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Abstract 43 

 44 

Pesticides are omnipresent, and they pose significant environmental and 45 

health risks. Translational studies indicate that acute exposure to high pesticide 46 

levels is detrimental, and prolonged interaction with low-level pesticides, as single 47 

and cocktail, could represent a risk factor for multi-organ pathophysiology, including 48 

the brain. Within this research template, we focus on pesticides' impact on the blood-49 

brain barrier (BBB) and neuroinflammation, physical and immunological borders for 50 

the homeostatic control of the central nervous system (CNS) neuronal networks. We 51 

examine the evidence supporting a link between pre- and postnatal pesticide 52 

exposure, neuroinflammatory responses, and time-depend vulnerability footprints in 53 

the brain. Because of the pathological role of BBB damage and inflammation on 54 

neuronal transmission from early development, varying exposures to pesticides could 55 

represent a danger, perhaps accelerating adverse neurological trajectories during 56 

aging. Refining our understanding of how pesticides influence brain barriers and 57 

borders could enable the implementation of pesticide-specific regulatory measures 58 

directly relevant to environmental neuroethics, the exposome, and one-health 59 

frameworks.    60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 
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 68 

1) Brain borders: the blood-brain barrier is a port of entry into the CNS.  69 

 70 

The brain is evolutionarily shielded, physically and biologically, to ensure a 71 

continuous fine-tuning of brain homeostasis and dependable synaptic transmission. 72 

Three borders exist, namely the blood-brain barrier (BBB), the blood-to-cerebral 73 

spinal fluid (B-CSF) barrier formed by tight junctions between adjacent choroid plexus 74 

(CP) epithelial cells, and the meninges where the CSF is filtered from peripheral 75 

blood (Figure 1; see 1-7 for comprehensive reviews). These structures are the 76 

sentinels of brain stability and immunity, surveilling and enabling exact 77 

spatiotemporal synchronizations of neuronal networks that equate to physiological or 78 

normal behaviors, correct memory, executive functions, development, and aging 5,8,9. 79 

In health, these biological structures strictly control the passage of xenobiotics, 80 

exogenous compounds, toxins, and immune cells from the peripheral blood 81 

circulation into the brain parenchyma 1,4,5,7. Brain barriers, or borders, represent 82 

sensitive sites where the presence and continuous accumulation of environmental 83 

contaminants could have a negative impact and, in turn, promote a harmful sequel to 84 

the brain 3,5,8,10-12. Here, we focus on the BBB as the primary interface between 85 

peripheral blood and the brain parenchyma. The BBB is a complex network of 86 

capillaries, with each microvessel anatomically and functionally connected to distinct 87 

groups of neurons, hence the terms neuro-glio-vascular unit (NGVU) and metabolic 88 

neurovascular coupling 1,5. The anatomical reach and the protection afforded by the 89 

BBB are vast; the human brain contains 20-25 m2 of capillaries, illustrating the 90 

granular exchange to all brain regions and neuronal networks. The BBB is a multi-91 

cellular structure formed by endothelial cells, astrocytes, and pericytes, 92 
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communicating with one another, assembled in basement laminae, surrounded by 93 

microglial cells and neurons within tens of micrometers distances (Figure 2). The 94 

BBB endothelium is highly impermeable due to the expression of specific inter-95 

cellular tight-junctions 1. ATP (Adenosine triphosphate)-dependent transporter 96 

proteins (and p450 metabolic enzymes 13,14) expressed at the endothelium are 97 

instrumental in guaranteeing a highly selective exchange of molecules between the 98 

peripheral blood and the brain. Transcytosis and endocytosis (e.g., caveolins) also 99 

regulate BBB permeability 5.  100 

 101 

        BBB damage participates in CNS diseases 2,3,5,8,12 because it intersects with 102 

neuroinflammation and dysregulates the homeostatic control (e.g., via glial buffering) 103 

of ions, ATP, and neurotransmitter levels necessary for the maintenance of resting 104 

potentials and synaptic transmission 2,15. These events are detailed in two reviews 105 

15,16.  BBB damage and neuroinflammation are ictogenic and can promote seizures 6-106 

8,15,17-19. BBB damage accelerates neurodegeneration 20,21, is implicated in the 107 

etiology of encephalopathies and psychiatric conditions, and represents a converging 108 

risk factor for pathological aging 20, neurological and neuroimmunological disorders 109 

22. The BBB protects the brain from extra-physiological elements or toxins that could 110 

pathologically interfere with the programmed developmental trajectories 7. 111 

Collectively, this literature illustrates the neurological dangers associated with 112 

increased BBB permeability and neuroinflammatory changes; it underlines the 113 

necessity of investigating the impact of environmental contaminants on brain barriers 114 

to define elements of vulnerability pertinent to brain health. Within this framework, we 115 

review experimental and clinical evidence for specific classes of pesticides currently 116 

under scrutiny as they may pose exposome threats. We performed a Pubmed and 117 
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Google Scholar search for the period 2010 to 2022, using combinations of two or 118 

more keywords: pesticides, neurotoxicology, zebrafish, rodent models, blood-brain 119 

barrier, neurovascular unit, tight junctions, neuroinflammation, astrocytes, microglial 120 

cells, neurodegeneration, seizures, psychiatric disorders, and brain development. 121 

Including only two databases and a primary focus on a ten years period are potential 122 

research strategy flaws. We provide a general overview of pesticides at the brain 123 

interfaces and summarize data obtained using in vitro and in vivo models showing 124 

the impact of pesticides at the NGVU. We examine how pesticides constitute risk 125 

factors for adverse neurological trajectories, focusing on pathological conditions 126 

where BBB damage and neuroinflammation are implicated.  127 

 128 

2) Pesticides: from environmental omnipresence to brain access.  129 

 130 

With more than 1700 product formulations and increasing amounts applied in 131 

cropland areas 23 (https://www.fao.org/faostat/en/#data/EP/visualize), pesticides raise 132 

environmental and health alarms 24-26. Pesticides are present in matrices, such as 133 

water bodies 23,24,27-29, ice 30, rainwater 31, coastal areas 32, soil and sediment 29,31,33. 134 

Pesticide residues are found in wildlife species 34-36.26. They can be present in spaces 135 

other than agriculture, including schools, playgrounds, households, recreational 136 

water, or urban green areas 25,26. Occupational exposure is particularly relevant for 137 

agricultural workers or pesticide manufacturers, with potential exposure to high 138 

concentrations 37,38. Non-occupational exposures can be significant for residents near 139 

crop fields or pesticide facilities 39-43 44,45.  140 

 141 
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These diversified exposure pathways are associated with detecting pesticides, 142 

or their metabolites, in human body fluids such as breast milk 46,47, urine 48,49, blood 143 

50,51, cerebrospinal fluid 52, amniotic fluid 53,54, umbilical cord serum 55, saliva 56 and 144 

seminal plasma 27,57. The main entry routes of pesticides to the human body include 145 

i) dermal absorption for occupational exposure, ii) oral exposure through the food 146 

chain, accidental or intentional ingestion, and iii) inhalation 26,58. These entry routes 147 

converge into the blood circulation, reaching the brain via specific borders (Figure 2) 148 

where two scenarios are possible: i) a lipophilic and low molecular weight (e.g., 149 

<400Da) molecule penetrates the BBB through the intact endothelium, reaching the 150 

brain parenchyma; ii) a molecule enters the brain after having damaged the BBB 151 

(e.g., increased permeability). In both circumstances, an extra-physiological molecule 152 

enters the brain and could exert neuroglial toxicity. Importantly, at the BBB, a battery 153 

of ATP-dependent drug transporter proteins represents the first line of defense from 154 

exogenous compounds 13,14,59,60. Efflux transporters pump lipophilic molecules back 155 

into the peripheral blood from the apical endothelial cell, preventing their entry into 156 

the brain. This ATP-binding cassette (ABC) superfamily includes the efflux 157 

transporter P-glycoprotein (Pgp), which expression levels and activity govern the 158 

exclusion of neurotoxicants from the brain 61,62, together with the multidrug 159 

resistance-associated proteins (MRPs) and the breast cancer resistance protein 160 

(BCRP). A second family is a solute carrier (SLC) bidirectional transporter (export 161 

and import). Members of the SLC family are described in 63,64. Table 1 provides 162 

archetypical examples of pesticides transported by ABCs or SLCs superfamilies. This 163 

evidence is comprehensively reviewed in 65-67, along with relevant in vitro and in vivo 164 

models commonly employed for screening experiments.  165 

 166 
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 167 

 168 

 169 

3) Pesticides at the neuro-glio-vascular unit: in vitro studies. 170 

 171 

 In vitro models are used to examine the impact of pesticides on BBB 172 

permeability and NGVU cells 68,69 70. Table 2 presents a list of existing evidence for 173 

each cell type while, in the text, we focus on particular examples. The cellular toxicity 174 

of the organophosphate (OPs) malathion and malaoxon was tested using an in vitro 175 

