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Abstract
This article addresses the problem of robust output regulation for uncertain
switched systems. A general result is first proposed for the case of uncertain
and nonlinear systems. In order to cope with model uncertainties, the proposed
approach implements the internal model principle. Local asymptotic stability of
the closed-loop system as well as zero steady state error on the controlled output
are proven using Lur’e Lyapunov functions. Then, this result is specialized to the
linear case. Sufficient conditions ensuring global or local stability of the closed
loop system are provided. Furthermore, a constructive method based on LMI
is presented. When only local stability is achieved, outcomes of this procedure
are not only the controller gains, but also an estimation of the robust domain of
attraction. Finally, illustrative examples are proposed, showing the efficiency of
the proposed methods.
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1 INTRODUCTION

Switched systems can be conceived as particular hybrid systems for which the active subsystem is selected according to
some switching rule.1 The study of switched systems has attracted a lot of attention from the scientific community over
the past few years.2–5 This line of research is indeed fully justified by the adequation of this class of model with many
practical applications in various fields such as power electronics, electromechanical, and aerospace applications.6–11

From a theoretical point of view, analysis and control design devoted to switched systems are non trivial tasks. To date,
several important contributions in this research field can be found in the literature, using either quadratic12–14 or Lur’e
Lyapunov functions15 as the key tool. Yet, most of those contributions are developed in an uncertainty free context. This
prevents real implementation, since uncertainties must be handled in most of practical cases.

Few papers have investigated the robust case. Contributions taking up this challenge can be gathered in two groups.
The first one focuses on specific applications, see for example, References 16–19 and references therein, whereas the
second one considers the stabilization problem in a broader context.20–22 In both cases, the most widely used control
strategy consists in implementing an adaptive controller fed by a perturbation observer. This allows to handle perfectly

Abbreviation: LMI, linear matrix inequalities.
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2 NDOYE and TRÉGOUËT

modeled uncertainties that are estimated and compensated by the control law. However, it is well-known that this strategy
is fragile with respect to unmodeled uncertainties and, therefore, is not suitable for most practical applications.

For continuous systems, the internal model principle can be conceived as an alternative control strategy to tackle
robustness. In stark contrast with the adaptive strategy, control design via internal model allows to guarantee structural
stability, that is, output regulation and closed-loop stability are preserved for any system parameters variation of small
enough magnitude.23 For this reason, this article aims tackling the output regulation problem following an internal model
approach. Note that this strategy has been already implemented in References 24 and 25 for hybrid systems. However,
those studies focus on the particular case where the exosystem, the plant and the controller switch periodically in time,
independently on the instantaneous value of the state, which does not fall within the scope of this article focusing on
systems for which inputs can switch at any instant time.

The key ingredient to implement robust output regulation using the internal model approach is a robust stabilizer for
the augmented model. Inspection of the current literature on switched systems shows that the design of this stabilizer
is far from being trivial. Indeed, in the context of switched systems, most of the existing constructive results rely on the
following assumption:

(H) There exists a Hurwitz convex combination of the subsystems.

Clearly, the augmented dynamics resulting from the internal model approach does not have this property since the
marginally stable dynamics of the exosystem is embedded in each augmented subsystem, so that (H) is not satisfied. For
this reason, results in Reference 26 on robust stabilization of switched systems cannot be used. Perhaps, this technical
difficulty is the reason why very few papers tackle the output regulation problem head-on in the switched system con-
text. Besides, note that beyond the problem of output regulation, literature contains example of real switched systems for
which (H) is not satisfied. One of them is the parallel interconnection of buck converters, see References 27 and 28. This
makes general methodology for robust stabilizer design, that is, without (H), even more desirable.

Remarkably, there are some attempts in the literature to avoid (H). In Reference 29, a design procedure based on a
max-type Lyapunov function and on nonlinear inequalities is proposed. In Reference 30, a control design that locally
stabilizes switched affine systems is offered. In Reference 31, a stabilizer is developed for an open loop dynamics satisfying
(H) and augmented by integrators. Very recently, the global stabilization of rank-deficient switched affine systems is
addressed in Reference 32. As an illustration of the potentiality of this study, result of Reference 31 is somehow recovered
as a particular case. The key point here is that robustness is never treated a priori in all those papers.

To the best of our knowledge, Reference 33 is the only paper that proposes a robust control law design embedding
an internal model, in the context of switched systems. Unlike previously cited papers, (H) is not required, robustness
is ensured a priori at the stabilizer design step and, finally, LMI-based design procedure allowing to enlarge an inner
estimation of the basin of attraction is proposed. However, the results presented in Reference 33 rely on some restric-
tive assumptions, namely: (i) the approach is limited to invertible linear systems, which implies that the number of
inputs must be equal to number of regulated outputs; (ii) by using quadratic Lyapunov functions, not only achievable
closed-loop stability is merely local but also estimates of the domain of attraction can only be ellipsoidal sets which may
be conservative.

In a nutshell, this article aims tackling the robust output regulation problem for uncertain switched systems by
adopting an internal approach. To this end, one has to overcome the obstacle of robust stabilizer design. Even without
uncertainties, this is a non trivial task due to the fact that (H) does not hold for the augmented switched dynamics. In
contrast with existing results, a design procedure handling robustness a priori is proposed in Reference 33. Its applicabil-
ity is limited to invertible linear systems and achievable stability is only local, though. Therefore, the general considered
problem is still widely open.

In this article, we present a methodology that dramatically enlarges the scope of Reference 33 and offers less
conservative results. The contributions of this article are threefold.

1. The design of a robust switching controller is considered in the general context of uncertain nonlinear switched sys-
tems, whereas only linear dynamics is handled in Reference 33. Sufficient conditions to ensure stability are given,
under the assumption of the existence of a control Lyapunov function for the related continuous system and another
specific assumption which is extensively discussed (see forthcoming Assumption 2).

2. Unlike Reference 33, the study is not confined to the case of square and invertible systems. Indeed, we are able to
consider the broadest class of systems for which the number of inputs and outputs is arbitrary. Note that by removing
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NDOYE and TRÉGOUËT 3

this assumption, the core of the technical challenge taken up in Reference 33 for invertible systems is unveiled and
exhibited via the peculiar Assumption 2.

3. By using Lur’e Lyapunov functions, the proposed approach allows global asymptotic stability to be achievable, even in
the case where the open loop state matrix of the plan is not Hurwitz. This is in stark contrast with the results presented
in Reference 33. Furthermore, whenever only local asymptotic stability is achievable, it also gives rise to non ellipsoidal
inner estimates of the basin of attraction, hence possibly larger as compared to the one used in Reference 33.

This article is organized as follows. Section 2 formalizes the problem under study. Section 3 presents some prelimi-
naries, including the exposition of the previously mentioned Assumption 2, and gives a general result for the asymptotic
stability of uncertain nonlinear systems with switching control. This result is specialized to the linear case in Section 4
where we provide constructive sufficient conditions to ensure global or local stabilization. A LMI based approach is
employed for the computation of the control parameters and of the non ellipsoidal inner estimation of the basin of attrac-
tion for the local stabilization. Numerical examples that illustrate the efficiency of the proposed approaches are provided
in Section 5. The article is ended with some concluding remarks and perspectives. Note that two distinct sufficient con-
ditions for Assumption 2 to hold are provided. The first one is given in Section 3.5 and applies for the general nonlinear
case. The second one is exposed in Section 4.1 for the particular case where the dynamics of the plant is linear. In the
same subsection, Remark 5 discussed the differences between the two sufficient conditions.

Notations: By || ⋅ ||2, we denote the Euclidean vector norm of a vector. The identity matrix of dimension n × n is
denoted by In. 0m×n is the m × n matrix of zeros. 1m (0m) denotes a m dimensional column vector with 1 (0) entries.
N represents the set {1, 2, … ,N}. We denote by Sn

+ ∶= {P = P⊺ ∈ Rn×n ∶ ∀x ≠ 0, x⊺Px > 0}. For a symmetric positive
definite matrix P ∈ Sn

+ and a positive scalar c, we denote by (P, x0, c) the open ellipsoid centered on x0 with radius c > 0
that is, {x ∈ Rn ∶ (x − x0)⊺P(x − x0) < c}. For a given set  , Int{ } denotes its interior. Let ei be the ith unit vector. For
a given matrix M (vector v), let Mi ∶= e⊺i M (vi ∶= e⊺i v) and Mi,j ∶= Miej. If M is symmetric, the symmetric elements are
denoted by ∗. Define Rn

>0 ∶= {x ∈ Rn ∶ xi > 0} as the positive orthant, and Rn
⩾0 ∶= {x ∈ Rn ∶ xi ⩾ 0} as the nonnegative

orthant. By ΛN we denote the unit simplex:

ΛN ∶=
{

[𝜆1, … , 𝜆N]⊺ ∈ R
N
⩾0 ∶

N∑

j=1
𝜆j = 1

}

.

