2, Σ).

Note that, the elements of Inv(O, Σ) can be of any kinds. For
example, a trivial invariant can be defined by the set of axioms
{𝛼 | O|=𝛼, 𝑠𝑖𝑔(𝛼)⊆Σ}. Because this trivial invariant is infinite and
thus has no practical interest, we introduce next another invariant
(a finite one) set whose elements are triples (𝐴, 𝑆1, 𝑆2) where A is a
concept and 𝑆𝑖 are finite sets.

3.1 Main idea
Similarly to [6], our construction of finite invariant is based on
Theorem 1. Given two terminologies O1,O2, a signature Σ and a
concept 𝐴, we consider:

D𝑟
Σ,𝐴 (O1,O2)={𝐶⊑𝐴 | 𝐶⊑𝐴∈DΣ (O1,O2)},

D𝑙
Σ,𝐴 (O1,O2)={𝐴⊑𝐶 | 𝐴⊑𝐶∈DΣ (O1,O2)}.

Definition 5. A map from the tuple (O, Σ, 𝐴) to a set Invr (O, Σ, 𝐴)
is a right invariant if for any two terminologies O1⊆O2, we have:

D𝑟
Σ,𝐴 (O1,O2)=∅ iff Invr (O1, Σ, 𝐴)=Invr (O2, Σ, 𝐴).

The left invariant Invl (O, Σ, 𝐴) is defined in a dual manner
based on D𝑙

Σ,𝐴 (O1,O2).

Then as a corollary of Theorem 1, we have:

Corollary 1. If Invr (resp. Invl) is a right (resp. left) invariant,
then the map Inv defined below is an invariant:

Inv(O, Σ)={
(
𝐴, Invr (O, Σ, 𝐴), Invl (O, Σ, 𝐴)

)
|𝐴∈Σ}.

Thus, to construct a finite invariant, it is enough to build a finite
right invariant and a finite left invariant, at first.

3.2 Building a finite right invariant
Given a terminology O, a signature Σ and a concept 𝐴, in the follow-
ing we associate a hyper-graph H O to O and then we construct a
finite right invariant using the hyper-paths of H O .

3.2.1 (1) Hyper-graph and hyper-paths. The hyper-graph H O =

(N , E) associated to O consists of the node set N := {𝑁𝐴 | 𝐴∈NC}
and the edge set

E := {{𝑁𝐴1 , · · · , 𝑁𝐴𝑛
}→𝑁𝐴 | 𝐴≡𝐴1⊓𝐴2⊓· · ·⊓𝐴𝑛∈O}

∪ {𝑁𝐴
𝑟→𝑁𝐵 | 𝐵≡∃𝑟 .𝐴∈O} ∪ {𝑁𝐴→𝑁𝐵 | O|=𝐴⊑𝐵},

where 𝑁𝐴
𝑟→𝑁𝐵 is an edge with the index 𝑟∈NR.

Among the hyper-paths in H O , we specifically consider the set
𝑃O
Σ,𝐴 of all the hyper-paths ℎ from 𝑆Σ={𝑁𝐵 | 𝐵 ∈ Σ} to 𝑁𝐴 in H O

such that:
(1) for an edge 𝑒∈ℎ, either 𝑒 has no index or its index 𝑟∈Σ;

2022-05-24 19:11. Page 2 of 1–7.

Unp
ub

lis
he

d work
ing

dra
ft.

Not
for

dis
tri

bu
tio

n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Computing EL minimal modules: a combined approach Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(2) ℎ does not contain trivial loops of the form:
[{𝑁𝐴1 , · · ·, 𝑁𝐴𝑛

}→𝑁𝐵, 𝑁𝐵→𝑁𝐴𝑖
] for some 𝑖∈[1, 𝑛];

(3) ℎ does not contain repeated edges.
Item 3 above implies that the length of an hyper-path ℎ∈𝑃O

Σ,𝐴 is at

most #|E | and therefore 𝑃O
Σ,𝐴 is finite.

Example 2 (Example 1 cont’d). The hyper-graph associated with
the ontology O0 is shown in Figure 1. Notice that 𝑒6={𝑁𝐴3 , 𝑁𝐴4 }→𝑁𝐵3
is the only complex edge in this hyper-graph. There are two hyper-
paths in 𝑃

O0
Σ0,𝐵3

: ℎ1=[𝑒1, 𝑒4, 𝑒3, 𝑒5, 𝑒6], and ℎ2=[𝑒2, 𝑒4, 𝑒3, 𝑒5, 𝑒6] .

Figure 1: H O0 , concepts and roles in Σ0 are in red.

Note that 𝑙1=[𝑒6, 𝑒9], 𝑙2=[𝑒6, 𝑒10] are trivial loops. Thus any hyper-
path containing 𝑙1 or 𝑙2 is excluded from 𝑃

O0
Σ0,𝐵3

.