BBB model (endothelial cells BMEC or RBE4) and neuroblastoma cells (SH-SY5Y). 176 

Cell viability was reduced with a significant permeability of malathion and malaoxon 177 

across the BBB. Malathion decreased the expression of endothelial cells tight 178 

junctions (occludins, claudin 5, Zonula occludens (ZO) 1, and ZO2). Paraoxon 179 

affected the BBB in vitro by reducing cell viability and junctional mRNA and protein 180 

expression 69,71. Paraoxon negatively impacted occludin and claudin structures in 181 

human-derived endothelial cells 70. 182 

 183 

 With endothelial cells, astrocytes are a key component of BBB stability and a 184 

neuroinflammatory regulator (Table 2). Astrocyte reactivity directly contributes to BBB 185 

damage. They are sensitive to low-dose OPs. Malathion increased intracellular Ca++ 186 

concentration and induced cytotoxicity via reactive oxidative species (ROS) 187 

production 72-74. Chlorpyrifos and parathion on human primary astrocytes caused glial 188 

fibrillary acidic protein (GFAP) astrogliosis 75,76. The pyrethroid cyflutrin elicited 189 

inflammatory activations in primary human astrocytes 75. Lambda-cyhalotrin caused 190 
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cytotoxicity (24 h exposure) by inducing Ca2+ entry via store-operated Ca2+ 191 

channels and Ca2+ release from the endoplasmic reticulum 72. Cypermethrin on rat 192 

astrocytes led to apoptosis by disrupting the autocrine/paracrine mode of HB-EGF-193 

EGFR signaling 77. 194 

 We next examine microglia, the principal resident immune brain cells reacting 195 

to pesticide exposure and impacting BBB permeability (Table 2). Low chlorpyrifos 196 

levels (0.3-300 µM) triggered oxidative stress and pro-inflammatory states. 197 

Chlorpyrifos promoted BV-2 microglial activation, proliferation, increased DNA 198 

damage, generation of oxidative markers, and overexpression of pro-inflammatory 199 

markers 78. An increase in nitric oxide (NO) levels occurred 24 h after dichlorvos 200 

exposure (10 μM), associated with up-regulation of inducible nitric oxide synthase 201 

(iNOS) and pro-inflammatory cytokines like nitric oxide, TNF-α, and IL-1β 79. At 202 

concentrations of 25 µM or higher, deltamethrin and permethrin significantly 203 

decreased microglial cell viability in a concentration- and time-dependent manner. 204 

Permethrin- and deltamethrin stimulated microglia morphological transformation 205 

(retraction of cell processes and an amoeboid shape) 80. In the conditioned medium, 206 

cypermethrin increased PKC-δ and iNOS in primary microglia, Tumor Necrosis 207 

Factor-alpha (TNF-α), and interleukin (IL)-1β. Conditioned media from cypermethrin-208 

treated microglia induced toxicity in primary rat neurons 81. Exposure to ranging 209 

concentrations (10–100 μM) of bifenthrin for 24 h decreased microglia viability with 210 

maximal effects at 100 μM. No significant cell death occurred at lower concentrations 211 

(0.1, 1, and 5 μM) 82. 212 

 213 
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 In addition to NGVU cells, we here discuss the possible influence of pesticides 214 

on circulating leukocytes (Table 2), critical cells interacting with the BBB to promote 215 

neuroinflammatory changes and vascular damage. Lymphocyte exposure to OPs, 216 

glyphosate, methyl parathion, malathion, and chlorpyrifos led to a significant viability 217 

reduction and DNA damage, including DNA single-strand breaks (SSBs) and DNA 218 

double-strand breaks (DSBs) as well as DNA protein cross-links (DPC) formation 83-219 

86. Monocytes or macrophage-like cells (RAW 264.7) exposed to β-Cypermethrin (24 220 

h) showed cytotoxic effects, with decreased cell viability (35% and 79% with 50 μM 221 

and 100 μM, respectively), phagocytosis, activation of intrinsic apoptotic pathway and 222 

inhibition of the expressions of pro-inflammatory cytokines. ROS production and 223 

oxidative stress were increased following this exposure 86. Overall, the immune 224 

system could be a target for the toxic effects of pesticides 87; however, available 225 

experimental and epidemiological data are insufficient to draw firm conclusions on 226 

the immune-toxic risk associated with environmental contaminants. Comprehensive 227 

studies are needed to unveil how pesticides promote cellular-level modifications with 228 

specificity to peripheral and neuro-immune cross-talk. 229 

 230 

4) Pesticides at the neuro-glio-vascular unit: in vivo studies.  231 

 232 

 Pesticide exposure during prenatal or juvenile stages represents a risk factor 233 

for negative neurodevelopmental trajectories, including a decline in cognition, 234 

hyperactivity, and autism spectrum disorders 88-91. Consistent with human 235 

epidemiological studies, experimental data have strengthened the adverse 236 

association between pesticides and neurological outcomes, also introducing a 237 
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pathological impact on the BBB 92-94. Table 3 and the text below review data obtained 238 

using rodent and aquatic models. We examine the effects of pesticides (pyrethroids, 239 

OPs, organochlorines (OCs), neonicotinoids, and other agents and mixtures) at the 240 

BBB and the intersection with neuroinflammation. 241 

 242 

 243 

 244 

4.1) Evidence from rodent models. 245 

 246 

 Pyrethroids are insecticides produced as synthetic derivatives of the pyrethrin 247 

extracted from Chrysanthemum cinerariaefolium 95. Their insecticidal properties are 248 

based on altering the voltage-gated Na+ channels in insect neuronal membranes, 249 

disrupting the Na+ current in the CNS 96. The effects of pyrethroids extend to the 250 

voltage-gated-calcium and potassium channels, glutamate, and acetylcholine 251 

receptors 97. Mice exposed to low concentrations of permethrin (0.3 ppm) during 252 

prenatal and postnatal periods showed impairments in the formation of the neural 253 

circuits, indicated by immature neuron marker (doublecortin) and decreased number 254 

of astrocytes 98. BBB integrity was not affected in rats exposed to permethrin (0.013, 255 

0.13, 1.3 mg/kg/d) for 60 days 68 (topical application). A follow-up study reported 256 

neuronal cell death and neuronal cytoskeletal abnormalities 68. Another synthetic 257 

pyrethroid, bifenthrin, administered to adult rats for 60 days (0.6 and 2.1 mg/kg/d), 258 

increased the expression of TNFa, IL-1b, IL-6, nuclear factor erythroid-2 (Nrf2), 259 

cyclooxygenase-2 (cox-2), nuclear factor kappa-light-chain-enhancer of activated B 260 

cells (NF-kB), and prostaglandin E2 (PGE2) in the hippocampus, with enhanced 261 

oxidative stress markers (i.e. malondialdehyde (MDA), protein carbonyls (PCO), NO) 262 
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and reduced antioxidant defense (i.e. catalase (CAT), superoxide dismutase (SOD), 263 

glutathione peroxidase GPx) 82,99. These inflammatory events can negatively impact 264 

BBB integrity 5. Similar results were obtained when cypermethrin was orally 265 

administered to adult rats (1 mg/kg/day) or from gestational day (GD) 7 to post-natal 266 

day (PND) 21 (1.5 mg/kg/d) 100,101. Microglia activation was triggered by cypermethrin 267 

(1.5 mg/kg twice a week) intraperitoneally injected postnatally in rats 97; cypermethrin 268 

crossed the BBB, leading to oxidative stress 102. Allethrin, a pyrethroid-based 269 

mosquito repellent, induced BBB permeability in the developing rat (inhalation) 103. 270 

 271 

 OPs irreversibly bind and inhibit acetylcholinesterase (AChE), preventing 272 

acetylcholine breakdown, leading to its accumulation and the hyperstimulation of 273 

cholinergic receptors 104,105. OPs are the most studied pesticides in experimental 274 

models, with evidence supporting their etiological role in neurodegeneration (Table 3) 275 

100. OPs permeate the BBB 106. Acute and chronic OPs exposure in rodents induces 276 

neuroinflammation, activating glial cells and releasing pro-inflammatory cytokines, 277 

prostaglandins, and chemokines 107,108. Acute exposure to 278 

diisopropylfluorophosphate resulted in neuronal injury, neurodegeneration, and 279 

neuroinflammation, with the activation of microglia and astrocytes, accompanied by 280 

seizures 109,110. Chlorpyrifos is gaining attention due to its extensive use and non-281 

target species effects. It triggers neuroinflammation 111. Mice exposed to chlorpyrifos 282 