Given scalar 𝛼 > 0, define sat
𝛼
(⋅) ∶ R → R as follows:

sat
𝛼
(x) ∶=

⎧
⎪
⎨
⎪
⎩

− 𝛼 if x < −𝛼,
x if −𝛼 ⩽ x ⩽ 𝛼,

𝛼 if x > 𝛼.

For a vector a ∈ Rm
>0, let sata(⋅) ∶ Rm → Rm reads:

sata(x) ∶=
⎡
⎢
⎢
⎢
⎣

sata1(x1)
⋮

satam (xm)

⎤
⎥
⎥
⎥
⎦

.

2 PROBLEM FORMULATION

We consider the class of uncertain continuous time systems with switching control given by:

ẋ(t) = f 0
𝜃

(x(t)) + B0u(t), (1a)
y(t) = h(x(t)), (1b)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rp the controlled output and u(t) ∈ Rm is the control input vector which takes
value in a finite set of constant vectors  = {u[1],u[2], … ,u[N]} ⊂ Rm, where N is a strictly positive integer. Mapping f 0

𝜃
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4 NDOYE and TRÉGOUËT

is parametrized by time-invariant vector 𝜃 ∈ Θ which gathers uncertainties of the system, where Θ is a known set.* Note
that the non connected nature of induces discontinuity in the right hand side of (1a), so that the closed-loop system is
hybrid, in the sense that it exhibits both continuous and discrete dynamics.

Our objective is to design a state-dependent switching law that guarantees constant and robust output regulation, that
is, for all uncertainty 𝜃, controlled output y(t) must asymptotically converge to a given constant reference yref, while x(t)
remains bounded at all time.

Problem 1. Given system (1), vector yref ∈ Rp and sets  and Θ. Design nz ∈ N
>0, 𝜙 ∶ Rn+nz → Rnz and

𝜓 ∶ Rn+nz → Rm characterizing dynamical state-feedback relay controller

ż(t) = 𝜙(x(t), z(t)), (2a)
u(t) ∈ arg minv∈𝜓

⊺(x(t), z(t))v, (2b)

such that, for all 𝜃 ∈ Θ, resulting closed-loop admits an asymptotically stable equilibrium (x∗
𝜃

, z∗
𝜃

) for which
y = yref.

Among solutions of Problem 1, we are interested in the ones enlarging the basin of attraction of the resulting
closed-loop.

Let us already make the following standing assumption, which is valid throughout this article.

Assumption 1. For all 𝜃 ∈ Θ, there exists (x∗
𝜃

,u∗
𝜃

) ∈ Rn ×Rm such that following equations admit solution:

f 0
𝜃

(x∗
𝜃

) + B0u∗
𝜃

= 0, (3a)
h(x∗

𝜃

) = yref. (3b)

Under this assumption, it is possible to define a mapping 𝜃 → (x∗
𝜃

,u∗
𝜃

) fromΘ to Rn ×Rm, which relates 𝜃 to a solution
of (3). Obviously, this mapping is not unique when (3) admits multiple solutions.

Remark 1. Here, controller input u(t) must belong to non connected set  . Thus, closed loop (1) with (2)
is governed by a differential equation with discontinuous right hand side (unless u(t) is constant). In this
article, solutions of the closed loop are considered in the sense of Filippov, see for example, References 34
and 35. Given a locally bounded discontinuous vector field f ∶ Rn → Rn, recall that a Filippov solution of the
following differential equation

ẋ(t) = f (x(t)), (4)

on the interval [ta, tb] ⊂ [0,∞) is an absolutely continuous map 𝜑 ∶ [ta, tb] → Rn such that dif-
ferential inclusion 𝜑̇(t) ∈  (𝜑(t)) is satisfied for almost every t ∈ [ta, tb], with  (𝜑) = ∩c>0 ∩𝜇(S)=0
conv{f (x̃) ∶ x̃ ∈ (𝜑, c) ⧵ S}, where 𝜇 represents the usual Lebesgue measure, (𝜑, c) denotes the open ball
centered on 𝜑 with radius c and conv{} stands for the closed convex hull of the set.

3 A GENERAL SOLUTION

In this section, we provide a general framework leading to solutions of Problem 1.

3.1 Integral action in the continuous case

Let us start with a preliminary discussion considering the continuous framework for which the input u(t) is free to evolve
in Rm, instead of being constrained in .

Following the internal model principle, the error induced by parameter uncertainties is cancelled by adding an integral
action in the control scheme and design a robust stabilizer for the augmented model. Thus, state z of the controller satisfies

z = ∫ (y − yref). Denoting 𝜁 ∶=
[

x
z

]

, the augmented model reads:

̇
𝜁 (t) = f

𝜃

(𝜁(t)) + Bu(t), (5)
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NDOYE and TRÉGOUËT 5

with 𝜁(t) ∈ Rn+p and

f
𝜃

([
x
z

])

∶=

[
f 0
𝜃

(x)
h(x) − yref

]

,B ∶=

[
B0

0p×m

]

. (6)

3.2 The pitfall of stabilizer design of Reference 15 in the uncertain context

To solve Problem 1, we follow the path outlined in the previous subsection: we first add a continuous integrator, and
then we design a stabilizing control law for the augmented system. To implement this last task, a naive strategy is to
directly adapt the methodology exposed in Reference 15 to the uncertain context. In this case, one arrives to the following
statement: given a continuous controller 𝜅 ∶ Rn+p → conv{ } such that some positive definite Lyapunov function V

𝜃
∶

Rn+p → R is decreasing along the trajectories of closed-loop (5) with u = 𝜅(𝜁), one gets the following controller as a
candidate to solve Problem 1:

ż(t) = h(x(t)) − yref,

u(𝜁) ∈ arg minv∈
𝜕V

𝜃

𝜕𝜁

(𝜁 − 𝜁∗
𝜃

)Bv,

where 𝜁∗
𝜃

define an equilibrium of (5), that is, f
𝜃

(𝜁∗
𝜃

) + Bu∗
𝜃

= 0 holds for some u∗
𝜃

. This controller cannot be implemented,
though, due to its dependency with respect to the unknown parameter vector 𝜃, via 𝜁∗

𝜃

and V
𝜃
. The rest of this section can

be conceived as a workaround to this issue.

3.3 A particular equilibrium

To tackle the issue exposed in the previous subsection, the first step is to exploit the degrees of freedom in the definition

of the steady state of (5). Indeed, pick any mapping 𝜃 → (x∗
𝜃

,u∗
𝜃

) and define 𝜁∗
𝜃

=
[

x∗
𝜃

z∗
𝜃

]

with z∗
𝜃

∶ Θ → Rp. By definition of

(x∗
𝜃

,u∗
𝜃

), the following equation

f
𝜃

(𝜁∗
𝜃

) + Bu∗
𝜃

= 0, (7a)

is solved for any 𝜃 → z∗
𝜃

.† From this observation, we seek for some pair (𝜁∗
𝜃

,u∗
𝜃

) solving (7a) and, at the same time, the
following equation:

K

(

𝜁

∗
𝜃

−

[
x∗
𝜃n

0p

])

= 0m, (7b)

for some matrix K, some vector 𝜃n ∈ Θ and for all 𝜃 ∈ Θ. As shown in the sequel, the peculiar equality (7b) is the key to
arrive at a controller which does not depend on the uncertainty 𝜃. Let us now formalize the assumption on the equilibrium
solving (7).

Assumption 2. There exist a vector 𝜃n ∈ Θ, a scalar 𝜆 ∈ R
>0 and a matrix P ∈ S

n+p
+ defining K ∈ Rm×(n+p) as

follows

K ∶= −𝜆
2

B⊺P, (8)

such that, for all 𝜃 ∈ Θ, there exists 𝜃 →
(
𝜁

∗
𝜃

,u∗
𝜃

)
∈ Rn+p ×Rm satisfying (7) for all 𝜃 ∈ Θ.

In the next subsection, a general solution to Problem 1 is proposed, by relying on the Assumption 2. Then, Section 3.5
is dedicated to commenting Assumption 2 and constructing the conditions under which this assumption holds.
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6 NDOYE and TRÉGOUËT

3.4 A sufficient condition for robust stabilization

Given any 𝜃 ∈ Θ. Assume that Assumption 2 holds. Define the following relative coordinates:

̃
𝜁 ∶= 𝜁 − 𝜁∗

𝜃

, ũ ∶= u − u∗
𝜃

.

In view of (3), it follows that (5) with u(t) ∈  can be rewritten as follows:

̇
̃
𝜁(t) = f

𝜃
( ̃𝜁(t)) + Bũ(t), (9)

with ũ(t) ∈  − u∗
𝜃

and

f
𝜃
( ̃𝜁) ∶= f

𝜃

( ̃𝜁 + 𝜁∗
𝜃

) − f
𝜃

(𝜁∗
𝜃

). (10)

In the next assumption, we suppose that there exists a continuous controller delivering bounded inputs and such that
closed-loop system admits a Lur’e-type Lyapunov function.