3.2.2 (2) Our finite right invariant. Each hyper-path ℎ∈𝑃O
Σ,𝐴 can

be interpreted as an ontology:

Oℎ :={𝐴1⊓𝐴2· · · ⊓𝐴𝑛⊑𝐴 | {𝑁𝐴1 , · · · , 𝑁𝐴𝑛
}→𝑁𝐴∈ℎ}∪

{𝐴⊑𝐵 | 𝑁𝐴→𝑁𝐵∈ℎ} ∪ {∃𝑟 .𝐴⊑𝐵 | 𝑁𝐴
𝑟→𝑁𝐵∈ℎ},

Indeed, the existence of a hyper-path ℎ determines whether O|=𝐶⊑𝐴
in the following sense:

Theorem 2. O|=𝐶⊑𝐴, 𝑠𝑖𝑔(𝐶)⊆Σ iff there exists a hyper-path ℎ∈𝑃O
Σ,𝐴

such that Oℎ |=𝐶⊑𝐴.

Now, one could expect that 𝑃O
Σ,𝐴 is a good candidate for defin-

ing a right invariant. However, we still need to refine it in order
to avoid redundant and repetitive elements. Let us illustrates this
with Example 3 for redundancy, and with Example 4 for repetition.
Before, let us consider 𝐼 (ℎ) to be the set of axioms entailed by Oℎ :
𝐼 (ℎ) := {𝐶⊑𝐴 | Oℎ |=𝐶⊑𝐴, 𝑠𝑖𝑔(𝐶)∈Σ}.
Example 3 (Example 1 and 2 cont’d). For terminology O0, we have
𝑃
O0
Σ0,𝐵3

={ℎ1, ℎ2}. Note that 𝛽2 is one of the axioms corresponding
to {ℎ1, ℎ2} but 𝛽2 does not belong to the unique minimal module
M0. The reason is that 𝐼 (ℎ1)⊂𝐼 (ℎ2), which means that ℎ2 provides
strictly more logical information than ℎ1. Therefore, ℎ1 is redundant
and should not be considered when computing the minimal module
M0.

Example 4. Assume O1={𝛽1:𝐵2⊑𝐵1, 𝛽2:𝐴⊑𝐵1, 𝛽3:𝐵2⊑𝐴} and Σ1 =
{𝐵1, 𝐵2}. Then

𝑃
O1
Σ1,𝐵1

={ℎ1:[𝑁𝐵2→𝑁𝐵1], ℎ2:[𝑁𝐵2→𝑁𝐴, 𝑁𝐴→𝑁𝐵1]}.
We have 𝐼 (ℎ1)=𝐼 (ℎ2), meaning that ℎ1, ℎ2 provide the same logical
information and thus a repetition. There are two minimal modules
for Σ1: M1={𝛽1} and M2={𝛽2, 𝛽3} corresponding to ℎ1 and ℎ2,
respectively. Indeed here, a minimal module should “contain" one
and only one of ℎ1, ℎ2.

Formally, for any two hyper-paths ℎ1, ℎ2∈𝑃O
Σ,𝐴, we say:

• ℎ1 is redundant if 𝐼 (ℎ1)⊂𝐼 (ℎ′) for some ℎ′∈𝑃O
Σ,𝐴;

• ℎ1, ℎ2 are equivalent if 𝐼 (ℎ1)=𝐼 (ℎ2).
Now, to eliminate redundancy and repetition, we extract from 𝑃O

Σ,𝐴

the set {ℎ | ℎ∈𝑃O
Σ,𝐴 is not redundant}, where ℎ denotes the class of

all hyper-paths equivalent to ℎ. Finally, our finite right invariant is
defined by:

Theorem 3. The map Invr defined below is a right invariant:

Invr (O, Σ, 𝐴)={ℎ | ℎ∈𝑃O
Σ,𝐴 is not redundant}.

Clearly, Invr (O, Σ.𝐴) is finite since 𝑃O
Σ,𝐴 is a finite set.

Example 5 (Example 3 cont’d). Since 𝐼 (ℎ1)⊂𝐼 (ℎ2), the hyper-path
ℎ1 is redundant and Invr (O0, Σ0, 𝐵3)={ℎ2}.
3.2.3 (3) Checking equivalence and redundancy. Computing
our right invariant requires an algorithm for checking the equivalence
and the redundancy of hyper-paths (i.e., whether 𝐼 (ℎ1)=𝐼 (ℎ2) or
𝐼 (ℎ1)⊂𝐼 (ℎ2)), thus indeed, an algorithm for checking 𝐼 (ℎ1)⊆𝐼 (ℎ2).
In the general case, we can rely on an existing polynomial algorithm
[7]. However, in the case of loop-free hyper-paths, we designed a
specific straightforward algorithm. For details see supplementary
materials.