(i.p., 5 mg/kg) for ten days showed no morphological changes in pyramidal neuronal 283 

cells 112. When similar chlorpyrifos concentration was administered orally in rats for 284 

one month, histopathological alterations of pyramidal neurons occurred 113. 285 

Chlorpyrifos impaired neurogenesis and synaptic integrity (synaptophysin 286 

immunoreactivity). Thus, chlorpyrifos can cross the BBB 112 detected in the CNS of 287 
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exposed rodents 114. Chlorpyrifos dermally applied in adult mice increased GFAP 288 

reactivity 115, affecting oxidative stress and antioxidant defense 102,113,114. Signs of 289 

neuroinflammation were reported when female mice were exposed to high 290 

concentrations of glyphosate-based herbicides during pregnancy and lactation. 291 

Glyphosate activates microglia and astrocytes and affects synaptic plasticity in the 292 

pup hippocampus 116; it decreases anti-oxidant enzyme activities in the mouse brain 293 

117. 294 

 OCs, such as DDT, hexachlorocyclohexane (HCH), aldrin, or dieldrin, are 295 

used in certain countries because of their low cost and effectiveness in controlling 296 

insect-borne diseases (e.g., malaria) 118,119, with long persistence and 297 

bioaccumulation. OCs trigger neurotoxicity, blocking subunits of the GABA-A 298 

receptors. Orally administered endosulfan (28 days, 5 mg/kg/d) to adult rats elicited 299 

oxidative stress and deregulated the levels of neurotransmitters. Endosulfan can 300 

negatively affect the developing brain by altering dopamine 120 121. Endosulfan 301 

administered to pregnant rats led to cerebellar and hippocampal inflammatory 302 

pathways in the offspring 97,122. Selective loss of dopaminergic neurons and 303 

disruption of dopamine transport occurred when heptachlor was intraperitoneally 304 

injected in adult mice (7 mg/kg twice a week for 8 weeks) or orally administered to 305 

pregnant mice throughout gestation and lactation (3 mg/kg every 3 days for 2 weeks). 306 

Heptachlor activates astrocytes and microglial cells in specific brain regions, such as 307 

the ventral midbrain area, with dopaminergic system susceptibility to further damage 308 

123,124. Methoxychlor injected i.p. for 20 days into adult mice decreased dopamine 309 

levels and disrupted dopamine metabolism and transport, with a link to oxidative 310 

stress at the mitochondrial level. GFAP immunoreactivity was increased 125.  311 

 312 
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 Neonicotinoids are nicotinic acetylcholine receptor (nAChR) agonists due to 313 

their structural similarities with nicotine 126, evoking excitatory responses in the insect 314 

central nervous system. Because of their effects on pollinator populations, some 315 

neonicotinoids (clothianidin, thiamethoxam, imidacloprid) are banned in the EU. 316 

Neonicotinoids were reported to penetrate the BBB poorly, with exceptions in the 317 

brain of mice and zebrafish 127 128. Neonicotinoids and their metabolites can affect 318 

neurodevelopment and neurotransmission and induce oxidative stress and 319 

neuroinflammation in rodent models 129,130. Acetamiprid accumulates into the brain 320 

upon a few days of oral ingestion in adult mice, affecting the expression levels of 321 

nAChR without causing gross histomorphological brain changes 131. Exposure to 322 

acetamiprid and imidacloprid (5 mg/kg day) in postnatal mice reduced neurogenesis 323 

in the hippocampal dentate gyrus and increased the number of activated microglia. 324 

Both neonicotinoids can permeate the BBB 132; accordingly, imidacloprid and its 325 

metabolites were reported to cross the BBB upon oral exposure to gestational mice 326 

133, causing oxidative stress and inflammation 134. Importantly, ROS production exerts 327 

a key role in neonicotinoid-associated neurotoxicity 130 135-137. 328 

 329 

 Paraquat is a well-known neurotoxicant that crosses the BBB 138, causing 330 

dopaminergic neuronal damage. Paraquat administered to adult mice (i.p, 5 – 80 331 

mg/kg twice a week for 4 weeks) induced neuroinflammation with ROS production in 332 

the substantia nigra, frontal cortex, and hippocampus, with activation of microglia 333 

cells, increased expression of TNFa and IL1b, and dopaminergic neurotoxicity. The 334 

release of pro-inflammatory cytokines from the activated microglia may disrupt the 335 

BBB endothelium 139. Paraquat (i.p, 1 and 5 mg/kg every 2 days) administered for 336 

several weeks in adult mice augmented BBB permeability. It activated microglia, 337 
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which release pro-inflammatory cytokines, such as IL-1b, in the dentate gyrus 140. 338 

When pregnant mice were exposed to paraquat (aerosol), the offspring showed 339 

microglia activation 141. However, one study did not report neuropathological 340 

alterations in male mice exposed to the maximum tolerated doses of paraquat 142.  341 

 342 

 Rotenone is a natural lipophilic insecticide that interferes with the electron 343 

transport chain. Rotenone can cross the BBB due to its lipophilicity. Two and 3-344 

weeks of rotenone exposure (i.p) in adult rodents diminished the expression of 345 

endothelial tight junction proteins. Signs of toxicity were reported, such as microglia 346 

and astrocyte activation, neuronal apoptosis, and progressive loss of dopaminergic 347 

neurons. The activation of glial cells was associated with releasing cytokines and 348 

chemokines 143,144. Atrazine is an herbicide frequently detected in the environment. 349 

Rodents exposed to atrazine via inhalation (25 mg for 28 days) or oral gavage (50 – 350 

200 mg/kg 5 days a week for 45 days) showed neuroinflammation and neurotoxicity, 351 

such as ROS levels and oxidative stress, production of pro-inflammatory cytokines, 352 

microglia activation, and dopaminergic neurons degeneration 145,146. Other pesticides, 353 

such as ivermectin, a potent insecticide and anthelmintic, were also reported to cross 354 

the BBB 147. 355 

 356 

 Lastly, assessing the effects of a mixture is necessary and a complex task 357 

because the impact of each combination might vary according to the compound and 358 

the doses 148. We here provide a few examples. Endosulfan and cypermethrin in a 359 

mixture or single components showed dissimilar effects on neuroinflammatory 360 

markers in the hippocampus 97. Pesticides unable to cross the BBB when used as a 361 

single may quickly enter the CNS when mixed 149. Permethrin does not alter BBB 362 
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permeability, but when it was tested with N,N-diethyl-meta-toluamide (DEET), a 363 

decrease of BBB permeability in the cortex occurred 68. When orally administered to 364 

rats, a mixture of chlorpyrifos and cypermethrin induced oxidative stress 102. On the 365 

other hand, when chlorpyrifos, methyl parathion, and malathion were administered in 366 

rats, they did not show potentiation of toxicity 150. 367 

 368 

 369 

 370 

 371 

4.2) Evidence from aquatic models. 372 

 373 

 The function of the BBB is conserved across different taxa 151,152. As in 374 

mammals, fishes have brain endothelial cells, perivascular glia, and pericytes 152, 375 

affording CNS protection 152. In harmonization with the rodent data previously 376 

presented, we review the impact of selected compounds (Table 3).  377 

 378 

 Pyrethroids can cross the BBB and trigger neurotoxic sequelae in aquatic 379 

animals 95. Grass carp (Ctenopharyngodon idella) exposed to cypermethrin (0.65 380 

µg/L) for 42 days displayed histopathological alterations at the cerebellar level, with 381 

damaged myelin sheath layers and decreased synapses. The genes coding for BBB 382 

tight junction proteins (claudins, occludin, ZO) were downregulated 153. Common carp 383 

(Cyprinus carpio) exposed to deltamethrin (0.04 and 0.08 µM) for 96h showed 384 

degenerative and necrotic neurons at the optic lobe with upregulation of apoptotic 385 

markers as caspase (CAS) 3 and 8. Oxidative stress and inflammatory markers, such 386 

as 8-hydroxy-2' -deoxyguanosine (8-OHdG), iNOS, glutathione S-transferase (GST), 387 
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and DNA damage were detected in neurons and glial cells of cypermethrin-exposed 388 

carps and rainbow trouts 154-156; similar results were obtained in neotropical fish 389 

Prochilodus lineatus exposed to ng/L levels of λ-cyhalothrin 136,137. In common carp, 390 

NO vasodilation negatively impacts cerebrovascular structures 152. Adult and embryo 391 

zebrafish exposed to low concentrations of deltamethrin (0.25 – 2 µg/L) showed 392 

persistent alterations in dopaminergic-related gene expression and locomotor activity 393 

157,158 159. Chinook salmon (Oncorhynchus tshawytscha) exposed for 96 hours to 394 

environmentally relevant concentrations (0.15 and 1.50 μg/L) of bifenthrin presented 395 

neuronal metabolic dysfunction linked to axonal development, as well as apoptotic 396 

and inflammatory activations 160.  397 

 398 

 OPs are studied in aquatic models. Chlorpyrifos is associated with brain 399 

histopathological lesions, neuronal degeneration or death in common carp 161,162, and 400 

alteration of monoaminergic neurotransmitters in zebrafish embryos 163. Existing 401 

studies report increased 8-OHdg, CAS3, iNOS immunoreactivity in common carp 161; 402 

gene transcription for markers associated with neuronal dysfunctions and 403 

neuroinflammatory mechanisms in Atlantic salmon (Salmo salar) and common carp 404 