Assumption 3. Assumption 2 is valid for some 𝜃n ∈ Θ, 𝜆 ∈ R
>0 and P ∈ S

n+p
+ . In addition to that, there exist

a vector c ∈ Rm
>0, a domain ⊆ Rn+p containing 0, a diagonal positive semi definite matrixΩ ∈ Rm×m, a scalar

𝛾 ∈ R
>0 and a continuous application 𝜅 ∶ Rn+p → Rm satisfying 𝜅() ⊆ conv{ } − u∗

𝜃

for all 𝜃 ∈ Θ, such that

𝜕V
𝜕
̃
𝜁

( ̃𝜁)
(

f
𝜃
( ̃𝜁 ) + B𝜅( ̃𝜁)

)
< 0, (11)

holds for all ̃𝜁 ∈  ⧵ {0} and for all 𝜃 ∈ Θ, where V ∶ Rn+p → R reads

V( ̃𝜁) ∶= 𝛾 ̃𝜁⊺P ̃𝜁 − 2
m∑

k=1
Ωk,k
∫

Kk ̃𝜁

0
𝜙ck (s)ds, (12)

and 𝜙c ∶ Rm → Rm is the following dead-zone

𝜙c(x) = satc(x) − x. (13)

and K is given by (8).

Theorem 1. Assume that Assumption 3 holds. Then, nz = p and the following mappings solve Problem 1:

𝜙(x, z) = h(x) − yref, (14a)

𝜓

⊺(x, z) =

(

𝛾

[
x − x∗

𝜃n

z

]⊺

P − 𝜙⊺c (K

[
x − x∗

𝜃n

z

]

)ΩK

)

B. (14b)

Besides, the set Φ(𝜁∗
𝜃

, r) defined as follows:

Φ(𝜁∗
𝜃

, r) ∶= {𝜁 ∈ R
n+p ∶ V(𝜁 − 𝜁∗

𝜃

) ≤ r}, (15)

belongs to the closed-loop domain of attraction for any r such that the following inclusion holds:

Φ(0, r) ⊆ . (16)

As a result, for any r satisfying (16), for all 𝜃 ∈ Θ and for all
[

x(0)
z(0)

]

∈ Φ(𝜁∗
𝜃

, r), 𝜁(t) asymptotically converges to

an equilibrium for which y(t) = yref.

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7219 by C

ochrane France, W
iley O

nline L
ibrary on [31/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NDOYE and TRÉGOUËT 7

Proof. First recall that function V is positive definite, since P ≻ 0 and Ω ⪰ 0 hold, see (A2) in the appendix.
Then, select 𝜃 ∈ Θ arbitrarily. Assumption 3 ensures that 𝜅() ⊆ conv{ } − u∗

𝜃

, so that, for all ̃𝜁 ∈ ,
there exists 𝜌( ̃𝜁) ∈ ΛN such that:

𝜅( ̃𝜁 ) =
N∑

i=1
𝜌i( ̃𝜁)ũ[i], (17)

where ũ[i] ∶= u[i] − u∗
𝜃

. Bearing in mind that
∑N

i=1𝜌i( ̃𝜁 ) = 1 and replacing (17) in (11), it follows that:

N∑

i=1
𝜌i( ̃𝜁)

𝜕V
𝜕
̃
𝜁

( ̃𝜁)
(

f
𝜃
( ̃𝜁 ) + Bũ[i]

)
< 0,∀ ̃𝜁 ∈  ⧵ {0}. (18)

Since 𝜌i( ̃𝜁) ⩾ 0, (i ∈ N), there exists at least one i ∈ N such that:

𝜕V
𝜕
̃
𝜁

( ̃𝜁 )
(

f
𝜃
( ̃𝜁) + Bũ[i]

)
< 0. (19)

Define

𝜁

∗
𝜃n
∶=

[
x∗
𝜃n

0p

]

. (20)

From the definition of V and the fact that (7) holds, one has:

𝜕V
𝜕
̃
𝜁

( ̃𝜁 )B = −4𝛾
𝜆

(K ̃
𝜁)⊺ − 2𝜙⊺c(K ̃

𝜁)ΩKB

= −4𝛾
𝜆

(

K(𝜁 − 𝜁∗
𝜃n
) + K(𝜁∗

𝜃n
− 𝜁∗

𝜃

)
)⊺
− 2𝜙⊺c

(

K(𝜁 − 𝜁∗
𝜃n
) + K(𝜁∗

𝜃n
− 𝜁∗

𝜃

)
)

ΩKB

(7)
= −4𝛾

𝜆

(

K(𝜁 − 𝜁∗
𝜃n
)
)⊺
− 2𝜙⊺c

(

K(𝜁 − 𝜁∗
𝜃n
)
)

ΩKB.

Using this relation and noticing that (8) is equivalent to (−2∕𝜆)K⊺ = PB, (19) reads:

𝜕V
𝜕
̃
𝜁

( ̃𝜁 )f
𝜃
( ̃𝜁 ) + 2𝜓⊺(x, z)ũ[i] < 0. (21)

As a result trajectories of closed-loop (9) with a controller satisfying

ũ(𝜁) ∈ arg minv∈(−u∗
𝜃

)𝜓
⊺(x, z)v, (22)

converge asymptotically to ̃
𝜁 = 0, where y = yref. Then, observe that closed-loop (9) with (22) coincides with

the one made of (1) and (14), due to linearity of 𝜒 ∶ v → 𝜓

⊺(x, z)v. Indeed, 𝜒(ũ(𝜁)) ≤ 𝜒(v) holds for all v ∈  −
u∗
𝜃

iff 𝜒(ũ(𝜁) + u∗
𝜃

) ≤ 𝜒(w) for all w ∶= v + u∗
𝜃

∈  , so that u(𝜁) = ũ(𝜁) + u∗
𝜃

∈ arg minw∈𝜓
⊺(x, z)w holds.

The proof ends by showing that ̃𝜁(t) belongs to  for all t ≥ 0. Since { ̃𝜁 ∶ V( ̃𝜁 ) ≤ r} = Φ(0, r) is forward
invariant, this inclusion is indeed valid by imposing ̃𝜁(0) ∈ Φ(0, r) ⊆ , which is equivalent to 𝜁(0) ∈ Φ(𝜁∗

𝜃

, r)
with Φ(0, r) ⊆ . ▪

Schematic of the resulting closed-loop system is depicted in Figure 1.

Example 1. Consider the following system:

ẋ1(t) = −𝜃x1(t)3 + 10 u(t), (23)
ẋ2(t) = x1(t) − 𝜃x2(t), (24)
y(t) = x2(t), (25)
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8 NDOYE and TRÉGOUËT

F I G U R E 1 Block diagram of the closed-loop system.

with 𝜃 ∈ Θ = [−1, 1] and u(t) ∈  = {−3, 3}. Pick any yref in [−1, 1]. For this system, one can easily prove
that Assumption 1 is satisfied and

(
x∗
𝜃

,u∗
𝜃

)
is given by:

(
x∗
𝜃

,u∗
𝜃

)
=

([
𝜃yref

yref

]

,

𝜃

4y3
ref

10

)

. (26)

The augmented system described by (5) and (6) is characterized by:

f
𝜃

([
x
z

])

=
⎡
⎢
⎢
⎢
⎣

− 𝜃x3
1

x1 − 𝜃x2

x2 − yref

⎤
⎥
⎥
⎥
⎦

, B =
⎡
⎢
⎢
⎢
⎣

10
0
0

⎤
⎥
⎥
⎥
⎦

.

Then, selecting 𝜆 = 1∕5 and positive definite matrix

P =
⎡
⎢
⎢
⎢
⎣

1 4 2
4 17 9
2 9 8

⎤
⎥
⎥
⎥
⎦

,

one gets K = −
[
1 4 2

]
by (8). It can be easily verified that Assumption 2 holds with

(𝜁∗
𝜃

,u∗
𝜃

) =

([
x∗
𝜃

− 1
2

yref(𝜃 − 𝜃n)

]

,u∗
𝜃

)

,

and for any 𝜃n ∈ R. As pointed out in Section 3.2, dependency of 𝜁∗
𝜃

with respect to 𝜃 prevents direct
implementation of the strategy proposed in Reference 15. Now, select 𝛾 = 1∕2, Ω = 0 and

𝜅( ̃𝜁) = 1
10

(

−𝜃4y3
ref + 𝜃

([

1 0 0
]
̃
𝜁 + 𝜃yref

)3

+
[

− 5 4𝜃 − 7 −3
]
̃
𝜁

)

.