3.3 Building a finite left invariant
The left invariant is constructed along the same lines as the right case.
The main difference is that our left invariant is based on a graph GO

(instead of a hyper-graph) and on clusters (instead of hyper-paths).
The graph GO=(N , E) associated with O consists of a node set

N := {𝑁𝐴 | 𝐴∈NC} and an edge set

E :={𝑁𝐴→𝑁𝐵 | O|=𝐴⊑𝐵}

∪ {𝑁𝐴
𝑟→𝑁𝐵 | 𝐴≡∃𝑟 .𝐵∈O or 𝐴⊑∃𝑟 .𝐵∈O}.

One may consider to construct a finite left invariant using paths
in GO as in Section 3.2. However, the paths in GO are not sufficient
for instance to capture the entailment O|=𝐴⊑∃𝑟 .(𝐵⊓𝐶). Indeed, a
path like [𝑁𝐴→𝑁𝐴1 , 𝑁𝐴1

𝑟→𝑁𝐴2 , 𝑁𝐴2
𝑠→𝑁𝐵] in GO corresponds to

O|=𝐴⊑∃𝑟 .∃𝑠 .𝐵, where 𝐵 is an atomic concept.
To overcome such limitation, we introduce clusters as unions of

paths.

Definition 6. (Cluster) A cluster 𝑡 from 𝐴 to Σ, is a union of paths,
which do not contain a loop twice2, from 𝑁𝐴 to some 𝑁𝐵, 𝐵∈Σ in
GO . We say 𝑡 is loop-free if it does not contain loops.

Let us define 𝑇 O
Σ,𝐴 as the collection of all clusters from 𝐴 to Σ.

Then 𝑇 O
Σ,𝐴 is finite, because the length of a path without repetitive

loops is bounded3 and thus there are finitely many such paths.

Example 6 (Example 1 cont’d). For the terminology O0, GO0 is
shown in Fig 2. There are two paths 𝑝1=[𝑒10, 𝑒13, 𝑒7], 𝑝2=[𝑒10, 𝑒13, 𝑒8]
from 𝑁𝐵3 to some node in Σ and three loop-free clusters 𝑡1=𝑝1, 𝑡2=𝑝2,
𝑡3=𝑝1∪𝑝2.
2For example, [𝑁1→𝑁2, 𝑁2→𝑁3, 𝑁3→𝑁2, 𝑁2→𝑁3, 𝑁3→𝑁2] contains the loop
[𝑁2→𝑁3, 𝑁3→𝑁2] twice.
3The upper bound is (𝑚+2)! if GO has𝑚 edges since a path with length𝑚+1 contains
a loop, and thus are at most𝑚! such loops.

2022-05-24 19:11. Page 3 of 1–7.

Unp
ub

lis
he

d wor
kin

g dr
aft

.

Not
for

dis
tri

bu
tio

n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Hui and Yue, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: GO0 , concepts and roles in Σ0 are red.

Each cluster 𝑡 is a sub-graph of GO and can be associated with
an ontology:

O𝑡 := {𝐴⊑𝐵 | 𝑁𝐴→𝑁𝐵∈𝑡} ∪ {𝐴⊑∃𝑟 .𝐵 | 𝑁𝐴
𝑟→𝑁𝐵∈𝑡}.

The following result is similar to Theorem 2:

Theorem 4. O|=𝐴⊑𝐶, 𝑠𝑖𝑔(𝐶)⊆Σ iff there exists a cluster 𝑡∈𝑇 O
Σ,𝐴 such

that O𝑡 |=𝐴⊑𝐶.

To define a finite left invariant, we need to filter out repeti-
tive and redundant clusters in 𝑇 O

Σ,𝐴. Let us denote 𝐼 (𝑡)={𝐴⊑𝐶 |
O𝑡 |=𝐴⊑𝐶, 𝑠𝑖𝑔(𝐶)⊆Σ} and say:

• 𝑡1∈𝑇 O
Σ,𝐴 is redundant if there exists 𝑡 ′∈𝑇 O

Σ,𝐴 such that 𝐼 (𝑡1)⊂𝐼 (𝑡 ′),
• 𝑡1, 𝑡2∈𝑇 O

Σ,𝐴 are equivalent if 𝐼 (𝑡1)=𝐼 (𝑡2).
Then, our finite left invariant is defined as follows:

Theorem 5. The map Invl defined below is a left invariant.

Invl (O, Σ, 𝐴)={𝑡 | 𝑡∈𝑇 O
Σ,𝐴 is not redundant}.

To compute Invl (O, Σ, 𝐴), as in Section 3.2, we need to deter-
mine whether 𝐼 (𝑡1)⊆𝐼 (𝑡2). The general case can be solved by a
polynomial algorithm proposed in [7]. As for hyper-paths, we de-
signed a specific straightforward algorithm for loop-free clusters (for
details see supplementary materials).