162,164; deregulation of the antioxidative system, such as SOD, GST, glutathione 405 

reductase (GS) or catalase (CAT) activities and elevated lipid peroxidation (LPO) and 406 

MDA, a secondary LPO product, in guppy fish brain (Poecilia reticulata) and common 407 

carp 162. Deregulated ROS activities occur with trichlorfon and parathion exposures in 408 

catfish (Rhamdia quelen) and common carp 162,165. After pesticide exposure, 409 

excessive ROS formation negatively impacts cerebrovascular tight junctions 165. 410 

Zebrafish embryos exposed to a ranging concentration of chlorpyrifos or bifenthrin 411 

(100 – 300 μg/L, 15 and 30 µM) showed alterations for oxidative stress markers in 412 
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the brain, along with the upregulation of genes coding for pro-inflammatory cytokines 413 

(e.g., tnfα, il-1β, cox2b). Bifenthrin downregulates pro-angiogenic BBB genes 166-168. 414 

Nile tilapia (Oreochromis niloticus) exposed to bifenthrin presented oxidative stress 415 

and neuroinflammation markers in the brain 168. 416 

 417 

 Next, OCs such as dichlorodiphenyltrichloroethanes (p,p’-DEE, p,p′-DDD, p,p′-418 

DDT), drins (dieldrin, aldrin, endrin), hexachlorocyclohexanes (HCHs) and 419 

endosulfan can cross the BBB and are detected in brain tissues of wild fish, e.g., 420 

from Lake Apopka (FL, USA) and a soybean growing area in Argentina 169,170. In the 421 

hypothalamus of zebrafish and largemouth bass (Micropterus salmoides), dieldrin 422 

(0.03 – 1.8 µg/g and 2.29 mg/kg dry weight feed/d) interferes with the mRNA and 423 

protein levels of T-cell receptors, interleukins, oxidative stress, and cell viability 171,172. 424 

Similar results were obtained in zebrafish embryos exposed to clethodim (10 – 500 425 

µg/L) 173. 426 

 427 

 Neonicotinoids are studied in freshwater species. Imidacloprid (0.001 -10 428 

mg/L) elicited DNA damage and oxidative stress in brain tissue 136,137,174. Rainbow 429 

trout exposed to environmentally relevant concentrations of clothianidin (3, 15, 30 430 

µg/L) for 21 days displayed signs of cell damage in the brain and histopathological 431 

lesions such as neuron and glial cell damage in the cerebral cortex 175. Thifluzamide, 432 

an organofluorine compound from the thiazoles group, was tested in aquatic models. 433 

The environmental impact is significant, as fluoro-containing agrochemicals 434 

decompose into inorganic fluorides, negatively influencing wildlife and contaminating 435 

soil or water 176. Thifluzamide exhibits adverse effects (oxidative damage, cell 436 

apoptosis, and inflammation) on non-target organisms such as zebrafish embryos 437 
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(0.19 – 2.85 mg/L), with increased serotonin and norepinephrine levels 177,178. Next, 438 

avermectins are a group of natural substances generated from the fermented 439 

products of Streptomyces avermitilis. Specifically, in invertebrates, avermectins alter 440 

electrical transmission by enhancing the effects of glutamate at the glutamate-gated 441 

chloride channel. Goldfish (Carassius auratus) exposed for 24h to avermectin (0.039 442 

mg/L) showed upregulated mRNA levels of GABAa receptors in the brain 179. 443 

Ivermectin can accumulate in the brain of gilthead sea bream (Sparus aurata) and 444 

rainbow trout, with the risk of GABAa extra-physiological activation 180,181. 445 

Furthermore, fipronil, from the group of pyrazoles, has an opposite modality of action 446 

than avermectins. Fipronil blocks the insect GABA-a channels favoring 447 

hyperexcitability. Insect GABA receptors are structurally similar to vertebrates; 448 

zebrafish exposed to fipronil during early development (0.0003 to 5 mg/L) or 449 

adulthood (100 – 2000 ppb) showed signs of oxidative stress and inflammation 450 

(TNFa, NF-kB, and brain-derived neurotrophic factor, BDNF) in the brain 182,183. 451 

Similar results were obtained in zebrafish embryos exposed for 96 hours to 452 

glufosinate (0.5 – 5 ppm) 184.  453 

 454 

 Another example is rotenone, a rapidly absorbed lipophilic insecticide that 455 

interferes with the mitochondrial electron transport chain 185. In zebrafish, rotenone 456 

crosses the BBB, inhibits the respiratory chain, induces oxidative stress, and evokes 457 

neuroinflammation 186. Zebrafish exposed to a low concentration of rotenone for four 458 

weeks displayed an increase in NO and LPO in the brain. SOD and GST antioxidant 459 

activities were depleted in the brain; genes coding for the pro-inflammatory 460 

interleukins were upregulated 187. Rotenone also impaired the dopamine system in 461 
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zebrafish 186. Ziram, another toxic pesticide from the dithiocarbamate family, showed 462 

similar effects 187. 463 

 464 

 Finally, we address the case of pesticide mixtures 188. When zebrafish 465 

embryos were exposed to 6 pesticides (boscalid, chlorpyrifos, ziram, thiophanate, 466 

thiacloprid, captan) or their mixture during development, the impact was molecule- or 467 

cocktail-specific 189. In another study, zebrafish embryos were exposed for 96h to a 468 

pesticide mixture, from low to high levels, based on the environmental concentrations 469 

for each compound. The pesticides chosen were: Abamectin (modulation glutamate-470 

gated chloride channel), carbaryl and chlorpyrifos (AChE inhibition), fipronil (GABAa 471 

antagonist), imidacloprid (nicotinic Ach receptor), methoxychlor (Na channel 472 

modulator). Differentially expressed genes were related to neurogenesis and synaptic 473 

plasticity, e.g.,  forebrain development (npas4a), nerve cell growth and differentiation, 474 

synaptic plasticity, and memory (e.g., egr1, vgf) 190. Zebrafish exposed to iprodione 475 

(dixarboximide), pyrimethanil (anilinopyrimidine), pyraclostrobin (strobilurin), and 476 

acetamiprid (neonicotinioid), alone or in combination during embryonal development 477 

showed deregulated expressions for genes coding for cell apoptosis (cas8, cas9, 478 

p53, bax), oxidative stress (cat, CuSod, MnSod) and cytokines (il, tnfa). Expression 479 

of P53 and tnf was primarily modified during exposure to pesticide combinations 480 

compared to individual exposures 191. The avermectin abamectin, the triazole 481 

difenoconazole, the pyrethroid λ-cyhalotrhin, and the neonicotinoid imidacloprid 482 

provoked synergistic or antagonist toxicity when their mixtures were tested in 483 

zebrafish and Prochilodus lineatus 137,192. This emerging evidence underscores the 484 

importance of studying complex mixtures of pesticides, cross-comparing to the effect 485 

of single molecules to unravel synergistic neurotoxic effects.   486 
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 487 

5. Pesticide exposure and CNS diseases.  488 

 489 

 We review the experimental and clinical evidence tracing a link between 490 

pesticide exposure and risk for neuropathological trajectories. Continuous or 491 

repeated exposure to low levels of single pesticides or mixture during susceptible 492 

periods (e.g., pregnancy and childhood) is a matter of high clinical significance 493 

42,193,194. We focus on brain pathologies where pesticide exposure is a reported risk 494 

factor and for which BBB damage and neuroinflammation play key roles.  495 

 496 

 497 

5.1) Neurodegeneration. 498 

 499 

Exposure to pesticides is a risk factor for adverse neurodegenerative 500 

trajectories (see Table 3),  including Parkinson's disease (PD) 195, Alzheimer's 501 

disease (AD) 196, and amyotrophic lateral sclerosis (ALS) 197 or multiple sclerosis 502 

(MS) 198. As an archetype example, the neurotoxic metabolite (MPP) of 1-methyl-503 

4phenyl-1,2,3,6-tetrahydropyridine (MPTP) was reported to cause PD in humans 199. 504 