Choose also any c ∈ Rm
>0. Bearing in mind (26) and the definition of f

𝜃
, observe that the left-hand side of (11)

reads

𝜕V
𝜕
̃
𝜁

( ̃𝜁 )
(

f
𝜃
( ̃𝜁) + B𝜅( ̃𝜁)

)
= 1

2

⎡
⎢
⎢
⎢
⎣

x̃1

x̃2

z̃

⎤
⎥
⎥
⎥
⎦

⊺

P

⎛
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎣

− 𝜃(x̃1 + 𝜃yref)3

x̃1 + 𝜃yref − 𝜃(x̃2 + yref)
x̃2 + yref − yref

⎤
⎥
⎥
⎥
⎦

−
⎡
⎢
⎢
⎢
⎣

− 𝜃(𝜃yref)3

𝜃yref − 𝜃yref

yref − yref

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

10𝜅( ̃𝜁 )
0
0

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

= 1
2

⎡
⎢
⎢
⎢
⎣

x̃1 + 4x̃2 + 2z̃
x̃2

z̃

⎤
⎥
⎥
⎥
⎦

⊺
[
− 1 0
0 Q(𝜃)

]⎡
⎢
⎢
⎢
⎣

x̃1 + 4x̃2 + 2z̃
x̃2

z̃

⎤
⎥
⎥
⎥
⎦
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NDOYE and TRÉGOUËT 9

with

Q(𝜃) =

[
− 𝜃 − 3 −𝜃∕2 − 1
− 𝜃∕2 − 1 −2

]

.

This expression is negative for all 𝜃 ∈ [−1, 1] and for all ̃𝜁 ≠ 0 since Q(𝜃) is negative definite for all 𝜃 ∈ {−1, 1}
and, in turn, for all 𝜃 ∈ [−1, 1], by convexity. Define = [−1, 1]3. Observe that

𝜅(x̃1, x̃2, z̃) =
1

10
(r(x̃1) + (4𝜃 − 7)x̃2 − 3z̃) − u∗

𝜃

with r(x̃1) = 𝜃(x̃1 + 𝜃yref)3 − 5x̃1. Exploiting the fact that r(x̃1) ∈ [−13, 13] holds for all x̃1 ∈ [−1, 1] and for all
(𝜃, yref) ∈ [−1, 1]2, one gets

𝜅() ⊂ 1
10
[−27, 27] − u∗

𝜃

⊂ conv{ } − u∗
𝜃

is valid for all (𝜃, yref) ∈ [−1, 1]2. This proves that Assumption 3 is satisfied.
As a result, Theorem 1 applies and guaranties that any controller like the following one:

ż(t) = x2(t) − yref,

u(t) ∈ arg minv∈{−3,3}5(x1(t) + 4x2(t) + 2z(t) − yref(𝜃n + 4))v,

solves Problem 1, for example, with 𝜃n = 0, one gets

ż(t) = x2(t) − yref,

u(t) =

{
− 3, (if x1(t) + 4x2(t) + 2z(t) ≥ 4yref),
3, (otherwise).

Remark 2. Two comments can be made on the selection of 𝜅, introduced in Assumption 3. Each one is illus-
trated by the previous example. (i) Application 𝜅 can be dependent from the uncertain vector 𝜃. Indeed, in
Assumption 3, it is merely require that the controller 𝜅 exists, but its precise expression is useless for the com-
putation of the controller (2) proposed by Theorem 1. This is in contrast with the Lyapunov function V , which
needs to be independent from 𝜃 for being evaluated by the controller (2). Observe that the exact opposite
conclusion is drawn in the continuous case, where the control law must be independent from the uncertain
vector, unlike the Lyapunov function, see for example, Reference 36. (ii) If (12) suggests that ̃𝜁 → satc(K ̃

𝜁) is
a relevant way to select 𝜅, alternative choice can be made, provided that (11) is valid.

Remark 3 (OnΦ(𝜁∗
𝜃

, r)). SetΦ(𝜁∗
𝜃

, r) is an inner estimate of the basin of attraction if r satisfies (16). Note that
it is always possible to select r > 0 sufficiently small for (16) to hold, since V is continuous and is open and
contains the origin.

Then, a crucial question is the following: how to exploit this estimate Φ(𝜁∗
𝜃

, r) since it depends on the
unknown vector 𝜃, via 𝜁∗

𝜃

? The idea is to make sure that the initial condition (x(0), z(0)) belongs to Φ(𝜁∗
𝜃

, r),
for any 𝜃 ∈ Θ and for some 𝜁∗

𝜃

satisfying (7), that is for some 𝜁∗
𝜃

∈ Ψ(K, 𝜃n; 𝜃) where

Ψ(K, 𝜃n; 𝜃) ∶= {𝜁∗
𝜃

|∃(𝜃 → u∗
𝜃

) ∶ (7) ∀𝜃 ∈ Θ}.

This can be achieved via the following set, which is independent of 𝜃:

 ∶= ∩
𝜃∈Θ ∪𝜁∗

𝜃

∈Ψ(K,𝜃n;𝜃) Φ(𝜁
∗
𝜃

, r).

Indeed, by construction, observe that for all 𝜃 ∈ Θ, there exists 𝜁∗
𝜃

∈ Ψ(K, 𝜃n; 𝜃) such that  ⊆ Φ(𝜁∗
𝜃

, r) holds.
As a result, if the initial condition (x(0), z(0)) belongs to, then y(t) converges to yref. This suggests that one may
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10 NDOYE and TRÉGOUËT

have to adapt the value of z(0) to the initial condition x(0) of the system in order to ensure (x(0), z(0)) ∈ . Thus,
instead of initializing the integrator at z(0) = 0, one should rather compute z(0) in order to move (x(0), z(0))
away from the boundaries of . This is expected to enhance robustness with respect to x(0).

Finally, it is worth noting that the setΨ(K, 𝜃n; 𝜃) (i) is not empty if Assumption 2 holds and (ii) is an affine
subspace which can be explicitly computed in the linear case, see the proof of Lemma 2.

3.5 A first comment on Assumption 2

A first condition under which Assumption 2 holds is now offered. It is shown that validity of this assumption is strongly
related to the existence of an equilibrium of a perturbed version of (1) constructed by adding a constant vector d

𝜃,𝜃n ∈ Rn

on the right-hand side of (1a). Indeed, in this context, augmented system (5) becomes:

̇

𝜁

d(t) = f
𝜃

(𝜁d(t)) + Bud(t) +

[
d
𝜃,𝜃n

0

]

. (27)

Expression of this virtual perturbation will be defined later on. But let us already mention that it depends on the actual
unknown vector 𝜃 as well as some vector 𝜃n ∈ Θ to be selected. Implementing the linear controller ud = K𝜁d leads to the
following closed-loop system:

̇

𝜁

d(t) = f
𝜃

(𝜁d(t)) + BK𝜁d(t) +

[
d
𝜃,𝜃n

0

]

. (28)

Lemma 1. Assume that (3) admits a unique solution. Assume further that there exist a vector 𝜃n ∈ Θ, a scalar
𝜆 ∈ R

>0 and a matrix P ∈ S
n+p
+ defining K ∈ Rm×(n+p) as in (8), such that, for all 𝜃 ∈ Θ, closed-loop system (28)

with

d
𝜃,𝜃n = B0

(

u∗
𝜃

− K

[
x∗
𝜃n

0

])

, (29)

admits an equilibrium, that is, there exists 𝜃 → 𝜁

d∗
𝜃

∈ Rn+p such that

f
𝜃

(𝜁d∗
𝜃

) + BK𝜁d∗
𝜃

+

[
d
𝜃,𝜃n

0

]

= 0, (30)

holds for all 𝜃 ∈ Θ. Then, Assumption 2 holds.

Proof. From (6) and (29), relationship (30) can be equivalently rewritten as:

f 0
𝜃

(xd∗) + B0

(

ud∗
𝜃

+ K

([
xd∗

zd∗

]

−

[
xd∗
𝜃n

0

]))

= 0, h(xd∗) = yref,

where 𝜁d∗
𝜃

has been split as
[

xd∗
𝜃

zd∗
𝜃

]

with zd∗
𝜃

∈ Rp. Then, it suffices to invoke Assumption 1 and unicity of

solution of (3) to arrive at (7) with (𝜁∗
𝜃

,u∗
𝜃

) = (𝜁d∗
𝜃

,ud∗
𝜃

). ▪

The next section deals with the particular case where both f 0
𝜃

and h are linear. In the context, additional comments on
Assumption 2 can be made: it is shown that Assumption 2 is satisfied for all 𝜃n ∈ Θ, if linear map 𝜁 → f

𝜃

(𝜁) + BK𝜁 , with
K defined as in (8), is invertible for all 𝜃 ∈ Θ, see Lemma 2.
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NDOYE and TRÉGOUËT 11

4 THE LINEAR AND CONVEX POLYTOPIC CASE

This section specializes the study via the following assumptions.

Assumption 4. Applications x → f 0
𝜃

(x) and x → h(x) are linear, that is, (1) can be written as follows
{

ẋ(t) = A(𝜃)x(t) + B0u(t),
y(t) = Cx(t),

(31)

for some matrices A(𝜃) ∈ Rn×n and C ∈ Rp×n.