Example 7. Continuing Example 6, since 𝐼 (𝑡1)⊂𝐼 (𝑡3) and 𝐼 (𝑡2)⊂𝐼 (𝑡3),
the clusters 𝑡1 and 𝑡2 are redundant and Invl (O, Σ0, 𝐵3)={𝑡3}.

In conclusion of this section, thanks to Corollary 1, we are able
to exhibit a finite invariant Inv for O, Σ using the finite right and left
invariant above.

4 COMPUTING MINIMAL MODULES
Given a terminology O and a signature Σ, in this section, we compute
the minimal modules for O and Σ using a SAT-based approach as in
PULi [11]. Thus minimal modules are computed in three steps:

Step 1. The right invariants Invr (O, Σ, 𝐴) and left invariants
Invl (O, Σ, 𝐴) are computed for each 𝐴∈Σ which, by Corollary 1,
provides us with the invariant Inv(O, Σ) .

Step 2. We build a set CΣ of Horn clauses to encode the deriva-
tions of elements in Inv(O, Σ) from O. These clauses are given
below:

(1) We add the clause ∧𝐴∈Σ (𝑙𝑟𝐴∧𝑙
𝑙
𝐴
)→𝑙Σ, where 𝑙Σ captures a

minimal module for Σ and 𝑙𝑟
𝐴
∧𝑙𝑙

𝐴
a tuple

(𝐴, Invr (O, Σ, 𝐴), Invl (O, Σ, 𝐴))

of the invariant;
(2) We add two clauses

∧
ℎ∈Invr (O,Σ,𝐴) (𝑙ℎ)→𝑙𝑟𝐴,∧𝑡 ∈Invl (O,Σ,𝐴) (𝑙𝑡)→𝑙𝑙𝐴

for each 𝐴∈Σ;
(3) We add the clause ∧𝑒∈ℎ (𝑙𝑒)→𝑙

ℎ
(resp. ∧𝑒∈𝑡 (𝑙𝑒)→𝑙𝑡), for each

non-redundant ℎ∈𝑃O
Σ,𝐴 (resp. 𝑡∈𝑇 O

Σ,𝐴) and 𝐴∈Σ;

(4) For each edge 𝑒∈ℎ (resp. 𝑒∈𝑡), where ℎ∈𝑃O
Σ,𝐴 (resp. 𝑡∈𝑇 O

Σ,𝐴)
is non-redundant and 𝐴∈Σ:

(a) if 𝑒=𝑁𝐴→𝑁𝐵 , then we add clause ∧𝛽∈𝐽 (𝑙𝛽) → 𝑙𝑒 for each
justification 𝐽 of 𝐴⊑𝐵;

(b) if 𝑒=𝑁𝐴
𝑟→𝑁𝐵 or {𝑁𝐴1 , · · · , 𝑁𝐴𝑛

}→𝑁𝐵 , then we add the
clause 𝑙𝛽 → 𝑙𝑒 , where 𝛽∈O is the axiom corresponding to
𝑒.

The answer literals are defined as the literals 𝑙𝛽 such that 𝛽∈O.

Step 3. We apply resolution over CΣ ∪ {𝑙Σ → ∅}. Then let us
consider MΣ, the collection of resulting minimal4 clauses composed
of answer literals only. From MΣ, all minimal modules for Σ are
extracted easily as stated in Theorem 6.

Theorem 6. A subset M={𝛽1, · · · , 𝛽𝑘 }⊆O is a minimal module for
Σ with respect to O iff ∧𝑘

𝑖=1 (𝑙𝛽𝑖)→∅ ∈ MΣ.

Remark 1. In Step 2, Case 4(a), for the sake of simplicity, the added
clauses are defined using justifications. Indeed, instead of computing
justifications, we have developed a more efficient algorithm for
computing these Horn clauses following a method similar to [11].
For details see supplementary materials.

Example 8. For our running example, the only non-empty right
(left) invariants are Invr (O0, Σ0, 𝐵3)={ℎ2}, Invl (O0, Σ0, 𝐵3)={𝑡3}.
Thus,

Inv(O0, Σ0)={(𝐵3, {ℎ2}, {𝑡3})} ∪
{(𝐵𝑘 , ∅, ∅) | 𝑘=1, 2, 4, 5}

The set of clauses CΣ0 is shown in Table 1. We obtain

MΣ0={𝑙𝛽1∧𝑙𝛽3∧𝑙𝛽4∧𝑙𝛽5∧𝑙𝛽6∧𝑙𝛽7→∅}

by resolution over CΣ0∪{𝑙Σ0→∅}. Therefore, the only minimal mod-
ule for Σ0 is O0 \ {𝛽2}.

Approximation. Now, let O𝑎𝑝={𝛽∈O | 𝑙𝛽 appears in CΣ}, then
O𝑎𝑝 contains all the minimal modules of Σ and thus DΣ (O𝑎𝑝 ,O)=∅.
Next, we regard O𝑎𝑝 as an approximation of minimal modules.
Indeed, O𝑎𝑝 can be computed from the invariant without Step 3.