An environmental risk for PD was suggested because MPP and the herbicide 505 

paraquat are chemically analogous 200. Experimental and epidemiological studies 506 

reinforced the association between paraquat exposure and risk for developing PD 195, 507 

the latter considered an occupational disease in farmers 201. Experimentally, neonatal 508 

exposure to the OP chlorpyrifos reduced dopaminergic neurons in rats, significantly 509 

increasing microglia and astrocyte reactivity in the substantia nigra 202. The OP 510 

cypermethrin induced loss of dopaminergic neurons associated with microglia 511 
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activation 203,204. However, it remains unclear whether inflammation is a cause or 512 

consequence of cypermethrin-associated PD. Hydrophobic OCs can bind to a 513 

partially folded a-synuclein conformation, accelerating the fibril deposit process, a 514 

primary biomarker of PD. Other studies demonstrated that OCs lead to oxidative 515 

stress in dopaminergic cells, and a-synuclein aggregation, highlighting the 516 

importance of these pesticides in PD pathogenesis. Analyses of a cohort of subjects 517 

affected by PD, and living in rural areas with suspected environment pesticides, 518 

showed high level of dichlorodiphenyldichloroethylene (DDE) as compared to a 519 

control population 205. 520 

 521 

 522 

Existing meta-analyses suggest pesticide exposure could represent a risk 523 

factor for AD 196. Notably, the pathological role of inflammation and BBB permeability 524 

in AD was proposed, including plaque-associated microglia exhibiting a reactive 525 

phenotype and passage of serum components into the brain across the damaged 526 

BBB 206. Chlorpyrifos exposure caused chronic microglial dysregulations and 527 

accelerated neurodegeneration 207. Cypermethrin elicits upregulation in both Aβ and 528 

(p)-tau in adolescent rats by stimulating a typical pro- 529 

amyloidogenic processing of amyloid precursor protein (APP) through beta-site APP 530 

cleaving enzyme 1 (BACE) and presenilin-1 (PS) 208. Cypermethrin exposure 531 

promoted oxidative stress and microglial activation 209. An increased level of Aβ was 532 

reported in an AD model after exposure to chlorpyrifos 210. 533 

 534 
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 Environmental factors, including metals, organic solvents, and pesticides, may 535 

contribute to ALS and MS 211. The increased occupational risk of ALS and MS in 536 

farmers and gardeners could be linked to exposure to glyphosate-based herbicides 537 

198. However, the underlying mechanisms remain unclear, with a possible influence of 538 

epigenetics mechanisms. Pesticides can induce different epigenetic alterations in the 539 

expression levels of miRNAs and the modulation of DNA methylation 212-214. In this 540 

specific field of research, PD is the most documented 215,216. For example, 20 541 

miRNAs were significantly altered by pesticide exposure. Among these miRNAs, the 542 

hsa-miR-210-3p is particularly interesting as it has been associated with developing 543 

PD 213. 544 

 545 

 546 

 547 

5.2) Neurodevelopmental and neuropsychiatric disorders. 548 

 549 

 In the developing brain, the forming BBB is vulnerable to toxins.  Quinalphos 550 

(OP), cypermethrin (pyrethroid), and lindane (OC) were tested on developing rats, 551 

concluding that oral exposure at critical periods of development could lead to 552 

neurological dysfunction (Table 3), with effects emerging later in life 217. Pesticides 553 

passing the placental barrier enables this brain vulnerability during pregnancy (Table 554 

4). Immature rats exposed to pyrethroid-based mosquito repellent display similar 555 

pathological patterns impacting BBB permeability 103. Although the permeability of the 556 

BBB to pyrethroids is limited, the permeability of the immature BBB allows pyrethroid 557 

in the brain resulting in neurologic effects during early development 218. In turn, 558 
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elevated levels of pyrethyroids in the immature rat brain favor BBB damage because 559 

of neuroinflammation 219,220. 560 

 561 

 Pre- and postnatal exposure to pesticides are associated with a risk for 562 

depressive behavior, mental retardation, and attention deficit or hyperactivity 563 

disorder. The Chamacos study showed a relationship between the urine levels of OP 564 

biomarkers in women and the prevalence of attention deficit hyperactivity disorder in 565 

their children 221 222. Two studies evaluating chlorpyrifos cord blood levels found that 566 

maternal exposure to this OP was associated with decreased working memory and 567 

full-scale IQ 223,224. Prenatal exposure to malathion was linked with abnormal reflexes 568 

in children 225. A pilot study on 40 patients presenting glyphosate or glufosinate 569 

intoxication indicated that S100B might be a biomarker for predicting neurologic 570 

complications 226; its levels in biological fluids indicate BBB cells damage 227-229.  571 

Experimentally, subchronic exposure to glyphosate (from GD 5 until PND 60) leads to 572 

glutamate excitotoxicity, oxidative damage, and depressive-like behavior associated 573 

with a decreased serum level of S100B 230. In rodents, prenatal exposure to 574 

deltamethrin increased anxiety; deltamethrin altered cellular adhesion and 575 

vasculature development in Chd8V986*/+ mice with autism spectrum disorder-like 576 

phenotypes; the disease phenotype was exacerbated in the mutant mice following 577 

deltamethrin exposure 231.  578 

 579 

5.3) Seizures and Epilepsy. 580 

 581 

 The societal impact of epilepsy varies worldwide 232,233,234. A study examined 582 

the prevalence and risk of developing epilepsy in areas of high vs. low pesticide 583 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/neurological-complication
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/neurological-complication
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/glutamic-acid
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/glutamic-acid
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/glutamic-acid
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/excitotoxicity
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/excitotoxicity
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exposure based on agronomic data 235. The study population consisted of 4007 584 

subjects diagnosed with epilepsy and 580,077 control subjects adjusted for age, sex, 585 

and geographical area. Epilepsy prevalence was significantly higher in areas 586 

associated with elevated pesticide use 235. Significantly, seizures and epilepsy are 587 

associated with increased BBB permeability 236; this could facilitate access to 588 

pesticides in the epileptic brain, perhaps accelerating the pathology (Table 3). 589 

Importantly, OPs, acting as potent irreversible cholinesterase inhibitors, can activate 590 

brain cholinergic receptors due to acetylcholine accumulation, initiating a seizure 237. 591 

Exposure to Paraoxon leads to status epilepticus associated with neuronal damage 592 

238-240
. The integrity of the BBB is a safeguard against neurotoxic molecules, such as 593 

pesticides, which critically influence its stability. This notion extends to adult life 594 

stages when exposure to environmental pesticides can impact the integrity of the 595 

BBB, influencing or accelerating neurodegeneration. 596 

 597 

 598 

6. In search of pathological mechanisms: the example of glyphosate.  599 

 600 

 The molecular mechanisms by which pesticides promote neuro-glio-vascular 601 

toxicity remain elusive because of the high chemical heterogeneity of these 602 

molecules. If we focus on glyphosate, the most utilized herbicide in agriculture, 603 

several avenues have been explored. Biological effect in humans and other 604 

mammals includes oxidative stress and mitochondrial dysfunction, which could 605 

trigger genetic damage, cytotoxicity, biochemical changes, inflammation or 606 

immunosuppression, endocrine disruption, and gut microbiome changes, resulting in 607 

health damage, including neurologic disorders and behavioral and cognitive changes. 608 

https://www.sciencedirect.com/topics/medicine-and-dentistry/cholinesterase
https://www.sciencedirect.com/topics/medicine-and-dentistry/cholinergic-receptor
https://www.sciencedirect.com/topics/medicine-and-dentistry/acetylcholine
https://www.sciencedirect.com/topics/medicine-and-dentistry/acetylcholine
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These impacts of glyphosate have been recently reviewed in 241,242. Glyphosate could 609 

indirectly interfere with brain function by impacting the microbiota composition. 610 

Glyphosate performs as an inhibitor of 5-enolpyruvylshikimate-3-phosphate synthase 611 

(EPSP synthase), not only in plants but also in bacteria. An inhibiting effect on EPSP 612 

synthase from intestinal microbiota has been reported, affecting mainly beneficial 613 

bacteria. Glyphosate-induced intestinal dysbiosis impacts the CNS, triggering 614 

emotional, neurological, and neurodegenerative disorders 243. Glyphosate exposure 615 

has been reported to significantly alter brain monoaminergic neurotransmitters levels 616 

(dopamine, serotonin, norepinephrine), in a brain regional- and dose-dependent 617 

manner, in rat 244 and fish 245; these effects may contribute to its overall spectrum of 618 

neurotoxicity. Eventually, the described effect of pesticides on the permeability of the 619 