Assumption 5. Set Θ is a known convex polytope and 𝜃 → A(𝜃) is affine, that is, there exist a matrix A0 and
a linear map 𝜃 → A1(𝜃) such that A(𝜃) = A0 + A1(𝜃) for all 𝜃 ∈ Θ.

In this context, constructive conditions are offered, under which Assumption 3 and, in turn, Theorem 1 apply.

4.1 Preliminaries

Under Assumption 4, (5) can be re-expressed as follows:

̇
𝜁(t) = ̄A(𝜃)𝜁(t) + Bu(t) + h, (32)

with

̄A(𝜃) ∶=

[
A(𝜃) 0n×p

C 0p×p

]

, h ∶=

[
0n

− yref

]

. (33)

In addition to that, if Assumption 5 holds, then ̄A(Θ) is a convex polytope of Ns vertices ̄A[i] ∶= ̄A(𝜃[i]) where 𝜃[i] are
vertices of Θ:

̄A(Θ) = conv
{
̄A[1]

, … ,
̄A[Ns]

}
. (34)

Finally, let us define system matrix PΣ(𝜃, s) as follows:

PΣ(𝜃, s) ∶=

[
A(𝜃) − sIn B0

C 0p×m

]

.

Focusing on the linear context, next lemma provides new conditions under which Assumption 2 is valid.

Lemma 2. Assume that Assumption 4 holds. Given a scalar 𝜆 ∈ R
>0 and a matrix P ∈ S

n+p
+ defining K ∈

Rm×(n+p) as in (8). Consider the two following statements:

S1: There exists a vector 𝜃n ∈ Θ such that, for all 𝜃 ∈ Θ, system (28) with (29) admits a unique
equilibrium, that is, (30) admits a unique solution 𝜃 → 𝜁

d∗
𝜃

;
S2: Matrix ̄A(𝜃) + BK is invertible for all 𝜃 ∈ Θ.

Then, S1 and S2 are equivalent. Further, if S1 or S2 holds, then for any 𝜃n ∈ Θ, there exists a unique mapping
𝜃 → (𝜁∗

𝜃

,u∗
𝜃

) satisfying (7) for all 𝜃 ∈ Θ, so that Assumption 2 is valid.

Proof. Given any 𝜃 ∈ Θ. Define [Kx, Kz] ∶= K with Kx ∈ Rm×n.
S1⇔S2: Under Assumption 4, (30) reads:

( ̄A(𝜃) + BK)𝜁d∗
𝜃

+

[
d
𝜃,𝜃n

− yref

]

= 0. (35)
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12 NDOYE and TRÉGOUËT

Thus S1⇐S2 trivially holds. Furthermore, from (6), (29), and (33) and denoting 𝜁d∗
𝜃

=
[

xd∗

zd∗

]

, (35) can be

rewritten as follows

PΣ(𝜃; 0)
⎡
⎢
⎢
⎢
⎣

xd∗

ud∗
𝜃

+ K

[
xd∗ − x∗

𝜃n

zd∗

]
⎤
⎥
⎥
⎥
⎦

=

[
0

yref

]

,

or, equivalently,

PΣ(𝜃; 0)

(

N

[
xd∗ − x∗

𝜃n

zd∗

]

+

[
x∗
𝜃n
− xd∗

𝜃

0

])

= 0,

by using Assumption 1 and with

N ∶=

[
In 0
Kx Kz

]

.

From S1, (xd∗
, zd∗) is unique. This implies that ker(PΣ(𝜃; 0)N) = {0}. Since it holds

PΣ(𝜃; 0)N =

[
A(𝜃) + B0Kx B0Kz

C 0

]

= ̄A(𝜃) + BK,

this proves S1⇒S2.
S2⇒Assumption 2: S2 implies that Kz is full rank and, in turn, that the following two matrices are

invertible:

M2 ∶=
⎡
⎢
⎢
⎢
⎣

In 0 0
0 Ip 0

Kx 0 Kz

⎤
⎥
⎥
⎥
⎦

,M3(𝜃) ∶=
⎡
⎢
⎢
⎢
⎣

A(𝜃) + B0Kx 0 B0Kz

C 0 0
Kx Kz 0

⎤
⎥
⎥
⎥
⎦

,

for all 𝜃 ∈ Θ. From the observation that (7) can be written as follows

M1(𝜃)

[
𝜁

∗
𝜃

u∗
𝜃

]

=
⎡
⎢
⎢
⎢
⎣

0
yref

Kxx∗
𝜃n

⎤
⎥
⎥
⎥
⎦

with M1(𝜃) ∶=
⎡
⎢
⎢
⎢
⎣

A(𝜃) 0 B0

C 0 0
Kx Kz 0

⎤
⎥
⎥
⎥
⎦

,

and the fact that M1(𝜃)M2 = M3(𝜃) holds, this proves that M1(𝜃) is invertible. As a result, for any 𝜃n ∈ Θ, (7)
is satisfied for a unique (𝜁∗

𝜃

,u∗
𝜃

). ▪

Remark 4 (On Assumption 1). If Assumption 4 holds, then Assumption 1 reads:
[

0
yref

]

∈ ImPΣ(𝜃, 0) for all

𝜃 ∈ Θ. This condition is satisfied if, for all 𝜃 ∈ Θ, the quadruple {A(𝜃),B0,C, 0} is right-invertible and 0 is
not an invariant zero, that is, if rankPΣ(𝜃, 0) equals n + p for all 𝜃 ∈ Θ, which corresponds to the well-known
non-resonance condition.

Remark 5 (Lemma 1 versus 2). Both Lemmas 1 and 2 offer conditions for Assumption 2 to hold. Those condi-
tions are related to (3) and (30). In contrast with Lemma 2, unicity of the solution of (3) is required by Lemma 1.
This suggests that Lemma 2 benefits from a larger applicability than Lemma 1, whenever the dynamics is
linear. The fact that unicity of solution of (30) is needed by S1 of Lemma 2, unlike Lemma 1, weaken this
conclusion only apparently. Indeed, this last unicity is implied by quadratic stabilizability, which is neces-
sary for the synthesis conditions of this section to be satisfied, see the proof of forthcoming propositions.
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NDOYE and TRÉGOUËT 13

In other words, unicity of solution of (30) is given for free in the context of the constructive results of
this section.

4.2 Global stability

Define the following hyperrectangle:

(c) ∶=
{

u ∈ R
m ∶ |uk| ⩽ ck, ∀k ∈ m

}
, (36)

where c ∈ Rm
>0.

Proposition 1. Assume that Assumptions 4 and 5 hold. Assume further that there exist:

A1: A scalar 𝜆 ∈ R
>0 and a matrix P ∈ S

n+p
+ defining K ∈ Rm×(n+p) as in (8);

A2: A diagonal positive semi-definite matrix Ω ∈ Rm×m, symmetric matrices with non-negative entries
T+,T− ∈ Rm×m, such that T−j,j = 0 holds for all j ∈ m;

A3: A scalar 𝛾 ∈ R
>0 and a vector c ∈ Rm

>0;

such that the following relationships are satisfied with Γ = TK and T = T+ − T−:

(c) ⊆  ∶= ∩
𝜃∈Θ
(
conv( ) − u∗

𝜃

)
, (37)

∑

j∈m⧵{k}
cj

(

T+k,j + T−j,k
)

≤ ckT+k,k, ∀k ∈ m, (38)

[
( ̄A[i] + BK)⊺𝛾P + 𝛾P( ̄A[i] + BK) 𝛾PB − Γ⊺ − ( ̄A[i] + BK)⊺K⊺Ω

∗ −2T − ΩKB − (ΩKB)⊺

]

≺ 0,∀i ∈ Ns . (39)

Then, Assumption 3 is satisfied for any vector 𝜃n ∈ Θ and for  = Rn+p, so that (14) solves Problem 1 globally,
that is, for any 𝜃 ∈ Θ and any initial condition (x(0), z(0)) ∈ Rn+p, output y(t) converges to yref.

Proof. Condition (39) implies that:

[
( ̄A(𝜃) + BK)⊺𝛾P + 𝛾P( ̄A(𝜃) + BK) 𝛾PB − Γ⊺ − ( ̄A(𝜃) + BK)⊺K⊺Ω

∗ −2T − ΩKB − (ΩKB)⊺

]

≺ 0, (40)

holds for all 𝜃 ∈ Θ. Since 𝛾 ∈ R
>0, it follows that:

( ̄A(𝜃) + BK)⊺P + P( ̄A(𝜃) + BK) ≺ 0,

is valid, so that ̄A(𝜃) + BK is Hurwitz for all 𝜃 ∈ Θ. From Lemma 2, this implies that Assumption 2 is valid for
any 𝜃n ∈ Θ.