4.0.1 Optimization. In general, there can be exponentially many
hyper-paths (resp. clusters) in 𝑃O

Σ,𝐴 (resp. 𝑇 O
Σ,𝐴) with respect to the

size of H O (resp. GO). In order to reduce the computation cost, we
can restrict the search space to hyper-paths (resp. clusters) having
particular forms.

4𝑐1 is smaller than 𝑐2 if all literals of 𝑐1 are in 𝑐2.

2022-05-24 19:11. Page 4 of 1–7.

Unp
ub

lis
he

d work
ing

dra
ft.

Not
for

dis
tri

bu
tio

n.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Computing EL minimal modules: a combined approach Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Clause set CΣ0

1. ∧5
𝑖=1 (𝑙

𝑟
𝐵𝑖
∧𝑙𝑙

𝐵𝑖
)→𝑙Σ;

2. 𝑙
ℎ2
→𝑙𝑟

𝐵3
, 𝑙𝑡3→𝑙𝑙

𝐵3
,

∅→𝑙𝑟
𝐵𝑘

, ∅→𝑙𝑟
𝐵𝑘
, 𝑘∈{1, 2, 4, 5};

3. 𝑙𝑒2∧𝑙𝑒4∧𝑙𝑒3∧𝑙𝑒5∧𝑙𝑒6→𝑙
ℎ2
,

𝑙𝑒10∧𝑙𝑒13∧𝑙𝑒7∧𝑙𝑒8→𝑙𝑡3
;

4. (a) 𝑒2 : 𝑙𝛽1→𝑙𝑒2 , 𝑒3 : 𝑙𝛽1→𝑙𝑒3 ,

𝑒7 : 𝑙𝛽7→𝑙𝑒7 , 𝑒8 : 𝑙𝛽7→𝑙𝑒8 .

(b) 𝑒4 : 𝑙𝛽3→𝑙𝑒4 , 𝑒5 : 𝑙𝛽4→𝑙𝑒5 ,

𝑒11 : 𝑙𝛽3→𝑙𝑒11 , 𝑒12 : 𝑙𝛽4→𝑙𝑒12 ,

𝑒13 : 𝑙𝛽6→𝑙𝑒13 , 𝑒6 : 𝑙𝛽5→𝑙𝑒6 .

(1) Hyper-paths. We say a hyper-path ℎ over H O is compact
when it does not contain sub-paths of either form:

(1) [{𝑁𝐵1 , · · · , 𝑁𝐵𝑛
}→𝑁𝐵, 𝑁𝐵→𝑁𝐴], where 𝐵∉Σ,

(2) [𝑁𝐵1
𝑟→𝑁𝐵, 𝑁𝐵→𝑁𝐴], where 𝐵∉Σ.

When O is a terminology, the hyper-paths over H O satisfy the
following property:

Proposition 2. For any hyper-path ℎ∈𝑃O
Σ,𝐴, there exists a compact

hyper-path ℎ′∈𝑃O
Σ,𝐴 such that 𝐼 (ℎ)⊆𝐼 (ℎ′).

According to the above property, we can restrict 𝑃O
Σ,𝐴 to com-

pact hyper-paths. Then, both Theorem 2 and 3 that define our right
invariant still hold.

(2) Clusters. We say that a cluster 𝑡=𝑝1∪𝑝2∪ · · · ∪𝑝𝑛 in 𝑇 O
Σ,𝐴 is

compact if either 𝑛=1 or the paths 𝑝1, · · ·, 𝑝𝑛 have a common prefix
path [𝑒1, · · ·, 𝑒𝑘] with at least one indexed edge. For instance, in
Example 6, the cluster 𝑡3 is compact because 𝑝1, 𝑝2 share the prefix
[𝑒10, 𝑒13] and 𝑒13 is an indexed edge. Then, the following proposition
holds:

Proposition 3. For𝐶 with 𝑠𝑖𝑔(𝐶)⊆Σ of the form 𝐵 or ∃𝑟 .𝐶1, O|=𝐴⊑𝐶
iff there exists a compact cluster 𝑡∈𝑇 O

Σ,𝐴 such that O𝑡 |=𝐴⊑𝐶.

In proposition 3, we only consider concepts of the form 𝐵 or ∃𝑟 .𝐶1,
because any concept 𝐶 can be written as 𝐵1 ⊓ · · · ⊓ 𝐵𝑛⊓∃𝑟1 .𝐶1 ⊓
· · · ⊓∃𝑟𝑚 .𝐶𝑚, where 𝐵1, · · ·, 𝐵𝑛 are atomic concepts. Thus, we know
that O|=𝐴⊑𝐶 iff O|=𝐴⊑𝐵𝑖 ,O|=𝐴⊑∃𝑟 𝑗 .𝐶 𝑗 for any 1≤𝑖≤𝑛, 1≤ 𝑗≤𝑚.