BBB may support a direct consequence of glyphosate and its metabolites on 620 

molecular targets of CNS cells, which are not yet well known. For example, acute 621 

glyphosate exposure of rat hippocampal slices (but also chronic exposure in vivo) 622 

reduced glutamate uptake and metabolism within glial cells, which is associated with 623 

increased release of this neurotransmitter in the synaptic cleft. Consequently, the 624 

excess of glutamate increases Ca2+ influx in neurons by activating NMDA receptors 625 

and voltage-dependent Ca2+ channels, leading to oxidative stress and neural cell 626 

death 246. Importantly, glyphosate and its major metabolite, aminomethylphosphonic 627 

acid (AMPA), have structural similarities to glutamate and glycine. Glutamate is the 628 

major excitatory neurotransmitter in the brain, and glycine is the co-agonist required 629 

with glutamate to activate the NMDA type of glutamate receptors. Hence, glyphosate 630 

may also bind directly to the glycine or glutamate binding pocket of NMDA receptors 631 

and affect learning and memory processes driven by this receptor. The case of 632 

glyphosate can be generalized to other compounds when multiple molecular and 633 
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cellular actions could underlie the toxic effects on the brain. More targeted studies 634 

are required, mainly because the concentrations of environmental contaminants 635 

tested are somehow excessive compared to the daily exposure levels.  636 

 637 

7. Conclusions: pesticides and brain vulnerability. 638 

 639 

     The proposed evidence illustrates how exposure to environmental 640 

contaminants, particularly pesticides, can represent an ecotoxicological and brain 641 

health risk factor. We here offer a few final remarks: first, the duration of exposure 642 

matters. Accumulating evidence shows how pre-clinical studies should re-center on 643 

real-life risk simulation (long-term, life-long exposure modalities) to mimic adequately 644 

environmental and health-relevant scenarios 247,248; this experimental paradigm will 645 

enable the discovery of risk factors pertinent to human pathological adaptations or 646 

susceptibility conditions, especially during aging. This consideration leads to our 647 

second remark: levels of exposure matter. While a bulk of past studies focused on 648 

the effect of high-level exposures, recent research is redirecting toward testing the 649 

impact of low levels, from NOAEL (non-observable adverse effect level) to ADI 650 

(acceptable daily intake) established by regulatory agencies. Because most studied 651 

positions within intoxication paradigms, the significance of experimental data to 652 

global human health needs continuous refinements, with difficult cross-comparisons 653 

between experimental and human studies. Key factors include the route of body 654 

entry, levels (with appropriate dose scaling across species), frequency, duration of 655 

contact, specific toxicity, kinetics, metabolism rate, the system's sensitivity, and the 656 

number and types of pesticides tested simultaneously. 657 

 658 
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 Again, one archetypical example is glyphosate; exposure in rodents negatively 659 

influences neuronal transmission and behavior, although at levels higher than the 660 

ADI 230,249 . Maternal exposure to high levels of glyphosate promotes autistic-like 661 

behavioral deficiencies in murine male offspring 250. However, current data indicate 662 

that levels of glyphosate in humans are commonly low, although high-exposure 663 

episodes can occur 251,252. Epidemiological indication supports a link between 664 

glyphosate exposure and neurodevelopmental disorders 253. Within this framework, 665 

the permeability and the distribution of pesticides at the placental barrier (Table 4) 666 

represent critical elements that will shape the developmental trajectory of the womb. 667 

However, results remain highly debated 254. Exposure to glyphosate during prenatal 668 

or newborn periods was associated with a risk for attention deficit and hyperactivity 669 

disorders in children with parents previously exposed to glyphosate 255. However, 670 

these data were insufficient to support public concern for developmental risks 255. 671 

Importantly, children living in farmworker communities are particularly exposed to 672 

pesticides, such as pyrethroids, OCs, and OPs. In these environments, children could 673 

be at risk (reviewed in 256). 674 

 Lastly, the modalities of experimental investigation matter. From molecular to 675 

cellular and physiological levels, it is fundamental to unravel apparent phenotypes 676 

and explain existing discrepancies between studies, experimentally and clinically. 677 

Low exposure levels require sensitive analytical techniques to capture physiological 678 

adaptations. Spatial tissue transcriptomic and single-cell analyses could deliver the 679 

resolution and depth needed to recognize pathway activations with temporal and 680 

regional precisions. The latter could provide a signature corresponding or not to 681 

behavioral phenotypes. For instance, extra-physiological transcript and cellular-level 682 

(e.g., BBB cells) fingerprints were found in response to exposure to low levels of 683 
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glyphosate in zebrafish larvae, although in the absence of visible brain malformations 684 

or behavioral defects, supporting the notion of subtle and lingering vulnerability 685 

conditions 257.  686 

 687 

Environmental exposures' ethical and social implications on brain health and well-688 

being are significant. An emerging neuroethics framework in environmental sciences 689 

seeks possible threats from the continuous interaction between humans and the 690 

environment 258. The neuro-exposome, from contact with natural matrices to air 691 

pollution, is a principal risk factor for cognitive impairment in young individuals and 692 

abnormal or even accelerated aging trajectories. The finding summarized in this 693 

review support the importance of environmental neuroethics as a contemporary field 694 

of study to identify vulnerability factors that could shape brain health at the population 695 

level or depending on geographic location.    696 

 697 

 In summary, refining our knowledge of how environmental pesticides interact 698 

with brain barriers and borders could disclose disease mechanisms inherent to the 699 

exposome, with time- and age-dependent pathological trajectories and susceptibility 700 

elements representing objective risk factors for neurological diseases.  701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 
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 709 

 710 

 711 

 712 

 713 

Figure 1. Environmental contaminants reach brain borders and barriers. A) From 714 
external matrices, pesticides enter the body, reaching the peripheral blood circulation and the 715 
brain. B-E) Critical interfaces are the blood-brain barrier (BBB), the meninges with 716 
subarachnoid arteries, and the choroid plexus for the production of cerebral spinal fluid 717 
(CSF). Specifically, the BBB is a network of capillaries in the brain parenchyma, constituted 718 
by a multi-cellular assembly of endothelium, astrocytes, and pericytes. The BBB and adjacent 719 
neurons form the neuro-glio-vascular unit.  720 

 721 
 722 
 723 
 724 
 725 
 726 
 727 
 728 
 729 
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 730 
 731 
 732 
 733 
 734 
 735 
 736 
 737 
 738 
 739 
 740 
 741 

 742 
 743 

Figure 2. Environmental contaminants, brain-barrier damage, neuroinflammation, and 744 
neurological alterations. A) The BBB is highly impermeable due to tight junctions (TJ), with 745 
specific drug transporters regulating the brain entry of specific nutrients. B) From the 746 
peripheral blood, I) lipophilic and low molecular weight pesticides could pass through the 747 
BBB endothelial cells. Once in the brain, they could affect neuroglia cells enabling 748 
inflammation and secondary BBB permeability; II) on the other hand, blood pesticides could 749 
directly damage the BBB endothelium (e.g., disrupting TJ), increasing capillary permeability 750 
and triggering neuroinflammation. Both scenarios result in pesticide entry into the brain, 751 
modifying the parenchymal homeostatic control and altering synaptic transmission in 752 
networks. 753 
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 759 
 760 
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 767 
 768 
 769 
 770 
 771 
 772 
 773 
 774 
 775 

 776 
Table 1. Relevant interactions between pesticides and drug transporters at the BBB. 777 
 778 

 779 

 780 

 781 

 782 

TRANSPORTE
RS 

PESTICIDES 
REF 

ABCs 

 
 

Pgp 

 
Diazinon, 1-methyl-4- 

phenyl-4-phenylpyridinium ion (MPP+), rotenone 
Methylparathion, endosulfan, cypermethrin, fenvalerate 

DDT, endosulfan  
Dibrom, Profenofos  

 
62

 
259

 
260

 
 

 
BCRP 

 
DDT, endosulfan 

Allethrin, tetramethrin, permethrin, resmetrhin (phyrethroids) 
Phosmet, Profenofos  

261
 

260
 

262
 

 

 
MRP 

 
Allethrin,tetramethrin 

Profenofos 

260
 

261
 

262
 

SLCs 

Amino acid 
transporters (LATs) 

Glyphosate 
 

263
 

Monocarboxylat
e transporters 

(MCTs) 

2,4-dichlorophenoxyacetate (2,4-D) 
Triclopyr 

264
 

265
 

Organic anion 
transporters (OATs) 

Allethrin, tetramethrin 
Fenamiphos, malathion, metasystox, profenofos 

266
 

262
 

Organic anion-
transporting 
polypeptides 

(OATPs) 

Allethrin, tetramethrin 
Fenamiphos, malathion, parathion, phosmet, profenofos, 

temephos 
64 
262

 

Organic cation 
transporters (OCTs) 

Allethrin, tetramethrin 
Fenamiphos, fenitrothion, malathion, methyl-parathion, parathion, 

phosmet, profenofos, propetamphos 

64 
262

 
 

Multidrug and 
toxin extrusion 

(MATE) 

Allethrin,tetramethrin 
Fenamiphos, phosmet, propetamphos 

64 
262
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 783 

 784 

 785 

 786 

 787 

 788 

 789 

Table 2. Environmental pesticides at the BBB and intersections with 790 

neuroinflammation: in vitro studies. 791 

 792 
PESTI
CIDE 

GROU
P 

COMPOUND MODEL DOSE 
DURA
TION 

OUTCOMES PATHWAYS REF 

        BBB integrity 

OP Chlorpyrifos 

Neurovascul
ar unit 

Endothelial 
cells 

NVU: 0, 1, 3, 
10, 30, 

100 µM /  
 

Endothelial 
cells: 0, 10, 
30, 100, 300 

µM 

2 h to 
24 h 

Chlorpyrifos treatment resulted 
in morphological changes to more 
circular-shaped cells. The highest 
exposure tested (300 µM) resulted 
in most cells displaying punctate 

cell morphology or clumping, 
indicating cell death. The 

treatments caused significant 
disruption of acetylcholine 

metabolism. 