To prove that Assumption 3 holds, it suffices (i) to invoke Lemma 4 on (40) and (38) and (ii) to remark
that, for any 𝜃 ∈ Θ and by definition of  , (37) proves that 𝜅( ̃𝜁) = satc(K ̃

𝜁) ∈ conv( ) − u∗
𝜃

since (c) ⊆  ⊆
conv( ) − u∗

𝜃

. ▪

4.3 Local stabilization

For Assumption 3 to hold, one needs to find a stabilizing continuous controller delivering signal in conv( ) − u∗
𝜃

. In the
continuous context, recall that the global stabilization of the linear system ẋ = Ax + Bu subject to bounded controls is
possible if and only if the pair (A,B) is stabilizable and none of the eigenvalues of A has strictly positive real part37(p. 19).
As a result, for Assumption 3 to hold, it is necessary that, for all 𝜃 ∈ Θ, no eigenvalue of A(𝜃) has strictly positive real part,
since the spectrum 𝜎( ̄A(𝜃)) of ̄A(𝜃) equals 𝜎(A(𝜃)) ∪ {0}, see (33).
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14 NDOYE and TRÉGOUËT

If this condition is not satisfied, local stabilization could still be achievable, though. In this subsection, we provide a
constructive approach to tackle Problem 1 locally but for any state matrix A(𝜃), that is, possibly having eigenvalues of A(𝜃)
with positive real part. Besides, a constructive procedure to compute r satisfying (16) is offered. Recall that this scalar r is
related to the dimension of the robust domain of attraction.

Proposition 2. Assume that Assumptions 4 and 5 hold. Assume further that there exist:

A1: A scalar 𝜆 ∈ R
>0 and a matrix P ∈ S

n+p
+ defining K ∈ Rm×(n+p) as in (8);

A2: A diagonal positive semi-definite matrix Ω ∈ Rm×m, a diagonal positive definite matrix T ∈ Sm
+ , a

matrix Γ ∈ Rm×(n+p) and a vector 𝜏 ∈ Rm
>0;

A3: A scalar 𝛾 ∈ R
>0 and a vector c ∈ Rm

>0;

such that (37), (39) and

[
𝛾P Tj,jK⊺

j − Γ
⊺
j

∗ 𝜏jc2
j

]

⪰ 0,∀j ∈ m, (41)

are satisfied. Then, Assumption 3 is satisfied for any vector 𝜃n ∈ Θ and for

 = { ̃𝜁 ∶ (K − T−1Γ) ̃𝜁 ∈ (c)}. (42)

Furthermore, (16) is satisfied for

r =
(

max
j∈m

{
𝜏j

T2
j,j

})−1

. (43)

As a result, (14) solves Problem 1 locally, that is, for any 𝜃 ∈ Θ and any initial condition (x(0), z(0)) ∈ Φ(𝜁∗
𝜃

, r),
output y(t) converges to yref.

Proof. As in the proof of Proposition 1, (39) implies that Assumption 2 is valid for any 𝜃n ∈ Θ. By virtue
of Lemma 3, (39) also implies that (11) with 𝜅( ̃𝜁) = satc(K ̃

𝜁) holds for all ̃𝜁 ∈  ⧵ {0}. Furthermore, 𝜅( ̃𝜁) ∈
conv( ) − u∗

𝜃

can be proved as in the proof of Proposition 1. As a result, Assumption 3 is satisfied for all
𝜃n ∈ Θ. Finally, Lemma 3 also proves that (16) is valid. ▪

In the linear case, local stabilization certificate provided by Proposition 2 can be related to structural properties of
the open loop system. This allows to prove that conditions associated with Proposition 2 are not only sufficient but also
necessary for Assumption 3 to hold, if S1 and S2 of the following lemma are valid.

Proposition 3. Assume that Assumptions 4 and 5 are satisfied. Assume further that:

S1: u∗
𝜃

∈ Int{conv( )} for all 𝜃 ∈ Θ;
S2: ( ̄A(𝜃),B) is quadratically stabilizable via linear control for all 𝜃 ∈ Θ, that is, there exist scalars 𝛿, 𝜆 ∈ R

>0
and a matrix Q ∈ S

n+p
+ such that:

̄A[i]Q + Q( ̄A[i])⊺ − 𝜆BB⊺ ≺ −2𝛿Q, ∀i ∈ Ns . (44)

Then, there exists c ∈ Rm
>0 sufficiently closed to 0m such that (37) holds. Choose any of such a vector c. Select

P = Q−1, 𝜆 = 2, K defined as in (8), Ω = 0, Γ = −𝛾K and T = Im. In this case, set  defined in (42) is not empty
and reads:

 = { ̃𝜁 ∶ (1 + 𝛾)K ̃
𝜁 ∈ (c)}.
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NDOYE and TRÉGOUËT 15

Besides, (39) and (41) are satisfied for any 𝛾 ∈ R
>0 and any 𝜏 ∈ Rm satisfying:

𝜏j >
(1 + 𝛾)2KjK⊺

j

𝛾𝜆min(P)c2
j

, (45)

for all j ∈ m, where 𝜆min(P) is the smallest eigenvalue of P.

Proof. First note that S1 is equivalent to 0 ∈ Int{} which guarantees that (37) is satisfied for some c ∈ Rm
>0.

Besides, for any c ∈ Rm
>0, 0 belongs in (c) and, in turn, in. This proves that is non empty.

Then, select any i ∈ Ns . If S2 is satisfied, then the following condition holds for P = Q−1, K defined as in
(8), any T ≻ 0 and any 𝛾 ∈ R

>0:

[
( ̄A[i] + BK)⊺𝛾P + 𝛾P( ̄A[i] + BK) 0

0 −2T

]

≺ 0. (46)

Observe that this inequality is nothing but (39) with Γ = −𝛾K, Ω = 0 and 𝜆 = 2.
Let us prove that (41) is satisfied. Select any j ∈ m. First note that (45) implies that there exists 𝜖j ∈ R

>0
such that

𝜏j =
(1 + 𝛾)2(KjK⊺

j + 𝜖j)

𝛾𝜆min(P)c2
j

, (47)

since (1 + 𝛾)2∕(𝛾𝜆min(P)c2
j ) is strictly positive. Thus, the following inequalities hold:

P ⪰ 𝜆min(P)In+p,

(KjK⊺
j + 𝜖j)In+p ≻ KjK⊺

j In+p ⪰ K⊺
j Kj.

Together with (47), theses inequalities imply that:

𝛾P ≻ 𝛾𝜆min(P)
(KjK⊺

j + 𝜖j)
K⊺

j Kj ⇔ 𝛾P ≻ (1 + 𝛾)2

𝜏jc2
j

K⊺
j Kj.

Using Schur complements, one can see that this last inequality implies that:

[
𝛾P (1 + 𝛾)K⊺

j

∗ 𝜏jc2
j

]

≻ 0. (48)

which is nothing but (41) with a strictly inequality and for Γ = −𝛾K and T = Im. ▪

4.4 Comparison with Reference 33

Let us now recall the main result of Reference 33, which is reformulated via the following proposition to ease the
comparison.

Proposition 4. ([33, Proposition 11 and Remark 12]) Assume that Assumptions 4, 5 and equality m = p hold.
Assume further that conditions S1 and S2 of Proposition 3 are satisfied. Then, Assumption 3 is satisfied for any
vector 𝜃n ∈ Θ, for Ω = 0, 𝛾 = 1 and

 = { ̃𝜁 ∶ K ̃
𝜁 ∈ }, (49)

where  reads as in (37).
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16 NDOYE and TRÉGOUËT

In addition to restrict the study to linear systems, let us emphasize that Proposition 4 only consider square system,
that is, m = p. Such a constraint does not exist in this article.

Besides, Propositions 4 and 3 lead to distinct expressions of, see (42) and (49). On the one side, Proposition 3 offers
additional degrees of freedom, namely T and Γ, so that  computed as in (42) is expected to be larger than that of (49).
On the other side, (42) uses the subset c of  , which suggests that given by (42) might actually be the smallest set.

The key point here is that Φ(0, r) is constrained to be an ellipsoid in Proposition 4, by setting Ω to 0. However, by
allowing this matrix to be non zero, the geometry of Φ(0, r) obtained via Proposition 3 can be more complex, so that r
satisfying (16) can be larger.

4.5 A constructive algorithm using LMIs

Consider Proposition 1. Matrices inequalities (38) and (39) depend on the decision variables P, 𝜆, Ω, T+, T−, Γ, 𝛾 , and c,
in a bilinear way, which makes the solution difficult to compute. To overcome this problem, it is proposed to implement
the following procedure, where c and 𝛿 act as design parameters:

1. Pick a vector c ∈ Rm
>0 such that (37) holds. Note that selecting the largest value of c that satisfies (37) is desirable since

the approach is based on a stabilizing continuous controller that delivers signal in conv( ) − u∗
𝜃

.
2. Solve (44) parametrized by 𝛿 to obtain numerical value of P and 𝜆. This parameter is related to the rate of decrease of

the Lyapunov function, therefore the larger 𝛿 is selected, the faster V converges to zero.
3. Compute K by way of (8).
4. Solve (38) and (39) to compute the remaining variables which parametrized those inequalities in a linear way.