Therefore, by Proposition 3, we can require all clusters in 𝑇 O
Σ,𝐴 to

be compact: Theorem 5 that defines our left invariant still holds.

5 EXPERIMENT
To evaluate the efficiency of our algorithm for computing minimal
modules and the quality of our approximation results, we imple-
mented in Python a prototype called GIMM. We evaluated GIMM
using the EL-fragment of two prominent biomedical ontologies:
Snomed CT (version Jan 2016)5, a terminology with 317891 ax-
ioms, and NCI (version 16.03d)6, a terminology having 165341

5https://www.snomed.org/
6http://evs.nci.nih.gov/ftp1/NCI_Thesaurus

Table 3: Successful rate

Successful rate(%) Σ𝑠𝑛𝑡50,10 Σ𝑠𝑛𝑡100,10 Σ𝑛𝑐𝑖50,10 Σ𝑛𝑐𝑖100,10
Zooms 57.1 32.5 79.0 57.3
GIMM 84.2 (+27.1) 78.5 (+46) 91.8 (+12.8) 74.3 (+17)

Table 4: Time cost (max/min/mean/median)

Time(s) GIMM Zooms
Σ𝑠𝑛𝑡50,10 7.57 / 5.13 / 6.13 / 6.12 558.76 / 34.85 / 186.04 / 143.53
Σ𝑠𝑛𝑡100,10 9.82 / 5.19 / 6.24 / 6.18 563.24 / 71.38 / 302.24 / 294.19
Σ𝑛𝑐𝑖50,10 29.54 / 2.03 / 2.56 / 2.43 560.89 / 7.81 / 91.08 / 60.42
Σ𝑛𝑐𝑖100,10 15.50 / 2.04 / 2.63 / 2.46 576.35 / 15.49 / 145.32 / 105.92

axioms. All the experiments are run on a machine with an Intel Xeon
Core 4 Duo CPU 2.50 GHz with 64 GiB of RAM.

For each terminology, we run the experiments over 2 sets Σ𝑛,𝑚
of 1000 signatures randomly generated, each one containing 𝑛 con-
cepts and 𝑚 roles. We tested Σ𝑠𝑛𝑡50,10, Σ

𝑠𝑛𝑡
100,10 for Snomed CT and

Σ𝑛𝑐𝑖50,10, Σ
𝑛𝑐𝑖
100,10 for NCI.

Next, we say a signature Σ is loop-free if all hyper-paths (resp.
clusters) in the right (resp. left) invariant of (Σ, 𝐴), 𝐴∈Σ are loop-free.
A signature is trivial if its minimal module is empty. GIMM com-
putes minimal modules for loop-free signatures. Table 2 (Column
2) shows the distribution of signatures among “with loop", “triv-
ial", and “loop-free and non trivial". Then it provides the maximal,
minimal, average number (Column 3) and size (Column 4) of the
minimal modules with respect to the signatures.

Table 2: Running GIMM on the signature sets: statistics

Signature Minimal modules
(loop/trivial/ Number Size

non-trivial) (max/min/mean) (max/min/mean)
Σ𝑠𝑛𝑡50,10 0 / 53 / 947 935325 / 1 / 5046.82 112 / 0 / 72.59
Σ𝑠𝑛𝑡100,10 0 / 3 / 997 322597 / 1/ 1330.87 134 / 0 / 86.04
Σ𝑛𝑐𝑖50,10 25 / 21 / 954 10947030 / 1 / 63929.41 110 / 0 / 47.42
Σ𝑛𝑐𝑖100,10 47 / 4 / 949 4334784 / 1 / 129078 144 / 0 / 54.10

Time cost: GIMM vs. Zooms. First, we compare GIMM with the
state-of-the-art algorithm [6], called Zooms. For each signature, we
set the run-time limit to 600s. For simplicity, we regard signatures
with loop as timed out samples for GIMM. Zooms is actually unable
to solve any of these signatures.

As shown in Table 3, the successful rate of GIMM is between
+12.8% and +46% higher than Zooms. As shown in Table 4, for the
signatures solved by both algorithms, GIMM is 30 to 50 times faster
than Zooms on average. The maximal time-cost of GIMM is close to
or even smaller than the minimal time-cost of Zooms except for the
dataset Σ𝑛𝑐𝑖50,10. Fig. 3 illustrates the time-cost of the two algorithms
for all the signatures solved by them: GIMM is faster than Zooms
on all the signatures.

One reason GIMM runs so fast is that the size of our invariants
were usually small. On average, we have 0.95 non-redundant hyper-
paths and 11.51 non-redundant clusters for each signature. For more
than half of the cases, the set of non-redundant hyper-paths is empty.
But in some rare cases, there exists up to 953 non-redundant hyper-
paths.

2022-05-24 19:11. Page 5 of 1–7.