Cell 
morphology 

267
 

OP 
 

Malathion/ox
on 

In vitro BBB 
model  
(rats’ 

astrocytes, 
endothelial 
cells (RBE4 
or BMEC), 

and 
neuroblasto
ma cells SH-

SY5Y 

1 mM, 100, 
10, 1, 0.1, 
0.01 μM 

24 h 

Significant decay in cell 
viability. Malathion and Malaoxon 
permeability through the barrier 

(leakage was assessed by 
measuring the inhibition of AChE 

enzyme in SH-SY5Y cells in a 
barrier system) 

Cell viability 
71

 

Malathion 
Malaoxon 

In vitro BBB 
model 

(endothelial 
cells, RBE4 
or BMEC) 

Malathion 
10

-5
 M, 

malaoxon 
10

-6
 M 

2, 4, 8, 
16, 24 

h 

Malathion decreases the 
proteins associated with tight 

junction formation 

Tight junction 
proteins 
occludin, 

claudin 5, and 
scaffold  

ZO1 and ZO2 

69
 

        Endothelial cells 

Dipyri
ds 

Paraquat 

Human 
brain 

microvascul
ar 

endothelial 
cells 

1, 10, 
100 µM 

24 h 

Altered pathways linked to 
complex I of mitochondrial 
respiration and significantly 

decreased mitochondrial function. 
Modulation of the cholesterol 

biosynthesis pathway 

Mitochondrial 
function/choles

terol 
biosynthesis 

268
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(HBMECs) 

PYR Pyrethroid 

Microvascul
ar 

Endothelial 
Cells 

10 µM 24 h 

No effect on viability; ROS 
production; Thiobarbituric acid-

reactive substances; Protein 
carbonyl; oxidative stress 

Cell viability 
and ROS 

production 

269
 

OP Paraoxon  

Human 
CD34+ 

derived ECs 
and bovine 

brain 
pericytes 

100, 300, 
600, 900, 
1200 µM 

24 h 

Paraoxon directly affects the 
BBB in vitro by attenuating 

viability, integrity, and junctional 
mRNA and protein expression 

Tight junction 
proteins 
occludin, 

claudin 5, and 
scaffold 
proteins 

ZO1 and ZO2 
in endothelial 

cell 

70
 

        Astrocytes / Oligo 

OP Malathion 

Gibco®Hum
an 

Astrocytes 
(GHA cells), 

DI TNC1 
normal rat 
astrocytes, 

BTRG-
05MG 
human 

glioblastoma 
cells 

20 μM to 25 
µM 

20 min 

In GHA but not DI TNC1 and 
DBTRG-05MG cells, malathion 
induced Ca2+ release from the 

endoplasmic reticulum and caused 
PKC-regulated Ca2+ influx via 2-

APB 

Ca2+ release 
from the 

endoplasmic 
reticulum and 
Ca2+ entry via 
PKC-sensitive 
store-operated 
Ca2+ channels 

72
 

OP Malathion 

Human 
induced 

pluripotent 
stem cell 
(iPSC)-
derived 

neurons and 
astrocytes in 

3D-matrix 

10
−1

, 10
−3

, 
and 10

−5
 M 

24 h 
A higher astrocyte-to-neuron 

ratio promotes viability following 
acute malathion exposure 

Cell viability 
73

 

OP Malathion 

Gibco® 
Human 

Astrocytes 
(GHA cells) 

0, 5, 10, 15, 
20, 25 µM 

24 h 

Cell morphological changes 
include cell shrinkage, a decrease 
in cell number, and loss of cell-to-

cell contact. 

Cell cycle 
alterations and 

ROS 
production 

74
 

OP 
Parathion / 
Chlorpyrifos 

Mixed-cell 
aggregate 
cultures 

from fetal rat 
telencephalo

n 

Parathion: 
10

−9 
to 10

−5
 

M 
Chlorpyrifos: 
10

-7
 to 10

-5
 

M 

10 d 
Increase in GFAP expression 

and astrogliosis 
Astrocytes 
reactivity 

76
 

OP Glyphosate  
Rat 

astroglioma 
(C6 cells) 

40, 80, 160 
µM 

3, 24 h 
Decreased cellular viability 

and mitochondrial respiratory 
chain activities 

Cell viability 
and 

mitochondria 

270
 

OP Chlorpyrifos 
Astrocyte-
neuron co 
cultures 

10 μM to 30 
µM 

48 h 
Astrocytes reduce the toxic 

effect induced by Chlorpyrifos 
exposure on neurons 

Cell viability 
271

 

OP 
Diazinon/ 
Diazoxon 

Primary 
cultures of 

cortical 
astrocytes  
Astrocyte–

0, 0.1, 1, 10 
µM 

24 h 

50% decrease in the length of 
the longest neurite in hippocampal 
neurons cultured with astrocytes 

previously treated with 10 μM 
diazinon 

Oxidative 
stress 

272
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neuron co-
cultures. 

OP/PY
R 

Chlorpyrifos/ 
cyflutrin 

Human 
primary 

astrocytes 
1, 5, 25 µM 

7, 14 
days. 

Upregulation of pro-
inflammatory targets  

Astrocytes 
reactivity 

75
 

PYR Cypermethrin 
Astrocytes 

culture 
0–200 μM 

0, 
24,48 

h 

Cypermethrin inhibits Epithelial 
Growth Factor Receptor (EGFR) 

signaling, reduces EGFR 
activation-dependent Heparin-

Binding-EGF synthesis, attenuates 
HB-EGF-dependent EGFR 

expression, promotes apoptosis 
through the EGFR inactivation in 

rat astrocytes 

Autocrine/para
crine mode of 

HB-EGF-EGFR 
signaling at two 

levels 

77
 

PYR 
Lambda-
cyhalotrin 

Gibco®Hum
an 

Astrocytes 
5-25 μM 24 h 

Cytotoxicity after 24 h 
treatment and increased [Ca2+] by 

inducing Ca2+ entry via store-
operated Ca2+ channels and 

Ca2+ release from the 
endoplasmic reticulum. 

Ca2+ release 
273

 

        Microglia 

PYR 
Permethrin 
and 
deltamethrin  

Immortalize
d mouse 
(C57Bl/6) 
microglial 
cells, BV2 

and primary 
microglia 

0, 0.5, 1, 5, 
10, 25, 50, 

100 µM 

24, 
48 h 

 
Higher concentrations of 

permethrin and deltamethrin 
significantly decrease cell viability 

and activate microglia cells.  

Cell viability 
and microglia 
morphology 

80
 

PYR Cypermethrin 

Primary 
microglia 

and 
neuronal 
culture 

0.125 μM 48 h 

Cypermethrin increases the 
level of PKC-δ and iNOS in 

primary microglia and TNF-α and 
IL-1β in the conditioned medium. 

The conditioned media of 
Cypermethrin-treated microglia 
induce toxicity in the rat primary 

neurons. 

Pro- and anti-
inflammatory 

cytokines 

81
 

PYR Bifenthrin 

Primary 
microglia 

culture and 
organotypic 
hippocampal 

slice 
(OHSCs) 

0,1, 1, 5, 10, 
20, 40, 100 

µM 
24 h 

Bifenthrin induced a significant 
decrease in cell viability with 

higher doses. Bifenthrin does not 
cause cell death in microglia and 

astrocytes 

Oxidative 
stress  

82
 

OP Chlorpyrifos 

Immortalize
d mouse 
(C57Bl/6) 
microglial 
cells, BV2 

0.3, 1, 3, 10, 
30, 100, 
300 μM 

96 h 

Chlorpyrifos triggered 
oxidative stress and pro-

inflammatory states in microglial 
cells, promoted BV-2 cell 

activation and proliferation, and 
increased DNA damage and 

generation of oxidative markers. 

Oxidative 
stress 

79 

OP Dichlorvos 
Rat primary 
microglial 
cultures 

0 to 60 µM 
24, 36, 
48 h 

Significant increase in iNOS 
and NO associated with 
inflammatory cytokines 

Oxidative 
stress 

78
 

        White blood cells 

OP 
Malathion 

 
Lymphocyte

s 
1/4 to 1/20 
LC50 (5.2 

2, 4, 8, 
12 h 

Malathion significantly reduced 
lymphocyte viability and caused 

Cell and DNA 
viability  

84
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suspension 
(Wistar rats) 

mg/L) DNA damage. 