In the case where global stability cannot be achieved, one should consider Proposition 2. It is suggested to implement
the procedure outline above and exploit the degrees of freedom existing at the second and fourth steps in order to enlarge
the basin of attraction. Specifically, we aims at maximizing Φ(0, r) (see Theorem 1) by implementing the second step
as in Reference 33 (Proposition 11) and the fourth step as in Reference 37 (p. 134). In proceeding this way, the design
parameters list now includes the positive scalars 𝛽1, 𝛽2i and 𝛽3i, (i ∈ m), in addition to c and 𝛿 as in Proposition 1. For
completeness, let us outline the resulting procedure:

1. Compute integer ng ∈ N and vectors gj ∈ Rm, (j ∈ ng ) defined as follows:

 = {v ∈ R
m ∶ g⊺j v ⩽ 1, (j ∈ ng )}. (50)

The existence of such vectors is ensured under the assumption that 0 ∈ Int{}, which is nothing but statement S1 of
Proposition 3, see Reference 38 (p. 87);

2. Select a scalar 𝛿 ∈ R
>0 and solve the following program to compute Q and 𝜆:

min
Q∈S

n+p
+ ,𝜆∈R

>0,𝜌∈R
>0

𝜌 s.t.

(44), (51a)

⎡
⎢
⎢
⎣

1 𝜆

2
g⊺j B⊺

∗ Q

⎤
⎥
⎥
⎦

≻ 0, (j ∈ ng ), (51b)

[
𝜌In+p In+p

∗ Q

]

≻ 0. (51c)

3. Get value of K by way of (8) by setting P = Q−1;
4. Solve the following program to compute Ω,T,Γ, 𝜏, and 𝛾 :

minΩ∈Rm×m
,T∈S

m
+ ,Γ∈Rm×(n+p)

,𝜏∈Rm
,𝛾∈R

>0
f (T,Ω, 𝜏, 𝛾)
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NDOYE and TRÉGOUËT 17

s.t. (41) and (39) with:

f (T,Ω, 𝜏, 𝛾) ∶= 𝛽1trace(𝛾P + K⊺ΩK) +
m∑

i=1
(𝛽2i𝜏i − 𝛽3iTi,i), (52)

where the positive scalars 𝛽1, 𝛽2i, and 𝛽3i, (i ∈ m) are given weighting parameters.

Three comments can be made here. (i) Parameter 𝛿 plays the same role as for global stability. Generally speaking, the
following observation is expected: the larger 𝛿 is selected, the faster V converges to zero, but the smaller is the basin of
attraction. (ii) Step 4 actually maximizes (𝛾P + K⊺ΩK, 0, r). This set is included in Φ(0, r), see (A2), so that the strategy
enlargesΦ(0, r) indirectly. (iii) In the optimization problem defined in Step 4, 𝛽1 is linked to the size of (𝛾P + K⊺ΩK, 0, 1)
via trace(𝛾P + K⊺ΩK) and 𝛽2i and 𝛽3i, (i ∈ m) are related to r respectively via 𝜏i and Ti,i, (i ∈ m). Based on this, there is
a trade-off between maximizing either (𝛾P + K⊺ΩK, 0, 1) or r. However, since they are both associated to the domain of
attraction, an in-depth analysis needs to be carried out to better understand their impact on the size of Φ(0, r). This will
be a topic for future work.

5 ILLUSTRATIVE EXAMPLES

5.1 Global stability

Consider the system described by (31) with:

A(𝜃) =

[
0 𝜃

− 1 0

]

, B =

[
1
1

]

, C =
[

0 1
]

,Θ =
[

1 2
]

,  ∶= {0, 10}, yref = −4, (53)

and satisfying Assumptions 4 and 5. Note that the spectrum of the open loop matrix A(𝜃) equals
{

±i
√
𝜃

}

. Since it lies on
the imaginary axis, to the best of our knowledge, the results presented in the literature cannot be used to solve globally
Problem 1 for this system.

This system satisfies Assumption 1 and admits a unique equilibrium satisfying y = yref, that is, (3) admits the following
unique solution:

(x∗
𝜃

,u∗
𝜃

) =

([
4𝜃
− 4

]

, 4𝜃

)

. (54)

Then, one gets  = [−4, 2], so that c = 2 is the largest value satisfying (37).
Let us apply Proposition 1. Vector c being already chosen, we now pick 𝛿 = 0.1 for which (44) admits the following

solution:

Q =
⎡
⎢
⎢
⎢
⎣

4.26 0.56 5.9
0.56 9.038 −3.28
5.9 −3.28 11.36

⎤
⎥
⎥
⎥
⎦

, 𝜆 = 12.07,

which, via (8), leads to

K =
[

− 7.65 1.39 4.37
]

. (55)

Then, observe that (38) and (39) with P = Q−1 are solved for

𝛾 = 3.18.10−9
, T = 2.7.10−10

, Ω = 1.9.10−11
.
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18 NDOYE and TRÉGOUËT

F I G U R E 2 Evolution of the state variables x, the control u, and the parameter 𝜃 for system (31) defined by (53).

This proves that Assumption 3 is satisfied with  = R3 and for any 𝜃n ∈ Θ, so that Theorem 1 applies and gives a global
solution to Problem 1.

As an illustration of the effectiveness of the resulting closed-loop system to robustly regulate the output to its reference,
we first pick 𝜃n = 1 so that:

𝜁

∗
𝜃n
=
[

4 −4 0
]⊺
,

and we set the initial condition to x(0) =
[
0 6

]⊺ and z(0) = 0. Besides, we apply a step on 𝜃 at time t = 15 s. Simulation
results are depicted on Figure 2. It can be verified that the desired steady state is achieved since y(t) = x2(t) asymptotically
converges to yref = −4, after each of the two transients.

5.2 Local stability

Consider the system described by (31) with:

A(𝜃) =
⎡
⎢
⎢
⎢
⎣

1 0 −1
0 0 −𝜃
𝜃 2 0

⎤
⎥
⎥
⎥
⎦

,B =
⎡
⎢
⎢
⎢
⎣

1 0
0 1
0 0

⎤
⎥
⎥
⎥
⎦

,C =

[
0 1 0
0 0 1

]

,Θ =
[

1, 1.1
]

,

 ∶=

{[
0
5

]

,

[
5
0

]

,

[
0
0

]

,

[
5
5

]}

, yref =

[
− 1
3

]

, (56)

and satisfying Assumptions 4 and 5. Observe that some of the eigenvalues of the open loop matrix A(𝜃) have positive real
part for some 𝜃: for example, the eigenvalues of A(1) are 0.715 and 0.142 ± 1.67i.

The equilibrium satisfying y = yref is given by:

(x∗
𝜃

,u∗
𝜃

) =

⎛
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

2
𝜃

− 1
3

⎤
⎥
⎥
⎥
⎥
⎦

,

[
− 2

𝜃

+ 3
3𝜃

]⎞
⎟
⎟
⎟
⎟
⎠

. (57)

Therefore, Assumption 1 is satisfied. In this case, one can verify that statements S1 and S2 of Proposition 3 are valid, so
that assumptions related to Proposition 2 hold true.
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NDOYE and TRÉGOUËT 19

F I G U R E 3 Illustration of construction of  and (c).

In order to apply Proposition 2, we compute  from (37):

 = (conv − u∗
𝜃=1) ∩ (conv − u∗

𝜃=1.1),

=
[

− 1, 3.8182
]

×
[

− 3, 1.7
]

, (58)

so that c = [1 1.7]⊺ satisfies (37). The sets  and (c) are depicted by Figure 3.
Let us now implement the procedure proposed in Section 4.5:

1. The set  defined in (58) can be characterized as in (50) with ng = 4 and vectors gj, (j ∈ 4) defined as follows:

g1 = [−1 0], g2 = [1∕3.8182 0], g3 = [0 − 1∕3], g4 = [0 1∕1.7];

2. Now, we choose 𝛿 = 1 for which the optimization problem (51) admits (Q∗
, 𝜆

∗
, 𝛾

∗) as a solution;
3. This allows us to compute K via (8) by setting P = (Q∗)−1;
4. Finally, we solve (52) with the weighting parameters 𝛽1 = 8, 𝛽21 = 𝛽22 = 0.1 and 𝛽31 = 𝛽32 = 2, which yields to the

following solution:

Ω = 10−4

[
0.1 0
0 0.1

]

, (59)

𝛾 = 1.10−5
, r = 2.1.10−5

. (60)

This proves in particular that Assumption 3 is satisfied for any 𝜃n ∈ Θ, so that Theorem 1 applies and gives a local
solution to Problem 1.