Unp
ub

lis
he

d work
ing

dra
ft.

Not
for

dis
tri

bu
tio

n.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Hui and Yue, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Σ𝑠𝑛𝑡50,10

(b) Σ𝑛𝑐𝑖50,10

(c) Σ𝑠𝑛𝑡100,10

(d) Σ𝑛𝑐𝑖100,10

Figure 3: x: Signatures, y: time cost (s). In each sub-figure, we
arrange the order of signatures according to their time cost in
Zooms

For the signatures solved by both algorithms, GIMM spent most
of the time (96.8% on average) on computing our invariant. Besides,

Table 5: Comparison result (max/min/mean/median)

Size #|O𝑎𝑝 | #locality-based module
Σ𝑠𝑛𝑡50,10 1581 / 0 / 237.11 / 67.5 10182 / 3426 / 6539.11 / 6506.5
Σ𝑠𝑛𝑡100,10 2537 / 0 / 480.75 / 154 18311 / 8515 / 13080.30 / 13033
Σ𝑛𝑐𝑖50,10 285 / 0 / 58.94 / 51 7746 / 256 / 5542.04 / 6874
Σ𝑛𝑐𝑖100,10 332 / 0 / 101.59 / 90 8571 / 1261 / 7337.73 / 7465

Time(s) GIMM locality-based module (OWL API)
Σ𝑠𝑛𝑡50,10 34.71 / 5.13 / 8.22 / 6.37 13.23 / 4.08 / 7.48/ 7.88
Σ𝑠𝑛𝑡100,10 259.39 / 5.19 / 10.24 / 6.79 12.01 / 4.44 / 7.83 / 8.19
Σ𝑛𝑐𝑖50,10 4.42 / 2.03 / 2.49 / 2.44 3.99 / 1.72 / 2.85 / 2.93
Σ𝑛𝑐𝑖100,10 5.17 / 2.04 / 2.63 / 2.52 3.92 / 2.10 / 2.96 / 2.96

GIMM spent more time on computing right invariant (75.4% on
average) than computing left invariant (21.4% on average). The
reason is that the hyper-graph H O is always much bigger than the
graph GO . Thus extracting hyper-paths over H O is more difficult
than extracting clusters over GO , even if there are much more non-
redundant clusters than hyper-paths on average.

Approximation: GIMM vs. locality-based module. Although GIMM
is much more efficient than Zooms, as shown above, not all samples
can be solved within 600s. For example, there are 25.7% timed out
samples in Σ𝑛𝑐𝑖100,10 for GIMM. This is not surprising as computing
minimal modules is a complex task in general. In these cases, GIMM
was able to compute the approximation result O𝑎𝑝 instead, except
for 0.5% of Σ𝑠𝑛𝑡100,10 signatures, for which timing out took place during
computing the invariant.

To evaluate the approximation results, we compared GIMM with
the locality-based module as implemented by OWL API [9], which
also provides an approximation of minimal modules. The results are
summarized in Table 5. We can see that the sizes of our approxi-
mations (O𝑎𝑝) are usually much smaller than that of locality-based
modules (27 to 90 times smaller on average). On the other hand,
the computation time of our approximation results using GIMM is
comparable to the computation time of the locality-based modules
except for a few cases (see the maximal time for Σ𝑠𝑛𝑡100,10).

6 FUTURE WORK
In this paper, we proposed an abstract notion of invariant to charac-
terize sub-terminologies sharing the same logical information with
respect to some signature. Based on the construction of a finite
invariant, we translated the computation of minimal modules for
EL-terminologies to a SAT problem. We developed GIMM, a pro-
totype and the real-world ontologies experiments showed that our
approach greatly improved the state-of-the-art method Zooms.

In the future, first, we will further optimize our algorithm for right-
invariant computation and extend it to support signatures with loops.
Second, we expect that our method (invariant) can be extended to
drop the constraint on terminologies O1,O2 requiring O1⊆O2. Third,
we will investigate how to generalize our method to EL ontologies
or even more expressive languages.

REFERENCES
[1] M Fareed Arif, Carlos Mencía, Alexey Ignatiev, Norbert Manthey, Rafael Peñaloza,

and Joao Marques-Silva. 2016. BEACON: An Efficient SAT-Based Tool for

2022-05-24 19:11. Page 6 of 1–7.

Unp
ub

lis
he

d work
ing

dra
ft.

Not
for

dis
tri

bu
tio

n.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Computing EL minimal modules: a combined approach Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Debugging EL+ Ontologies. In International Conference on Theory and Appli-
cations of Satisfiability Testing. Springer, 521–530.

[2] M Fareed Arif, Carlos Mencía, and Joao Marques-Silva. 2015. Efficient axiom
pinpointing with EL2MCS. In Joint German/Austrian Conference on Artificial
Intelligence (Künstliche Intelligenz). Springer, 225–233.