OP Glyphosate  

Human 
peripheral 

whole blood 
(HMWB) 

0.1, 1, 10, 
100, 1000, 
10000 μM 

4, 20 h 
Glyphosate alone could not 

considerably decrease the viability 
of HMWB cells  

Cell viability 
85

 

OP 
Methyl 
parathion/ 
Chlorpyrifos 

Lymphocyte
s 

suspension 
extracted 

(Wistar rats) 

1/4 to 1/20 
LC50 (0.135 

mg/L) 

2, 4, 8, 
12 h  

Malathion significantly reduced 
rat lymphocyte viability and caused 

DNA damage. 

Cell and DNA 
viability 

84
 

PYR 
β-
Cypermethrin 

Monocyte/m
acrophage-

like cells 
(RAW 264.7 

cells) 

50 - 100 μM  
24 to 
48 h 

Exposure to β-Cypermethrin 
reduced cell viability and increased 

ROS production 

Cell viability 
and ROS 

production 

86
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Table 3. Environmental pesticides, BBB damage, inflammation, and time-dependent 821 

neuropathophysiology: in vivo studies. 822 
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DISEASE 

PESTIC
IDE 

GROU
P         

COMP
OUND 

MODEL AND 
AGE 

DOSE, 
ROUTE 

EXPOSURE 
DURATION 

           OUTCOMES REF 

 
Neurodegenerative diseases 

 

Alzheimer 
disease 

OP 
Chlorp
yrifos 

Female wild-
type (WT) 

and TgF344-
AD rats 

10 mg/kg 
bw/d, 

subcutaneous 
injections 

Daily for 21 d 
Chlorpyrifos induced cognitive 
impairment associated with the 

dysregulation of microglia 

207
 

Parkinson'
s disease 

OP 
Chlorp
yrifos 

Sprague-
Dawley rats, 

PND 11 
(both sexes) 

5 mg/kg bw/d, 
subcutaneous 

injection 

Daily from PND 
11 – 14 

Chlorpyrifos induced a 
significant reduction of 

dopaminergic neurons and 
significant activations of 

microglia and astrocytes in the 
substantia nigra 

202
 

Parkinson'
s disease 

OP 
Cyper
methri

n 

Male Wistar 
rat pups, 
PND 5  

1.5 mg/kg bw/ 
d,  Intra-

peritoneal 
injection 

Twice a week 
from 5-19 

Cypermethrin increased the 
number of macrophages or 

microglia cells (integrin-Alpha 
M-positive cells) associated 
with a reduction of Tyrosine-
Hydroxylase-positive cells 

leading to significant 
impairment in motor activities 

204
 

Parkinson'
s disease 

OP 
Cyper
methri

n 

Male Wistar 
rat pups, 
PND 5  

1.5 mg/kg bw/ 
d,  Intra-

peritoneal 
injection 

Twice a week 
from 5-19, and 

the rats were re-
challenged with 
15 mg/kg bw/ 

twice a week for 
12 weeks  

Cypermethrin altered motor 
functions, favored the loss of 
dopaminergic (TH-positive) 

neurons, with activated 
microglial 

(integrin-αM-positive) cells. 

203
 

Parkinson'
s disease 

Phenylp
yrazole 

Fiproni
l 

Male 
Sprague 

Dawley rats, 
3 months 

15 or 25 μg/kg 
bw/d, 

microinjections 
into the 

substantia 
nigra 

From 7 d to 16 d 
post-injection 

Fipronil exerted a 
neurotoxic effect on 

nigrostriatal dopaminergic 
neurons 

274
 

 
 
 
 

Neuropsychiatry Conditions 
 

Depressiv
e disorder 

OP 
Glypho

sate 
Adult male 
Wistar rats 

Drinking water, 
70 mg/kg bw/d 

Maternal 
exposure from 

GD 5 to PND 15 
or PND 60 

Glyphosate induced a 
depressive-like behavior profile 
and altered the serum levels of 
the astrocytic protein S100B. 

230
 

Autism 

PYR 
Deltam
ethrin 

Chd8V986*/+ 
male mice 

crossed with 
C57BL/6J 
females  

3 mg/kg 
bw/every 3 
days mixed 
into peanut 

butter 

From E0 
(maternal 

exposure to 
deltamethrin) to 

PND22 

Prenatal exposure to 
deltamethrin led to 

increased anxiety along with 
altered cellular adhesion and 
vasculature development in 

Chd8V986*/+ mice evaluated 
at 6 and 12 months of age 

231
 

Attention-
deficit/hyp
eractivity 
disorder PYR 

Deltam
ethrin 

Adult male 
and female 
C57BL/6 

mice 

0.5 mg/kg 
bw/d mixed 
into peanut 

butter 

3 groups: 
maternal 

exposure from 
gestational day 

(GD) 0 to 5 or GD 
6 to 15 and GD 

16 to birth  

Expression levels of NMDA 
receptor subunits were 

decreased in the hippocampus 
and cerebral cortex of male 

mice. 

275
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 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 
 832 
 833 
 834 
 835 
 836 
 837 
 838 
 839 
 840 
 841 
 842 
 843 
 844 
 845 
 846 

Epilepsy 
 

 

OP 
Paraox

on 

Adult male 
Sprague-

Dawley rats 

2 mg/kg, one 
sub-cutaneous 
administration 

Acute treatment, 
analysis 1h to 1 

month and 3 to 6 
months 

Paraoxon-exposed rats 
undergo a rapid transition to 

status epilepticus 

240
 

 

OP 
Paraox

on 

Adult male 
Sprague-

Dawley rats 

2 routes: 200 
nM to 300 nM 
intrahippocam
pal infusions or 
intra-peritoneal 
route at 0.35 

mg/kg 

Acute treatment 

Direct injection of 200 nmol 
paraoxon into the hippocampus 

caused self-sustaining 
seizures. 

239
 

 

OP 
Paraox

on 

Adult male 
Sprague-

Dawley rats 

450 μg/kg 
bw/d, one sub-

cutaneous 
administration 

Acute treatment, 
analysis from 2 to 
6 weeks after the 

poisoning 

Animals developed generalized 
tonic-clonic convulsions  

276
 

 

OP 
Paraox

on 

Adult male 
Sprague-

Dawley rats 

0.45 mg/kg, 
intra-muscular 

injections 

Acute treatment, 
analysis 24 h 
after poisoning 

Paraoxon-treated rats resulted 
in generalized tonic-clonic 

convulsions and electrographic 
evidence of status epilepticus 

238
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 847 
Table 4. Examples of placental transfer in humans, mice, and rats. Detection of 848 
pesticides (and their metabolites) in fetal tissues for rodents and placenta/umbilical 849 
cord blood for humans. 850 
 851 

SPECIE COMPOUND TISSUE REF 

MOUSE 

Clothianidin 
(Neonicotinoid) 

Fetal tissue 
277

 

Permethrin, α-cypermethrin 
(Pyrethroids) 

Placenta, fetal 
body, and amniotic 

fluid 

278
 

Azoxystrobin (Strobilurin) 
Embryo’s brain 

and placenta 
279

 

RAT 

Atrazine, simazine and propazine 
(Triazines) 

Fetal brain and 
liver 

280
 

Atrazine (Triazine) Fetal tissue 
281,282

 

Permethrin (Pyrethroid) 
Fetal liver, 

brain and blood, 
and placenta 

283
 

Fenvalerate (Pyrethroid) 
Placenta, fetal 

liver and testis 
284

 

Fipronil (Phenyl-pyrazole) 
Placenta, 

amniotic fluid and 
fetus 

285
 

Bitertanol (Triazole), propiconazole 
(Triazole), cypermethrin (Pyrethroid), 

terbuthylazine (Triazine), malathion (OP) 
Amniotic fluid 

286
 

HUMAN 

Dichlorodiphenyltrichloroethane (DDTs), 
hexachlorocyclohexanes (HCHs), and 

hexachlorobenzene (HCB) (OCs) 

Umbilical cord 
blood and/or 

placenta 

55
,
287

,
288

 

DDT and/or HCH 
(OCs) 

Umbilical cord 
blood and/or 

placental tissue 

289
,
290

,
291

,
292

,
293

,
294

,
295

, 
296

,
297

 

DDT, chlordane (CHL), HCH 
(OCs) 

Placental 
tissue or umbilical 

cord blood 

298
,
299

 

DDT, HCH, aldrin, heptachlor 
(OCs) 

Placental 
tissue 

300
 

DDT, HCH, Heptachlor, Endosulfan, 
Chlordane, Aldrin, Dieldrin, Endrin, 

Methoxychlor (OCs) 

Umbilical cord 
blood 

301
 

Aldrin ad Dieldrin (OCs) 
Umbilical cord 

blood 
302

 

Glyphosate 
Umbilical cord 

blood 
303

 

2,4-dichloroacetic acid (Phenoxy), 
prometryn (Triazine), simazine (Triazine), 

and captan (Phthalimide) 

Umbilical cord 
blood 

304
 

Bendiocarb (Carbamate) 
Umbilical cord 

blood 
305

 

 852 
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