As an illustration, we select 𝜃n = 1 so that:

𝜁

∗
𝜃n
=
[

2 −1 3 0⊺2
]⊺
,

and we set the initial condition to x(0) =
[
1.6 −0.8 2.9

]⊺ and z(0) =
[
− 0.07 0.04

]⊺. From Remark 3, one need to make
sure that 𝜁(0) ∈  holds. Note that the methodology implemented here ensures that S2 of Lemma 2 is satisfied, so that
Ψ(K, 𝜃n; 𝜃) = {𝜁∗

𝜃

} holds. As a result,  = ∩
𝜃∈ΘΦ(𝜁∗

𝜃

, r) is the intersection of all the translations by 𝜁∗
𝜃

of the sublevel set of
V of magnitude r. Here, r is given in (59) and 𝜁∗

𝜃

is obtained from (57) and (7).
One can check that 𝜁(0) ∈  holds with this initial condition, then the control law (14) stabilizes the system. Observe

also that 𝜁(0) ∈  is not satisfied for z(0) = 02 and with the same x(0). This illustrates that careful initialization of the
integrator allows to enlarge admissible excursions of the initial state x(0) from the equilibrium, see Remark 3.

Again, to assess robustness with respect to 𝜃, a step is applied on its value at time t = 5 s which leads to simulation
results presented in Figure 4. For the two values of 𝜃, one observes that after a relatively short transient, the desired
steady state is achieved with zero steady state error on the controlled output x2 and x3. This proves the effectiveness of
our approach.
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20 NDOYE and TRÉGOUËT

F I G U R E 4 Chronograph of the state variables x, and the parameter 𝜃 for system (1) defined by (56).

Finally, note that with the approach proposed in Reference 33, 𝜁(0) ∈  is not satisfied for both z(0) = 0 and z(0) =
[
− 0.07 0.04

]⊺. Therefore this approach cannot be used for those initial conditions.

6 CONCLUSION

In this article, a robust switching controller for nonlinear switched system with uncertain equilibrium has been proposed.
The control strategy is based on the internal model approach and on the use of Lur’e Lyapunov functions. Unlike Reference
33, non square systems can be handled.

A first sufficient condition to ensure local stability is given, relying on the assumption of the existence of a control
Lyapunov function. Remarkably, it comes out that the associated controller can depend on the uncertain parameters.
Exploiting further this peculiarity is a topic of future works.

Then, the study is particularized to the linear case. The employed methodology allows to avoid the classical obstruction
on the existence of Hurwitz convex combinations. It guarantees either global asymptotic stability or local asymptotic
stability with a possible enlargement of the robust basin of attraction with respect to Reference 33. Simulation results show
the effectiveness and the usefulness of the proposed control design approach. Analyzing the impact of the 𝛽 parameters
in the enlargement of the domain of attraction and generalizing the LMI conditions for a larger class of switched system
are relevant new research directions. Another interesting point is to limit the switching frequency at the steady state for
some practical issues.
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ENDNOTES
∗Applications h and f 0

𝜃

are assumed to be locally Lipschitz on Rn.
†Note that other degrees of freedom might come from non unicity of solutions of (3).
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APPENDIX A

Let us recall a few important results, given in Reference 37, about matrix inequalities and Lur’e-type Lyapunov function
for saturated system. Notations used in this self-contained appendix are independent of the rest of the article, unless
explicit references to definitions already introduced.

Consider the following closed-loop composed of a linear system with a saturated linear controller:

ẋ(t) = Ax(t) + Bsatc(Kx(t)), (A1)

where x(t) ∈ Rn and c ∈ Rm
>0.

Define Lur’e-type Lyapunov function x → V(x), where V reads as in (12) with 𝛾 = 1. From Reference 39, if P ≻ 0 and
Ω ⪰ 0 hold, function V satisfies the inequalities:

x⊺Px ⩽ V(x) ⩽ x⊺(P + K⊺ΩK)x, (A2)

for all x ∈ Rn. As a result, V is positive definite.
In Reference 37, conditions are given under which V is decreasing along trajectories of (A1) for any initial condition

x(0) in a domain ⊂ Rn containing the origin, that is,

𝜕V
𝜕x
(x)(Ax + Bsatc(Kx)) < 0, (A3)

holds for all x(0) ∈  ⧵ {0}.

Lemma 3. Assume that there exist:

A1: Two matrices P ∈ Sn
+ and K ∈ Rm×n;

A2: A diagonal positive semi-definite matrixΩ ∈ Rm×m, a diagonal positive definite matrix T ∈ Sm
+ and

a matrix Γ ∈ Rm×n;

such that the following condition holds:

[
(A + BK)⊺P + P(A + BK) PB − Γ⊺ − (A + BK)⊺K⊺Ω

∗ −2T − ΩKB − (ΩKB)⊺

]

≺ 0, (A4)

then V is positive definite and (A3) holds for all x ∈  ⧵ {0} with

 ∶= {x ∶ (K − T−1Γ)x ∈ (c)}, (A5)

where (c) is defined by (36).
Besides, if there exists

A3: A vector 𝜏 ∈ Rm
>0,
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such that (41) holds with 𝛾 = 1 then, one has

Φ(r) ∶= {x ∶ V(x) ⩽ r} ⊂ , (A6)

with

r−1 ∶= max
j∈m

{
𝜏j

T2
j,j

}

.

Proof. The proof follows from careful inspection of statement and proof of Reference 37 (Proposition 3.4). For
completeness of this article, let us recall the main steps on the reasoning.

Select any x ∈ Rn ⧵ {0}. On the first hand, pre post multiply (A4) by [x⊺, 𝜙⊺c(Kx)] and its transpose:

x⊺((A + BK)⊺P + P(A + BK))x + 𝜙⊺c(Kx)(PB − Γ⊺ − (A + BK)⊺K⊺Ω)⊺x
+ x⊺(PB − Γ⊺ − (A + BK)⊺K⊺Ω)𝜙c(Kx) + 𝜙⊺c(Kx)(−2T − ΩKB − (ΩKB)⊺)𝜙c(Kx) < 0,

or, equivalently,

2x⊺P(Ax + BKx) + 2𝜙⊺c(Kx)(B⊺P − Γ − ΩK(A + BK))x + 2𝜙⊺c (Kx)(−T − ΩKB)𝜙c(Kx) < 0,

which can be rewritten as follows

2x⊺P(Ax + Bsatc(Kx)) − 2𝜙⊺c(Kx)ΩK(Ax + Bsatc(Kx)) − 2𝜙⊺c (Kx)T(𝜙c(Kx) + Gx) < 0, (A7)

since Kx + 𝜙c(Kx) = satc(Kx) and by denoting G = T−1Γ. On the other hand, using Reference 37 (Lemma 1.6)
and the definition of (c) in (36), one proves that:

𝜙

⊺
c (Kx)T(𝜙c(Kx) + Gx) ⩽ 0,∀x ∈ . (A8)

This proves that (A3) holds for all x ∈  ⧵ {0} since, by definition of V , one has:

𝜕V
𝜕x
(x) = 2x⊺P − 2𝜙⊺c(Kx)ΩK. (A9)

Let us now prove that Φ(r) ⊆ . Select any j ∈ m. Multiply (41) with 𝛾 = 1 from both sides by
[

I 0
0 T−1

j,j

]

:

⎡
⎢
⎢
⎢
⎣

P K⊺
j − G⊺

j

∗
𝜏j

T2
j,j

c2
j

⎤
⎥
⎥
⎥
⎦

⪰ 0. (A10)

Since r−1
> 0, this gives:

[
P K⊺

j − G⊺
j

∗ r−1c2
j

]

⪰ 0.

This relation leads to

x⊺(Kj − Gj)⊺c−2
j (Kj − Gj)x ⩽ r−1x⊺Px,

for all x ∈ Rn. Therefore for any x ∈ (r−1P, 0, 1), it holds:

x⊺(Kj − Gj)⊺c−2
j (Kj − Gj)x ⩽ 1 ⇔ ||(Kj − Gj)x||2 ⩽ cj.
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24 NDOYE and TRÉGOUËT

Since j is arbitrary, this proves that x ∈ , so that one has the following inclusion:

(r−1P, 0, 1) = (P, 0, r) ⊆ . (A11)

Besides, from (A2), it holds Φ(r) ⊆ (P, 0, r), which, in turn, implies that Φ(r) ⊆ . ▪

Lemma 4. Assume that there exist:

A1: Two matrices P ∈ Sn
+ and K ∈ Rm×n;

A2: A diagonal positive semi-definite matrix Ω ∈ Rm×m, symmetric matrices with non-negative entries
T+,T− ∈ Rm×m, such that T−j,j = 0 holds for all j ∈ m;

such that (38) and (A4) hold with Γ = TK and T = T+ − T−, then V is positive definite and (A3) holds for
all x ∈ Rn.

Proof. See Proposition 3.5, Remarks 3.7, and 3.13 of Reference 37. ▪
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