[3] M Fareed Arif, Carlos Mencía, and Joao Marques-Silva. 2015. Efficient MUS
enumeration of Horn formulae with applications to axiom pinpointing. In Interna-
tional Conference on Theory and Applications of Satisfiability Testing. Springer,
324–342.

[4] Giorgio Ausiello and Luigi Laura. 2017. Directed hypergraphs: Introduction and
fundamental algorithms—a survey. Theoretical Computer Science 658 (2017),
293–306.

[5] Franz Baader, Rafael Penaloza, and Boontawee Suntisrivaraporn. 2007. Pinpoint-
ing in the Description Logic EL+. In Annual Conference on Artificial Intelligence.
Springer, 52–67.

[6] Jieying Chen, Michel Ludwig, Yue Ma, and Dirk Walther. 2017. Zooming in on
Ontologies: Minimal Modules and Best Excerpts. In 16th International Semantic
Web Conference, Proceedings, Part I. Springer, 173–189. https://doi.org/10.1007/
978-3-319-68288-4_11

[7] Andreas Ecke, Michel Ludwig, and Dirk Walther. 2013. The Concept Difference
for EL-Terminologies using Hypergraphs.. In DChanges. Citeseer.

[8] William Gatens, Boris Konev, and Frank Wolter. 2014. Lower and Upper Approx-
imations for Depleting Modules of Description Logic Ontologies.. In European
Conference on Artificial Intelligence. 345–350.

[9] B Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. 2008. Mod-
ular reuse of ontologies: Theory and practice. Journal of Artificial Intelligence
Research 31 (2008), 273–318.

[10] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler, Thomas Schneider,
and Rafael Berlanga. 2008. Safe and economic re-use of ontologies: A logic-based
methodology and tool support. In European Semantic Web Conference. Springer,
185–199.

[11] Yevgeny Kazakov and Peter Skočovskỳ. 2018. Enumerating justifications using
resolution. In International Joint Conference on Automated Reasoning. Springer,
609–626.

[12] Boris Konev, Michel Ludwig, Dirk Walther, and Frank Wolter. 2012. The Logical
Difference for the Lightweight Description Logic EL. J. Artif. Intell. Res. 44
(2012), 633–708.

[13] Boris Konev, Michel Ludwig, Dirk Walther, and Frank Wolter. 2012. The log-
ical difference for the lightweight description logic EL. Journal of Artificial
Intelligence Research 44 (2012), 633–708.

[14] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. 2008. Semantic Mod-
ularity and Module Extraction in Description Logics.. In European Conference on
Artificial Intelligence. 55–59.

[15] Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. 2010. Logic-
based ontology comparison and module extraction, with an application to DL-Lite.
Artificial Intelligence 174, 15 (2010), 1093–1141.

[16] Patrick Koopmann and Jieying Chen. 2020. Deductive Module Extraction for
Expressive Description Logics. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, Christian Bessiere (Ed.). 1636–1643.
https://doi.org/10.24963/ijcai.2020/227

[17] Patrick Koopmann and Renate A. Schmidt. 2013. Forgetting Concept and Role
Symbols in ALCH-Ontologies. In Logic for Programming, Artificial Intelligence,
and Reasoning - 19th International Conference. Springer, 552–567. https://doi.
org/10.1007/978-3-642-45221-5_37

[18] Michel Ludwig and Dirk Walther. 2014. The Logical Difference for ELHr-
Terminologies using Hypergraphs. In Euro-pean Conference on Artificial Intelli-
gence. IOS Press, 555–560.

[19] Carsten Lutz and Frank Wolter. 2011. Foundations for uniform interpolation and
forgetting in expressive description logics. In Twenty-Second International Joint
Conference on Artificial Intelligence.

[20] Norbert Manthey, Rafael Peñaloza, and Sebastian Rudolph. 2016. Efficient Axiom
Pinpointing in EL using SAT Technology.. In Description Logics.

[21] Rafael Penaloza and Barış Sertkaya. 2017. Understanding the complexity of
axiom pinpointing in lightweight description logics. Artificial Intelligence 250
(2017), 80–104.

[22] Ulrike Sattler, Thomas Schneider, and Michael Zakharyaschev. 2009. Which kind
of module should I extract? Description Logics 477 (2009), 78.

2022-05-24 19:11. Page 7 of 1–7.

https://doi.org/10.1007/978-3-319-68288-4_11
https://doi.org/10.1007/978-3-319-68288-4_11
https://doi.org/10.24963/ijcai.2020/227
https://doi.org/10.1007/978-3-642-45221-5_37
https://doi.org/10.1007/978-3-642-45221-5_37

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Ontology and minimal module
	2.2 Hyper-graph

	3 Construction of Invariant
	3.1 Main idea
	3.2 Building a finite right invariant
	3.3 Building a finite left invariant

	4 Computing minimal modules
	5 Experiment
	6 Future work
	References

